1
|
Tanrıverdi Ç, Başay Ö, Kara İ, Yıldırım Demirdöğen E, Özgeriş FB, Akgül BN. Elevated serum angiotensin ii levels in children and adolescents with anxiety disorders. Psychoneuroendocrinology 2025; 176:107430. [PMID: 40117721 DOI: 10.1016/j.psyneuen.2025.107430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/30/2024] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
PURPOSE Angiotensin II peptide is implicated in oxidative stress, neuropathology, and the serotonergic system. We investigated the serum angiotensin II levels in non-medicated children and adolescents with anxiety disorders. MATERIALS AND METHODS Thirty-nine children and adolescents diagnosed with anxiety disorders and thirty-five controls participated in this study to investigate the potential association between anxiety disorders and serum angiotensin II levels. Parents of the participants completed the RCADS-P parent version to assess their children's anxiety and depression levels. RESULTS Higher serum angiotensin II levels were found in individuals with anxiety disorders compared to the control group. We found that social phobia, panic disorder, low mood (major depressive disorder), and generalized anxiety disorder subscale scores on the RCADS-P were significantly correlated with angiotensin II levels. CONCLUSIONS We found that children and adolescents with anxiety disorders had higher serum angiotensin II levels. The current findings align with previous research on the role of angiotensin II in other mental health conditions. Further research is necessary to elucidate its role in anxiety disorders.
Collapse
Affiliation(s)
- Çiğdem Tanrıverdi
- Child and Adolescent Psychiatry and Mental Health, Erzurum Regional Education and Training Hospital, Erzurum, Turkey.
| | - Ömer Başay
- Child and Adolescent Psychiatry and Mental Health, Pamukkale University, Denizli, Turkey.
| | - İhsan Kara
- Child and Adolescent Psychiatry and Mental Health, Erzurum Regional Education and Training Hospital, Erzurum, Turkey.
| | | | | | - Büşra Nur Akgül
- Molecular Biology and Genetics-Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
2
|
Bove M, Morgese MG, Dimonte S, Sikora V, Agosti LP, Palmieri MA, Tucci P, Schiavone S, Trabace L. Increased stress vulnerability in the offspring of socially isolated rats: Behavioural, neurochemical and redox dysfunctions. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110945. [PMID: 38242425 DOI: 10.1016/j.pnpbp.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Stressful events during pregnancy impact on the progeny neurodevelopment. However, little is known about preconceptional stress effects. The rat social isolation represents an animal model of chronic stress inducing a variety of dysfunctions. Moreover, social deprivation during adolescence interferes with key neurodevelopmental processes. Here, we investigated the development of behavioural, neurochemical and redox alterations in the male offspring of socially isolated female rats before pregnancy, reared in group (GRP) or in social isolation (ISO) from weaning until young-adulthood. To this aim, females were reared in GRP or in ISO conditions, from PND21 to PND70, when they were mated. Their male offspring was housed in GRP or ISO conditions through adolescence and until PND70, when passive avoidance-PA, novel object recognition-NOR and open field-OF tests were performed. Levels of noradrenaline (NA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), glutamate (GLU) and GABA were assessed in the prefrontal cortex (PFC). Moreover, cortical ROS levels were quantified, as well as NF-kB and the NADPH oxidase NOX2 expression, redox status (expressed as GSH:GSSG ratio) and SOD1 amount. A significant decrease of the latency time in the PA was observed in the offspring of ISO females. In the NOR test, while a significant increase in the exploratory activity towards the novel object was observed in the offspring of GRP females, no significant differences were found in the offspring of ISO females. No significant differences were found in the OF test among experimental groups. Theoffspring of ISO females showed increased NA and 5-HIAA levels, whereas in the offspring persistently housed in isolation condition from weaninguntil adulthood, we detected reduced 5-HT levels and ehnanced 5-HIAA amount. No significant changes in GLU concentrations were detected, while decreased GABA content was observed in the offspring of ISO females exposed to social isolation. Increased ROS levels as well as reduced NF-κB, NOX2 expression were detected in the offspring of ISO females. This was accompanied by reduced redox status and enhanced SOD1 levels. In conclusion, our results suggest that female exposure to chronic social stress before pregnancy might have a profound influence on the offspring neurodevelopment in terms of cognitive, neurochemical and redox-related alterations, identifying this specific time window for possible preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Lisa Pia Agosti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Maria Adelaide Palmieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| |
Collapse
|
3
|
Barak R, Goshtasbi G, Fatehi R, Firouzabadi N. Signaling pathways and genetics of brain Renin angiotensin system in psychiatric disorders: State of the art. Pharmacol Biochem Behav 2024; 236:173706. [PMID: 38176544 DOI: 10.1016/j.pbb.2023.173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Along the conventional pathways, Renin-angiotensin system (RAS) plays a key role in the physiology of the CNS and pathogenesis of psychiatric diseases. RAS is a complex regulatory pathway which is composed of several peptides and receptors and comprises two counter-regulatory axes. The classical (ACE1/AngII/AT1 receptor) axis and the contemporary (ACE2/Ang (1-7)/Mas receptor) axis. The genes coding for elements of both axes have been broadly studied. Numerous functional polymorphisms on components of RAS have been identified to serve as informative disease and treatment markers. This review summarizes the role of each peptide and receptor in the pathophysiology of psychiatric disorders (depression, bipolar disorders and schizophrenia), followed by a concise look at the role of genetic polymorphism of the RAS in the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Roya Barak
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ghazal Goshtasbi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Dósa Z, Nieto-Gonzalez JL, Elfving B, Hougaard KS, Holm MM, Wegener G, Jensen K. Reduction in hippocampal GABAergic transmission in a low birth weight rat model of depression. Acta Neuropsychiatr 2023; 35:315-327. [PMID: 36896595 DOI: 10.1017/neu.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Prenatal stress is believed to increase the risk of developing neuropsychiatric disorders, including major depression. Adverse genetic and environmental impacts during early development, such as glucocorticoid hyper-exposure, can lead to changes in the foetal brain, linked to mental illnesses developed in later life. Dysfunction in the GABAergic inhibitory system is associated with depressive disorders. However, the pathophysiology of GABAergic signalling is poorly understood in mood disorders. Here, we investigated GABAergic neurotransmission in the low birth weight (LBW) rat model of depression. Pregnant rats, exposed to dexamethasone, a synthetic glucocorticoid, during the last week of gestation, yielded LBW offspring showing anxiety- and depressive-like behaviour in adulthood. Patch-clamp recordings from dentate gyrus granule cells in brain slices were used to examine phasic and tonic GABAA receptor-mediated currents. The transcriptional levels of selected genes associated with synaptic vesicle proteins and GABAergic neurotransmission were investigated. The frequency of spontaneous inhibitory postsynaptic currents (sIPSC) was similar in control and LBW rats. Using a paired-pulse protocol to stimulate GABAergic fibres impinging onto granule cells, we found indications of decreased probability of GABA release in LBW rats. However, tonic GABAergic currents and miniature IPSCs, reflecting quantal vesicle release, appeared normal. Additionally, we found elevated expression levels of two presynaptic proteins, Snap-25 and Scamp2, components of the vesicle release machinery. The results suggest that altered GABA release may be an essential feature in the depressive-like phenotype of LBW rats.
Collapse
Affiliation(s)
- Zita Dósa
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mai Marie Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Pharmaceutical Research Center of Excellence, North-West University, Potchefstroom, South Africa
| | - Kimmo Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
5
|
Battaglia M, Rossignol O, Lorenzo LE, Deguire J, Godin AG, D’Amato FR, De Koninck Y. Enhanced harm detection following maternal separation: Transgenerational transmission and reversibility by inhaled amiloride. SCIENCE ADVANCES 2023; 9:eadi8750. [PMID: 37792939 PMCID: PMC10550232 DOI: 10.1126/sciadv.adi8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Early-life adversities are associated with altered defensive responses. Here, we demonstrate that the repeated cross-fostering (RCF) paradigm of early maternal separation is associated with enhancements of distinct homeostatic reactions: hyperventilation in response to hypercapnia and nociceptive sensitivity, among the first generation of RCF-exposed animals, as well as among two successive generations of their normally reared offspring, through matrilineal transmission. Parallel enhancements of acid-sensing ion channel 1 (ASIC1), ASIC2, and ASIC3 messenger RNA transcripts were detected transgenerationally in central neurons, in the medulla oblongata, and in periaqueductal gray matter of RCF-lineage animals. A single, nebulized dose of the ASIC-antagonist amiloride renormalized respiratory and nociceptive responsiveness across the entire RCF lineage. These findings reveal how, following an early-life adversity, a biological memory reducible to a molecular sensor unfolds, shaping adaptation mechanisms over three generations. Our findings are entwined with multiple correlates of human anxiety and pain conditions and suggest nebulized amiloride as a therapeutic avenue.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Child Youth and Emerging Adult Programme, Centre for Addiction and Mental Health, Toronto, ON, Canada
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Orlane Rossignol
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Jasmin Deguire
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Antoine G. Godin
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Francesca R. D’Amato
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| |
Collapse
|
6
|
Hossain SR, Karem H, Jafari Z, Kolb BE, Mohajerani MH. Early tactile stimulation influences the development of Alzheimer's disease in gestationally stressed APP NL-G-F adult offspring NL-G-F/NL-G-F mice. Exp Neurol 2023; 368:114498. [PMID: 37536439 DOI: 10.1016/j.expneurol.2023.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Alzheimer's disease (AD) is associated with cerebral plaques and tangles, reduced synapse number, and shrinkage in several brain areas and these morphological effects are associated with the onset of compromised cognitive, motor, and anxiety-like behaviours. The appearance of both anatomical and behavioural symptoms is worsened by stress. The focus of this study was to examine the effect of neonatal tactile stimulation on AD-like behavioural and neurological symptoms on APP NL-G-F/NL-G-F mice, a mouse model of AD, who have been gestationally stressed. Our findings indicate that neonatal tactile stimulation improves cognition, motor skills, and anxiety-like symptoms in both gestationally stressed and non-stressed adult APP mice and that these alterations are associated with reduced Aβ plaque formation. Thus, tactile stimulation appears to be a promising non-invasive preventative strategy for slowing the onset of dementia in aging animals.
Collapse
Affiliation(s)
- Shakhawat R Hossain
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada
| | - Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada
| | - Zahra Jafari
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, AB, Canada.
| |
Collapse
|
7
|
Li Y, Shi DD, Wang Z. Adolescent nonpharmacological interventions for early-life stress and their mechanisms. Behav Brain Res 2023; 452:114580. [PMID: 37453516 DOI: 10.1016/j.bbr.2023.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Those with a negative experience of psychosocial stress during the early stage of life not only have a high susceptibility of the psychiatric disorder in all phases of their life span, but they also demonstrate more severe symptoms and poorer response to treatment compared to those without a history of early-life stress. The interventions targeted to early-life stress may improve the effectiveness of treating and preventing psychiatric disorders. Brain regions associated with mood and cognition develop rapidly and own heightened plasticity during adolescence. So, manipulating nonpharmacological interventions in fewer side effects and higher acceptance during adolescence, which is a probable window of opportunity, may ameliorate or even reverse the constantly deteriorating impact of early-life stress. The present article reviews animal and people studies about adolescent nonpharmacological interventions for early-life stress. We aim to discuss whether those adolescent nonpharmacological interventions can promote individuals' psychological health who expose to early-life stress.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
van Oers K, van den Heuvel K, Sepers B. The Epigenetics of Animal Personality. Neurosci Biobehav Rev 2023; 150:105194. [PMID: 37094740 DOI: 10.1016/j.neubiorev.2023.105194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Animal personality, consistent individual differences in behaviour, is an important concept for understanding how individuals vary in how they cope with environmental challenges. In order to understand the evolutionary significance of animal personality, it is crucial to understand the underlying regulatory mechanisms. Epigenetic marks such as DNA methylation are hypothesised to play a major role in explaining variation in phenotypic changes in response to environmental alterations. Several characteristics of DNA methylation also align well with the concept of animal personality. In this review paper, we summarise the current literature on the role that molecular epigenetic mechanisms may have in explaining personality variation. We elaborate on the potential for epigenetic mechanisms to explain behavioural variation, behavioural development and temporal consistency in behaviour. We then suggest future routes for this emerging field and point to potential pitfalls that may be encountered. We conclude that a more inclusive approach is needed for studying the epigenetics of animal personality and that epigenetic mechanisms cannot be studied without considering the genetic background.
Collapse
Affiliation(s)
- Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands.
| | - Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| |
Collapse
|
9
|
Lapp HE, Margolis AE, Champagne FA. Impact of a bisphenol A, F, and S mixture and maternal care on the brain transcriptome of rat dams and pups. Neurotoxicology 2022; 93:22-36. [PMID: 36041667 PMCID: PMC9985957 DOI: 10.1016/j.neuro.2022.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023]
Abstract
Products containing BPA structural analog replacements have increased in response to growing public concern over adverse effects of BPA. Although humans are regularly exposed to a mixture of bisphenols, few studies have examined effects of prenatal exposure to BPA alternatives or bisphenol mixtures. In the present study, we investigate the effect of exposure to an environmentally-relevant, low-dose (150 ug/kg body weight per day) mixture of BPA, BPS, and BPF during gestation on the brain transcriptome in Long-Evans pups and dams using Tag RNA-sequencing. We also examined the association between dam licking and grooming, which also has enduring effects on pup neural development, and the transcriptomes. Associations between licking and grooming and the transcriptome were region-specific, with the hypothalamus having the greatest number of differentially expressed genes associated with licking and grooming in both dams and pups. Prenatal bisphenol exposure also had region-specific effects on gene expression and pup gene expression was affected more robustly than dam gene expression. In dams, the prelimbic cortex had the greatest number of differentially expressed genes associated with prenatal bisphenol exposure. Prenatal bisphenol exposure changed the expression of over 2000 genes in pups, with the majority being from the pup amygdala. We used Gene Set Enrichment Analysis (GSEA) to asses enrichment of gene ontology biological processes for each region. Top GSEA terms were diverse and varied by brain region and included processes known to have strong associations with steroid hormone regulation, cilium-related terms, metabolic/biosynthetic process terms, and immune terms. Finally, hypothesis-driven analysis of genes related to estrogen response, parental behavior, and epigenetic regulation of gene expression revealed region-specific expression associated with licking and grooming and bisphenol exposure that were distinct in dams and pups. These data highlight the effects of bisphenols on multiple physiological process that are highly dependent on timing of exposure (prenatal vs. adulthood) and brain region, and reiterate the contributions of multiple environmental and experiential factors in shaping the brain.
Collapse
Affiliation(s)
- H E Lapp
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keaton St, Austin, TX 78712, USA.
| | - A E Margolis
- Department of Psychiatry, Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - F A Champagne
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keaton St, Austin, TX 78712, USA
| |
Collapse
|
10
|
Amaro A, Baptista FI, Matafome P. Programming of future generations during breastfeeding: The intricate relation between metabolic and neurodevelopment disorders. Life Sci 2022; 298:120526. [DOI: 10.1016/j.lfs.2022.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
|
11
|
Abstract
The overarching objective is to review how early exposure to adversity interacts with inflammation to alter brain maturation. Both adversity and inflammation are significant risk factors for psychopathology. Literature relevant to the effects of adversity in children and adolescents on brain development is reviewed. These studies are supported by research in animals exposed to species-relevant stressors during development. While it is known that exposure to adversity at any age increases inflammation, the effects of inflammation are exacerbated at developmental stages when the immature brain is uniquely sensitive to experiences. Microglia play a vital role in this process, as they scavenge cellular debris and prune synapses to optimize performance. In essence, microglia modify the synapse to match environmental demands, which is necessary for someone with a history of adversity. Overall, by piecing together clinical and preclinical research areas, what emerges is a picture of how adversity uniquely sculpts the brain. Microglia interactions with the inhibitory neurotransmitter GABA (specifically, the subtype expressing parvalbumin) are discussed within contexts of development and adversity. A review of inflammation markers in individuals with a history of abuse is combined with preclinical studies to describe their effects on maturation. Inconsistencies within the literature are discussed, with a call for standardizing methodologies relating to the age of assessing adversity effects, measures to quantify stress and inflammation, and more brain-based measures of biochemistry. Preclinical studies pave the way for interventions using anti-inflammation-based agents (COX-2 inhibitors, CB2 agonists, meditation/yoga) by identifying where, when, and how the developmental trajectory goes awry.
Collapse
|
12
|
Harrison DJ, Creeth HDJ, Tyson HR, Boque-Sastre R, Hunter S, Dwyer DM, Isles AR, John RM. Placental endocrine insufficiency programs anxiety, deficits in cognition and atypical social behaviour in offspring. Hum Mol Genet 2021; 30:1863-1880. [PMID: 34100083 PMCID: PMC8444454 DOI: 10.1093/hmg/ddab154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023] Open
Abstract
Abnormally elevated expression of the imprinted PHLDA2 gene has been reported in the placenta of human babies that are growth restricted in utero in several studies. We previously modelled this gene alteration in mice and found that just 2-fold increased expression of Phlda2 resulted in placental endocrine insufficiency. In addition, elevated Phlda2 was found to drive fetal growth restriction (FGR) of transgenic offspring and impaired maternal care by their wildtype mothers. Being born small and being exposed to suboptimal maternal care have both been associated with the increased risk of mental health disorders in human populations. In the current study we probed behavioural consequences of elevated Phlda2 for the offspring. We discovered increased anxiety-like behaviours, deficits in cognition and atypical social behaviours, with the greatest impact on male offspring. Subsequent analysis revealed alterations in the transcriptome of the adult offspring hippocampus, hypothalamus and amygdala, regions consistent with these behavioural observations. The inclusion of a group of fully wildtype controls raised in a normal maternal environment allowed us to attribute behavioural and molecular alterations to the adverse maternal environment induced by placental endocrine insufficiency rather than the specific gene change of elevated Phlda2. Our work demonstrates that a highly common alteration reported in human FGR is associated with negative behavioural outcomes later in life. Importantly, we also establish the experimental paradigm that placental endocrine insufficiency can program atypical behaviour in offspring highlighting the under-appreciated role of placental endocrine insufficiency in driving disorders of later life behaviour.
Collapse
Affiliation(s)
- David J Harrison
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, UK, CF10 3AX, UK
| | - Hugo D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, UK, CF10 3AX, UK
| | - Hannah R Tyson
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, UK, CF10 3AX, UK
| | - Raquel Boque-Sastre
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, UK, CF10 3AX, UK
| | - Susan Hunter
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, UK, CF10 3AX, UK
| | - Dominic M Dwyer
- School of Psychology, Cardiff University, Cardiff, UK, CF10 3AX, UK
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK, CF24 4HQ
| | - Rosalind M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, UK, CF10 3AX, UK
| |
Collapse
|
13
|
Gawlińska K, Gawliński D, Korostyński M, Borczyk M, Frankowska M, Piechota M, Filip M, Przegaliński E. Maternal dietary patterns are associated with susceptibility to a depressive-like phenotype in rat offspring. Dev Cogn Neurosci 2020; 47:100879. [PMID: 33232913 PMCID: PMC7691544 DOI: 10.1016/j.dcn.2020.100879] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Modified maternal diet influences offspring behavior and the brain transcriptome. Maternal HFD provokes depressive-like behavior in male and female offspring. In utero exposure to HFD leads to transcriptomics alterations within the offspring’s frontal cortex. Maternal HFD changes expression of markers specific to excitatory and inhibitory cortical neurons.
Environmental factors such as maternal diet, determine the pathologies that appear early in life and can persist in adulthood. Maternally modified diets provided through pregnancy and lactation increase the predisposition of offspring to the development of many diseases, including obesity, diabetes, and neurodevelopmental and mental disorders such as depression. Fetal and early postnatal development are sensitive periods in the offspring’s life in which maternal nutrition influences epigenetic modifications, which results in changes in gene expression and affects molecular phenotype. This study aimed to evaluate the impact of maternal modified types of diet, including a high-fat diet (HFD), high-carbohydrate diet (HCD) and mixed diet (MD) during pregnancy and lactation on phenotypic changes in rat offspring with respect to anhedonia, depressive- and anxiety-like behavior, memory impairment, and gene expression profile in the frontal cortex. Behavioral results indicate that maternal HFD provokes depressive-like behavior and molecular findings showed that HFD leads to persistent transcriptomics alterations. Moreover, a HFD significantly influences the expression of neuronal markers specific to excitatory and inhibitory cortical neurons. Collectively, these experiments highlight the complexity of the impact of maternal modified diet during fetal programming. Undoubtedly, maternal HFD affects brain development and our findings suggest that nutrition exerts significant changes in brain function that may be associated with depression.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Dawid Gawliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Michał Korostyński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Borczyk
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Frankowska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Marcin Piechota
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland.
| | - Edmund Przegaliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| |
Collapse
|
14
|
Balikci A, Ilbay G, Ates N. Neonatal Tactile Stimulations Affect Genetic Generalized Epilepsy and Comorbid Depression-Like Behaviors. Front Behav Neurosci 2020; 14:132. [PMID: 32792925 PMCID: PMC7390910 DOI: 10.3389/fnbeh.2020.00132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest that development of absence epilepsy and comorbid depression might be prevented by increased maternal care of the offspring, in which tactile stimulation induced by licking/grooming and non-nutritive contact seem to be crucial. In this study, we aimed to evaluate the effect of neonatal tactile stimulations (NTS) on absence epilepsy and depression-like behaviors in adulthood. Wistar Albino Glaxo from Rijswijk (WAG/Rij) rat pups with a genetic predisposition to absence epilepsy were divided into tactile stimulation (TS) group, deep touch pressure (DTP) group, maternal separation (MS) group or control group. Between postnatal day 3 and 21, manipulations (TS, DTP, and MS) were carried out for 15 min and three times a day. Animals were submitted to locomotor activity, sucrose consumption test (SCT) and forced swimming test (FST) at five months of age. At the age of six months, the electroencephalogram (EEG) recordings were conducted in order to quantify the spike-wave discharges (SWDs), which is the hallmark of absence epilepsy. The TS and DTP groups showed less and shorter SWDs in later life in comparison to maternally separated and control rats. SWDs’ number and total duration were significantly reduced in TS and DTP groups whereas mean duration of SWDs was reduced only in DTP group (p < 0.05). TS and DTP also decreased depression-like behaviors measured by SCT and FST in adult animals. In the SCT, number of approaches was significantly higher in TS and DTP groups than the maternally separated and control rats. In the FST, while the immobility latency of TS and DTP groups was significantly higher, only TS group showed significantly decreased immobility and increased swimming time. The results showed that NTS decreases both the number and length of SWDs and the depression-like behaviors in WAG/Rij rats probably by increasing arousal level and causing alterations in the level of some neurotrophic factors as well as in functions of the neural plasticity in the developing rat’s brain.
Collapse
Affiliation(s)
- Aymen Balikci
- Department of Physiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gul Ilbay
- Department of Physiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Nurbay Ates
- Department of Physiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
15
|
Abstract
Epigenetic mechanisms govern the transcription of the genome. Research with model systems reveals that environmental conditions can directly influence epigenetic mechanisms that are associated with interindividual differences in gene expression in brain and neural function. In this review, we provide a brief overview of epigenetic mechanisms and research with relevant rodent models. We emphasize more recent translational research programs in epigenetics as well as the challenges inherent in the integration of epigenetics into developmental and clinical psychology. Our objectives are to present an update with respect to the translational relevance of epigenetics for the study of psychopathology and to consider the state of current research with respect to its potential importance for clinical research and practice in mental health.
Collapse
Affiliation(s)
- Kieran J O'Donnell
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec H4H 1R3, Canada; .,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec H3H 1R4, Canada.,Child and Brain Development Program, CIFAR, Toronto, Ontario M5G 1M1, Canada
| | - Michael J Meaney
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec H4H 1R3, Canada; .,Child and Brain Development Program, CIFAR, Toronto, Ontario M5G 1M1, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 117609 Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| |
Collapse
|
16
|
Shaw JC, Crombie GK, Zakar T, Palliser HK, Hirst JJ. Perinatal compromise contributes to programming of GABAergic and glutamatergic systems leading to long-term effects on offspring behaviour. J Neuroendocrinol 2020; 32:e12814. [PMID: 31758712 DOI: 10.1111/jne.12814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023]
Abstract
Extensive evidence now shows that adversity during the perinatal period is a significant risk factor for the development of neurodevelopmental disorders long after the causative event. Despite stemming from a variety of causes, perinatal compromise appears to have similar effects on the developing brain, thereby resulting in behavioural disorders of a similar nature. These behavioural disorders occur in a sex-dependent manner, with males affected more by externalising behaviours such as attention deficit hyperactivity disorder (ADHD) and females by internalising behaviours such as anxiety. Regardless of the causative event or the sex of the offspring, these disorders may begin in childhood or adolescence but extend into adulthood. A mechanism by which adverse events in the perinatal period impact later in life behaviour has been shown to be the changing epigenetic landscape. Methylation of the GAD1/GAD67 gene, which encodes the key glutamate-to-GABA-synthesising enzyme glutamate decarboxylase 1, resulting in increased levels of glutamate, is one epigenetic mechanism that may account for a tendency towards excitation in disorders such as ADHD. Exposure of the fetus or the neonate to high levels of cortisol may be the mediator between perinatal compromise and poor behavioural outcomes because evidence suggests that increased glucocorticoid exposure triggers widespread changes in the epigenetic landscape. This review summarises the current evidence and recent literature about the impact of various perinatal insults on the epigenome and the common mechanisms that may explain the similarity of behavioural outcomes occurring following diverse perinatal compromise.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
17
|
Biglan A, Van Ryzin MJ, Moore KJ, Mauricci M, Mannan I. The socialization of boys and men in the modern era: An evolutionary mismatch. Dev Psychopathol 2019; 31:1789-1799. [PMID: 31718736 PMCID: PMC7643809 DOI: 10.1017/s0954579419001366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This paper examines the misalignment between modern human society and certain male phenotypes, a misalignment that has been highlighted and explored in great detail in the work of Tom Dishion. We begin by briefly enumerating the ongoing developmental difficulties of many boys and young men and how these difficulties affect them and those around them. We then suggest that the qualities that have been advantageous for men and their families in our earlier evolution but that are often no longer functional in modern society are a source of these problems. Finally, we provide a brief review of prevention programs that can contribute to preventing this type of problematic development and eliciting more prosocial behavior from at-risk boys and men. We conclude with an overview of research and policy priorities that could contribute to reducing the proportion of boys and young men who experience developmental difficulties in making their way in the world.
Collapse
|
18
|
Fogaça MV, Duman RS. Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions. Front Cell Neurosci 2019. [PMID: 30914923 DOI: 10.3389/fncel.2019.00087/full] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
19
|
Hernández-Pérez OR, Hernández VS, Nava-Kopp AT, Barrio RA, Seifi M, Swinny JD, Eiden LE, Zhang L. A Synaptically Connected Hypothalamic Magnocellular Vasopressin-Locus Coeruleus Neuronal Circuit and Its Plasticity in Response to Emotional and Physiological Stress. Front Neurosci 2019; 13:196. [PMID: 30949017 PMCID: PMC6435582 DOI: 10.3389/fnins.2019.00196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/19/2019] [Indexed: 01/01/2023] Open
Abstract
The locus coeruleus (LC)-norepinephrine (NE) system modulates a range of salient brain functions, including memory and response to stress. The LC-NE system is regulated by neurochemically diverse inputs, including a range of neuropeptides such as arginine-vasopressin (AVP). Whilst the origins of many of these LC inputs, their synaptic connectivity with LC neurons, and their contribution to LC-mediated brain functions, have been well characterized, this is not the case for the AVP-LC system. Therefore, our aims were to define the types of synapses formed by AVP+ fibers with LC neurons using immunohistochemistry together with confocal and transmission electron microscopy (TEM), the origins of such inputs, using retrograde tracers, and the plasticity of the LC AVP system in response to stress and spatial learning, using the maternal separation (MS) and Morris water maze (MWM) paradigms, respectively, in rat. Confocal microscopy revealed that AVP+ fibers contacting tyrosine hydroxylase (TH)+ LC neurons were also immunopositive for vesicular glutamate transporter 2, a marker of presynaptic glutamatergic axons. TEM confirmed that AVP+ axons formed Gray type I (asymmetric) synapses with TH+ dendrites thus confirming excitatory synaptic connections between these systems. Retrograde tracing revealed that these LC AVP+ fibers originate from hypothalamic vasopressinergic magnocellular neurosecretory neurons (AVPMNNs). MS induced a significant increase in the density of LC AVP+ fibers. Finally, AVPMNN circuit upregulation by water-deprivation improved MWM performance while increased Fos expression was found in LC and efferent regions such as hippocampus and prefrontal cortex, suggesting that AVPMMN projections to LC could integrate homeostatic responses modifying neuroplasticity.
Collapse
Affiliation(s)
- Oscar R Hernández-Pérez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vito S Hernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia T Nava-Kopp
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael A Barrio
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohsen Seifi
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Jerome D Swinny
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health-IRP, Bethesda, MD, United States
| | - Limei Zhang
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
20
|
Fogaça MV, Duman RS. Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions. Front Cell Neurosci 2019; 13:87. [PMID: 30914923 PMCID: PMC6422907 DOI: 10.3389/fncel.2019.00087] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
21
|
Maternal positive responses to a distressed infant simulator predict subsequent negative affect in infants. Infant Behav Dev 2019; 56:101299. [PMID: 30670294 DOI: 10.1016/j.infbeh.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/30/2018] [Accepted: 12/19/2018] [Indexed: 11/23/2022]
Abstract
Existing evidence indicates that maternal responses to infant distress, specifically more sensitive and less inconsistent/rejecting responses, are associated with lower infant negative affect (NA). However, due to ethical and methodological constraints, most existing studies do not employ methods that guarantee each mother will be observed responding to infant distress. To address such limitations, in the current study, a distressed infant simulator (SIM), programmed to be inconsolable, was employed to ensure that mothers (N = 150; 4 months postpartum) were observed responding to infant distress. Subsequently, maternal report of infant NA and an early aspect of regulatory capacity, sootheability, were collected at eight-months postpartum, and observational assessments of infant fear and frustration, fine-grained aspects of NA, were collected at 12-months of age. After controlling for infant sex, the proportion of time mothers spent using soothing touch during the SIM task was related to less overall maternal reported NA and sadness at eight-months postpartum. Similarly, greater use of touch was associated with less fear reactivity, and greater maternal use of vocalizations was related to lower infant frustration, at 12-months postpartum. Specific maternal soothing behaviors were not related to infant soothability at 8 months postpartum. Total time spent interacting with the SIM was not related to infant temperament, suggesting that type of soothing, not quantity of interactions with distressed infants, is important for reducing infant NA. The implications of these findings and important future directions are discussed.
Collapse
|
22
|
Chaplin TM, Poon JA, Thompson JC, Hansen A, Dziura SL, Turpyn CC, Niehaus CE, Sinha R, Chassin L, Ansell EB. Sex-Differentiated Associations among Negative Parenting, Emotion-Related Brain Function, and Adolescent Substance Use and Psychopathology Symptoms. SOCIAL DEVELOPMENT 2019; 28:637-656. [PMID: 31602097 DOI: 10.1111/sode.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parenting is a critical factor in adolescent social-emotional development, with maladaptive parenting leading to risk for the development of psychopathology. However, the emotion-related brain mechanisms underlying the influence of parenting on psychopathology symptoms are unknown. The present study utilized functional magnetic resonance imaging and laboratory measures to examine sex-differentiated associations among parenting, adolescent emotion-related brain function, and substance use and psychopathology symptoms in 66 12-14 year olds. Maternal parenting behaviors (warmth, negative parenting) were observed in a laboratory task. Adolescent brain responses to negative emotional stimuli were assessed in emotion processing regions of interest (left [L] and right [R] amygdala, anterior insula, anterior cingulate cortex [ACC]). Adolescents reported on substance use and depressive, anxiety, and externalizing symptoms. Maternal negative parenting predicted adolescent brain activation differently by sex. For girls, negative parenting predicted heightened R ACC activation to negative emotional stimuli. For boys, negative parenting predicted blunted L and R anterior insula and L ACC activation. Furthermore, for girls, but not boys, heightened L anterior insula and heightened L and R ACC activation were associated with substance use and depressive symptoms, respectively. Findings suggest neural response to negative emotion as a possible sex-specific pathway from negative parenting to psychopathology.
Collapse
|
23
|
Asher S, Bhiman V, Gokani N, Jeyarayan K, Bhanot R, Sasitharan A. Is chronic stress in childhood abuse victims linked to structural brain changes? Psychol Med 2018; 48:2624-2625. [PMID: 30058509 DOI: 10.1017/s0033291718001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shreya Asher
- Barts and The London, School of Medicine and Dentistry,Garrod Building,Turner Street,Whitechapel, E12AD,London,UK
| | - Vaishanjali Bhiman
- Barts and The London, School of Medicine and Dentistry,Garrod Building,Turner Street,Whitechapel, E12AD,London,UK
| | - Nishma Gokani
- Barts and The London, School of Medicine and Dentistry,Garrod Building,Turner Street,Whitechapel, E12AD,London,UK
| | - Kerrthana Jeyarayan
- Barts and The London, School of Medicine and Dentistry,Garrod Building,Turner Street,Whitechapel, E12AD,London,UK
| | - Ravina Bhanot
- Barts and The London, School of Medicine and Dentistry,Garrod Building,Turner Street,Whitechapel, E12AD,London,UK
| | - Archana Sasitharan
- Barts and The London, School of Medicine and Dentistry,Garrod Building,Turner Street,Whitechapel, E12AD,London,UK
| |
Collapse
|
24
|
Mitchell SJ, Maguire EP, Cunningham L, Gunn BG, Linke M, Zechner U, Dixon CI, King SL, Stephens DN, Swinny JD, Belelli D, Lambert JJ. Early-life adversity selectively impairs α2-GABA A receptor expression in the mouse nucleus accumbens and influences the behavioral effects of cocaine. Neuropharmacology 2018; 141:98-112. [PMID: 30138693 PMCID: PMC6178871 DOI: 10.1016/j.neuropharm.2018.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 01/20/2023]
Abstract
Haplotypes of the Gabra2 gene encoding the α2-subunit of the GABAA receptor (GABAAR) are associated with drug abuse, suggesting that α2-GABAARs may play an important role in the circuitry underlying drug misuse. The genetic association of Gabra2 haplotypes with cocaine addiction appears to be evident primarily in individuals who had experienced childhood trauma. Given this association of childhood trauma, cocaine abuse and the Gabra2 haplotypes, we have explored in a mouse model of early life adversity (ELA) whether such events influence the behavioral effects of cocaine and if, as suggested by the human studies, α2-GABAARs in the nucleus accumbens (NAc) are involved in these perturbed behaviors. In adult mice prior ELA caused a selective decrease of accumbal α2-subunit mRNA, resulting in a selective decrease in the number and size of the α2-subunit (but not the α1-subunit) immunoreactive clusters in NAc core medium spiny neurons (MSNs). Functionally, in adult MSNs ELA decreased the amplitude and frequency of GABAAR-mediated miniature inhibitory postsynaptic currents (mIPSCs), a profile similar to that of α2 "knock-out" (α2-/-) mice. Behaviourally, adult male ELA and α2-/- mice exhibited an enhanced locomotor response to acute cocaine and blunted sensitisation upon repeated cocaine administration, when compared to their appropriate controls. Collectively, these findings reveal a neurobiological mechanism which may relate to the clinical observation that early trauma increases the risk for substance abuse disorder (SAD) in individuals harbouring haplotypic variations in the Gabra2 gene.
Collapse
Affiliation(s)
- Scott J Mitchell
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Edward P Maguire
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Linda Cunningham
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Benjamin G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Matthias Linke
- Institute of Human Genetics, Mainz University, Medical Center, Mainz, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, Mainz University, Medical Center, Mainz, Germany
| | - Claire I Dixon
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - Sarah L King
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - David N Stephens
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - Jerome D Swinny
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom.
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom.
| | - Jeremy J Lambert
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom.
| |
Collapse
|
25
|
Farber MJ, Romer AL, Kim MJ, Knodt AR, Elsayed NM, Williamson DE, Hariri AR. Paradoxical associations between familial affective responsiveness, stress, and amygdala reactivity. ACTA ACUST UNITED AC 2018; 19:645-654. [PMID: 29999382 DOI: 10.1037/emo0000467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Studies of early life extremes such as trauma, abuse, and neglect highlight the critical importance of quality caregiving in the development of brain circuits supporting emotional behavior and mental health. The impact of normative variability in caregiving on such biobehavioral processes, however, is poorly understood. Here, we provide initial evidence that even subtle variability in normative caregiving maps onto individual differences in threat-related brain function and, potentially, associated psychopathology in adolescence. Specifically, we report that greater familial affective responsiveness is associated with heightened amygdala reactivity to interpersonal threat, particularly in adolescents having experienced relatively low recent stress. These findings extend the literature on the effects of caregiving extremes on brain function to subtle, normative variability but suggest that presumably protective factors may be associated with increased risk-related amygdala reactivity. We consider these paradoxical associations with regard to studies of basic associative threat learning and further consider their relevance for understanding potential effects of caregiving on psychological development. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
26
|
Burns SB, Szyszkowicz JK, Luheshi GN, Lutz PE, Turecki G. Plasticity of the epigenome during early-life stress. Semin Cell Dev Biol 2018; 77:115-132. [DOI: 10.1016/j.semcdb.2017.09.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 12/22/2022]
|
27
|
Lukkes JL, Meda S, Norman KJ, Andersen SL. Anhedonic behavior and γ-amino butyric acid during a sensitive period in female rats exposed to early adversity. J Psychiatr Res 2018; 100:8-15. [PMID: 29471082 PMCID: PMC6295145 DOI: 10.1016/j.jpsychires.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/22/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
Abstract
Early life adversity increases depressive behavior that emerges during adolescence. Sensitive periods have been associated with fewer GABAergic interneurons, especially parvalbumin (PV), brain derived growth factor, and its receptor, TrkB. Here, maternal separation (MS) and social isolation (ISO) were used to establish a sensitive period for anhedonic depression using the learned helplessness (LH) paradigm. Female Sprague-Dawley rat pups underwent MS for 4-h/day or received typical care (CON) between postnatal days 2-20; for the ISO condition, separate cohorts were individually housed between days 20-40 or served as controls (CON2). Anhedonia was defined by dichotomizing subjects into two groups based on one standard deviation of the mean number of escapes for the CON group (<14). This approach categorized 22% of CON subjects and 44% of MS subjects as anhedonic (p < 0.05), similar to the prevalence in maltreated human populations. Only 12.5% of ISO rats met criterion versus 28.5% in CON2 rats. Levels of PV and TrkB were reduced in the amygdala and prelimbic prefrontal cortex (PFC) in MS rats with <14 escapes, but elevated in behaviorally resilient MS rats (>13 escapes). The number of escapes in MS subjects significantly correlated with PV and TrkB levels (PFC: r = 0.93 and 0.91 and amygdala: r = 0.63 and 0.81, respectively; n = 9), but not in CON/ISO/CON2 subjects. Calretinin, but not calbindin, was elevated in the amygdala of MS subjects. These data suggest that low levels of PV and TrkB double the risk for anhedonia in females with an MS history compared to normal adolescent females.
Collapse
Affiliation(s)
- Jodi L. Lukkes
- Laboratory for Developmental Neuropharmacology, McLean Hospital,Harvard Medical School
| | - Shirisha Meda
- Laboratory for Developmental Neuropharmacology, McLean Hospital
| | - Kevin J. Norman
- Laboratory for Developmental Neuropharmacology, McLean Hospital
| | - Susan L. Andersen
- Laboratory for Developmental Neuropharmacology, McLean Hospital,Harvard Medical School,to whom correspondence should be addressed: 115 Mill Street, Mailstop 333, Belmont, MA 02478, Tel: (617)-855-3211, FAX: (617)-855-3479,
| |
Collapse
|
28
|
Popoola DO, Cameron NM. Maternal care-related differences in males and females rats' sensitivity to ethanol and the associations between the GABAergic system and steroids in males. Dev Psychobiol 2018; 60:380-394. [PMID: 29442358 DOI: 10.1002/dev.21607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
Abstract
This study investigated the effect of maternal care on adolescent ethanol consumption, sensitivity to ethanol-induced hypnosis, as well as gonadal hormones and γ-aminobutyric acid type-A (GABAA ) systems. Long Evans rat dams were categorized by maternal licking/grooming (LG) frequency into High- and Low-LG mothers. Both female and male offspring from Low-LG rats demonstrated a greater sensitivity to ethanol-induced hypnosis in the loss-of-righting-reflex test at ethanol doses of 3.0 and 3.5 g/kg during late-adolescence (postnatal Day 50) but not at mid-adolescence (postnatal Day 42). However, we found no effect of maternal care on consumption of a 5% ethanol solution in a two-bottle choice test. We further investigated the association between the observed variations in sensitivity to ethanol-induced hypnosis and baseline hormonal levels in males. In male offspring from Low-LG mothers compared to High-LG mothers, baseline plasma corticosterone and progesterone levels were higher. GABAA α1 and δ subunit expressions were also higher in the cerebral cortex of Low-LG males but lower in the cerebellar synaptosomal fraction. Early environmental influences on adolescent sensitivity to ethanol-induced hypnosis, consumption, and preference may be mediated by gonadal hormones and possibly through GABAergic functions.
Collapse
Affiliation(s)
- Daniel O Popoola
- Department of Psychology, Center for Developmental and Behavioral Neuroscience, Binghamton University, Binghamton, New York.,Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, New York.,Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University of Buffalo, Buffalo, New York
| | - Nicole M Cameron
- Department of Psychology, Center for Developmental and Behavioral Neuroscience, Binghamton University, Binghamton, New York.,Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, New York
| |
Collapse
|
29
|
Everington EA, Gibbard AG, Swinny JD, Seifi M. Molecular Characterization of GABA-A Receptor Subunit Diversity within Major Peripheral Organs and Their Plasticity in Response to Early Life Psychosocial Stress. Front Mol Neurosci 2018; 11:18. [PMID: 29467616 PMCID: PMC5807923 DOI: 10.3389/fnmol.2018.00018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Gamma aminobutyric acid (GABA) subtype A receptors (GABAARs) are integral membrane ion channels composed of five individual proteins or subunits. Up to 19 different GABAAR subunits (α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3) have been identified, resulting in anatomically, physiologically, and pharmacologically distinct multiple receptor subtypes, and therefore GABA-mediated inhibition, across the central nervous system (CNS). Additionally, GABAAR-modulating drugs are important tools in clinical medicine, although their use is limited by adverse effects. While significant advances have been made in terms of characterizing the GABAAR system within the brain, relatively less is known about the molecular phenotypes within the peripheral nervous system of major organ systems. This represents a potentially missed therapeutic opportunity in terms of utilizing or repurposing clinically available GABAAR drugs, as well as promising research compounds discarded due to their poor CNS penetrance, for the treatment of peripheral disorders. In addition, a broader understanding of the peripheral GABAAR subtype repertoires will contribute to the design of therapies which minimize peripheral side-effects when treating CNS disorders. We have recently provided a high resolution molecular and function characterization of the GABAARs within the enteric nervous system of the mouse colon. In this study, the aim was to determine the constituent GABAAR subunit expression profiles of the mouse bladder, heart, liver, kidney, lung, and stomach, using reverse transcription polymerase chain reaction and western blotting with brain as control. The data indicate that while some subunits are expressed widely across various organs (α3–5), others are restricted to individual organs (γ2, only stomach). Furthermore, we demonstrate complex organ-specific developmental expression plasticity of the transporters which determine the chloride gradient within cells, and therefore whether GABAAR activation has a depolarizing or hyperpolarizing effect. Finally, we demonstrate that prior exposure to early life psychosocial stress induces significant changes in peripheral GABAAR subunit expression and chloride transporters, in an organ- and subunit-specific manner. Collectively, the data demonstrate the molecular diversity of the peripheral GABAAR system and how this changes dynamically in response to life experience. This provides a molecular platform for functional analyses of the GABA–GABAAR system in health, and in diseases affecting various peripheral organs.
Collapse
Affiliation(s)
- Ethan A Everington
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Adina G Gibbard
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jerome D Swinny
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Mohsen Seifi
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
30
|
Epigenetics and Early Life Adversity: Current Evidence and Considerations for Epigenetic Studies in the Context of Child Maltreatment. THE BIOLOGY OF EARLY LIFE STRESS 2018. [DOI: 10.1007/978-3-319-72589-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Barnett Burns S, Almeida D, Turecki G. The Epigenetics of Early Life Adversity: Current Limitations and Possible Solutions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:343-425. [DOI: 10.1016/bs.pmbts.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Bernal-Morales B, Cueto-Escobedo J, Guillén-Ruiz G, Rodríguez-Landa JF, Contreras CM. A Fatty Acids Mixture Reduces Anxiety-Like Behaviors in Infant Rats Mediated by GABA A Receptors. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8798546. [PMID: 29392140 PMCID: PMC5748109 DOI: 10.1155/2017/8798546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/01/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022]
Abstract
Fatty acids (C6-C18) found in human amniotic fluid, colostrum, and maternal milk reduce behavioral indicators of experimental anxiety in adult Wistar rats. Unknown, however, is whether the anxiolytic-like effects of fatty acids provide a natural mechanism against anxiety in young offspring. The present study assessed the anxiolytic-like effect of a mixture of lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, elaidic acid, and linoleic acid in Wistar rats on postnatal day 28. Infant rats were subjected to the elevated plus maze, defensive burying test, and locomotor activity test. Diazepam was used as a reference anxiolytic drug. A group that was pretreated with picrotoxin was used to explore the participation of γ-aminobutyric acid-A (GABAA) receptors in the anxiolytic-like effects. Similar to diazepam, the fatty acid mixture significantly increased the frequency of entries into and time spent on the open arms of the elevated plus maze and decreased burying behavior in the defensive burying test, without producing significant changes in spontaneous locomotor activity. These anxiolytic-like effects were blocked by picrotoxin. Results suggest that these fatty acids that are contained in maternal fluid may reduce anxiety-like behavior by modulating GABAergic neurotransmission in infant 28-day-old rats.
Collapse
Affiliation(s)
- Blandina Bernal-Morales
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, 91190 Xalapa, VER, Mexico
| | - Jonathan Cueto-Escobedo
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, 91190 Xalapa, VER, Mexico
| | - Gabriel Guillén-Ruiz
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, 91190 Xalapa, VER, Mexico
| | - Juan F. Rodríguez-Landa
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, 91190 Xalapa, VER, Mexico
| | - Carlos M. Contreras
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, 91190 Xalapa, VER, Mexico
- Unidad Periférica Xalapa, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 91190 Xalapa, VER, Mexico
| |
Collapse
|
33
|
Popoola DO, Nizhnikov ME, Cameron NM. Strain-specific programming of prenatal ethanol exposure across generations. Alcohol 2017; 60:191-199. [PMID: 28433421 DOI: 10.1016/j.alcohol.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023]
Abstract
Behavioral consequences of prenatal alcohol exposure (PAE) can be transmitted from in utero-exposed F1 generation to their F2 offspring. This type of transmission is modulated by genetic and epigenetic mechanisms. This study investigated the intergenerational consequences of prenatal exposure to a low ethanol dose (1 g/kg) during gestational days 17-20, on ethanol-induced hypnosis in adolescent male F1 and F2 generations, in two strains of rats. Adolescent Long-Evans and Sprague-Dawley male rats were tested for sensitivity to ethanol-induced hypnosis at a 3.5-g/kg or 4.5-g/kg ethanol dose using the loss of righting reflex (LORR) paradigm. We hypothesized that PAE would attenuate sensitivity to ethanol-induced hypnosis in the ethanol-exposed animals in these two strains and in both generations. Interestingly, we only found this effect in Sprague-Dawley rats. Lastly, we investigated PAE related changes in expression of GABAA receptor α1, α4, and δ subunits in the cerebral cortex of the PAE sensitive Sprague-Dawley strain. We hypothesized a reduction in the cerebral cortex GABAA receptor subunits' expression in the F1 and F2 PAE groups compared to control animals. GABAA receptor α1, α4, and δ subunits protein expressions were quantified in the cerebral cortex of F1 and F2 male adolescents by western blotting. PAE did not alter cerebral cortical GABAA receptor subunit expressions in the F1 generation, but it decreased GABAA receptor α4 and δ subunits' expressions in the F2 generation, and had a tendency to decrease α1 subunit expression. We also found correlations between some of the subunits in both generations. These strain-dependent vulnerabilities to ethanol sensitivity, and intergenerational PAE-mediated changes in sensitivity to alcohol indicate that genetic and epigenetic factors interact to determine the outcomes of PAE animals and their offspring.
Collapse
Affiliation(s)
- Daniel O Popoola
- Psychology Department, Center for Developmental and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University- SUNY, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - Michael E Nizhnikov
- Southern Connecticut State University, 501 Crescent Street, New Haven, CT, 06515-1355, USA
| | - Nicole M Cameron
- Psychology Department, Center for Developmental and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University- SUNY, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| |
Collapse
|
34
|
McCrory EJ, Gerin MI, Viding E. Annual Research Review: Childhood maltreatment, latent vulnerability and the shift to preventative psychiatry - the contribution of functional brain imaging. J Child Psychol Psychiatry 2017; 58:338-357. [PMID: 28295339 PMCID: PMC6849838 DOI: 10.1111/jcpp.12713] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Childhood maltreatment is a potent predictor of poor mental health across the life span. We argue that there is a need to improve the understanding of the mechanisms that confer psychiatric vulnerability following maltreatment, if we are to progress from simply treating those with a manifest disorder, to developing effective preventative approaches that can help offset the likelihood that such disorders will emerge in the first place. METHODS We review extant functional neuroimaging studies of children and adolescents exposed to early neglect and/or maltreatment, including physical, sexual and emotional abuse across four neurocognitive domains: threat processing, reward processing, emotion regulation and executive control. Findings are discussed in the context of 'latent vulnerability', where alterations in neurocognitive function are considered to carry adaptive value in early adverse caregiving environments but confer long-term risk. RESULTS Studies on threat processing indicate heightened as well as depressed neural responsiveness in maltreated samples, particularly in the amygdala, thought to reflect threat hypervigilance and avoidance respectively. Studies on reward processing generally report blunted neural response to anticipation and receipt of rewards, particularly in the striatum, patterns associated with depressive symptomatology. Studies on emotion regulation report increased activation of the anterior cingulate cortex (ACC) during active emotion regulation, possibly reflecting greater effortful processing. Finally, studies of executive control report increased dorsal ACC activity during error monitoring and inhibition. CONCLUSIONS An emerging body of work indicates that altered neurocognitive functioning following maltreatment: (a) is evident even in the absence of overt psychopathology; (b) is consistent with perturbations seen in individuals presenting with psychiatric disorder; (c) can predict future psychiatric symptomatology. These findings suggest that maltreatment leads to neurocognitive alterations that embed latent vulnerability to psychiatric disorder, establishing a compelling case for identifying those children at most risk and developing mechanistically informed models of preventative intervention. Such interventions should aim to offset the likelihood of any future psychiatric disorder.
Collapse
Affiliation(s)
- Eamon J. McCrory
- Division of Psychology and Language SciencesUniversity College LondonLondonUK,Anna Freud National Centre for Children and FamiliesLondonUK
| | - Mattia I. Gerin
- Division of Psychology and Language SciencesUniversity College LondonLondonUK,Anna Freud National Centre for Children and FamiliesLondonUK
| | - Essi Viding
- Division of Psychology and Language SciencesUniversity College LondonLondonUK
| |
Collapse
|
35
|
Borrow AP, Cameron NM. Maternal care and affective behavior in female offspring: Implication of the neurosteroid/GABAergic system. Psychoneuroendocrinology 2017; 76:29-37. [PMID: 27883962 DOI: 10.1016/j.psyneuen.2016.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/17/2016] [Accepted: 10/29/2016] [Indexed: 11/18/2022]
Abstract
In female rats, the proestrus phase of the estrous cycle is associated with decreased levels of anxiety-like and depressive-like behavior relative to the metestrus phase. Progesterone likely modulate these behaviors, in part through the influence of its metabolite, allopregnanolone (THP) on hippocampal GABAAR subunit expression. As natural variations in maternal care have been found to influence both progesterone levels at proestrus and anxiety-like behavior in female offspring, we sought to investigate the importance of maternal care and the estrous cycle on affective behavior in female rats that had received Low or High levels of licking/grooming (LG) during early life. Subjects were tested for anxiety-like behavior in the elevated plus maze at proestrus or metestrus or for estrous cycle-dependent changes in depressive-like anhedonic behavior with a saccharin preference test. GABAAR subunit expression, and THP levels in the dorsal hippocampus and in plasma were also evaluated. Estrous cycle phase influenced saccharine preference and hippocampal THP level in both phenotypes. Low LG animals showed higher levels of hedonic behavior and anxiety-like behavior, irrespective of estrous cycle phase, as well as lower THP levels within the dorsal hippocampus when compared to High LG animals. Only High LG animals showed positive correlations between hippocampal THP levels and GABAAR subunit expression, suggesting a relative insensitivity to THP's modulation of these receptor subunits in Low LG offspring. These findings suggest that natural variations in maternal care influence anxiety-like and hedonic behavior through the modulation of the neurosteroid/GABAergic system.
Collapse
Affiliation(s)
- Amanda P Borrow
- Psychology Department, Center for Developmental and Behavioral Neuroscience, Binghamton University- SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA; Department of Biomedical Sciences/Neurosciences Division, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicole M Cameron
- Psychology Department, Center for Developmental and Behavioral Neuroscience, Binghamton University- SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
| |
Collapse
|
36
|
Perkeybile AM, Bales KL. Intergenerational transmission of sociality: the role of parents in shaping social behavior in monogamous and non-monogamous species. J Exp Biol 2017; 220:114-123. [PMID: 28057834 PMCID: PMC5278619 DOI: 10.1242/jeb.142182] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Social bonds are necessary for many mammals to survive and reproduce successfully. These bonds (i.e. pair-bonds, friendships, filial bonds) are characterized by different periods of development, longevity and strength. Socially monogamous species display certain behaviors not seen in many other mammals, such as adult pair-bonding and male parenting. In our studies of prairie voles (Microtus ochrogaster) and titi monkeys (Callicebus cupreus), we have examined the neurohormonal basis of these bonds. Here, we discuss the evidence from voles that aspects of adolescent and adult social behavior are shaped by early experience, including changes to sensory systems and connections, neuropeptide systems such as oxytocin and vasopressin, and alterations in stress responses. We will compare this with what is known about these processes during development and adulthood in other mammalian species, both monogamous and non-monogamous, and how our current knowledge in voles can be used to understand the development of and variation in social bonds. Humans are endlessly fascinated by the variety of social relationships and family types displayed by animal species, including our own. Social relationships can be characterized by directionality (either uni- or bi-directional), longevity, developmental epoch (infant, juvenile or adult) and strength. Research on the neurobiology of social bonds in animals has focused primarily on 'socially monogamous' species, because of their long-term, strong adult affiliative bonds. In this Review, we attempt to understand how the ability and propensity to form these bonds (or lack thereof), as well as the display of social behaviors more generally, are transmitted both genomically and non-genomically via variation in parenting in monogamous and non-monogamous species.
Collapse
Affiliation(s)
- Allison M Perkeybile
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
- The Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
37
|
Macrì S. Neonatal corticosterone administration in rodents as a tool to investigate the maternal programming of emotional and immune domains. Neurobiol Stress 2016; 6:22-30. [PMID: 28229106 PMCID: PMC5314439 DOI: 10.1016/j.ynstr.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/26/2023] Open
Abstract
Neonatal experiences exert persistent influences on individual development. These influences encompass numerous domains including emotion, cognition, reactivity to external stressors and immunity. The comprehensive nature of the neonatal programming of individual phenotype is reverberated in the large amount of experimental data collected by many authors in several scientific fields: biomedicine, evolutionary and molecular biology. These data support the view that variations in precocious environmental conditions may calibrate the individual phenotype at many different levels. Environmental influences have been traditionally addressed through experimental paradigms entailing the modification of the neonatal environment and the multifactorial (e.g. behaviour, endocrinology, cellular and molecular biology) analysis of the developing individual's phenotype. These protocols suggested that the role of the mother in mediating the offspring's phenotype is often associated with the short-term effects of environmental manipulations on dam's physiology. Specifically, environmental manipulations may induce fluctuations in maternal corticosteroids (corticosterone in rodents) which, in turn, are translated to the offspring through lactation. Herein, I propose that this mother-offspring transfer mechanism can be leveraged to devise experimental protocols based on the exogenous administration of corticosterone during lactation. To support this proposition, I refer to a series of studies in which these protocols have been adopted to investigate the neonatal programming of individual phenotype at the level of emotional and immune regulations. While these paradigms cannot replace traditional studies, I suggest that they can be considered a valid complement.
Collapse
|
38
|
Schaefers ATU, Teuchert-Noodt G. Developmental neuroplasticity and the origin of neurodegenerative diseases. World J Biol Psychiatry 2016; 17:587-599. [PMID: 23705632 DOI: 10.3109/15622975.2013.797104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Neurodegenerative diseases like Alzheimer's and Parkinson's Disease, marked by characteristic protein aggregations, are more and more accepted to be synaptic disorders and to arise from a combination of genetic and environmental factors. In this review we propose our concept that neuroplasticity might constitute a link between early life challenges and neurodegeneration. METHODS After introducing the general principles of neuroplasticity, we show how adverse environmental stimuli during development impact adult neuroplasticity and might lead to neurodegenerative processes. RESULTS There are significant overlaps between neurodevelopmental and neurodegenerative processes. Proteins that represent hallmarks of neurodegeneration are involved in plastic processes under physiological conditions. Brain regions - particularly the hippocampus - that retain life-long plastic capacities are the key targets of neurodegeneration. Neuroplasticity is highest in young age making the brain more susceptible to external influences than later in life. Impacts during critical periods have life-long consequences on neuroplasticity and structural self-organization and are known to be common risk factors for neurodegenerative diseases. CONCLUSIONS Several lines of evidence support a link between developmental neuroplasticity and neurodegenerative processes later in life. A deeper insight into these processes is necessary to design strategies to mitigate or even prevent neurodegenerative pathologies.
Collapse
|
39
|
Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci 2016; 17:652-66. [DOI: 10.1038/nrn.2016.111] [Citation(s) in RCA: 785] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Maternal parenting behavior and emotion processing in adolescents-An fMRI study. Biol Psychol 2016; 120:120-125. [PMID: 27645501 DOI: 10.1016/j.biopsycho.2016.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022]
Abstract
Parenting is an essential factor within a child's development, yet the impact of normative variations of parenting on neural emotion processing has not been studied to date. The present study investigated 83 healthy adolescents using functional magnetic resonance imaging and an emotional face-matching paradigm. The faces paradigm elicited an increased amygdala response towards negative facial expressions (fearful and angry each compared to neutral faces) and a significant activation of fusiform gyrus to all emotions separately (fearful, happy, angry faces) compared to neutral faces. Moreover, we investigated associations between neural responses towards emotional faces and mother's parenting behavior (maternal warmth and support, psychological pressure and control behavior). High maternal warmth and support correlated with lower activation to fearful faces in the amygdala. Maternal supportive rather than control behavior seems to have an impact on neural emotion processing, which could also be the key factor for brain functional abnormalities in maltreated children. These results expand existent findings in maltreated children to healthy populations.
Collapse
|
41
|
Kim S, Kwok S, Mayes LC, Potenza MN, Rutherford HJV, Strathearn L. Early adverse experience and substance addiction: dopamine, oxytocin, and glucocorticoid pathways. Ann N Y Acad Sci 2016; 1394:74-91. [PMID: 27508337 DOI: 10.1111/nyas.13140] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
Substance addiction may follow a chronic, relapsing course and critically undermine the physical and psychological well-being of the affected individual and the social units of which the individual is a member. Despite the public health burden associated with substance addiction, treatment options remain suboptimal, with relapses often seen. The present review synthesizes growing insights from animal and human research to shed light upon developmental and neurobiological pathways that may increase susceptibility to addiction. We examine the dopamine system, the oxytocin system, and the glucocorticoid system, as they are particularly relevant to substance addiction. Our aim is to delineate how early adverse experience may induce long-lasting alterations in each of these systems at molecular, neuroendocrine, and behavioral levels and ultimately lead to heightened vulnerability to substance addiction. We further discuss how substance addiction in adulthood may increase the risk of suboptimal caregiving for the next generation, perpetuating the intergenerational cycle of early adverse experiences and addiction.
Collapse
Affiliation(s)
- Sohye Kim
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Attachment and Neurodevelopment Laboratory, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Stephanie Kwok
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Linda C Mayes
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Marc N Potenza
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut.,Departments of Psychiatry and Neuroscience and the National Center on Addiction and Substance Abuse (CASAColumbia), Yale University School of Medicine, New Haven, Connecticut.,Connecticut Mental Health Center, New Haven, Connecticut
| | | | - Lane Strathearn
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Attachment and Neurodevelopment Laboratory, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas.,Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
42
|
Effects of Repeated Stress on Age-Dependent GABAergic Regulation of the Lateral Nucleus of the Amygdala. Neuropsychopharmacology 2016; 41:2309-23. [PMID: 26924679 PMCID: PMC4946062 DOI: 10.1038/npp.2016.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
The adolescent age is associated with lability of mood and emotion. The onset of depression and anxiety disorders peaks during adolescence and there are differences in symptomology during adolescence. This points to differences in the adolescent neural circuitry that underlies mood and emotion, such as the amygdala. The human adolescent amygdala is more responsive to evocative stimuli, hinting to less local inhibitory regulation of the amygdala, but this has not been explored in adolescents. The amygdala, including the lateral nucleus (LAT) of the basolateral amygdala complex, is sensitive to stress. The amygdala undergoes maturational processes during adolescence, and therefore may be more vulnerable to harmful effects of stress during this time period. However, little is known about the effects of stress on the LAT during adolescence. GABAergic inhibition is a key regulator of LAT activity. Therefore, the purpose of this study was to test whether there are differences in the local GABAergic regulation of the rat adolescent LAT, and differences in its sensitivity to repeated stress. We found that LAT projection neurons are subjected to weaker GABAergic inhibition during adolescence. Repeated stress reduced in vivo endogenous and exogenous GABAergic inhibition of LAT projection neurons in adolescent rats. Furthermore, repeated stress decreased measures of presynaptic GABA function and interneuron activity in adolescent rats. In contrast, repeated stress enhanced glutamatergic drive of LAT projection neurons in adult rats. These results demonstrate age differences in GABAergic regulation of the LAT, and age differences in the mechanism for the effects of repeated stress on LAT neuron activity. These findings provide a substrate for increased mood lability in adolescents, and provide a substrate by which adolescent repeated stress can induce distinct behavioral outcomes and psychiatric symptoms.
Collapse
|
43
|
Kauer SD, Allmond JT, Belnap SC, Brumley MR. Maternal behavior influences development of a reflexive action pattern in the newborn rat. Dev Psychobiol 2016; 58:1043-1054. [PMID: 27279291 DOI: 10.1002/dev.21438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/23/2016] [Indexed: 11/09/2022]
Abstract
This study examined the effect of maternal behavior on the expression and postnatal development of a reflexive behavior in rat pups. In neonatal rats, the leg extension response (LER) is a bilateral hyperextension of the hindlimbs in response to maternal anogenital licking (AGL). Past research has found that intranasal application of zinc sulfate (ZnSO4 ) to the dam induces hyponosmia, thereby reducing the incidence of AGL. In this study, pregnant dams received intranasal application of air (control), distilled water (control), or ZnSO4 on the day before birth and every other day thereafter until postnatal day 9 (P9). The LER was experimentally evoked in pups, using a vibrotactile device, at P1, P5, or P10. Pups born to ZnSO4 -treated dams showed significantly shorter bilateral LER durations and significantly smaller ankle angles than pups born to control dams. Reduction of overall maternal AGL approached significance, and afternoon AGL was significantly reduced. These data suggest that maternal behavior influenced development of the LER in rat pups, demonstrating the influence of maternal care on behavioral development during the perinatal period.
Collapse
Affiliation(s)
- Sierra D Kauer
- Department of Psychology, Idaho State University, Pocatello, Idaho
| | - Jacob T Allmond
- Department of Psychology, Idaho State University, Pocatello, Idaho
| | - Starlie C Belnap
- Department of Psychology, Florida International University, Miami, Florida
| | | |
Collapse
|
44
|
Gammie SC. Current Models and Future Directions for Understanding the Neural Circuitries of Maternal Behaviors in Rodents. ACTA ACUST UNITED AC 2016; 4:119-35. [PMID: 16251728 DOI: 10.1177/1534582305281086] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maternal behaviors in rodents include a number of subcomponents, such as nursing, nest building, licking and grooming of pups, pup retrieval, and maternal aggression. Because each behavior involves a unique motor pattern, a unique ensemble neural circuitry must underlie each behavior. To what extent there is overlap in terms of brain regions and specific neurons for each circuit is being actively investigated. This review will first examine overlapping and separate components of pup retrieval and maternal aggression circuitries while examining a central role for medial preoptic area (MPA) in both behaviors. With an emphasis on experimental approaches, the review will then highlight recent findings and propose future directions for understanding maternal behavior regulation. Finally, examples for why studying the neural basis of maternal behaviors can bring insights to other areas of neuroscience, such as feeding, addiction, and anxiety and aggression regulation will be provided.
Collapse
|
45
|
Harada K, Matsuoka H, Fujihara H, Ueta Y, Yanagawa Y, Inoue M. GABA Signaling and Neuroactive Steroids in Adrenal Medullary Chromaffin Cells. Front Cell Neurosci 2016; 10:100. [PMID: 27147972 PMCID: PMC4834308 DOI: 10.3389/fncel.2016.00100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/01/2016] [Indexed: 01/22/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is produced not only in the brain, but also in endocrine cells by the two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67. In rat adrenal medullary chromaffin cells only GAD67 is expressed, and GABA is stored in large dense core vesicles (LDCVs), but not synaptic-like microvesicles (SLMVs). The α3β2/3γ2 complex represents the majority of GABAA receptors expressed in rat and guinea pig chromaffin cells, whereas PC12 cells, an immortalized rat chromaffin cell line, express the α1 subunit as well as the α3. The expression of α3, but not α1, in PC12 cells is enhanced by glucocorticoid activity, which may be mediated by both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). GABA has two actions mediated by GABAA receptors in chromaffin cells: it induces catecholamine secretion by itself and produces an inhibition of synaptically evoked secretion by a shunt effect. Allopregnanolone, a neuroactive steroid which is secreted from the adrenal cortex, produces a marked facilitation of GABAA receptor channel activity. Since there are no GABAergic nerve fibers in the adrenal medulla, GABA may function as a para/autocrine factor in the chromaffin cells. This function of GABA may be facilitated by expression of the immature isoforms of GAD and GABAA receptors and the lack of expression of plasma membrane GABA transporters (GATs). In this review, we will consider how the para/autocrine function of GABA is achieved, focusing on the structural and molecular mechanisms for GABA signaling.
Collapse
Affiliation(s)
- Keita Harada
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine Kitakyushu, Japan
| | - Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine Kitakyushu, Japan
| | - Hiroaki Fujihara
- Department of Physiology, University of Occupational and Environmental Health School of Medicine Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, University of Occupational and Environmental Health School of Medicine Kitakyushu, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine Maebashi, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine Kitakyushu, Japan
| |
Collapse
|
46
|
Nizhnikov ME, Popoola DO, Cameron NM. Transgenerational Transmission of the Effect of Gestational Ethanol Exposure on Ethanol Use-Related Behavior. Alcohol Clin Exp Res 2016; 40:497-506. [PMID: 26876534 DOI: 10.1111/acer.12978] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/01/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) enhances the risk for alcoholism by increasing the propensity to consume alcohol and altering neurophysiological response to alcohol challenge. Trans-generationally transmittable genetic alterations have been implicated in these behavioral changes. To date, transgenerational transmission of PAE-induced behavioral responses to alcohol has never been experimentally investigated. Therefore, we explored the transgenerational transmission of PAE-induced behavioral effects across 3 generations. METHODS Pregnant Sprague Dawley dams received 1 g/kg ethanol (EtOH) or water daily on gestational days 17 through 20 via gavage, or remained untreated in their home cages. To produce second filial (F2) or F3 generations, similarly treated adult F1 or F2 offspring were mated and left undisturbed through gestation. On postnatal day (PND) 14, male and female F1, F2, and F3 offspring were tested for consumption of 5% (w/v) EtOH (in water), or water. Using the loss of righting reflex (LORR) paradigm on PND 42, F1 and F2 adolescent male offspring were tested for sensitivity to acute EtOH-induced sedation-hypnosis at 3.5 or 4.5 g/kg dose. F3 male adolescents were similarly tested at 3.5 g/kg dose. Blood EtOH concentration (BEC) was measured at waking. RESULTS EtOH exposure increased EtOH consumption compared to both water and untreated control groups in all generations. EtOH-treated group F1 and F2 adolescents displayed attenuated LORR duration compared to the water group. No attenuated LORR was observed in the F3 generation. BEC at waking corroborated with the significant LORR duration differences while also revealing differences between untreated control and water groups in F1 and F2 generations. CONCLUSIONS Our results provide novel behavioral evidence attesting that late gestational moderate EtOH exposure increases EtOH intake across 3 generations and may alter sensitivity to EtOH-induced sedation-hypnosis across 2 generations.
Collapse
Affiliation(s)
| | - Daniel O Popoola
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, New York.,Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, New York
| | - Nicole M Cameron
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, New York.,Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, New York
| |
Collapse
|
47
|
Curley JP, Champagne FA. Influence of maternal care on the developing brain: Mechanisms, temporal dynamics and sensitive periods. Front Neuroendocrinol 2016; 40:52-66. [PMID: 26616341 PMCID: PMC4783284 DOI: 10.1016/j.yfrne.2015.11.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/17/2015] [Accepted: 11/22/2015] [Indexed: 02/08/2023]
Abstract
Variation in maternal care can lead to divergent developmental trajectories in offspring with implications for neuroendocrine function and behavioral phenotypes. Study of the long-term outcomes associated with mother-infant interactions suggests complex mechanisms linking the experience of variation in maternal care and these neurobiological consequences. Through integration of genetic, molecular, cellular, neuroanatomical, and neuroendocrine approaches, significant advances in our understanding of these complex pathways have been achieved. In this review, we will consider the impact of maternal care on male and female offspring development with a particular focus on the issues of timing and mechanism. Identifying the period of sensitivity to maternal care and the temporal dynamics of the molecular and neuroendocrine changes that are a consequence of maternal care represents a critical step in the study of mechanism.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, Columbia University, Room 406 Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027, USA; Center for Integrative Animal Behavior, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA.
| | - Frances A Champagne
- Department of Psychology, Columbia University, Room 406 Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027, USA; Center for Integrative Animal Behavior, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
48
|
Abstract
The hypothalamic-pituitary-adrenal axis provides physiological adaptations to various environmental stimuli in mammals. These stimuli including maternal care, diet, immune challenge, stress, and others have the potential to stably modify or program the functioning of the HPA axis when experienced early in life or at later critical stages of development. Epigenetic mechanisms mediate the biological embedding of environmental stimuli or conditions. These changes are influenced by the genotype and both, environment and genotype contribute to the development of a specific phenotype with regard to the stress response that might be more susceptible or resilient to the development of mental conditions. The effects of stress might be a result of cumulative stress or a mismatch between the environments experienced early in life versus the conditions much later. These effects including the associated epigenetic modifications are potentially reversible.
Collapse
Affiliation(s)
- Jan P Buschdorf
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Canadian Neuroepigenetics Network, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Umemura S, Imai S, Mimura A, Fujiwara M, Ebihara S. Impaired Maternal Behavior in Usp46 Mutant Mice: A Model for Trans-Generational Transmission of Maternal Care. PLoS One 2015; 10:e0136016. [PMID: 26284364 PMCID: PMC4540444 DOI: 10.1371/journal.pone.0136016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/30/2015] [Indexed: 11/30/2022] Open
Abstract
Usp46 mutant mice (congenic strain on a B6 genetic background; MT mice) have a low weaning rate and display poor maternal behavior compared to C57BL/6J mice (B6 mice). Based on these observations, we examined how maternal behavior is shaped by cross-fostering and in-fostering MT and B6 mice. The experiments consisted of six groups: B6 mice fostered by their biological mother (B6-CO); MT mice fostered by their biological mother (MT-CO); B6 mice fostered by a different B6 mother (B6-IF); MT mice fostered by a different MT mother (MT-IF); B6 mice fostered by an MT mother (B6-CF); and MT mice fostered by a B6 mother (MT-CF). Maternal behavior was assessed using the pup-retrieval test in adult female offspring, and four parameters, time nursing pups in the nest, time sniffing or licking pups, rearing behavior, and latency to retrieve pups, were measured. Cross-fostering significantly reduced time spent nursing and sniffing/licking pup, and increased the number of instances of rearing in the B6-CF group, and improved three parameters of maternal behaviors (nursing, rearing and latency) in the MT-CF group. These results indicate that the level of maternal care is transmitted to their pups and proper maternal behaviors can be shaped if adequate postpartum maternal care is given, even in genetically vulnerable mice. However, the offspring’s genotype may also influence the development of maternal behaviors in adulthood. Thus, MT mice may prove useful as a model for trans-generational transmission of maternal care, and these findings may provide insight into the mechanisms of maltreating behaviors in human child abuse.
Collapse
Affiliation(s)
- Shoya Umemura
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Saki Imai
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ayumi Mimura
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mari Fujiwara
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shizufumi Ebihara
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
50
|
de Carvalho HW, Pereira R, Frozi J, Bisol LW, Ottoni GL, Lara DR. Childhood trauma is associated with maladaptive personality traits. CHILD ABUSE & NEGLECT 2015; 44:18-25. [PMID: 25541148 DOI: 10.1016/j.chiabu.2014.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
The association between childhood trauma and personality traits has been poorly characterized and reported. Our aim was to evaluate whether distinct types of childhood abuse and neglect are associated with various personality dimensions using data from a large web-based survey. A total of 12,225 volunteers responded anonymously to the Internet versions of the Temperament and Character Inventory-Revised (TCI-R) and the Childhood Trauma Questionnaire (CTQ) via our research website, but only 8,114 subjects (75.7% women, mean age 34.8±11.3yrs) who met the criteria for validity were included in the analysis. Childhood trauma was positively associated with harm avoidance and was negatively associated with self-directedness and, to a lesser extent, with cooperativeness. The associations were robust with emotional abuse and neglect but were non-significant or mild with physical trauma. Emotional neglect was associated with reduced reward dependence and persistence. All types of abuse, but not neglect, were associated with increased novelty seeking scores. Reporting of childhood trauma, especially of an emotional nature, was associated with maladaptive personality traits. Further investigation of the effects of different types of childhood trauma on psychological and neurobiological parameters is warranted.
Collapse
Affiliation(s)
- Hudson W de Carvalho
- Departamento de Psicologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Rebeca Pereira
- Serviço de Psiquiatria, Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Julia Frozi
- Faculdade de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luísa W Bisol
- Serviço de Psiquiatria, Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo L Ottoni
- Hospital Presidente Vargas, Fundação Faculdade Federal de Ciências Médicas de Porto Alegre, Porto Alegre, Brazil
| | - Diogo R Lara
- Serviço de Psiquiatria, Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|