1
|
Gillespie B, Dunn A, Sundram S, Hill RA. Investigating 7,8-Dihydroxyflavone to combat maternal immune activation effects on offspring gene expression and behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111078. [PMID: 38950841 DOI: 10.1016/j.pnpbp.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Infection during pregnancy is a substantial risk factor for the unborn child to develop autism or schizophrenia later in life, and is thought to be driven by maternal immune activation (MIA). MIA can be modelled by exposing pregnant mice to Polyinosinic: polycytidylic acid (Poly-I:C), a viral mimetic that induces an immune response and recapitulates in the offspring many neurochemical features of ASD and schizophrenia, including altered BDNF-TrkB signalling and disruptions to excitatory/inhibitory balance. Therefore, we hypothesised that a BDNF mimetic, 7,8-Dihydroxyflavone (7,8-DHF), administered prophylactically to the dam may prevent the neurobehavioural sequelae of disruptions induced by MIA. Dams were treated with 7,8-DHF in the drinking water (0.08 mg/ML) from gestational day (GD) 9-20 and were exposed to Poly-I:C at GD17 (20 mg/kg, i.p.). Foetal brains were collected 6 h post Poly-I:C exposure for RT-qPCR analysis of BDNF, cytokine, GABAergic and glutamatergic gene targets. A second adult cohort were tested in a battery of behavioural tests relevant to schizophrenia and the prefrontal cortex and ventral hippocampus dissected for RT-qPCR analysis. Foetal brains exposed to Poly-I:C showed increased IL-6, but reduced expression of Ntrk2 and multiple GABAergic and glutamatergic markers. Anxiety-like behaviour was observed in adult offspring prenatally exposed to poly-I:C, which was accompanied by altered expression of Gria2 in the prefrontal cortex and Gria4 in the ventral hippocampus. While 7-8 DHF normalised the expression of some glutamatergic (Grm5) and GABAergic (Gabra1) genes in Poly-I:C exposed offspring, it also led to substantial alterations in offspring not exposed to Poly-I:C. Furthermore, mice exposed to 7,8-DHF prenatally showed increased pre-pulse inhibition and reduced working memory in adulthood. These data advance understanding of how 7,8-DHF and MIA prenatal exposure impacts genes critical to excitatory/inhibitory pathways and related behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Ariel Dunn
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
2
|
Nascimento JM, Saia-Cereda VM, Zuccoli GS, Reis-de-Oliveira G, Carregari VC, Smith BJ, Rehen SK, Martins-de-Souza D. Proteomic signatures of schizophrenia-sourced iPSC-derived neural cells and brain organoids are similar to patients' postmortem brains. Cell Biosci 2022; 12:189. [PMID: 36451159 PMCID: PMC9714120 DOI: 10.1186/s13578-022-00928-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Schizophrenia is a complex and severe neuropsychiatric disorder, with a wide range of debilitating symptoms. Several aspects of its multifactorial complexity are still unknown, and some are accepted to be an early developmental deficiency with a more specifically neurodevelopmental origin. Understanding the timepoints of disturbances during neural cell differentiation processes could lead to an insight into the development of the disorder. In this context, human brain organoids and neural cells differentiated from patient-derived induced pluripotent stem cells are of great interest as a model to study the developmental origins of the disease. RESULTS Here we evaluated the differential expression of proteins of schizophrenia patient-derived neural progenitors (NPCs), early neurons, and brain organoids in comparison to healthy individuals. Using bottom-up shotgun proteomics with a label-free approach for quantitative analysis, we found multiple dysregulated proteins since NPCs, modified, and disrupted the 21DIV neuronal differentiation, and cerebral organoids. Our experimental methods have shown impairments in pathways never before found in patient-derived induced pluripotent stem cells studies, such as spliceosomes and amino acid metabolism; but also, those such as axonal guidance and synaptogenesis, in line with postmortem tissue studies of schizophrenia patients. CONCLUSION In conclusion, here we provide comprehensive, large-scale, protein-level data of different neural cell models that may uncover early events in brain development, underlying several of the mechanisms within the origins of schizophrenia.
Collapse
Affiliation(s)
- Juliana Minardi Nascimento
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil ,grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.411249.b0000 0001 0514 7202Department of Biosciences, Institute Science and Society, Federal University of São Paulo (UNIFESP), Santos, SP Brazil
| | - Verônica M. Saia-Cereda
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Giuliana S. Zuccoli
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Guilherme Reis-de-Oliveira
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Victor Corasolla Carregari
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Bradley J. Smith
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Stevens K. Rehen
- grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.8536.80000 0001 2294 473XInstitute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Daniel Martins-de-Souza
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil ,grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.450640.30000 0001 2189 2026Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico E Tecnológico (CNPq), São Paulo, Brazil ,grid.411087.b0000 0001 0723 2494Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP 13083-970 Brazil
| |
Collapse
|
3
|
Deficiency of the ywhaz gene, involved in neurodevelopmental disorders, alters brain activity and behaviour in zebrafish. Mol Psychiatry 2022; 27:3739-3748. [PMID: 35501409 DOI: 10.1038/s41380-022-01577-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023]
Abstract
Genetic variants in YWHAZ contribute to psychiatric disorders such as autism spectrum disorder and schizophrenia, and have been related to an impaired neurodevelopment in humans and mice. Here, we have used zebrafish to investigate the mechanisms by which YWHAZ contributes to neurodevelopmental disorders. We observed that ywhaz expression was pan-neuronal during developmental stages and restricted to Purkinje cells in the adult cerebellum, cells that are described to be reduced in number and size in autistic patients. We then performed whole-brain imaging in wild-type and ywhaz CRISPR/Cas9 knockout (KO) larvae and found altered neuronal activity and connectivity in the hindbrain. Adult ywhaz KO fish display decreased levels of monoamines in the hindbrain and freeze when exposed to novel stimuli, a phenotype that can be reversed with drugs that target monoamine neurotransmission. These findings suggest an important role for ywhaz in establishing neuronal connectivity during development and modulating both neurotransmission and behaviour in adults.
Collapse
|
4
|
de Oliveira Figueiredo EC, Bondiolotti BM, Laugeray A, Bezzi P. Synaptic Plasticity Dysfunctions in the Pathophysiology of 22q11 Deletion Syndrome: Is There a Role for Astrocytes? Int J Mol Sci 2022; 23:ijms23084412. [PMID: 35457231 PMCID: PMC9028090 DOI: 10.3390/ijms23084412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/01/2023] Open
Abstract
The 22q11 deletion syndrome (DS) is the most common microdeletion syndrome in humans and gives a high probability of developing psychiatric disorders. Synaptic and neuronal malfunctions appear to be at the core of the symptoms presented by patients. In fact, it has long been suggested that the behavioural and cognitive impairments observed in 22q11DS are probably due to alterations in the mechanisms regulating synaptic function and plasticity. Often, synaptic changes are related to structural and functional changes observed in patients with cognitive dysfunctions, therefore suggesting that synaptic plasticity has a crucial role in the pathophysiology of the syndrome. Most interestingly, among the genes deleted in 22q11DS, six encode for mitochondrial proteins that, in mouse models, are highly expressed just after birth, when active synaptogenesis occurs, therefore indicating that mitochondrial processes are strictly related to synapse formation and maintenance of a correct synaptic signalling. Because correct synaptic functioning, not only requires correct neuronal function and metabolism, but also needs the active contribution of astrocytes, we summarize in this review recent studies showing the involvement of synaptic plasticity in the pathophysiology of 22q11DS and we discuss the relevance of mitochondria in these processes and the possible involvement of astrocytes.
Collapse
Affiliation(s)
| | - Bianca Maria Bondiolotti
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Anthony Laugeray
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
- Department of Pharmacology and Physiology, University of Rome Sapienza, 00185 Rome, Italy
- Correspondence: or
| |
Collapse
|
5
|
Navarrete M, Zhou Y. The 14-3-3 Protein Family and Schizophrenia. Front Mol Neurosci 2022; 15:857495. [PMID: 35359567 PMCID: PMC8964262 DOI: 10.3389/fnmol.2022.857495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a debilitating mental disorder that affects approximately 1% of the world population, yet the disorder is not very well understood. The genetics of schizophrenia is very heterogenous, making it hard to pinpoint specific alterations that may cause the disorder. However, there is growing evidence from human studies suggesting a link between alterations in the 14-3-3 family and schizophrenia. The 14-3-3 proteins are abundantly expressed in the brain and are involved in many important cellular processes. Knockout of 14-3-3 proteins in mice has been shown to cause molecular, structural, and behavioral alterations associated with schizophrenia. Thus, 14-3-3 animal models allow for further exploration of the relationship between 14-3-3 and schizophrenia as well as the study of schizophrenia pathology. This review considers evidence from both human and animal model studies that implicate the 14-3-3 family in schizophrenia. In addition, possible mechanisms by which alterations in 14-3-3 proteins may contribute to schizophrenia-like phenotypes such as dopaminergic, glutamatergic, and cytoskeletal dysregulations are discussed.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
6
|
Zhang J, Navarrete M, Wu Y, Zhou Y. 14-3-3 Dysfunction in Dorsal Hippocampus CA1 (dCA1) Induces Psychomotor Behavior via a dCA1-Lateral Septum-Ventral Tegmental Area Pathway. Front Mol Neurosci 2022; 15:817227. [PMID: 35237127 PMCID: PMC8882652 DOI: 10.3389/fnmol.2022.817227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
While hippocampal hyperactivity is implicated in psychosis by both human and animal studies, whether it induces a hyperdopaminergic state and the underlying neural circuitry remains elusive. Previous studies established that region-specific inhibition of 14-3-3 proteins in the dorsal hippocampus CA1 (dCA1) induces schizophrenia-like behaviors in mice, including a novelty-induced locomotor hyperactivity. In this study, we showed that 14-3-3 dysfunction in the dCA1 over-activates ventral tegmental area (VTA) dopaminergic neurons, and such over-activation is necessary for eliciting psychomotor behavior in mice. We demonstrated that such hippocampal dysregulation of the VTA during psychomotor behavior is dependent on an over-activation of the lateral septum (LS), given that inhibition of the LS attenuates over-activation of dopaminergic neurons and psychomotor behavior induced by 14-3-3 inhibition in the dCA1. Moreover, 14-3-3 inhibition-induced neuronal activations within the dCA1-LS-VTA pathway and psychomotor behavior can be reproduced by direct chemogenetic activation of LS-projecting dCA1 neurons. Collectively, these results suggest that 14-3-3 dysfunction in the dCA1 results in hippocampal hyperactivation which leads to psychomotor behavior via a dCA1-LS-VTA pathway.
Collapse
Affiliation(s)
| | | | | | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
7
|
Antunes ASLM, Saia-Cereda VM, Crunfli F, Martins-de-Souza D. 14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia. World J Biol Psychiatry 2022; 23:14-32. [PMID: 33952049 DOI: 10.1080/15622975.2021.1925585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The 14-3-3 family comprises multifunctional proteins that play a role in neurogenesis, neuronal migration, neuronal differentiation, synaptogenesis and dopamine synthesis. 14-3-3 members function as adaptor proteins and impact a wide variety of cellular and physiological processes involved in the pathophysiology of neurological disorders. Schizophrenia is a psychiatric disorder and knowledge about its pathophysiology is still limited. 14-3-3 have been proven to be linked with the dopaminergic, glutamatergic and neurodevelopmental hypotheses of schizophrenia. Further, research using genetic models has demonstrated the role played by 14-3-3 proteins in neurodevelopment and neuronal circuits, however a more integrative and comprehensive approach is needed for a better understanding of their role in schizophrenia. For instance, we still lack an integrated assessment of the processes affected by 14-3-3 proteins in the dopaminergic and glutamatergic systems. In this context, it is also paramount to understand their involvement in the biology of brain cells other than neurons. Here, we present previous and recent research that has led to our current understanding of the roles 14-3-3 proteins play in brain development and schizophrenia, perform an assessment of their functional protein association network and discuss the use of protein-protein interaction modulators to target 14-3-3 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
8
|
Lee GS, Zhang J, Wu Y, Zhou Y. 14-3-3 proteins promote synaptic localization of N-methyl d-aspartate receptors (NMDARs) in mouse hippocampal and cortical neurons. PLoS One 2021; 16:e0261791. [PMID: 34962957 PMCID: PMC8714094 DOI: 10.1371/journal.pone.0261791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
One of the core pathogenic mechanisms for schizophrenia is believed to be dysfunction in glutamatergic synaptic transmissions, particularly hypofunction of N-methyl d-aspartate receptors (NMDARs). Previously we showed that 14-3-3 functional knockout mice exhibit schizophrenia-associated behaviors accompanied by reduced synaptic NMDARs in forebrain excitatory neurons. To investigate how 14-3-3 proteins regulate synaptic localization of NMDARs, here we examined changes in levels of synaptic NMDARs upon 14-3-3 inhibition in primary neurons. Expression of 14-3-3 protein inhibitor (difopein) in primary glutamatergic cortical and hippocampal neurons resulted in lower number of synaptic puncta containing NMDARs, including the GluN1, GluN2A, or GluN2B subunits. In heterologous cells, 14-3-3 proteins enhanced surface expression of these NMDAR subunits. Furthermore, we identified that 14-3-3ζ and ε isoforms interact with NMDARs via binding to GluN2A and GluN2B subunits. Taken together, our results demonstrate that 14-3-3 proteins play a critical role in NMDAR synaptic trafficking by promoting surface delivery of NMDAR subunits GluN1, GluN2A, and GluN2B. As NMDAR hypofunctionality is known to act as a convergence point for progression of symptoms of schizophrenia, further studies on these signaling pathways may help understand how dysfunction of 14-3-3 proteins can cause NMDAR hypofunctionality and lead to schizophrenia-associated behaviors.
Collapse
Affiliation(s)
- Gloria S. Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Jiajing Zhang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Yuying Wu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| |
Collapse
|
9
|
Bilecki W, Latusz J, Gawlińska K, Chmelova M, Maćkowiak M. Prenatal MAM treatment altered fear conditioning following social isolation: Relevance to schizophrenia. Behav Brain Res 2021; 406:113231. [PMID: 33737089 DOI: 10.1016/j.bbr.2021.113231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
Adolescent social isolation (SI) might change the trajectory of brain development. In the present study, we investigated the effect of short-term adolescent SI on fear memory, anxiety and protein levels in the adult medial prefrontal cortex of rats prenatally treated with methylazoxymethanol, MAM-E17 model of schizophrenia. The animals were maintained in standard housing (SH) or social isolation (P30-P40, SI) conditions. Behavioural tests (trace or delay fear conditioning, light/dark box) were performed in late adolescence and early adulthood. The results showed that MAM treatment did not alter fear memory, which was investigated with the use of either trace or delay fear conditioning, at any age, and SI decreased the fear response in adult control animals only under trace conditioning. Neither MAM nor SI influenced anxiety-related behaviour measured in the light/dark box. A proteomics study showed that both MAM and SI changed the protein levels related to synapse maturation and cytoskeletal organization, energy transfer and metabolic processes. Prenatal or adolescent environmental factors are able to change the expression of proteins that are correlated with behavioural impairments. Moreover, SI reversed some alterations in proteins induced by MAM. Thus, normally developing brains showed different responses to adolescent SI than those with altering courses of MAM administration.
Collapse
Affiliation(s)
- Wiktor Bilecki
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Joachim Latusz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Kinga Gawlińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Magdalena Chmelova
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Marzena Maćkowiak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland.
| |
Collapse
|
10
|
Nedoluzhko A, Gruzdeva N, Sharko F, Rastorguev S, Zakharova N, Kostyuk G, Ushakov V. The Biomarker and Therapeutic Potential of Circular Rnas in Schizophrenia. Cells 2020; 9:E2238. [PMID: 33020462 PMCID: PMC7601372 DOI: 10.3390/cells9102238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous, single-stranded, most frequently non-coding RNA (ncRNA) molecules that play a significant role in gene expression regulation. Circular RNAs can affect microRNA functionality, interact with RNA-binding proteins (RBPs), translate proteins by themselves, and directly or indirectly modulate gene expression during different cellular processes. The affected expression of circRNAs, as well as their targets, can trigger a cascade of events in the genetic regulatory network causing pathological conditions. Recent studies have shown that altered circular RNA expression patterns could be used as biomarkers in psychiatric diseases, including schizophrenia (SZ); moreover, circular RNAs together with other cell molecules could provide new insight into mechanisms of this disorder. In this review, we focus on the role of circular RNAs in the pathogenesis of SZ and analyze their biomarker and therapeutic potential in this disorder.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Faculty of Biosciences and Aquaculture, Nord University, PB 1490. 8049 Bodø, Norway
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
| | - Natalia Gruzdeva
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia; (N.G.); (F.S.); (S.R.)
| | - Fedor Sharko
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia; (N.G.); (F.S.); (S.R.)
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33/2, 119071 Moscow, Russia
| | - Sergey Rastorguev
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia; (N.G.); (F.S.); (S.R.)
| | - Natalia Zakharova
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
| | - Vadim Ushakov
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Leninskiye Gory, 119899 Moscow, Russia
| |
Collapse
|
11
|
Dysregulation of peripheral expression of the YWHA genes during conversion to psychosis. Sci Rep 2020; 10:9863. [PMID: 32555255 PMCID: PMC7299951 DOI: 10.1038/s41598-020-66901-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/04/2020] [Indexed: 12/01/2022] Open
Abstract
The seven human 14-3-3 proteins are encoded by the YWHA-gene family. They are expressed in the brain where they play multiple roles including the modulation of synaptic plasticity and neuronal development. Previous studies have provided arguments for their involvement in schizophrenia, but their role during disease onset is unknown. We explored the peripheral-blood expression level of the seven YWHA genes in 92 young individuals at ultra-high risk for psychosis (UHR). During the study, 36 participants converted to psychosis (converters) while 56 did not (non-converters). YWHA genes expression was evaluated at baseline and after a mean follow-up of 10.3 months using multiplex quantitative PCR. Compared with non-converters, the converters had a significantly higher baseline expression levels for 5 YWHA family genes, and significantly different longitudinal changes in the expression of YWHAE, YWHAG, YWHAH, YWHAS and YWAHZ. A principal-component analysis also indicated that the YWHA expression was significantly different between converters and non-converters suggesting a dysregulation of the YWHA co-expression network. Although these results were obtained from peripheral blood which indirectly reflects brain chemistry, they indicate that this gene family may play a role in psychosis onset, opening the way to the identification of prognostic biomarkers or new drug targets.
Collapse
|
12
|
Petralia MC, Ciurleo R, Saraceno A, Pennisi M, Basile MS, Fagone P, Bramanti P, Nicoletti F, Cavalli E. Meta-Analysis of Transcriptomic Data of Dorsolateral Prefrontal Cortex and of Peripheral Blood Mononuclear Cells Identifies Altered Pathways in Schizophrenia. Genes (Basel) 2020; 11:genes11040390. [PMID: 32260267 PMCID: PMC7230488 DOI: 10.3390/genes11040390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SCZ) is a psychiatric disorder characterized by both positive and negative symptoms, including cognitive dysfunction, decline in motivation, delusion and hallucinations. Antipsychotic agents are currently the standard of care treatment for SCZ. However, only about one-third of SCZ patients respond to antipsychotic medications. In the current study, we have performed a meta-analysis of publicly available whole-genome expression datasets on Brodmann area 46 of the brain dorsolateral prefrontal cortex in order to prioritize potential pathways underlying SCZ pathology. Moreover, we have evaluated whether the differentially expressed genes in SCZ belong to specific subsets of cell types. Finally, a cross-tissue comparison at both the gene and functional level was performed by analyzing the transcriptomic pattern of peripheral blood mononuclear cells of SCZ patients. Our study identified a robust disease-specific set of dysfunctional biological pathways characterizing SCZ patients that could in the future be exploited as potential therapeutic targets.
Collapse
Affiliation(s)
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy; (R.C.); (P.B.)
| | - Andrea Saraceno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
- Correspondence: ; Tel.: +39-095-4781284
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy; (R.C.); (P.B.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
| | - Eugenio Cavalli
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (M.P.); (M.S.B.); (F.N.); (E.C.)
| |
Collapse
|
13
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
14
|
Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Transl Psychiatry 2019; 9:151. [PMID: 31123247 PMCID: PMC6533277 DOI: 10.1038/s41398-019-0492-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 11/30/2022] Open
Abstract
Psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) arise from complex interactions between genetic and environmental factors. Common genetic variants associated with multiple psychiatric disorders suggest that shared genetic architecture could contribute to divergent clinical syndromes. To evaluate shared transcriptional alterations across connected brain regions, Affymetrix microarrays were used to profile postmortem dorsolateral prefrontal cortex (DLPFC), hippocampus, and associative striatum from 19 well-matched tetrads of subjects with SCZ, BD, MDD, or unaffected controls. SCZ subjects showed a substantial burden of differentially expressed genes across all examined brain regions with the greatest effects in hippocampus, whereas BD and MDD showed less robust alterations. Pathway analysis of transcriptional profiles compared across diagnoses demonstrated commonly enriched pathways between all three disorders in hippocampus, significant overlap between SCZ and BD in DLPFC, but no significant overlap of enriched pathways between disorders in striatum. SCZ samples showed increased expression of transcripts associated with inflammation across all brain regions examined, which was not evident in BD or MDD, or in rat brain following chronic dosing with antipsychotic drugs. Several markers of inflammation were confirmed by RT-PCR in hippocampus, including S100A8/9, IL-6, MAFF, APOLD1, IFITM3, and BAG3. A cytokine ELISA panel showed significant increases in IL-2 and IL-12p70 protein content in hippocampal tissue collected from same SCZ subjects when compared to matched control subjects. These data suggest an overlapping subset of dysregulated pathways across psychiatric disorders; however, a widespread increase in inflammation appears to be a specific feature of the SCZ brain and is not likely to be attributable to chronic antipsychotic drug treatment.
Collapse
|
15
|
Brandão-Teles C, de Almeida V, Cassoli JS, Martins-de-Souza D. Biochemical Pathways Triggered by Antipsychotics in Human [corrected] Oligodendrocytes: Potential of Discovering New Treatment Targets. Front Pharmacol 2019; 10:186. [PMID: 30890939 PMCID: PMC6411851 DOI: 10.3389/fphar.2019.00186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/14/2019] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia is a psychiatric disorder that affects more than 21 million people worldwide. It is an incurable disorder and the primary means of managing symptoms is through administration of pharmacological treatments, which consist heavily of antipsychotics. First-generation antipsychotics have the properties of D2 receptor antagonists. Second-generation antipsychotics are antagonists of both D2 and 5HT2 receptors. Recently, there has been increasing interest in the effects of antipsychotics beyond their neuronal targets and oligodendrocytes are one of the main candidates. Thus, our aim was to evaluate the molecular effects of typical and atypical drugs across the proteome of the human oligodendrocyte cell line, MO3.13. For this, we performed a mass spectrometry-based, bottom-up shotgun proteomic analysis to identify differences triggered by typical (chlorpromazine and haloperidol) and atypical (quetiapine and risperidone) antipsychotics. Proteins which showed changes in their expression levels were analyzed in silico using Ingenuity® Pathway Analysis, which implicated dysregulation of canonical pathways for each treatment. Our results shed light on the biochemical pathways involved in the mechanisms of action of these drugs, which may guide the identification of novel biomarkers and the development of new and improved treatments.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Juliana S. Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Faculdade de Palmas, Palmas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- UNICAMP’s Neurobiology Center, Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
16
|
Chapman DE, Reddy BJN, Huy B, Bovyn MJ, Cruz SJS, Al-Shammari ZM, Han H, Wang W, Smith DS, Gross SP. Regulation of in vivo dynein force production by CDK5 and 14-3-3ε and KIAA0528. Nat Commun 2019; 10:228. [PMID: 30651536 PMCID: PMC6335402 DOI: 10.1038/s41467-018-08110-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
Single-molecule cytoplasmic dynein function is well understood, but there are major gaps in mechanistic understanding of cellular dynein regulation. We reported a mode of dynein regulation, force adaptation, where lipid droplets adapt to opposition to motion by increasing the duration and magnitude of force production, and found LIS1 and NudEL to be essential. Adaptation reflects increasing NudEL-LIS1 utilization; here, we hypothesize that such increasing utilization reflects CDK5-mediated NudEL phosphorylation, which increases the dynein-NudEL interaction, and makes force adaptation possible. We report that CDK5, 14-3-3ε, and CDK5 cofactor KIAA0528 together promote NudEL phosphorylation and are essential for force adaptation. By studying the process in COS-1 cells lacking Tau, we avoid confounding neuronal effects of CDK5 on microtubules. Finally, we extend this in vivo regulatory pathway to lysosomes and mitochondria. Ultimately, we show that dynein force adaptation can control the severity of lysosomal tug-of-wars among other intracellular transport functions involving high force. Dynein plays roles in vesicular, organelle, chromosomal and nuclear transport but so far it is unclear how dynein activity in cells is regulated. Here authors study several dynein cofactors and their role in force adaptation of dynein during lipid droplet, lysosomal, and mitochondrial transport.
Collapse
Affiliation(s)
- Dail E Chapman
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Babu J N Reddy
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Bunchhin Huy
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Matthew J Bovyn
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Stephen John S Cruz
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Zahraa M Al-Shammari
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Han Han
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Wenqi Wang
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA
| | - Deanna S Smith
- Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Steven P Gross
- Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA.
| |
Collapse
|
17
|
Region-specific inhibition of 14-3-3 proteins induces psychomotor behaviors in mice. NPJ SCHIZOPHRENIA 2019; 5:1. [PMID: 30643138 PMCID: PMC6386769 DOI: 10.1038/s41537-018-0069-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/11/2018] [Indexed: 01/23/2023]
Abstract
The 14-3-3 family of proteins is genetically linked to several psychiatric disorders, including schizophrenia. Our 14-3-3 functional knockout (FKO) mice, as well as other 14-3-3 knockout models, have been shown to exhibit behavioral endophenotypes related to schizophrenia. While specific forebrain regions, such as the prefrontal cortex (PFC) and hippocampus (HP), have been implicated in schizophrenic pathophysiology, the role of these brain regions in the top-down control of specific schizophrenia-associated behaviors has not been examined. Here, we used an adeno-associated virus (AAV) delivered shRNA to knock down the expression of the 14-3-3-inhibitor transgene, thus selectively restoring the function of 14-3-3 in the forebrain of the 14-3-3 FKO mice, we found that injection of the AAV-shRNA into both the PFC and the HP is necessary to attenuate psychomotor activity of the 14-3-3 FKO mice. Furthermore, we found that acute inhibition of 14-3-3, through the delivery of an AAV expressing the 14-3-3 inhibitor to both the PFC and HP, can trigger psychomotor agitation. Interestingly, when assessing the two brain regions separately, we determined that AAV-mediated expression of the 14-3-3 inhibitor specifically within the HP alone is sufficient to induce several behavioral deficits including hyperactivity, impaired associative learning and memory, and reduced sensorimotor gating. In addition, we show that post-synaptic NMDA receptor levels are regulated by acute 14-3-3 manipulations. Taken together, findings from this study directly link 14-3-3 inhibition in specific forebrain regions to certain schizophrenia-associated endophenotypes.
Collapse
|
18
|
Wang Q, Dwivedi Y. Transcriptional profiling of mitochondria associated genes in prefrontal cortex of subjects with major depressive disorder. World J Biol Psychiatry 2017; 18:592-603. [PMID: 27269743 PMCID: PMC5389940 DOI: 10.1080/15622975.2016.1197423] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Recent evidences suggest that mitochondrial dysfunction maybe involved in the pathophysiology of major depressive disorder (MDD); however, the role of mitochondrial genes in this disorder has not been studied systematically. In the present study, we profiled expression of mitochondrial genes in dorsolateral prefrontal cortex (dlPFC) of MDD and non-psychiatric control subjects. METHODS Human mitochondrial RT2 profile PCR array plates were used to examine differentially expressed genes in dlPFC of 11 MDD and 11 control subjects. Differentially expressed genes were validated independently by qRT-PCR. Biological relevance of differentially expressed genes was analysed by gene ontology (GO) and ingenuity pathways analysis (IPA). RESULTS We found that 16 genes were differentially expressed in the MDD group compared with control group. Among them, three genes were downregulated and 13 genes upregulated. None of these genes were affected by confounding variables, such as age, post-mortem interval, brain pH, and antidepressant toxicology. Seven differentially expressed genes were successfully validated in MDD subjects. GO and IPA analyses identified several new regulatory networks associated with mitochondrial dysfunctions in MDD. CONCLUSIONS Our findings suggest abnormal mitochondrial systems in the brain of MDD subjects which could be involved in the etiopathogenesis of this disorder.
Collapse
Affiliation(s)
- Qingzhong Wang
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Cornell B, Toyo-Oka K. 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis. Front Mol Neurosci 2017; 10:318. [PMID: 29075177 PMCID: PMC5643407 DOI: 10.3389/fnmol.2017.00318] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
The 14-3-3 proteins are a family of highly conserved, multifunctional proteins that are highly expressed in the brain during development. Cumulatively, the seven 14-3-3 isoforms make up approximately 1% of total soluble brain protein. Over the last decade, evidence has accumulated implicating the importance of the 14-3-3 protein family in the development of the nervous system, in particular cortical development, and have more recently been recognized as key regulators in a number of neurodevelopmental processes. In this review we will discuss the known roles of each 14-3-3 isoform in the development of the cortex, their relation to human neurodevelopmental disorders, as well as the challenges and questions that are left to be answered. In particular, we focus on the 14-3-3 isoforms and their involvement in the three key stages of cortical development; neurogenesis and differentiation, neuronal migration and neuromorphogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Brett Cornell
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
20
|
Yuan A, Nixon RA. Specialized roles of neurofilament proteins in synapses: Relevance to neuropsychiatric disorders. Brain Res Bull 2016; 126:334-346. [PMID: 27609296 PMCID: PMC5079776 DOI: 10.1016/j.brainresbull.2016.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 01/05/2023]
Abstract
Neurofilaments are uniquely complex among classes of intermediate filaments in being composed of four subunits (NFL, NFM, NFH and alpha-internexin in the CNS) that differ in structure, regulation, and function. Although neurofilaments have been traditionally viewed as axonal structural components, recent evidence has revealed that distinctive assemblies of neurofilament subunits are integral components of synapses, especially at postsynaptic sites. Within the synaptic compartment, the individual subunits differentially modulate neurotransmission and behavior through interactions with specific neurotransmitter receptors. These newly uncovered functions suggest that alterations of neurofilament proteins not only underlie axonopathy in various neurological disorders but also may play vital roles in cognition and neuropsychiatric diseases. Here, we review evidence that synaptic neurofilament proteins are a sizable population in the CNS and we advance the concept that changes in the levels or post-translational modification of individual NF subunits contribute to synaptic and behavioral dysfunction in certain neuropsychiatric conditions.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, 10962, United States; Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States.
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, 10962, United States; Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
21
|
Qing Y, Sun L, Yang C, Jiang J, Yang X, Hu X, Cui D, Xu Y, He L, Han D, Wan C. Dysregulated 14-3-3 Family in Peripheral Blood Leukocytes of Patients with Schizophrenia. Sci Rep 2016; 6:23791. [PMID: 27030512 PMCID: PMC4814835 DOI: 10.1038/srep23791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
The 14-3-3 family, which is composed of seven distinct members in humans, plays important roles in the cell cycle, apoptosis, synaptic plasticity and neuronal differentiation and migration. Previous genetic and post-mortem gene expression studies have linked this family to schizophrenia. However, the direction of gene expression changes in these studies has been inconsistent, and reports of 14-3-3 gene expression in living schizophrenic patients are still lacking. Here, we assessed 14-3-3 gene and protein expression levels in peripheral blood leukocytes from drug-naïve first-episode schizophrenic patients and matched controls. mRNA and protein expression levels were quantified by qRT-PCR and UPLC-MRM/MS, respectively. Expression analysis revealed four downregulated and one upregulated mRNA transcripts as well as five downregulated protein levels of 14-3-3 isoforms in schizophrenia. Moreover, significant positive correlations between 14-3-3 mRNA and protein expression levels were found in schizophrenia, and we also identified negative correlations between ε, θ and ζ isoform expression levels and positive symptoms of schizophrenia. Our results suggest that gene and protein expression levels for the 14-3-3 family are dysregulated in schizophrenia, perhaps owing to specific regulatory mechanisms, and we also suggest that expression of the 14-3-3ε, θ and ζ isoform genes could be useful indicators of disease severity.
Collapse
Affiliation(s)
- Ying Qing
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liya Sun
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chao Yang
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Jiang
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuhan Yang
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaowen Hu
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Donghong Cui
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yifeng Xu
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin He
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dongmei Han
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunling Wan
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
22
|
Cassoli JS, Iwata K, Steiner J, Guest PC, Turck CW, Nascimento JM, Martins-de-Souza D. Effect of MK-801 and Clozapine on the Proteome of Cultured Human Oligodendrocytes. Front Cell Neurosci 2016; 10:52. [PMID: 26973466 PMCID: PMC4776125 DOI: 10.3389/fncel.2016.00052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/15/2016] [Indexed: 01/06/2023] Open
Abstract
Separate lines of evidence have demonstrated the involvement of N-methyl-D-aspartate (NMDA) receptor and oligodendrocyte dysfunctions in schizophrenia. Here, we have carried out shotgun mass spectrometry proteome analysis of oligodendrocytes treated with the NMDA receptor antagonist MK-801 to gain potential insights into these effects at the molecular level. The MK-801 treatment led to alterations in the levels of 68 proteins, which are associated with seven distinct biological processes. Most of these proteins are involved in energy metabolism and many have been found to be dysregulated in previous proteomic studies of post-mortem brain tissues from schizophrenia patients. Finally, addition of the antipsychotic clozapine to MK-801-treated oligodendrocyte cultures resulted in changes in the levels of 45 proteins and treatment with clozapine alone altered 122 proteins and many of these showed opposite changes to the MK-801 effects. Therefore, these proteins and the associated energy metabolism pathways should be explored as potential biomarkers of antipsychotic efficacy. In conclusion, MK-801 treatment of oligodendrocytes may provide a useful model for testing the efficacy of novel treatment approaches.
Collapse
Affiliation(s)
- Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas Campinas, Brazil
| | - Keiko Iwata
- United Graduate School of Child Development, Department of Development of Functional Brain Activities, Research Center for Child Mental Development, Hamamatsu University School of Medicine, Osaka University and Kanazawa University and Chiba University and University of Fukui Fukui, Japan
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg Magdeburg, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas Campinas, Brazil
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry Munich, Germany
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of CampinasCampinas, Brazil; D'Or Institute for Research and Education Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of CampinasCampinas, Brazil; UNICAMP Neurobiology CenterCampinas, Brazil
| |
Collapse
|
23
|
Wu JQ, Green MJ, Gardiner EJ, Tooney PA, Scott RJ, Carr VJ, Cairns MJ. Altered neural signaling and immune pathways in peripheral blood mononuclear cells of schizophrenia patients with cognitive impairment: A transcriptome analysis. Brain Behav Immun 2016; 53:194-206. [PMID: 26697997 DOI: 10.1016/j.bbi.2015.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/26/2015] [Accepted: 12/13/2015] [Indexed: 12/20/2022] Open
Abstract
Cognitive deficits are a core feature of schizophrenia and contribute significantly to functional disability. We investigated the molecular pathways associated with schizophrenia (SZ; n=47) cases representing both 'cognitive deficit' (CD; n=22) and 'cognitively spared' (CS; n=25) subtypes of schizophrenia (based on latent class analysis of 9 cognitive performance indicators), compared with 49 healthy controls displaying 'normal' cognition. This was accomplished using gene-set analysis of transcriptome data derived from peripheral blood mononuclear cells (PBMCs). We detected 27 significantly altered pathways (19 pathways up-regulated and 8 down-regulated) in the combined SZ group and a further 6 pathways up-regulated in the CS group and 5 altered pathways (4 down-regulated and 1 up-regulated) in the CD group. The transcriptome profiling in SZ and cognitive subtypes were characterized by the up-regulated pathways involved in immune dysfunction (e.g., antigen presentation in SZ), energy metabolism (e.g., oxidative phosphorylation), and down-regulation of the pathways involved in neuronal signaling (e.g., WNT in SZ/CD and ERBB in SZ). When we looked for pathways that differentiated the two cognitive subtypes we found that the WNT signaling was significantly down-regulated (FDR<0.05) in the CD group in accordance with the combined SZ cohort, whereas it was unaffected in the CS group. This suggested suppression of WNT signaling was a defining feature of cognitive decline in schizophrenia. The WNT pathway plays a role in both the development/function of the central nervous system and peripheral tissues, therefore its alteration in PBMCs may be indicative of an important genomic axis relevant to cognition in the neuropathology of schizophrenia.
Collapse
Affiliation(s)
- Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Melissa J Green
- Schizophrenia Research Institute, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Erin J Gardiner
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Vaughan J Carr
- Schizophrenia Research Institute, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia.
| |
Collapse
|
24
|
Zhang JH, Li Y, Song XB, Ji XH, Sun HN, Wang H, Fu SB, Zhao LJ, Sun DJ. Differential expression of serum proteins in rats subchronically exposed to arsenic identified by iTRAQ-based proteomic technology-14-3-3 ζ protein to serve as a potential biomarker. Toxicol Res (Camb) 2016; 5:651-659. [PMID: 30090378 DOI: 10.1039/c5tx00393h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/31/2016] [Indexed: 12/15/2022] Open
Abstract
Arsenic is a multi-system toxicant. However, the mechanism of arsenic toxicity is not fully clarified and few effective protein biomarkers could be used for arsenic poisoning. This study was to investigate the differentially expressed proteins in the serum of rats subchronically exposed to arsenic. Sixty male rats were randomly divided into four groups, and the dose of sodium arsenite in drinking water for each group was 0, 2, 10, and 50 mg L-1, respectively. The exposure lasted for 12 weeks. An Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic approach was used to identify the differentially expressed proteins in serum between control and 50 mg L-1 groups. A total of 201 serum proteins were identified by iTRAQ, of which 12 were significantly changed by arsenic exposure with two up-regulated and ten down-regulated proteins. One down-regulated protein 14-3-3 ζ, an abundant protein expressed in the brain, was verified by ELISA using serum samples and by immunohistochemical, real time PCR, and western blot methods using brain tissues in four groups. Our work provided valuable insight into the serum protein changes in rats exposed to arsenic, and indicated that 14-3-3 ζ may serve as a useful biomarker for nervous damage caused by arsenic poisoning.
Collapse
Affiliation(s)
- Jin Hui Zhang
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Ying Li
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Xuan Bo Song
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Xiao Hong Ji
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Hong Na Sun
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Hui Wang
- Community Health Service Center of Nanxiang Town , Jiading District , Shanghai 201802 , China
| | - Song Bin Fu
- The Laboratory of Medical Genetics , Harbin Medical University , Harbin 150081 , China
| | - Li Jun Zhao
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| | - Dian Jun Sun
- Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University , Harbin 150081 , China . ; ; ; Tel: (+86)-451-8750- 2980
| |
Collapse
|
25
|
Jaehne EJ, Ramshaw H, Xu X, Saleh E, Clark SR, Schubert KO, Lopez A, Schwarz Q, Baune BT. In-vivo administration of clozapine affects behaviour but does not reverse dendritic spine deficits in the 14-3-3ζ KO mouse model of schizophrenia-like disorders. Pharmacol Biochem Behav 2015; 138:1-8. [DOI: 10.1016/j.pbb.2015.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
|
26
|
Foote M, Qiao H, Graham K, Wu Y, Zhou Y. Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice. Biol Psychiatry 2015; 78:386-95. [PMID: 25863357 PMCID: PMC4544659 DOI: 10.1016/j.biopsych.2015.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/19/2015] [Accepted: 02/08/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND The 14-3-3 family of proteins is implicated in the regulation of several key neuronal processes. Previous human and animal studies suggested an association between 14-3-3 dysregulation and schizophrenia. METHODS We characterized behavioral and functional changes in transgenic mice that express an isoform-independent 14-3-3 inhibitor peptide in the brain. RESULTS We recently showed that 14-3-3 functional knockout mice (FKO) exhibit impairments in associative learning and memory. We report here that these 14-3-3 FKO mice display other behavioral deficits that correspond to the core symptoms of schizophrenia. These behavioral deficits may be attributed to alterations in multiple neurotransmission systems in the 14-3-3 FKO mice. In particular, inhibition of 14-3-3 proteins results in a reduction of dendritic complexity and spine density in forebrain excitatory neurons, which may underlie the altered synaptic connectivity in the prefrontal cortical synapse of the 14-3-3 FKO mice. At the molecular level, this dendritic spine defect may stem from dysregulated actin dynamics secondary to a disruption of the 14-3-3-dependent regulation of phosphorylated cofilin. CONCLUSIONS Collectively, our data provide a link between 14-3-3 dysfunction, synaptic alterations, and schizophrenia-associated behavioral deficits.
Collapse
Affiliation(s)
- Molly Foote
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Haifa Qiao
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Kourtney Graham
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Yuying Wu
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida..
| |
Collapse
|
27
|
Xu X, Jaehne EJ, Greenberg Z, McCarthy P, Saleh E, Parish CL, Camera D, Heng J, Haas M, Baune BT, Ratnayake U, van den Buuse M, Lopez AF, Ramshaw HS, Schwarz Q. 14-3-3ζ deficient mice in the BALB/c background display behavioural and anatomical defects associated with neurodevelopmental disorders. Sci Rep 2015. [PMID: 26207352 PMCID: PMC4513550 DOI: 10.1038/srep12434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sequencing and expression analyses implicate 14-3-3ζ as a genetic risk factor for neurodevelopmental disorders such as schizophrenia and autism. In support of this notion, we recently found that 14-3-3ζ−/− mice in the Sv/129 background display schizophrenia-like defects. As epistatic interactions play a significant role in disease pathogenesis we generated a new congenic strain in the BALB/c background to determine the impact of genetic interactions on the 14-3-3ζ−/− phenotype. In addition to replicating defects such as aberrant mossy fibre connectivity and impaired spatial memory, our analysis of 14-3-3ζ−/− BALB/c mice identified enlarged lateral ventricles, reduced synaptic density and ectopically positioned pyramidal neurons in all subfields of the hippocampus. In contrast to our previous analyses, 14-3-3ζ−/− BALB/c mice lacked locomotor hyperactivity that was underscored by normal levels of the dopamine transporter (DAT) and dopamine signalling. Taken together, our results demonstrate that dysfunction of 14-3-3ζ gives rise to many of the pathological hallmarks associated with the human condition. 14-3-3ζ-deficient BALB/c mice therefore provide a novel model to address the underlying biology of structural defects affecting the hippocampus and ventricle, and cognitive defects such as hippocampal-dependent learning and memory.
Collapse
Affiliation(s)
- Xiangjun Xu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Emily J Jaehne
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Zarina Greenberg
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Peter McCarthy
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Eiman Saleh
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, 3010, Australia
| | - Daria Camera
- School of Medical Sciences, RMIT University, Bundoora, 3083, Australia
| | - Julian Heng
- 1] Harry Perkins Institute of Medical Research, Perth, Australia [2] School of Medicine and Pharmacology, University of Western Australia, Crawley, 6009, Australia
| | - Matilda Haas
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Udani Ratnayake
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, 3010, Australia
| | - Maarten van den Buuse
- 1] The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, 3010, Australia [2] Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Hayley S Ramshaw
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| |
Collapse
|
28
|
Protein expression profiles characterize distinct features of mouse cerebral cortices at different developmental stages. PLoS One 2015; 10:e0125608. [PMID: 25915664 PMCID: PMC4411115 DOI: 10.1371/journal.pone.0125608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/25/2015] [Indexed: 01/18/2023] Open
Abstract
The proper development of the mammalian cerebral cortex requires precise protein synthesis and accurate regulation of protein expression levels. To reveal signatures of protein expression in developing mouse cortices, we here generate proteomic profiles of cortices at embryonic and postnatal stages using tandem mass spectrometry (MS/MS). We found that protein expression profiles are mostly consistent with biological features of the developing cortex. Gene Ontology (GO) and KEGG pathway analyses demonstrate conserved molecules that maintain cortical development such as proteins involved in metabolism. GO and KEGG pathway analyses further identify differentially expressed proteins that function at specific stages, for example proteins regulating the cell cycle in the embryonic cortex, and proteins controlling axon guidance in the postnatal cortex, suggesting that distinct protein expression profiles determine biological events in the developing cortex. Furthermore, the STRING network analysis has revealed that many proteins control a single biological event, such as the cell cycle regulation, through cohesive interactions, indicating a complex network regulation in the cortex. Our study has identified protein networks that control the cortical development and has provided a protein reference for further investigation of protein interactions in the cortex.
Collapse
|
29
|
Rivero G, Gabilondo AM, García-Sevilla JA, La Harpe R, Morentín B, Meana JJ. Up-regulated 14-3-3β and 14-3-3ζ proteins in prefrontal cortex of subjects with schizophrenia: effect of psychotropic treatment. Schizophr Res 2015; 161:446-51. [PMID: 25549848 DOI: 10.1016/j.schres.2014.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/28/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022]
Abstract
14-3-3 is a family of conserved regulatory proteins that bind to a multitude of functionally diverse signalling proteins. Various genetic studies and gene expression and proteomic analyses have involved 14-3-3 proteins in schizophrenia (SZ). On the other hand, studies about the status of these proteins in major depressive disorder (MD) are still missing. Immunoreactivity values of cytosolic 14-3-3β and 14-3-3ζ proteins were evaluated by Western blot in prefrontal cortex (PFC) of subjects with schizophrenia (SZ; n=22), subjects with major depressive disorder (MD; n=21) and age-, gender- and postmortem delay-matched control subjects (n=52). The modulation of 14-3-3β and 14-3-3ζ proteins by psychotropic medication was also assessed. The analysis of both proteins in SZ subjects with respect to matched control subjects showed increased 14-3-3β (Δ=33±10%, p<0.05) and 14-3-3ζ (Δ=29±6%, p<0.05) immunoreactivity in antipsychotic-free but not in antipsychotic-treated SZ subjects. Immunoreactivity values of 14-3-3β and 14-3-3ζ were not altered in MD subjects. These results show the specific up-regulation of 14-3-3β and 14-3-3ζ proteins in PFC of SZ subjects and suggest a possible down-regulation of both proteins by antipsychotic treatment.
Collapse
Affiliation(s)
- Guadalupe Rivero
- Department of Pharmacology, University of te Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; BioCruces Health Research Institute and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Ane M Gabilondo
- Department of Pharmacology, University of te Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; BioCruces Health Research Institute and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS-IdISPa, University of the Balearic Islands (UIB), and Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), Spain
| | - Romano La Harpe
- Centre Universitaire Romand de Médecine Légale-Site Genève, University of Geneva, Switzerland
| | - Benito Morentín
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of te Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; BioCruces Health Research Institute and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
30
|
Horváth S, Mirnics K. Schizophrenia as a disorder of molecular pathways. Biol Psychiatry 2015; 77:22-8. [PMID: 24507510 PMCID: PMC4092052 DOI: 10.1016/j.biopsych.2014.01.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 12/21/2022]
Abstract
Over the last decade, transcriptome studies of postmortem tissue from subjects with schizophrenia revealed that synaptic, mitochondrial, immune system, gamma-aminobutyric acidergic, and oligodendrocytic changes are all integral parts of the disease process. The combined genetic and transcriptomic studies argue that the molecular underpinnings of the disease are even more varied than the symptomatic diversity of schizophrenia. Ultimately, to decipher the pathophysiology of human disorders in general, we will need to understand the function of hundreds of genes and regulatory elements in our genome and the consequences of their overexpression and reduced expression in a developmental context. Furthermore, integration of knowledge from various data sources remains a monumental challenge that has to be systematically addressed in the upcoming decades. In the end, our success in interpreting the molecular changes in schizophrenia will depend on our ability to understand the biology using innovative ideas and cannot depend on the hope of developing novel, more powerful technologies.
Collapse
Affiliation(s)
- Szatmár Horváth
- Department of Psychiatry; Department of Psychiatry, University of Szeged, Szeged, Hungary
| | - Károly Mirnics
- Department of Psychiatry; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry, University of Szeged, Szeged, Hungary.
| |
Collapse
|
31
|
Exome sequencing in multiplex autism families suggests a major role for heterozygous truncating mutations. Mol Psychiatry 2014; 19:784-90. [PMID: 23999528 DOI: 10.1038/mp.2013.106] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/23/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022]
Abstract
Autism is a severe neurodevelopmental disorder, the aetiology of which remains mainly unknown. Family and twin studies provide strong evidence that genetic factors have a major role in the aetiology of this disease. Recently, whole exome sequencing (WES) efforts have focused mainly on rare de novo variants in singleton families. Although these studies have provided pioneering insights, de novo variants probably explain only a small proportion of the autism risk variance. In this study, we performed exome sequencing of 10 autism multiplex families with the aim of investigating the role of rare variants that are coinherited in the affected sibs. The pool of variants selected in our study is enriched with genes involved in neuronal functions or previously reported in psychiatric disorders, as shown by Gene Ontology analysis and by browsing the Neurocarta database. Our data suggest that rare truncating heterozygous variants have a predominant role in the aetiology of autism. Using a multiple linear regression model, we found that the burden of truncating mutations correlates with a lower non-verbal intelligence quotient (NVIQ). Also, the number of truncating mutations that were transmitted to the affected sibs was significantly higher (twofold) than those not transmitted. Protein-protein interaction analysis performed with our list of mutated genes revealed that the postsynaptic YWHAZ is the most interconnected node of the network. Among the genes found disrupted in our study, there is evidence suggesting that YWHAZ and also the X-linked DRP2 may be considered as novel autism candidate genes.
Collapse
|
32
|
Locomotor hyperactivity in 14-3-3ζ KO mice is associated with dopamine transporter dysfunction. Transl Psychiatry 2013; 3:e327. [PMID: 24301645 PMCID: PMC4030331 DOI: 10.1038/tp.2013.99] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/02/2023] Open
Abstract
Dopamine (DA) neurotransmission requires a complex series of enzymatic reactions that are tightly linked to catecholamine exocytosis and receptor interactions on pre- and postsynaptic neurons. Regulation of dopaminergic signalling is primarily achieved through reuptake of extracellular DA by the DA transporter (DAT) on presynaptic neurons. Aberrant regulation of DA signalling, and in particular hyperactivation, has been proposed as a key insult in the presentation of schizophrenia and related neuropsychiatric disorders. We recently identified 14-3-3ζ as an essential component of neurodevelopment and a central risk factor in the schizophrenia protein interaction network. Our analysis of 14-3-3ζ-deficient mice now shows that baseline hyperactivity of knockout (KO) mice is rescued by the antipsychotic drug clozapine. 14-3-3ζ KO mice displayed enhanced locomotor hyperactivity induced by the DA releaser amphetamine. Consistent with 14-3-3ζ having a role in DA signalling, we found increased levels of DA in the striatum of 14-3-3ζ KO mice. Although 14-3-3ζ is proposed to modulate activity of the rate-limiting DA biosynthesis enzyme, tyrosine hydroxylase (TH), we were unable to identify any differences in total TH levels, TH localization or TH activation in 14-3-3ζ KO mice. Rather, our analysis identified significantly reduced levels of DAT in the absence of notable differences in RNA or protein levels of DA receptors D1-D5. Providing insight into the mechanisms by which 14-3-3ζ controls DAT stability, we found a physical association between 14-3-3ζ and DAT by co-immunoprecipitation. Taken together, our results identify a novel role for 14-3-3ζ in DA neurotransmission and provide support to the hyperdopaminergic basis of pathologies associated with schizophrenia and related disorders.
Collapse
|
33
|
Khalilova ZL, Zainullina AG, Valiullina AR, Zakharova GG, Valinurov RG, Khusnutdinova EK. Association of YWHAE gene polymorphism with suicidal behavior. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413030095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Cheah PS, Ramshaw HS, Thomas PQ, Toyo-Oka K, Xu X, Martin S, Coyle P, Guthridge MA, Stomski F, van den Buuse M, Wynshaw-Boris A, Lopez AF, Schwarz QP. Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3ζ deficiency. Mol Psychiatry 2012; 17:451-66. [PMID: 22124272 DOI: 10.1038/mp.2011.158] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Complex neuropsychiatric disorders are believed to arise from multiple synergistic deficiencies within connected biological networks controlling neuronal migration, axonal pathfinding and synapse formation. Here, we show that deletion of 14-3-3ζ causes neurodevelopmental anomalies similar to those seen in neuropsychiatric disorders such as schizophrenia, autism spectrum disorder and bipolar disorder. 14-3-3ζ-deficient mice displayed striking behavioural and cognitive deficiencies including a reduced capacity to learn and remember, hyperactivity and disrupted sensorimotor gating. These deficits are accompanied by subtle developmental abnormalities of the hippocampus that are underpinned by aberrant neuronal migration. Significantly, 14-3-3ζ-deficient mice exhibited abnormal mossy fibre navigation and glutamatergic synapse formation. The molecular basis of these defects involves the schizophrenia risk factor, DISC1, which interacts isoform specifically with 14-3-3ζ. Our data provide the first evidence of a direct role for 14-3-3ζ deficiency in the aetiology of neurodevelopmental disorders and identifies 14-3-3ζ as a central risk factor in the schizophrenia protein interaction network.
Collapse
Affiliation(s)
- P S Cheah
- Department of Human Immunology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sequeira PA, Martin MV, Vawter MP. The first decade and beyond of transcriptional profiling in schizophrenia. Neurobiol Dis 2012; 45:23-36. [PMID: 21396449 PMCID: PMC3178722 DOI: 10.1016/j.nbd.2011.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 01/19/2023] Open
Abstract
Gene expression changes in brains of individuals with schizophrenia (SZ) have been hypothesized to reflect possible pathways related to pathophysiology and/or medication. Other factors having robust effects on gene expression profiling in brain and possibly influence the schizophrenia transcriptome such as age and pH are examined. Pathways of curated gene expression or gene correlation networks reported in SZ (white matter, apoptosis, neurogenesis, synaptic plasticity, glutamatergic and GABAergic neurotransmission, immune and stress-response, mitochondrial, and neurodevelopment) are not unique to SZ and have been associated with other psychiatric disorders. Suggestions going forward to improve the next decade of profiling: consider multiple brain regions that are carefully dissected, release large datasets from multiple brain regions in controls to better understand neurocircuitry, integrate genetics and gene expression, measure expression variants on genome wide level, peripheral biomarker studies, and analyze the transcriptome across a developmental series of brains. Gene expression, while an important feature of the genomic landscape, requires further systems biology to advance from control brains to a more precise definition of the schizophrenia interactome.
Collapse
Affiliation(s)
- P. Adolfo Sequeira
- Functional Genomics Laboratory Department of Psychiatry and Human Behavior School of Medicine University of California, Irvine Irvine CA 92697-4260 (949) 824-9014
| | - Maureen V. Martin
- Functional Genomics Laboratory Department of Psychiatry and Human Behavior School of Medicine University of California, Irvine Irvine CA 92697-4260 (949) 824-9014
| | - Marquis P. Vawter
- Functional Genomics Laboratory Department of Psychiatry and Human Behavior School of Medicine University of California, Irvine Irvine CA 92697-4260 (949) 824-9014
| |
Collapse
|
36
|
Nanavati D, Austin DR, Catapano LA, Luckenbaugh DA, Dosemeci A, Manji HK, Chen G, Markey SP. The effects of chronic treatment with mood stabilizers on the rat hippocampal post-synaptic density proteome. J Neurochem 2011; 119:617-29. [PMID: 21838781 PMCID: PMC3192943 DOI: 10.1111/j.1471-4159.2011.07424.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bipolar disorder is a devastating illness that is marked by recurrent episodes of mania and depression. There is growing evidence that the disease is correlated with disruptions in synaptic plasticity cascades involved in cognition and mood regulation. Alleviating the symptoms of bipolar disorder involves chronic treatment with mood stabilizers like lithium or valproate. These two structurally dissimilar drugs are known to alter prominent signaling cascades in the hippocampus, but their effects on the post-synaptic density complex remain undefined. In this work, we utilized mass spectrometry for quantitative profiling of the rat hippocampal post-synaptic proteome to investigate the effects of chronic mood stabilizer treatment. Our data show that in response to chronic treatment of mood stabilizers there were not gross qualitative changes but rather subtle quantitative perturbations in post-synaptic density proteome linked to several key signaling pathways. Our data specifically support the changes in actin dynamics on valproate treatment. Using label-free quantification methods, we report that lithium and valproate significantly altered the abundance of 21 and 43 proteins, respectively. Seven proteins were affected similarly by both lithium and valproate: Ank3, glutamate receptor 3, dynein heavy chain 1, and four isoforms of the 14-3-3 family. Immunoblotting the same samples confirmed the changes in Ank3 and glutamate receptor 3 abundance. Our findings support the hypotheses that BPD is a synaptic disorder and that mood stabilizers modulate the protein signaling complex in the hippocampal post-synaptic density.
Collapse
Affiliation(s)
- Dhaval Nanavati
- Laboratory of Neurotoxicology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel R. Austin
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa A. Catapano
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A. Luckenbaugh
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayse Dosemeci
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Husseini K. Manji
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guang Chen
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanford P. Markey
- Laboratory of Neurotoxicology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Ramsey AJ, Milenkovic M, Oliveira AF, Escobedo-Lozoya Y, Seshadri S, Salahpour A, Sawa A, Yasuda R, Caron MG. Impaired NMDA receptor transmission alters striatal synapses and DISC1 protein in an age-dependent manner. Proc Natl Acad Sci U S A 2011; 108:5795-800. [PMID: 21436042 PMCID: PMC3078375 DOI: 10.1073/pnas.1012621108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NMDA receptors are key regulators of synaptic plasticity, and their hypofunction is thought to contribute to the pathophysiology of CNS disorders. Furthermore, NMDA receptors participate in the formation, maintenance, and elimination of synapses. The consequences of NMDA receptor hypofunction on synapse biology were explored in a genetic mouse model, in which the levels of NMDA receptors are reduced to 10% of normal levels (i.e., NR1-knockdown mice). In these mice, synapse number is reduced in an age-dependent manner; reductions are observed at the postpubertal age of 6 wk, but normal at 2 wk of age. Efforts to uncover the biochemical underpinnings of this phenomenon reveal synapse-specific reductions in 14-3-3ε protein and in Disrupted in Schizophrenia-1 (DISC1), two schizophrenia susceptibility factors that have been implicated in the regulation of spine density. Subchronic administration of MK-801, an NMDA receptor antagonist, produces similar synaptic reductions in both spine density and DISC1, indicating that synaptic levels of DISC1 are regulated by NMDA receptor function. The synaptic reduction of DISC1 and 14-3-3ε is developmentally correlated with the age-dependent decrease in striatal spine density.
Collapse
Affiliation(s)
- Amy J. Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada M5S 1A8
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Marija Milenkovic
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada M5S 1A8
| | - Ana F. Oliveira
- Doctoral Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | | | - Saurav Seshadri
- Departments of Psychiatry and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287; and
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada M5S 1A8
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Akira Sawa
- Departments of Psychiatry and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287; and
| | - Ryohei Yasuda
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
38
|
Horváth S, Janka Z, Mirnics K. Analyzing schizophrenia by DNA microarrays. Biol Psychiatry 2011; 69:157-62. [PMID: 20801428 PMCID: PMC2994975 DOI: 10.1016/j.biopsych.2010.07.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/12/2010] [Accepted: 07/14/2010] [Indexed: 01/20/2023]
Abstract
To understand the pathological processes of schizophrenia, we must embrace the analysis of the diseased human brain: we will never be able to recapitulate the pathology of uniquely human disorders in an animal model. Based on the outcome of the transcriptome profiling experiments performed to date, it appears that schizophrenia is associated with a global gene expression disturbance across many cortical regions. In addition, transcriptome changes are present in multiple cell types, including specific subclasses of principal neurons, interneurons, and oligodendrocytes. Furthermore, transcripts related to synaptic transmission, energy metabolism, and inhibitory neurotransmission are routinely found underexpressed in the postmortem brain tissue of subjects with schizophrenia. To put these transcriptome data in biological context, we must make our data publicly available and report our findings in a proper, expanded Minimum Information About a Microarray Experiment format. Cell-type specific expression profiling and sequencing-based transcript assessments should be expanded, with particular attention to understanding splice-variant changes in various mental disorders. Deciphering the pathophysiology of mental disorders depends on integrating data from across many research fields and techniques. Leads from postmortem transcriptome profiling will be essential to generate model animals, perform tissue culture experiments, and develop or evaluate novel drugs to treat this devastating disorder.
Collapse
Affiliation(s)
- Szatmár Horváth
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary
| | - Zoltán Janka
- Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary
| | - Károly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
39
|
Abstract
We present a high throughput shotgun mass spectrometry workflow using a bidimensional peptide fractionation procedure consisting of isoelectric focusing and RP-HPLC prior to mass spectrometric analysis, with the aim of optimizing peptide separation and protein identification. As part of the workflow we used the ‘Isotope-Coded Protein Labeling’ (ICPL) method for accurate relative quantitation of protein expression. Such workflow was successfully applied to a comparative proteome analysis of schizophrenia versus healthy control brain tissues and can be an alternative to proteome researches.
Collapse
|
40
|
Murphy KJ, ter Horst JPF, Cassidy AW, DeSouza IEJ, Morgunova M, Li C, Connole LM, O’Sullivan NC, Loscher JS, Brady AT, Rombach N, Connellan J, McGettigan PA, Scully D, Fedriani R, Lukasz B, Moran MP, McCabe OM, Wantuch CM, Hughes ZA, Mulvany SK, Higgins DG, Pangalos MN, Marquis KL, O’Connor WT, Ring RH, von Schack D, Regan CM. Temporal dysregulation of cortical gene expression in the isolation reared Wistar rat. J Neurochem 2010; 113:601-14. [DOI: 10.1111/j.1471-4159.2010.06617.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Martins-De-Souza D, Dias-Neto E, Schmitt A, Falkai P, Gormanns P, Maccarrone G, Turck CW, Gattaz WF. Proteome analysis of schizophrenia brain tissue. World J Biol Psychiatry 2010; 11:110-20. [PMID: 20109112 DOI: 10.3109/15622970903490626] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Proteome analysis has emerged as a promising strategy to the identification of potential biomarkers and to further confirm the importance of certain pathways in the schizophrenia (SCZ) pathophysiology. Reviewing the results of 13 proteome studies in SCZ brain tissue, we aimed to provide information regarding potential proteins biomarkers as well as information about the pathophysiology of the disease. METHODS AND RESULTS Using two-dimensional gel electrophoresis and shotgun mass spectrometry, 31 proteins were consistently found differentially expressed in the brains of SCZ patients. The most frequent protein alterations reported in SCZ were related to brain energy metabolism, brain plasticity, and synaptic function, processes that are thought to belong to the core of the biology of this disease. The recurrent identification and validation of inter-related protein clusters, determined in different samples and approaches, strongly reinforces the putative involvement of certain pathways in SCZ. CONCLUSIONS The availability of reliable markers not only paves the way to the development of new therapeutic strategies but also points out the possibility of their use as peripheral blood markers that may potentially contribute to the early SCZ detection and early therapeutic intervention, both of which can reduce the social and cognitive consequences of the disease.
Collapse
|
42
|
SLITRK1 binds 14-3-3 and regulates neurite outgrowth in a phosphorylation-dependent manner. Biol Psychiatry 2009; 66:918-25. [PMID: 19640509 DOI: 10.1016/j.biopsych.2009.05.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 05/18/2009] [Accepted: 05/21/2009] [Indexed: 11/20/2022]
Abstract
BACKGROUND Rare genetic variants of SLITRK1 have been previously associated with Tourette syndrome (TS), attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD) symptoms. METHODS We studied SLITRK1 processing and phosphorylation. To explore potential signaling pathways of the cytoplasmic domain of SLITRK1, we made use of the yeast two-hybrid screen. RESULTS We observed that the extracellular domain of SLITRK1 is secreted in vitro and in vivo and that this process is activated by protein kinase C and inhibited by an inhibitor of tumor necrosis factor-alpha converting enzyme (TACE). We observed that SLITRK1 undergoes gamma-secretase cleavage to release a SLITRK1 intracellular domain (SICD). We identified an interaction between SLITRK1 and 14-3-3 proteins and observed that these proteins co-localized in cortical neuronal cultures and were coprecipitated from rat brain lysates, consistent with an interaction in vivo. We mapped the binding site to the very COOH-terminus of SLITRK1, as deletion of the last six amino acids of SLITRK1 abolished the interaction. We demonstrated phosphorylation of SLITRK1 by protein kinase A (PKA), protein kinase C (PKC), and casein kinase II (CK2) and observed that CK2 phosphorylates SLITRK1 in the 14-3-3 binding site. Mutating the CK2 phosphorylation site of SLITRK1 decreased binding to 14-3-3 and inhibited SLITRK1-mediated neurite outgrowth. CONCLUSIONS Our results shed light on the cell biology of SLITRK1, including its protein phosphorylation and potential molecular pathways for SLITRK1 function, and should contribute to further understanding the role of SLIRTK1 in developmental neuropsychiatric conditions such TS, OCD, and ADHD.
Collapse
|
43
|
Grover D, Verma R, Goes FS, Mahon PLB, Gershon ES, McMahon FJ, Potash JB, NIMH Genetics Initiative Bipolar Disorder Collaborative, Bipolar Disorder Phenome Group, Gershon ES, McMahon FJ, Potash JB. Family-based association of YWHAH in psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:977-83. [PMID: 19160447 PMCID: PMC3918450 DOI: 10.1002/ajmg.b.30927] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
YWHAH is a positional and functional candidate gene for both schizophrenia and bipolar disorder (BP). This gene has been previously shown to be associated with both disorders, and the chromosome location (22q12.3) has been repeatedly implicated in linkage studies for these disorders. It codes for the eta subtype of the 14-3-3 protein family, is expressed mainly in brain, and is involved in HPA axis regulation. We investigated the association of YWHAH with BP in a large sample, consisting of 1211 subjects from 318 nuclear families including 554 affected offspring. We tested for association with the standard BP phenotype as well as subtypes defined by psychotic and mood-incongruent features. We genotyped five tag SNPs and the (GCCTGCA)(n) polymorphic locus present in this gene. Using a family-based association test, we found that rs2246704 was associated with BP (OR 1.31, P = 0.03) and psychotic BP (OR = 1.66, P = 0.002). The polymorphic repeat and two other SNPs were also modestly associated with psychotic BP. We have provided additional evidence for association of variants in YWHAH with major mental illness. Additional association analyses of larger sample sets will be required to clarify the role of YWHAH in schizophrenia and BP. The use of clinical sub-phenotypes such as psychotic features or other potential schizophrenia/BP overlap variables including cognitive abnormalities and poor functioning might shed further light on the potential subtypes of illness most closely associated with genetic variation in YWHAH.
Collapse
Affiliation(s)
- Deepak Grover
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
Collaborators
F J McMahon, J Steele, J Pearl, L Kassem, V Lopez, T Schulze, James B Potash, D MacKinnon, E Miller, J Toolan, P Zandi, S Simpson, J Nurnberger, M Miller, E Bowman, T Reich, A Goate, J Rice, J R DePaulo, S Simpson, C Stine, E Gershon, D Kazuba, E Maxwell, J Nurnberger, M J Miller, E S Bowman, N L Rau, P R Moe, N Samavedy, R El-Mallakh, H Manji, D A Glitz, E T Meyer, C Smiley, T Foroud, L Flury, D M Dick, H Edenberg, J Rice, T Reich, A Goate, L Bierut, M McInnis, J R DePaulo, D F MacKinnon, F M Mondimore, James B Mondimore, P P Zandi, D Avramopoulos, J Payne, W Berrettini, W Byerley, M Vawter, W Coryell, R Crowe, E Gershon, J Badner, F McMahon, C Liu, A Sanders, M Caserta, S Dinwiddie, T Nguyen, D Harakal, J Kelsoe, R McKinney, W Scheftner, H M Kravitz, D Marta, A Vaughn-Brown, L Bederow, F McMahon, L Kassem, S Detera-Wadleigh, L Austin, D L Murphy,
Collapse
|
44
|
Lee CS, Kang KR, Lee JY, Park CS, Hahn KH, Sohn JW, Kim BJ. Proteomic analysis of rat brains following exposure to electroconvulsive therapy. J Korean Med Sci 2009; 24:132-7. [PMID: 19270826 PMCID: PMC2650984 DOI: 10.3346/jkms.2009.24.1.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 06/03/2008] [Indexed: 11/30/2022] Open
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments used in psychiatry to date. The mechanisms of ECT action, however, are the least understood and still unclear. As a tool to elucidate the mechanisms of action of ECT, we employed proteomic analysis based on the identification of differentially expressed proteins after exposure to repeated ECT in rat brains. The expression of proteins was visualized by silver stain after two-dimensional gel electrophoresis. Of 24 differentially expressed protein spots (p<0.05 by Student t-test), six different proteins from 7 spots were identified by matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF)/mass spectrometry. Among the identified proteins, there were five dominantly expressed proteins in the ECT-treated rat brain tissues (p<0.05); S100 protein beta chain, 14-3-3 protein zeta/delta, similar to ubiquitin-like 1 (sentrin) activating enzyme subunit 1, suppressor of G2 allele of SKP1 homolog, and phosphatidylinositol transfer protein alpha. The expression of only one protein, ACY1 protein, was repressed (p<0.05). These findings likely serve for a better understanding of mechanisms involved in the therapeutic effects of ECT.
Collapse
Affiliation(s)
- Cheol Soon Lee
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Kee Ryeon Kang
- Department of Biochemistry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
- MRC for Neural Dysfunction, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Ji-Young Lee
- Department of Biochemistry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
- MRC for Neural Dysfunction, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Chul Soo Park
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Kyu Hee Hahn
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Jin Wook Sohn
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Bong Jo Kim
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
45
|
Abstract
Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14-3-3 protein members, implicating these chaperone proteins and the neurotransmitter pathways they support as possible drug targets. Brains from persons with major depressive disorder reveal decreased expression for genes in glutamate transport and metabolism, neurotrophic signaling (eg, FGF, BDNF and VGF), and MAP kinase pathways. Increases in these pathways in the brains of animals exposed to electroconvulsive shock and antidepressant treatments identify neurotrophic and angiogenic growth factors and second messenger stimulation as therapeutic approaches for the treatment of depression.
Collapse
|
46
|
Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM, Wait R, Dunn MJ, Cotter DR. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 2008; 13:1102-17. [PMID: 17938637 DOI: 10.1038/sj.mp.4002098] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 07/16/2007] [Accepted: 07/31/2007] [Indexed: 12/15/2022]
Abstract
There is evidence for both similarity and distinction in the presentation and molecular characterization of schizophrenia and bipolar disorder. In this study, we characterized protein abnormalities in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder using two-dimensional gel electrophoresis. Tissue samples were obtained from 35 individuals with schizophrenia, 35 with bipolar disorder and 35 controls. Eleven protein spots in schizophrenia and 48 in bipolar disorder were found to be differentially expressed (P<0.01) in comparison to controls, with 7 additional spots found to be altered in both diseases. Using mass spectrometry, 15 schizophrenia-associated proteins and 51 bipolar disorder-associated proteins were identified. The functional groups most affected included synaptic proteins (7 of the 15) in schizophrenia and metabolic or mitochondrial-associated proteins (25 of the 51) in bipolar disorder. Six of seven synaptic-associated proteins abnormally expressed in bipolar disorder were isoforms of the septin family, while two septin protein spots were also significantly differentially expressed in schizophrenia. This finding represented the largest number of abnormalities from one protein family. All septin protein spots were upregulated in disease in comparison to controls. This study provides further characterization of the synaptic pathology present in schizophrenia and of the metabolic dysfunction observed in bipolar disorder. In addition, our study has provided strong evidence implicating the septin protein family of proteins in psychiatric disorders for the first time.
Collapse
Affiliation(s)
- K Pennington
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm (Vienna) 2008; 116:275-89. [DOI: 10.1007/s00702-008-0156-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/29/2008] [Indexed: 12/15/2022]
|
48
|
Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in psychiatric illness. Mol Psychiatry 2008; 13:36-64. [PMID: 17912248 DOI: 10.1038/sj.mp.4002106] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 12/11/2022]
Abstract
The DISC locus is located at the breakpoint of a balanced t(1;11) chromosomal translocation in a large and unique Scottish family. This translocation segregates in a highly statistically significant manner with a broad diagnosis of psychiatric illness, including schizophrenia, bipolar disorder and major depression, as well as with a narrow diagnosis of schizophrenia alone. Two novel genes were identified at this locus and due to the high prevalence of schizophrenia in this family, they were named Disrupted-in-Schizophrenia-1 (DISC1) and Disrupted-in-Schizophrenia-2 (DISC2). DISC1 encodes a novel multifunctional scaffold protein, whereas DISC2 is a putative noncoding RNA gene antisense to DISC1. A number of independent genetic linkage and association studies in diverse populations support the original linkage findings in the Scottish family and genetic evidence now implicates the DISC locus in susceptibility to schizophrenia, schizoaffective disorder, bipolar disorder and major depression as well as various cognitive traits. Despite this, with the exception of the t(1;11) translocation, robust evidence for a functional variant(s) is still lacking and genetic heterogeneity is likely. Of the two genes identified at this locus, DISC1 has been prioritized as the most probable candidate susceptibility gene for psychiatric illness, as its protein sequence is directly disrupted by the translocation. Much research has been undertaken in recent years to elucidate the biological functions of the DISC1 protein and to further our understanding of how it contributes to the pathogenesis of schizophrenia. These data are the main subject of this review; however, the potential involvement of DISC2 in the pathogenesis of psychiatric illness is also discussed. A detailed picture of DISC1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major mental illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention.
Collapse
Affiliation(s)
- J E Chubb
- Medical Genetics Section, The Centre for Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|
49
|
Ruano D, Aulchenko YS, Macedo A, Soares MJ, Valente J, Azevedo MH, Hutz MH, Gama CS, Lobato MI, Belmonte-de-Abreu P, Goodman AB, Pato C, Heutink P, Palha JA. Association of the gene encoding neurogranin with schizophrenia in males. J Psychiatr Res 2008; 42:125-33. [PMID: 17140601 DOI: 10.1016/j.jpsychires.2006.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/14/2006] [Accepted: 10/18/2006] [Indexed: 01/22/2023]
Abstract
The neurogranin (NRGN) gene produces a postsynaptic brain-specific protein that regulates calmodulin-Ca(2+) availability in neurons. Acting downstream of the NMDA receptor and upstream of calcineurin and other proteins implicated in schizophrenia, NRGN is a good candidate for association studies in schizophrenia. NRGN expression is regulated during development and is modulated by thyroid hormones and retinoids, molecules essential for the proper development of the central nervous system. Given the genetic complexity of schizophrenia and the potential genetic heterogeneity in different populations, we studied a possible association of NRGN with schizophrenia in 73 Azorean proband-parent triads and in two independent case-control samples from the Portuguese-mainland (244 schizophrenic and 210 controls) and Brazil (69 schizophrenic and 85 mentally healthy individuals). Genotype distribution showed association of the rs7113041 SNP with schizophrenia in males of Portuguese origin, which was confirmed by the analysis of the proband-parent triads. This evidence, implicating NRGN in schizophrenia, introduces another player into the glutamatergic hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Dina Ruano
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Swofford JA, DeBello WM. Transcriptome changes associated with instructed learning in the barn owl auditory localization pathway. Dev Neurobiol 2007; 67:1457-77. [PMID: 17526003 DOI: 10.1002/dneu.20458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Owls reared wearing prismatic spectacles learn to make adaptive orienting movements. This instructed learning depends on re-calibration of the midbrain auditory space map, which in turn involves the formation of new synapses. Here we investigated whether these processes are associated with differential gene expression, using longSAGE. Newly fledged owls were reared for 8-36 days with prism or control lenses at which time the extent of learning was quantified by electrophysiological mapping. Transciptome profiles were obtained from the inferior colliculus (IC), the major site of synaptic plasticity, and the optic tectum (OT), which provides an instructive signal that controls the direction and extent of plasticity. Twenty-two differentially expressed sequence tags were identified in IC and 36 in OT, out of more than 35,000 unique tags. Of these, only four were regulated in both structures. These results indicate that regulation of two largely independent gene clusters is associated with synaptic remodeling (in IC) and generation of the instructive signal (in OT). Real-time PCR data confirmed the changes for two transcripts, ubiquitin/polyubiquitin and tyrosine 3-monooxgenase/tryotophan 5-monooxygenase activation protein, theta subunit (YWHAQ; also referred to as 14-3-3 protein). Ubiquitin was downregulated in IC, consistent with a model in which protein degradation pathways act as an inhibitory constraint on synaptogenesis. YWHAQ was up-regulated in OT, indicating a role in the synthesis or delivery of instructive information. In total, our results provide a path towards unraveling molecular cascades that link naturalistic experience with synaptic remodeling and, ultimately, with the expression of learned behavior.
Collapse
Affiliation(s)
- Janet A Swofford
- Department of Neurobiology, Physiology, and Behavior, Center for Neuroscience, University of California-Davis, Davis, CA 95616, USA
| | | |
Collapse
|