1
|
Harris AC, Muelken P, Howard S, Wilde S, LeSage MG. Effects of volatile organic compounds found in cigarette smoke on intracranial self-stimulation in rats. Drug Alcohol Depend 2025; 271:112633. [PMID: 40117780 DOI: 10.1016/j.drugalcdep.2025.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Understanding the role of non-nicotine constituents in tobacco use disorder (TUD) could inform the development of more effective treatments for TUD and tobacco control policies. Cigarette smoke contains considerable levels of various volatile organic compounds (VOCs) including acetaldehyde, toluene, and benzene. While acetaldehyde and toluene can have substance use disorder (SUD)-related effects and/or potentiate the TUD-related effects of nicotine in some preclinical models, their role in TUD is not fully understood, and effects of benzene have not been evaluated in any preclinical model of SUDs. This study evaluated the SUD-related effects of parenteral (s.c.) administration of these VOCs in an intracranial self-stimulation (ICSS) model in male and female rats. The ability of acetaldehyde and benzene to influence nicotine's effects on ICSS was also examined. METHODS AND RESULTS In Experiment 1, acetaldehyde (10-150mg/kg) did not lower ICSS thresholds, suggesting a lack of SUD-related effects. Rather, 100mg/kg acetaldehyde elevated ICSS thresholds, indicating aversive/anhedonic effects. Benzene (600-1500mg/kg) reduced ICSS thresholds, while toluene (100-1500mg/kg) did not affect ICSS. Nicotine (1.0mg/kg) and methamphetamine (0.3 or 0.56mg/kg) (positive controls) increased and decreased ICSS thresholds, respectively. In Experiment 2, acetaldehyde (60mg/kg) did not influence nicotine's (0.125-1.0mg/kg) effects on ICSS, whereas benzene (600mg/kg) produced a downward shift in the nicotine ICSS dose-response function in males but not in females. CONCLUSIONS Benzene, but not acetaldehyde or toluene, had SUD-related effects in an ICSS model. As such, benzene may contribute to the TUD-related effects of combusted tobacco products, particularly in males.
Collapse
Affiliation(s)
- Andrew C Harris
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States; Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States; Department of Psychology, University of Minnesota, Minneapolis, MN, United States.
| | - Peter Muelken
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Sam Howard
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Sarah Wilde
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Mark G LeSage
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States; Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States; Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
García-Jácome D, Martínez-Mota L, Páez-Martínez N. Effects of housing condition on the development and persistence of addictive-like behavior induced by toluene. Neurotoxicology 2024; 103:9-15. [PMID: 38801998 DOI: 10.1016/j.neuro.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Environmental factors can modify addictive responses induced by drugs of abuse; however, little is known about the impact of environmental conditions on behavioral responses induced by inhalants. In this study, we analyzed the effects of housing conditions, considering environmental enrichment (EE; n = 10), social isolation (SI; n = 10), and standard housing (STD; n = 10), as positive, negative, and control environments, respectively, on the development and persistence of behavioral sensitization induced by toluene. Mice exposed to air were used as a comparative control groups for each housing condition (EE: n = 11, SI: n = 10 and STD: n = 11). Results showed that a history of toluene exposure induced the development of locomotor sensitization in mice, independent of their housing conditions. However, SI increased the expression of behavioral sensitization to toluene after a drug-free period.
Collapse
Affiliation(s)
- David García-Jácome
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Casco de Santo Tomas, Miguel Hidalgo, 11340, Ciudad de México, México
| | - Lucía Martínez-Mota
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, México
| | - Nayeli Páez-Martínez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Casco de Santo Tomas, Miguel Hidalgo, 11340, Ciudad de México, México; Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, México.
| |
Collapse
|
3
|
Braunscheidel K, Okas M, Woodward JJ. Toluene alters the intrinsic excitability and excitatory synaptic transmission of basolateral amygdala neurons. Front Neurosci 2024; 18:1366216. [PMID: 38595974 PMCID: PMC11002899 DOI: 10.3389/fnins.2024.1366216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Inhalant abuse is an important health issue especially among children and adolescents who often encounter these agents in the home. Research into the neurobiological targets of inhalants has lagged behind that of other drugs such as alcohol and psychostimulants. However, studies from our lab and others have begun to reveal how inhalants such as the organic solvent toluene affect neurons in key addiction related areas of the brain including the ventral tegmental area, nucleus accumbens and medial prefrontal cortex. In the present study, we extend these findings and examine the effect of toluene on electrophysiological responses of pyramidal neurons in the basolateral amygdala BLA, a region important for generating emotional and reward based information needed to guide future behavior. Methods Whole-cell patch-clamp electrophysiology recordings of BLA pyramidal neurons in rat brain slices were used to assess toluene effects on intrinsic excitability and excitatory glutamatergic synaptic transmission. Results Acute application of 3 mM but not 0.3 mM toluene produced a small but significant (~20%) increase in current-evoked action potential (AP) firing that reversed following washout of the toluene containing solution. The change in firing during exposure to 3 mM toluene was accompanied by selective changes in AP parameters including reduced latency to first spike, increased AP rise time and decay and a reduction in the fast after-hyperpolization. To examine whether toluene also affects excitatory synaptic signaling, we expressed channelrhodopsin-2 in medial prefrontal cortex neurons and elicited synaptic currents in BLA neurons via light pulses. Toluene (3 mM) reduced light-evoked AMPA-mediated synaptic currents while a lower concentration (0.3 mM) had no effect. The toluene-induced reduction in AMPA-mediated BLA synaptic currents was prevented by the cannabinoid receptor-1 antagonist AM281. Discussion These findings are the first to demonstrate effects of acute toluene on BLA pyramidal neurons and add to existing findings showing that abused inhalants such as toluene have significant effects on neurons in brain regions involved in natural and drug induced reward.
Collapse
Affiliation(s)
| | | | - John J. Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
4
|
Pathak D, Sriram K. Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants. Int J Mol Sci 2023; 24:2272. [PMID: 36768596 PMCID: PMC9917383 DOI: 10.3390/ijms24032272] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Occupational injuries and toxicant exposures lead to the development of neuroinflammation by activating distinct mechanistic signaling cascades that ultimately culminate in the disruption of neuronal function leading to neurological and neurodegenerative disorders. The entry of toxicants into the brain causes the subsequent activation of glial cells, a response known as 'reactive gliosis'. Reactive glial cells secrete a wide variety of signaling molecules in response to neuronal perturbations and thus play a crucial role in the progression and regulation of central nervous system (CNS) injury. In parallel, the roles of protein phosphorylation and cell signaling in eliciting neuroinflammation are evolving. However, there is limited understanding of the molecular underpinnings associated with toxicant- or occupational injury-mediated neuroinflammation, gliosis, and neurological outcomes. The activation of signaling molecules has biological significance, including the promotion or inhibition of disease mechanisms. Nevertheless, the regulatory mechanisms of synergism or antagonism among intracellular signaling pathways remain elusive. This review highlights the research focusing on the direct interaction between the immune system and the toxicant- or occupational injury-induced gliosis. Specifically, the role of occupational injuries, e.g., trips, slips, and falls resulting in traumatic brain injury, and occupational toxicants, e.g., volatile organic compounds, metals, and nanoparticles/nanomaterials in the development of neuroinflammation and neurological or neurodegenerative diseases are highlighted. Further, this review recapitulates the recent advancement related to the characterization of the molecular mechanisms comprising protein phosphorylation and cell signaling, culminating in neuroinflammation.
Collapse
Affiliation(s)
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
5
|
Hamid OIA, Domouky AM, El-Fakharany YM. Molecular evidence of the amelioration of toluene induced encephalopathy by human breast milk mesenchymal stem cells. Sci Rep 2022; 12:9194. [PMID: 35654991 PMCID: PMC9163168 DOI: 10.1038/s41598-022-13173-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Toluene was widely used volatile organic compound that accumulates in tissues with high lipid content. Stem cells have been proposed as an increasingly attractive approach for repair of damaged nervous system, we aimed to evaluate the ability of breast milk mesenchymal stem cells (MSc) to ameliorate toluene-induced encephalopathy. Sixty adult male albino rats were assigned to 3 groups, control, toluene, and toluene/breast milk-MSc. Neurological assessment was evaluated as well as serum levels of glial fibrillary acidic protein (GFAP), tumor necrosis factor-alpha (TNF-α), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), tissue dopamine and oxidative markers. Gene expression of peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ), nuclear factor-kappaB (NF-kB), and interleukin-6 (IL-6) were evaluated. Moreover, histological and immunohistochemical investigation were done. Results revealed that toluene caused cerebral injury, as evidenced by a significant increase in serum GFAP, TNF-α, malondialdehyde (MDA) and nitric oxide (NO), a significant decrease in serum NGF, tissue dopamine and oxidative markers, besides, a non-significant change in VEGF. Toluene also caused changes in normal cerebral structure and cellular degeneration, including a significant decrease in the total number of neurons and thickness of frontal cortex. Meninges showing signs of inflammation with inflammatory cell infiltration and exudation, a significant decrease in MBP immunoreactivity, and increase in the percent of high motility group box protein-1 (HMGB1) positive cells. PPAR- ɣ, NF-kB, and IL-6 gene expression were all considerably elevated by toluene. These changes were greatly improved by breast milk MSc. Therefore, we conclude that breast milk MSc can attenuate toluene-induced encephalopathy.
Collapse
Affiliation(s)
- Omaima I Abdel Hamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| | - Ayat M Domouky
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt.
| | - Yara M El-Fakharany
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| |
Collapse
|
6
|
Cruz SL, Bowen SE. The last two decades on preclinical and clinical research on inhalant effects. Neurotoxicol Teratol 2021; 87:106999. [PMID: 34087382 DOI: 10.1016/j.ntt.2021.106999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
This paper reviews the scientific evidence generated in the last two decades on the effects and mechanisms of action of most commonly misused inhalants. In the first section, we define what inhalants are, how they are used, and their prevalence worldwide. The second section presents specific characteristics that define the main groups of inhalants: (a) organic solvents; (b) aerosols, gases, and volatile anesthetics; and (c) alkyl nitrites. We include a table with the molecular formula, structure, synonyms, uses, physicochemical properties and exposure limits of representative compounds within each group. The third and fourth sections review the direct acute and chronic effects of common inhalants on health and behavior with a summary of mechanisms of action, respectively. In the fifth section, we address inhalant intoxication signs and available treatment. The sixth section examines the health effects, intoxication, and treatment of nitrites. The seventh section reviews current intervention strategies. Finally, we propose a research agenda to promote the study of (a) solvents other than toluene; (b) inhalant mixtures; (c) effects in combination with other drugs of abuse; (d) age and (e) sex differences in inhalant effects; (f) the long-lasting behavioral effects of animals exposed in utero to inhalants; (g) abstinence signs and neurochemical changes after interrupting inhalant exposure; (h) brain networks involved in inhalant effects; and finally (i) strategies to promote recovery of inhalant users.
Collapse
Affiliation(s)
- Silvia L Cruz
- Department of Pharmacobiology, Center of Research and Advanced Studies (Cinvestav), Calzada de los Tenorios No. 235, Col. Granjas Coapa, México City 14330, México.
| | - Scott E Bowen
- Department of Psychology, Wayne State University, 5057 Woodward Ave., Suite 7906.1, Detroit, MI 48202, USA.
| |
Collapse
|
7
|
Dick AL, Zhao Q, Crossin R, Baker‐Andresen D, Li X, Edson J, Roeh S, Marshall V, Bredy TW, Lawrence AJ, Duncan JR. Adolescent chronic intermittent toluene inhalation dynamically regulates the transcriptome and neuronal methylome within the rat medial prefrontal cortex. Addict Biol 2021; 26:e12937. [PMID: 32638524 DOI: 10.1111/adb.12937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
Inhalants containing the volatile solvent toluene are misused to induce euphoria or intoxication. Inhalant abuse is most common during adolescence and can result in cognitive impairments during an important maturational period. Despite evidence suggesting that epigenetic modifications may underpin the cognitive effects of inhalants, no studies to date have thoroughly investigated toluene-induced regulation of the transcriptome or discrete epigenetic modifications within the brain. To address this, we investigated effects of adolescent chronic intermittent toluene (CIT) inhalation on gene expression and DNA methylation profiles within the rat medial prefrontal cortex (mPFC), which undergoes maturation throughout adolescence and has been implicated in toluene-induced cognitive deficits. Employing both RNA-seq and genome-wide Methyl CpG Binding Domain (MBD) Ultra-seq analysis, we demonstrate that adolescent CIT inhalation (10 000 ppm for 1 h/day, 3 days/week for 4 weeks) induces both transient and persistent changes to the transcriptome and DNA methylome within the rat mPFC for at least 2 weeks following toluene exposure. We demonstrate for the first time that adolescent CIT exposure results in dynamic regulation of the mPFC transcriptome likely relating to acute inflammatory responses and persistent deficits in synaptic plasticity. These adaptations may contribute to the cognitive deficits associated with chronic toluene exposure and provide novel molecular targets for preventing long-term neurophysiological abnormalities following chronic toluene inhalation.
Collapse
Affiliation(s)
- Alec L.W. Dick
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
- Department of Stress Neurobiology and Neurogenetics Max Planck Institute of Psychiatry Munich Germany
| | - Qiongyi Zhao
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Rose Crossin
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
| | | | - Xiang Li
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Janette Edson
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Simone Roeh
- Department of Translational Research in Psychiatry Max Planck Institute of Psychiatry Munich Germany
| | - Victoria Marshall
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Timothy W. Bredy
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
| | - Jhodie R. Duncan
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
| |
Collapse
|
8
|
Apawu AK, Callan SP, Mathews TA, Bowen SE. Repeated toluene exposure leads to neuroadaptation in dopamine release mechanisms within the nucleus accumbens core. Toxicol Appl Pharmacol 2020; 408:115260. [DOI: 10.1016/j.taap.2020.115260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
|
9
|
Ahmadian SM, Ghahremani P, Alaei H. Microinjection of a Dopamine-D1 Receptor Agonist into the Ventral Tegmental Area Reverses the Blocked Expression of Morphine Conditioned Place Preference by N-Methyl-D-Aspartate Receptor Antagonist. Adv Biomed Res 2020; 9:54. [PMID: 33457337 PMCID: PMC7792870 DOI: 10.4103/abr.abr_11_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The release of dopamine (DA) in the posterior ventral tegmental area (pVTA) plays an important role in cue-related learning, reward, and relapse. On the other hand, studies have shown that the use of N-methyl-D-aspartate receptor (NMDAR) antagonist (AP5) inhibits the expression of morphine (5 mg/kg, s. c) conditioned place preference (CPP). In this study, we have tried to show the interaction effect of the DA stimulatory agents through D1-like receptor (D1R) agonist (SKF38393) and D2-like receptor (D2R) antagonist (eticlopride; through disinhibition) with NMDAR antagonist into the pVTA on the expression of morphine CPP. MATERIALS AND METHODS The SKF38393 and eticlopride, individually and simultaneously (in ineffective doses), were injected into the pVTA with the AP5 in rats, and animals were then placed in a CPP apparatus. RESULTS Concomitant administration of D1R agonist (4 μg/rat) with NMDAR antagonist (1 μg/rat) induced the expression of morphine CPP, but the administration of D2R antagonist with NMDAR antagonist was unaffected on the expression of morphine CPP. Furthermore, concomitant administration of ineffective doses of D1R agonist and D2R antagonist with NMDAR antagonist had no effect on the expression of morphine CPP. CONCLUSIONS The results showed using higher doses of D1R agonist with NMDAR antagonist could reverse the blocked expression of morphine CPP by NMDAR antagonists, while, the use of D2R antagonist with NMDAR antagonist could not. Therefore, presynaptic receptors such as D1R probably through releasing other stimulatory neurotransmitters can play a vital role in the expression of morphine CPP and cue-related learning.
Collapse
Affiliation(s)
- Seyed Mostafa Ahmadian
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Ghahremani
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Kim J, Lim J, Moon SH, Liu KH, Choi HJ. Toluene Inhalation Causes Early Anxiety and Delayed Depression with Regulation of Dopamine Turnover, 5-HT 1A Receptor, and Adult Neurogenesis in Mice. Biomol Ther (Seoul) 2020; 28:282-291. [PMID: 32336053 PMCID: PMC7216750 DOI: 10.4062/biomolther.2020.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Inhaled solvents such as toluene are of particular concern due to their abuse potential that is easily exposed to the environment. The inhalation of toluene causes various behavioral problems, but, the effect of short-term exposure of toluene on changes in emotional behaviors over time after exposure and the accompanying pathological characteristics have not been fully identified. Here, we evaluated the behavioral and neurochemical changes observed over time in mice that inhaled toluene. The mice were exposed to toluene for 30 min at a concentration of either 500 or 2,000 ppm. Toluene did not cause social or motor dysfunction in mice. However, increased anxiety-like behavior was detected in the short-term after exposure, and depression-like behavior appeared as delayed effects. The amount of striatal dopamine metabolites was significantly decreased by toluene, which continued to be seen for up to almost two weeks after inhalation. Additionally, an upregulation of serotonin 1A (5-HT1A) receptor in the hippocampus and the substantia nigra, as well as reduced immunoreactivity of neurogenesis markers in the dentate gyrus, was observed in the mice after two weeks. These results suggest that toluene inhalation, even single exposure, mimics early anxiety- and delayed depression-like emotional disturbances, underpinned by pathological changes in the brain.
Collapse
Affiliation(s)
- Jinhee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Republic of Korea
| | - Juhee Lim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Republic of Korea
| | - Seong-Hee Moon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
11
|
Soares MV, Charão MF, Jacques MT, Dos Santos ALA, Luchese C, Pinton S, Ávila DS. Airborne toluene exposure causes germline apoptosis and neuronal damage that promotes neurobehavioural changes in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113406. [PMID: 31662251 DOI: 10.1016/j.envpol.2019.113406] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Toluene is a highly volatile organic solvent present in gasoline. Exposure mainly occurs by absorption via the pulmonary tract and easily reaches the central nervous system, which causes toxic effects. Toluene toxicity has been described but not well established. The present work aimed to evaluate the effects of airborne exposure to toluene, the in vivo model Caenorhabditis elegans was assessed to determine whether nematode could be used to evaluate the effects of exposure to toluene and the possible mechanisms of toxicity of the solvent. Worms at the first or fourth larval stages were exposed to toluene for 48 or 24 h, respectively, in a laboratory-developed vapor chamber at concentrations of 450, 850, 1250 and 1800 ppm. We observed increases in worm mortality and significant developmental delays that occurred in a concentration-dependent manner. An increased incidence of apoptotic events in treated germline cells was shown, which was consistent with observed reductions in reproductive capacity. In addition, toluene promoted significant behavioural changes affecting swimming movements and radial locomotion, which were associated with changes in the fluorescence intensity and morphology of GABAergic and cholinergic neurons. We conclude that toluene exposure was toxic to C. elegans, with effects produced by the induction of apoptosis and neuronal damage.
Collapse
Affiliation(s)
- Marcell Valandro Soares
- Programa de Pós-Graduação em Bioquímica, Grupo de pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, Uruguaiana, RS, 97500-970, Brazil
| | - Mariele Feiffer Charão
- Laboratório de Toxicologia Analítica, Universidade Feevale, Rua Rubem Berta, nº 200, Novo Hamburgo, CEP: 93525-090, RS, Brazil
| | - Mauricio Tavares Jacques
- Programa de Pós-Graduação em Bioquímica, Grupo de pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, Uruguaiana, RS, 97500-970, Brazil; Laboratório de Experimentação em Neuropatologia - Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Bloco C, Trindade, Florianópolis, SC, CEP 88040-900, Brazil
| | - Ana Laura Anibaletto Dos Santos
- Laboratório de Toxicologia Analítica, Universidade Feevale, Rua Rubem Berta, nº 200, Novo Hamburgo, CEP: 93525-090, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Simone Pinton
- Programa de Pós-Graduação em Bioquímica, Grupo de pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, Uruguaiana, RS, 97500-970, Brazil
| | - Daiana Silva Ávila
- Programa de Pós-Graduação em Bioquímica, Grupo de pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, Uruguaiana, RS, 97500-970, Brazil.
| |
Collapse
|
12
|
Armenta-Reséndiz M, Ríos-Leal E, Rivera-García MT, López-Rubalcava C, Cruz SL. Structure-activity study of acute neurobehavioral effects of cyclohexane, benzene, m-xylene, and toluene in rats. Toxicol Appl Pharmacol 2019; 376:38-45. [DOI: 10.1016/j.taap.2019.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
|
13
|
Crossin R, Qama A, Andrews ZB, Lawrence AJ, Duncan JR. The effect of adolescent inhalant abuse on energy balance and growth. Pharmacol Res Perspect 2019; 7:e00498. [PMID: 31384470 PMCID: PMC6664821 DOI: 10.1002/prp2.498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 12/20/2022] Open
Abstract
The abuse of volatile solvents such as toluene is a significant public health concern, predominantly affecting adolescents. To date, inhalant abuse research has primarily focused on the central nervous system; however, inhalants also exert effects on other organ systems and processes, including metabolic function and energy balance. Adolescent inhalant abuse is characterized by a negative energy balance phenotype, with the peak period of abuse overlapping with the adolescent growth spurt. There are multiple components within the central and peripheral regulation of energy balance that may be affected by adolescent inhalant abuse, such as impaired metabolic signaling, decreased food intake, altered dietary preferences, disrupted glucose tolerance and insulin release, reduced adiposity and skeletal density, and adrenal hypertrophy. These effects may persist into abstinence and adulthood, and the long-term consequences of inhalant-induced metabolic dysfunction are currently unknown. The signs and symptoms resulting from chronic adolescent inhalant abuse may result in a propensity for the development of adult-onset metabolic disorders such as type 2 diabetes, however, further research investigating the long-term effects of inhalant abuse upon energy balance and metabolism are needed. This review addresses several aspects of the short- and long-term effects of inhalant abuse relating to energy and metabolic processes, including energy balance, intake and expenditure; dietary preferences and glycemic control; and the dysfunction of metabolic homeostasis through altered adipose tissue, bone, and hypothalamic-pituitary-adrenal axis function.
Collapse
Affiliation(s)
- Rose Crossin
- Florey Institute of Neuroscience and Mental HealthParkvilleVIC
- Turning Point, Eastern HealthRichmondVIC
- Eastern Health Clinical SchoolMonash UniversityBox HillVIC
| | - Ashleigh Qama
- Florey Institute of Neuroscience and Mental HealthParkvilleVIC
- WHO Collaborating Centre for Viral HepatitisPeter Doherty Institute for Infection and ImmunityMelbourneVIC
| | - Zane B. Andrews
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthParkvilleVIC
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVIC
| | | |
Collapse
|
14
|
Abstract
Inhalants are a loosely organized category of abused compounds defined entirely by their common route of administration. Inhalants include volatile solvents, fuels, volatile anesthetics, gasses, and liquefied refrigerants, among others. They are ubiquitous in modern society as ingredients in a wide variety of household, commercial, and medical products. Persons of all ages abuse inhalants but the highest prevalence of abuse is in younger adolescents. Although inhalants have been shown to act upon a host of neurotransmitter receptors, the stimulus effects of the few inhalants which have been trained or tested in drug discrimination procedures suggest that their discriminative stimulus properties are mediated by a few key neurotransmitter receptor systems. Abused volatile solvent inhalants have stimulus effects that are similar to a select group of GABAA positive modulators comprised of benzodiazepines and barbiturates. In contrast the stimulus effects of nitrous oxide gas appear to be at least partially mediated by uncompetitive antagonism of NMDA receptors. Finally, volatile anesthetic inhalants have stimulus effects in common with both GABAA positive modulators as well as competitive NMDA antagonists. In addition to a review of the pharmacology underlying the stimulus effects of inhalants, the chapter also discusses the scientific value of utilizing drug discrimination as a means of functionally grouping inhalants according to their abuse-related pharmacological properties.
Collapse
Affiliation(s)
- Keith L Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Room 746, P.O. Box 980613, Richmond, VA, 23298-0613, USA.
| |
Collapse
|
15
|
Malloul H, Bennis M, Ba-M'hamed S. Positive reinforcement and c-Fos expression following abuse-like thinner inhalation in mice: Behavioural and immunohistochemical assessment. Eur J Neurosci 2018; 48:2182-2198. [PMID: 30070747 DOI: 10.1111/ejn.14095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023]
Abstract
Thinners are organic solvents widely used in industrial applications, but they have also been subject to abuse by inhalation for their psychoactive and rewarding properties. In spite of the prevalence of inhalant abuse, the addictive potential and pathways mediating their reinforcing effects are not yet fully understood and thus still subject of further investigations. Here, we assessed in mice the locomotor activity and the ability of paint thinner to reinforce the conditioning in the place preference paradigm following acute (1 day), subchronic (6 weeks) and chronic (12 weeks) exposures to 300 and 600 ppm of thinner vapor. While locomotor activity was unaffected by the different thinner treatments, a positive conditioned place preference to inhaled thinner was found upon subchronic and chronic exposures. To investigate the activated brain structures underlying such behavioural changes, we analyzed the distribution of c-Fos immunoreactivity, a marker for neuronal activation, following acute and repeated exposures to 600 ppm of thinner. Notably, thinner exposure increased the number of c-Fos immunoreactive neurons with increasing duration of exposure in the majority of structures examined; including those typically involved in the processing of rewarding or emotionally stimuli (e.g., ventral tegmental area, core and shell of nucleus accumbens, amygdala, bed nucleus of the stria terminalis, and cingulate cortex), and olfactory stimuli (e.g., piriform cortex and olfactory tubercle). Moreover, prolonged, but not acute thinner inhalation significantly increased c-Fos immunoreactivity in all hippocampal subregions. Taken together, the expanded distribution of thinner-induced c-Fos expression may underlie the observed positive reinforcement upon long-term thinner inhalation.
Collapse
Affiliation(s)
- Hanaa Malloul
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mohammed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
16
|
Repeated toluene exposure increases the excitability of layer 5 pyramidal neurons in the prefrontal cortex of adolescent rats. Neurotoxicol Teratol 2018; 68:27-35. [DOI: 10.1016/j.ntt.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022]
|
17
|
Exposure to the Abused Inhalant Toluene Alters Medial Prefrontal Cortex Physiology. Neuropsychopharmacology 2018; 43:912-924. [PMID: 28589963 PMCID: PMC5809778 DOI: 10.1038/npp.2017.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/27/2022]
Abstract
Inhalants, including toluene, target the addiction neurocircuitry and are often one of the first drugs of abuse tried by adolescents. The medial prefrontal cortex (mPFC) is involved in regulating goal-directed/reward-motivated behaviors and different mPFC sub-regions have been proposed to promote (prelimbic, PRL) or inhibit (infralimbic, IL) these behaviors. While this dichotomy has been studied in the context of other drugs of abuse, it is not known whether toluene exposure differentially affects neurons within PRL and IL regions. To address this question, we used whole-cell electrophysiology and determined the intrinsic excitability of PRL and IL pyramidal neurons in adolescent rats 24 h following a brief exposure to air or toluene vapor (10 500 p.p.m.). Prior to exposure, fluorescent retrobeads were injected into the NAc core (NAcc) or shell (NAcs) sub-regions to identify projection-specific mPFC neurons. In toluene treated adolescent rats, layer 5/6 NAcc projecting PRL (PRL5/6) neurons fired fewer action potentials and this was associated with increased rheobase, increased spike duration, and reductions in membrane resistance and amplitude of the Ih current. No changes in excitability were observed in layer 2/3 NAcc projecting PRL (PRL2/3) neurons. In contrast to PRL neurons, layer 5 IL (IL5) and layer 2/3 (IL2/3) NAcc projecting neurons showed enhanced firing in toluene-exposed animals and in IL5 neurons, this was associated with a reduction in rheobase and AHP. For NAcs projecting neurons, toluene exposure significantly decreased firing of IL5 neurons and this was accompanied by an increased rheobase, increased spike duration, and reduced Ih amplitude. The intrinsic excitability of PRL5, PRL2/3, and IL2/3 neurons projecting to the NAcs was not affected by exposure to toluene. The changes in excitability observed 24 h after toluene exposure were not observed when recordings were performed 7 days after the exposure. Finally, there were no changes in intrinsic excitability of any region in rats exposed to toluene as adults. These findings demonstrate that specific projections of the reward circuitry are uniquely susceptible to the effects of toluene during adolescence supporting the idea that adolescence is a critical period of the development that is vulnerable to drugs of abuse.
Collapse
|
18
|
Delfino-Pereira P, Bertti-Dutra P, de Lima Umeoka EH, de Oliveira JAC, Santos VR, Fernandes A, Marroni SS, Del Vecchio F, Garcia-Cairasco N. Intense olfactory stimulation blocks seizures in an experimental model of epilepsy. Epilepsy Behav 2018; 79:213-224. [PMID: 29346088 DOI: 10.1016/j.yebeh.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
There are reports of patients whose epileptic seizures are prevented by means of olfactory stimulation. Similar findings were described in animal models of epilepsy, such as the electrical kindling of amygdala, where olfactory stimulation with toluene (TOL) suppressed seizures in most rats, even when the stimuli were 20% above the threshold to evoke seizures in already kindled animals. The Wistar Audiogenic Rat (WAR) strain is a model of tonic-clonic seizures induced by acute acoustic stimulation, although it also expresses limbic seizures when repeated acoustic stimulation occurs - a process known as audiogenic kindling (AK). The aim of this study was to evaluate whether or not the olfactory stimulation with TOL would interfere on the behavioral expression of brainstem (acute) and limbic (chronic) seizures in the WAR strain. For this, animals were exposed to TOL or saline (SAL) and subsequently exposed to acoustic stimulation in two conditions that generated: I) acute audiogenic seizures (only one acoustic stimulus, without previous seizure experience before of the odor test) and II) after AK (20 acoustic stimuli [2 daily] before of the protocol test). We observed a decrease in the seizure severity index of animals exposed only to TOL in both conditions, with TOL presented 20s before the acoustic stimulation in both protocols. These findings were confirmed by behavioral sequential analysis (neuroethology), which clearly indicated an exacerbation of clusters of specific behaviors such as exploration and grooming (self-cleaning), as well as significant decrease in the expression of brainstem and limbic seizures in response to TOL. Thus, these data demonstrate that TOL, a strong olfactory stimulus, has anticonvulsant properties, detected by the decrease of acute and AK seizures in WARs.
Collapse
Affiliation(s)
- Polianna Delfino-Pereira
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil
| | - Poliana Bertti-Dutra
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - José Antônio Cortes de Oliveira
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Victor Rodrigues Santos
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Artur Fernandes
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil; Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Simone Saldanha Marroni
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Flávio Del Vecchio
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil
| | - Norberto Garcia-Cairasco
- Neurosciences and Behavioral Sciences Department, Ribeirão Preto School of Medicine, Universiy of São Paulo, Hospital das Clínicas, Campus Universitário S/N, 4° Andar, Ribeirão Preto, SP CEP: 14048-900, Brazil; Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Prédio Central, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP CEP: 14049-900, Brazil.
| |
Collapse
|
19
|
Chemogenetic Excitation of Accumbens-Projecting Infralimbic Cortical Neurons Blocks Toluene-Induced Conditioned Place Preference. J Neurosci 2018; 38:1462-1471. [PMID: 29317484 DOI: 10.1523/jneurosci.2503-17.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/07/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022] Open
Abstract
Abuse rates for inhalants among adolescents continue to be high, yet preclinical models for studying mechanisms underlying inhalant abuse remain limited. Our laboratory has previously shown that, in male rats, an acute binge-like exposure to toluene vapor that mimics human solvent abuse modifies the intrinsic excitability of mPFC pyramidal neurons projecting to the NAc. These changes showed region (infralimbic; IL vs prelimbic; PRL), layer (shallow; 2/3 vs deep; 5/6), target (core vs shell), and age (adolescent vs adult) dependent differences (Wayman and Woodward, 2017). To expand these findings using reward-based models that may better mimic human drug abuse, we used whole-cell electrophysiology and drug receptors exclusively activated by designer drugs to examine changes in neuronal function and behavior in rats showing a conditioned place preference (CPP) to toluene. Repeated pairings of adolescent rats to binge concentrations of toluene vapor previously shown to enhance dopamine release in reward-sensitive areas of the brain produced CPP that persisted for 7 but not 30 d. Toluene-induced CPP was associated with increased excitability of IL5/6 mPFC neurons projecting to the core of the NAc and reduced excitability of those projecting to the NAc shell. No changes in PRL-NAc-projecting neurons were found in toluene-CPP rats. Chemogenetic reversal of the toluene-induced decrease in IL5/6-NAc shell neurons blocked the expression of toluene-induced CPP while manipulating IL5/6-NAc core neuron activity had no effect. These data reveal that alterations in selective mPFC-NAc pathways are required for expression of toluene-induced CPP.SIGNIFICANCE STATEMENT Disturbed physiology of pyramidal neurons projecting from the mPFC to the NAc has been shown to have different roles in drug-seeking behaviors for a number of drugs (e.g., methamphetamine, cocaine, ecstasy, alcohol, heroin). Here, we report that rats repeatedly exposed to the volatile organic solvent toluene, a member of the class of abused inhalants often used for intoxicating purposes by adolescents, induces a preference for the drug-paired environment that is accompanied by altered physiology of a specific population of NAc-projecting mPFC neurons. Chemogenetic correction of this deficit before testing prevented expression of drug preference. Overall, these findings highlight the importance of corticolimbic circuitry in mediating the rewarding properties of abused inhalants.
Collapse
|
20
|
Toluene's effects on activity and extracellular dopamine in the mouse are altered by GABA A antagonism. Neurosci Lett 2017; 647:67-71. [PMID: 28288863 DOI: 10.1016/j.neulet.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/16/2017] [Accepted: 03/02/2017] [Indexed: 02/02/2023]
Abstract
The abuse of inhalants like toluene continues to be widespread around the world, especially among children and teenagers. Despite its frequency of misuse, the dynamics between dopamine (DA) and gamma-aminobutyric acid (GABA) in response to toluene exposure remains unclear. To further decipher toluene's actions, we used a dynamic exposure system in combination with microdialysis to examine in vivo the effects of acutely inhaled toluene on DA release within the mouse caudate putamen (CPu). Results show that toluene inhalation produced increases in DA levels and locomotor activity. In mice that were pretreated with the GABAA antagonist, bicuculline, there was no change in the locomotor response during toluene but activity was potentiated following toluene exposure. Bicuculline pretreatment increased extracellular DA levels during toluene exposure, suggesting that DA and GABA-releasing neuron interaction may play a role in the rewarding properties of toluene.
Collapse
|
21
|
Nimitvilai S, You C, Arora DS, McElvain MA, Vandegrift BJ, Brodie MS, Woodward JJ. Differential Effects of Toluene and Ethanol on Dopaminergic Neurons of the Ventral Tegmental Area. Front Neurosci 2016; 10:434. [PMID: 27713687 PMCID: PMC5031606 DOI: 10.3389/fnins.2016.00434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 11/13/2022] Open
Abstract
Drugs of abuse increase the activity of dopaminergic neurons of the ventral tegmental area (VTA), and output from the VTA is critical for both natural and drug-induced reward and reinforcement. Ethanol and the abused inhalant toluene both enhance VTA neuronal firing, but the mechanisms of this effect is not fully known. In this study, we used extracellular recordings to compare the actions of toluene and ethanol on DA VTA neurons. Both ethanol and toluene increased the firing rate of DA neurons, although toluene was ~100 times more potent than ethanol. The mixed ion channel blocker quinine (100 μM) blocked the increases in firing produced by ethanol and toluene, indicating some similarity in mechanisms of excitation. A mixture of antagonists of GABA and cholinergic receptors did not prevent toluene-induced or ethanol-induced excitation, and toluene-induced excitation was not altered by co-administration of ethanol, suggesting independent mechanisms of excitation for ethanol and toluene. Concurrent blockade of NMDA, AMPA, and metabotropic glutamate receptors enhanced the excitatory effect of toluene while having no significant effect on ethanol excitation. Nicotine increased firing of DA VTA neurons, and this was blocked by the nicotinic antagonist mecamylamine (1 μM). Mecamylamine did not alter ethanol or toluene excitation of firing but the muscarinic antagonist atropine (5 μM) or a combination of GABA antagonists (bicuculline and CGP35348, 10 μM each) reduced toluene-induced excitation without affecting ethanol excitation. The Ih current blocker ZD7288 abolished the excitatory effect of toluene but unlike the block of ethanol excitation, the effect of ZD7288 was not reversed by the GIRK channel blocker barium, but was reversed by GABA antagonists. These results demonstrate that the excitatory effects of ethanol and toluene have some similarity, such as block by quinine and ZD7288, but also indicate that there are important differences between these two drugs in their modulation by glutamatergic, cholinergic, and GABAergic receptors. These findings provide important information regarding the actions of abused inhalants on central reward pathways, and suggest that regulation of the activation of central dopamine pathways by ethanol and toluene partially overlap.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Devinder S Arora
- School of Pharmacy, Griffith University Southport, QLD, Australia
| | - Maureen A McElvain
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
22
|
The ketamine-like compound methoxetamine substitutes for ketamine in the self-administration paradigm and enhances mesolimbic dopaminergic transmission. Psychopharmacology (Berl) 2016; 233:2241-51. [PMID: 27020786 DOI: 10.1007/s00213-016-4275-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/09/2016] [Indexed: 01/26/2023]
Abstract
RATIONALE Recently, an increasing number of emergency cases due to a novel ketamine-like drug, methoxetamine (MXE), were reported in several countries. However, very little is known about the neuropsychopharmacological and reinforcing profile of this compound. OBJECTIVES Our study aims to investigate the effects of MXE on self-administration (SA) behaviour in comparison to ketamine and on dopaminergic transmission. METHODS A SA substitution study was performed in male rats trained to intravenously (IV) self-administer ketamine. At responding stability, rats were exposed to sequential phases of MXE substitution at different dosages (starting from 0.5 and then decreasing to 0.25 and 0.125 mg/kg). Standard electrophysiological techniques were used to record changes in firing activities of ventral tegmental area (VTA) dopamine neurons projecting to the nucleus accumbens (NAc) shell after acute injection of cumulative doses of MXE (0.031-0.5 mg/kg IV). Finally, in vivo microdialysis was performed in freely moving rats to evaluate the effect of acute MXE administration (0.125, 0.25 and 0.5 mg/kg IV) on dopamine release in the NAc shell. RESULTS MXE 0.125 and 0.25 mg/kg, but not 0.5 mg/kg, substituted for ketamine SA. MXE also induced a dose-dependent stimulation of firing rate (p < 0.0001) and burst firing (p < 0.05) of NAc-projecting VTA dopamine neurons. Consistently, MXE significantly (p < 0.05) increased dopamine extracellular levels in the NAc shell at 0.5 and 0.25 mg/kg with different time onsets, i.e. at 40 and 100 min, respectively. CONCLUSIONS This study, while confirming the reinforcing effects of MXE, highlights an electrophysiological and neurochemical profile predictive of its addictive properties.
Collapse
|
23
|
Woods D, Chantavarin S. Serial neuropsychological assessment of an adolescent girl after suffering a sudden out-of-hospital-cardiac-arrest following recreational inhalant use. APPLIED NEUROPSYCHOLOGY-CHILD 2016; 6:378-387. [PMID: 27216834 DOI: 10.1080/21622965.2016.1185372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sudden out-of-hospital-cardiac-arrest (OHCA) following recreational inhalant use is well documented in the literature. The present case study reports the long-term neuropsychological sequelae of a 14-year-old girl who suffered an OHCA secondary to recreational butane gas inhalation. The patient was assessed on day-13 as an inpatient, and again at 3- and 12-month outpatient follow-ups. Acutely the patient demonstrated significant impairment on tasks associated with verbal and non-verbal memory and executive functioning. Re-testing at 3-months post-acute state suggested improved executive and non-verbal functions while showing continued deficits in verbal memory. At 12-months she was cognitively performing at levels expected for her age. This case is reported for its rarity in successfully being able to track the patient's clinical course from hospital discharge to the successful reintegration back into school and community settings.
Collapse
Affiliation(s)
- Damith Woods
- a Faculty of Psychology, Cognitive Neuroscience Laboratory , Chulalongkorn University , Bangkok , Thailand
| | - Suphasiree Chantavarin
- a Faculty of Psychology, Cognitive Neuroscience Laboratory , Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
24
|
Tracy ME, Banks ML, Shelton KL. Negative allosteric modulation of GABAA receptors inhibits facilitation of brain stimulation reward by drugs of abuse in C57BL6/J mice. Psychopharmacology (Berl) 2016; 233:715-25. [PMID: 26612620 PMCID: PMC4825185 DOI: 10.1007/s00213-015-4155-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE There is an emerging body of evidence that implicates a crucial role of γ-aminobutyric acid subtype A (GABAA) receptors in modulating the rewarding effects of a number of abused drugs. Modulation of GABAA receptors may therefore represent a novel drug-class independent mechanism for the development of abuse treatment pharmacotherapeutics. OBJECTIVES We tested the hypothesis that the GABAA receptor benzodiazepine-site (BDZ) negative modulator Ro15-4513 would reduce the reward-related effects of three pharmacologically dissimilar drugs; toluene vapor, d-methamphetamine, and diazepam using intracranial self-stimulation (ICSS) in mice. We also examined whether Ro15-4513 attenuated dopamine release produced by d-methamphetamine in an in vivo microdialysis procedure. RESULTS Ro15-4513 abolished ICSS reward facilitation produced by all three abused drugs at Ro15-4513 doses which had no effect on ICSS when administered alone. In contrast, the BDZ antagonist flumazenil only attenuated the ICSS-facilitating effects of diazepam. Administration of the same dose of Ro15-4513 which abolished drug-facilitated ICSS produced a 58 % decrease in d-methamphetamine-stimulated dopamine in the nucleus accumbens of mice relative to d-methamphetamine alone. CONCLUSIONS These results demonstrate that negative modulation of GABAA receptors can produce profound reductions in reward-related effects of a diverse group of drugs that activate the mesolimbic reward pathway through different mechanisms. These data suggest that pharmacological modulation of GABAA receptors may represent a viable pathway for the development of drug abuse pharmacotherapies.
Collapse
Affiliation(s)
- Matthew E Tracy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Room 746, P.O. Box 980613, Richmond, VA, 23298-0613, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Room 746, P.O. Box 980613, Richmond, VA, 23298-0613, USA
| | - Keith L Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Room 746, P.O. Box 980613, Richmond, VA, 23298-0613, USA.
| |
Collapse
|
25
|
Djurendic-Brenesel M, Stojiljkovic G, Pilija V. Fatal Intoxication with Toluene Due to Inhalation of Glue. J Forensic Sci 2016; 61:875-878. [DOI: 10.1111/1556-4029.13019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 06/01/2015] [Accepted: 06/13/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Maja Djurendic-Brenesel
- Institute of Forensic Medicine; Clinical Center Vojvodina; Hajduk Veljkova 7-9 21 000 Novi Sad Serbia
| | - Goran Stojiljkovic
- Institute of Forensic Medicine; Clinical Center Vojvodina; Hajduk Veljkova 7-9 21 000 Novi Sad Serbia
| | - Vladimir Pilija
- Institute of Forensic Medicine; Clinical Center Vojvodina; Hajduk Veljkova 7-9 21 000 Novi Sad Serbia
| |
Collapse
|
26
|
Dick ALW, Simpson A, Qama A, Andrews Z, Lawrence AJ, Duncan JR. Chronic intermittent toluene inhalation in adolescent rats results in metabolic dysfunction with altered glucose homeostasis. Br J Pharmacol 2015; 172:5174-87. [PMID: 26282596 DOI: 10.1111/bph.13284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Abuse of toluene-containing inhalants is an increasing public health problem, especially among adolescents. Abuse during adolescence is associated with emaciation, while industrial exposure leads to altered glycaemic control suggesting metabolic instability. However, the relationship between adolescent inhalant abuse and metabolic dysfunction remains unknown. EXPERIMENTAL APPROACH To model human abuse patterns, we exposed male adolescent Wistar rats [postnatal day (PND) 27] to chronic intermittent inhaled toluene (CIT, 10,000 ppm) or air (control) for 1 h·day(-1) , three times a week for 4 weeks. Feeding and body composition were monitored. After 4 weeks, circulating metabolic hormone concentrations and responses to a glucose tolerance test (GTT) were measured. Dietary preference was measured by giving animals access to either a 'western diet' plus standard chow (WC + SC) or standard chow alone during 4 weeks of abstinence. Metabolic hormones and GTT were subsequently measured. KEY RESULTS Adolescent CIT exposure significantly retarded weight gain, altered body composition, circulating metabolic hormones and responses to a GTT. While reduced body weight persisted, responses to a GTT and circulating hormones appeared to normalize for animals on standard chow following abstinence. In CIT-exposed WC + SC rats, we observed impaired glucose tolerance associated with altered metabolic hormones. Analysis of hypothalamic genes revealed differential expression profiles in CIT-exposed rats following both the exposure period and abstinence, suggesting a central contribution to inhalant-induced metabolic dysfunction. CONCLUSION AND IMPLICATIONS CIT exposure during adolescence has long-term effects on metabolic function, which may increase the risk of disorders related to energy balance and glycaemic control.
Collapse
Affiliation(s)
- A L W Dick
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic., Australia.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Simpson
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic., Australia
| | - A Qama
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic., Australia
| | - Z Andrews
- Department of Physiology, Monash University, Clayton, Vic., Australia
| | - A J Lawrence
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic., Australia
| | - J R Duncan
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic., Australia.,Department Anatomy and Neuroscience, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
27
|
Dick ALW, Pooters T, Gibbs S, Giles E, Qama A, Lawrence AJ, Duncan JR. NMDA receptor binding is reduced within mesocorticolimbic regions following chronic inhalation of toluene in adolescent rats. Brain Res 2015; 1624:239-252. [DOI: 10.1016/j.brainres.2015.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 11/16/2022]
|
28
|
Rivera-García MT, López-Rubalcava C, Cruz SL. Preclinical characterization of toluene as a non-classical hallucinogen drug in rats: participation of 5-HT, dopamine and glutamate systems. Psychopharmacology (Berl) 2015; 232:3797-808. [PMID: 26255180 DOI: 10.1007/s00213-015-4041-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022]
Abstract
RATIONALE Toluene is a misused inhalant with hallucinogenic properties and complex effects. Toluene blocks N-methyl-D-aspartate (NMDA) receptors, releases dopamine (DA), and modifies several neurotransmitter levels; nonetheless, the mechanism by which it produces hallucinations is not well characterized. OBJECTIVES This study aims (a) to study toluene's effects on the 5-HT2A-mediated head-twitch response (HTR), dopamine (DA), and serotonin (5-HT) tissue levels in discrete brain regions; (b) to compare the actions of toluene, ketamine, and 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) on HTR; and (c) to study the pharmacological blockade of toluene's and ketamine's effects by selective drugs. METHODS Independent groups of rats inhaled toluene (500-12,000 ppm) for 30 min during which the occurrence of serotonergic signs was analyzed. Brains were obtained after exposure to determine DA and 5-HT levels by HPLC. RESULTS Toluene concentration-dependently induced HTR. Other serotonin syndrome signs were evident at high concentrations. Toluene (4000 and 8000 ppm), and ketamine (3 and 10 mg/kg), significantly increased 5-HT levels in the frontal cortex (FC) striatum, hippocampus, and brain stem, as well as DA levels in the striatum and FC. Pretreatment with ketanserin (5HT2A/2C receptor antagonist), M100907 (selective 5-HT2A receptor antagonist), D-serine (co-agonist of the NMDA receptor glycine site), and haloperidol (D2 receptor antagonist) significantly decreased toluene's and ketamine's actions. The 5HT1A receptor antagonist WAY100635 had no effect. CONCLUSION Toluene stimulates 5HT2A and 5HT2C receptors, and increases 5-HT and DA levels. These actions are similar to those produced by ketamine and involve activation of a complex neurotransmitter network that includes NMDA receptor antagonism.
Collapse
|
29
|
Kobald SO, Wascher E, Blaszkewicz M, Golka K, van Thriel C. Neurobehavioral and neurophysiological effects after acute exposure to a single peak of 200 ppm toluene in healthy volunteers. Neurotoxicology 2015; 48:50-9. [DOI: 10.1016/j.neuro.2015.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
|
30
|
Apawu AK, Mathews TA, Bowen SE. Striatal dopamine dynamics in mice following acute and repeated toluene exposure. Psychopharmacology (Berl) 2015; 232:173-84. [PMID: 24994552 DOI: 10.1007/s00213-014-3651-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 06/02/2014] [Indexed: 02/02/2023]
Abstract
RATIONALE The abused inhalant toluene has potent behavioral effects, but only recently has progress been made in understanding the neurochemical actions that mediate the action of toluene in the brain. Available evidence suggests that toluene inhalation alters dopamine (DA) neurotransmission, but toluene's mechanism of action is unknown. OBJECTIVE The present study evaluated the effect of acute and repeated toluene inhalation (0, 2,000, or 4,000 ppm) on locomotor activity as well as striatal DA release and uptake using slice fast-scan cyclic voltammetry. RESULTS Acutely, 2,000 and 4,000 ppm toluene increased locomotor activity, while neurochemically only 4,000 ppm toluene potentiated electrically evoked DA release across the caudate-putamen and the nucleus accumbens. Repeated administration of toluene resulted in sensitization to toluene's locomotor activity effects. Brain slices obtained from mice repeatedly exposed to toluene demonstrated no difference in stimulated DA release in the caudate-putamen as compared to control animals. Repeated exposure to 2,000 and 4,000 ppm toluene caused a concentration-dependent decrease of 25-50 % in evoked DA release in the nucleus accumbens core and shell relative to air-exposed mice. CONCLUSIONS These voltammetric neurochemical findings following repeated toluene exposure suggest that there may be a compensatory downregulation of the DA system. Acute or repeated toluene exposure had no effect on the DA uptake kinetics. Taken together, these results demonstrate that acute toluene inhalation potentiates DA release, while repeated toluene exposure attenuates DA release in the nucleus accumbens only.
Collapse
Affiliation(s)
- Aaron K Apawu
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | | | | |
Collapse
|
31
|
Vashchinkina E, Panhelainen A, Aitta-Aho T, Korpi ER. GABAA receptor drugs and neuronal plasticity in reward and aversion: focus on the ventral tegmental area. Front Pharmacol 2014; 5:256. [PMID: 25505414 PMCID: PMC4243505 DOI: 10.3389/fphar.2014.00256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/03/2014] [Indexed: 12/13/2022] Open
Abstract
GABAA receptors are the main fast inhibitory neurotransmitter receptors in the mammalian brain, and targets for many clinically important drugs widely used in the treatment of anxiety disorders, insomnia and in anesthesia. Nonetheless, there are significant risks associated with the long-term use of these drugs particularly related to development of tolerance and addiction. Addictive mechanisms of GABAA receptor drugs are poorly known, but recent findings suggest that those drugs may induce aberrant neuroadaptations in the brain reward circuitry. Recently, benzodiazepines, acting on synaptic GABAA receptors, and modulators of extrasynaptic GABAA receptors (THIP and neurosteroids) have been found to induce plasticity in the ventral tegmental area (VTA) dopamine neurons and their main target projections. Furthermore, depending whether synaptic or extrasynaptic GABAA receptor populations are activated, the behavioral outcome of repeated administration seems to correlate with rewarding or aversive behavioral responses, respectively. The VTA dopamine neurons project to forebrain centers such as the nucleus accumbens and medial prefrontal cortex, and receive afferent projections from these brain regions and especially from the extended amygdala and lateral habenula, forming the major part of the reward and aversion circuitry. Both synaptic and extrasynaptic GABAA drugs inhibit the VTA GABAergic interneurons, thus activating the VTA DA neurons by disinhibition and this way inducing glutamatergic synaptic plasticity. However, the GABAA drugs failed to alter synaptic spine numbers as studied from Golgi-Cox-stained VTA dendrites. Since the GABAergic drugs are known to depress the brain metabolism and gene expression, their likely way of inducing neuroplasticity in mature neurons is by disinhibiting the principal neurons, which remains to be rigorously tested for a number of clinically important anxiolytics, sedatives and anesthetics in different parts of the circuitry.
Collapse
Affiliation(s)
- Elena Vashchinkina
- Department of Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Anne Panhelainen
- Institute of Biotechnology, University of Helsinki Helsinki, Finland
| | - Teemu Aitta-Aho
- Department of Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland ; Department of Pharmacology, University of Cambridge Cambridge, UK
| | - Esa R Korpi
- Department of Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland ; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, and SINAPSE, Singapore Institute for Neurotechnology Singapore, Singapore
| |
Collapse
|
32
|
Dick ALW, Lawrence AJ, Duncan JR. Chronic intermittent toluene inhalation initiated during adolescence in rats does not alter voluntary consumption of ethanol in adulthood. Alcohol 2014; 48:561-9. [PMID: 25212750 DOI: 10.1016/j.alcohol.2014.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Voluntary inhalation of organic solvents, such as toluene, is particularly prevalent in adolescent populations and is considered to be a contributing factor to substance use and dependence later in life. While inhalants are often the initial "drug" experienced during this period, alcohol is another substance readily abused by adolescent populations. Although both substances are thought to have similar actions within the brain, our understanding of the implications of adolescent inhalant abuse upon subsequent exposure to alcohol remains to be investigated. Thus, this study aimed to assess locomotor responses to acute ethanol and voluntary ethanol consumption following a period of toluene inhalation throughout adolescence/early adulthood. Adolescent male Wistar rats (postnatal day [PN] 27) inhaled air or toluene (3000 ppm) for 1 h/day, 3 days/week for 4 (PN 27-52) or 8 weeks (PN 27-80) to mimic the patterns observed in human inhalant abusers. Following the exposure period, cross-sensitization to acute ethanol challenge (0.5 g/kg, intra-peritoneally [i.p.]), and voluntary consumption of 20% ethanol in a chronic intermittent 2-bottle choice paradigm, were assessed. Hepatic ethanol and acetaldehyde metabolism and liver histopathology were also investigated. Chronic intermittent toluene (CIT) exposure throughout adolescence for up to 8 weeks did not alter the behavioral response to acute ethanol or voluntary consumption of ethanol in adulthood, although an age-dependent effect on ethanol consumption was observed (p<0.05). Both liver function and pathology did not differ between treatment groups. Thus, in the paradigm employed, CIT exposure throughout adolescence and early adulthood did not predispose rats to subsequent locomotor sensitivity or voluntary consumption of ethanol in adulthood.
Collapse
Affiliation(s)
- Alec L W Dick
- Florey Institute of Neuroscience & Mental Health, Australia; Florey Department of Neuroscience and Mental Health, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience & Mental Health, Australia; Florey Department of Neuroscience and Mental Health, Australia.
| | - Jhodie R Duncan
- Florey Institute of Neuroscience & Mental Health, Australia; Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010 Australia.
| |
Collapse
|
33
|
|
34
|
Fifel K, Bennis M, Ba-M'hamed S. Effects of acute and chronic inhalation of paint thinner in mice: behavioral and immunohistochemical study. Metab Brain Dis 2014; 29:471-82. [PMID: 24218105 DOI: 10.1007/s11011-013-9449-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/30/2013] [Indexed: 12/26/2022]
Abstract
Abuse of volatile inhalants has become a worldwide issue mainly among adolescents of low income social class. Acute and chronic exposure to these substances results in serious neurological and behavioral impairments. Although real exposure consists largely of simultaneous inhalation of multiple solvents, the vast majority of basic research studies have evaluated the actions of a single volatile component leaving the behavioral and neuronal effects of chemical mixture not fully understood. In this study, we investigated the acute behavioral effects of 300, 450 and 600 ppm of paint thinner inhalation on anxiety, locomotor activity and spatial memory. Additionally, the cognitive impairments related to chronic exposure of the same concentrations of thinner for 45 days were assessed. To understand the neuronal correlates of acute exposure to thinner, we used c-Fos immunohistochemistry as an endogenous marker of neuronal activation following 600 ppm of thinner. The results reveal that (i) chronically thinner exposed mice showed cognitive deficits in Morris water maze and object recognition tasks; (ii) acute inhalation of thinner induces a wide range of behavioral changes. These changes include an anxiolytic effect toward the aversive environmental bright light and a dose dependent effect on explorative locomotion. The wide range of behavioral alterations induced by acute thinner inhalation is consistent with the widespread distribution of thinner-induced c-Fos expression in multiple brain structures.
Collapse
Affiliation(s)
- Karim Fifel
- Lab of Pharmacology, Neurobiology and Behavior, Associated CNRST Unit (URAC-37), Cadi Ayyad University, Marrakech, Morocco,
| | | | | |
Collapse
|
35
|
Specific impairments in instrumental learning following chronic intermittent toluene inhalation in adolescent rats. Psychopharmacology (Berl) 2014; 231:1531-42. [PMID: 24322667 DOI: 10.1007/s00213-013-3363-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/18/2013] [Indexed: 01/17/2023]
Abstract
RATIONALE Inhalant abuse is prevalent in adolescent populations, with chronic use resulting in neurobiological and cognitive abnormalities in adulthood. However, the nature and persistence of cognitive dysfunction, particularly following adolescent inhalant abuse, remain equivocal. OBJECTIVE The present study assessed specific cognitive processes beginning in late adolescence and adulthood following adolescent inhalation of toluene, a main component of many compounds readily abused. METHODS Adolescent male Wistar rats (postnatal day (PN) 27) were exposed to chronic intermittent inhaled toluene (10,000 ppm) for 1 h/day, 3 days/week for 4 weeks (PN 27-52) to mimic the patterns observed in human adolescent inhalant abusers. Following toluene exposure, motor and cognitive function was assessed. RESULTS Adolescent toluene exposure did not alter motor learning in the Rotarod task (PN 58) or acquisition, reversal, or retention of spatial learning in the Morris water maze (PN 55-64). In contrast, it delayed acquisition of instrumental responding for sucrose (5 % w/v) and impaired operant reversal learning and cue-induced reinstatement of sucrose seeking in adulthood (PN 57-100). CONCLUSION This study demonstrates that exposure to toluene at an abuse concentration during adolescence results in specific impairments in aspects of instrumental learning, without altering motor function and spatial learning in late adolescence/early adulthood. Our data imply that persistent alterations in reward processing may occur following adolescent inhalant misuse.
Collapse
|
36
|
Duncan JR, Gibbs SJ, Lawrence AJ. Chronic intermittent toluene inhalation in adolescent rats alters behavioural responses to amphetamine and MK801. Eur Neuropsychopharmacol 2014; 24:480-6. [PMID: 23810580 DOI: 10.1016/j.euroneuro.2013.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 02/03/2023]
Abstract
Abuse of toluene-containing inhalants is common during adolescence, with ongoing chronic misuse associated with adverse outcomes and increased risk for addictive behaviours in adulthood. However, the mechanisms mediating the adaptive processes related to these outcomes are not well defined. To model human abuse patterns we exposed male adolescent Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (CIT, 10,000 ppm) or air (control) for 1h/day, three times/week for 3 weeks. The effects of CIT on behaviour and recovery were monitored. Locomotor activity was recorded following two consecutive injections of amphetamine (1mg/kg, i.p.) 72 and 96 h after the last exposure. This was followed with injection of the NMDA receptor antagonist MK801 (0.5mg/kg, i.p.) 20 days after the last exposure. CIT resulted in a significant and persistent retardation in weight gain during the exposure period and abstinence (p<0.05). Repeated exposure resulted in tolerance to the onset of toluene-induced behaviours and recovery latency. There was a reduction in the acute stimulant effects of amphetamine in CIT-exposed animals and an increase in the magnitude of locomotor activity (p<0.0125) following a subsequent exposure when compared to the responses observed in controls; this was associated with altered locomotor responses to MK801. Repeated exposure to CIT during adolescence alters parameters of growth, as measured by body weight, and leads to tolerance, indicating that increasing concentrations of the compound may be needed to reach the same behavioural state. Toluene during this period also alters responses to a psychostimulant which may be related to long-term glutamatergic dysfunction.
Collapse
Affiliation(s)
- Jhodie Rubina Duncan
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic. 3010, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Vic. 3010, Australia.
| | - Sarah Jane Gibbs
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic. 3010, Australia
| | - Andrew John Lawrence
- Division of Behavioural Neuroscience, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic. 3010, Australia; Centre for Neuroscience Research, University of Melbourne, Melbourne, Vic. 3010, Australia
| |
Collapse
|
37
|
Gmaz JM, McKay BE. Toluene decreases Purkinje cell output by enhancing inhibitory synaptic transmission in the cerebellar cortex. Neurosci Lett 2014; 560:1-6. [PMID: 24345417 DOI: 10.1016/j.neulet.2013.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022]
Abstract
Toluene belongs to a class of psychoactive drugs known as inhalants. Found in common household products such as adhesives, paint products, and aerosols, toluene is inhaled for its intoxicating and euphoric properties. Additionally, exposure to toluene disrupts motor behaviors in a manner consistent with impairments to cerebellar function. Previous work has suggested a role of GABA in mediating toluene's neurobehavioral effects, but how this manifests in the cerebellar cortex is not yet understood. In the present study, we examined the effects of toluene on cerebellar Purkinje cell action potential output and inhibitory synaptic transmission onto Purkinje cells using patch clamp electrophysiology in acute rat cerebellar slices. Toluene (1mM) reduced the frequency of Purkinje cell action potential output without affecting input resistance. Furthermore, toluene dose-dependently enhanced inhibitory synaptic transmission onto Purkinje cells, increasing the amplitude and frequency of inhibitory postsynaptic currents; no change in the frequency of action potentials from molecular layer interneurons was noted. The observed decreases in Purkinje cell action potential output could contribute to toluene-evoked impairments in cerebellar and motor functions.
Collapse
Affiliation(s)
- Jimmie M Gmaz
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Bruce E McKay
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.
| |
Collapse
|
38
|
Woodward JJ, Beckley J. Effects of the abused inhalant toluene on the mesolimbic dopamine system. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2014; 3:235838. [PMID: 25360326 PMCID: PMC4211636 DOI: 10.4303/jdar/235838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Toluene is a representative member of a class of inhaled solvents that are voluntarily used by adolescents and adults for their euphorigenic effects. Research into the mechanisms of action of inhaled solvents has lagged behind that of other drugs of abuse despite mounting evidence that these compounds exert profound neurobehavioral and neurotoxicological effects. Results from studies carried out by the authors and others suggest that the neural effects of inhalants arise from their interaction with a discrete set of ion channels that regulate brain activity. Of particular interest is how these interactions allow toluene and other solvents to engage portions of an addiction neurocircuitry that includes midbrain and cortical structures. In this review, we focus on the current state of knowledge regarding toluene's action on midbrain dopamine neurons, a key brain region involved in the initial assessment of natural and drug-induced rewards. Findings from recent studies in the authors' laboratory show that brief exposures of adolescent rats to toluene vapor induce profound changes in markers of glutamatergic plasticity in VTA DA neurons. These changes are restricted to VTA DA neurons that project to limbic structures and are prevented by transient activation of the medial prefrontal cortex prior to toluene exposure. Together, these data provide the first evidence linking the voluntary inhalation of solvents to changes in reward -sensitive dopamine neurons.
Collapse
Affiliation(s)
- John J. Woodward
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | - Jacob Beckley
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
- Department of Neurology, University of California – San Francisco, San Francisco, CA
| |
Collapse
|
39
|
Scott KD, Scott AA. Adolescent inhalant use and executive cognitive functioning. Child Care Health Dev 2014; 40:20-8. [PMID: 23551203 DOI: 10.1111/cch.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND This study investigates the association between inhalant use and executive cognitive functioning (ECF) and processing speed (PS) in 754 adjudicated poly-substance users on a series of neuropsychological tests. Poly-substance users who used inhalants (PSI = 262) and poly-substance users who did not use inhalants (PSO = 492) neuropsychological tests scores were compared. Hispanic Americans comprised 72% of the participants; European Americans, African Americans and Asian Americans comprised 28% of the participants. METHODS Standardized neuropsychological tests were used to assess ECF and PS. Psychosocial and substance abuse standardized surveys were used to assess drug use severity and psychosocial problems associated with substance use. RESULTS Multiple Analysis of Covariance shows that PSI users who used inhalants performed worse on ECF and PS measures in comparison to non-inhalant poly-substance users (PSO). PSI users were younger, used more drugs and had more psychiatric admissions than PSO users. CONCLUSION PSI users initiate substances at a younger age and experienced more ECF and PS deficits, and behavioural problems in comparison to PSO users. The results of this study suggest that PS has direct effect on ECF and psychosocial outcomes in PSI users.
Collapse
Affiliation(s)
- K D Scott
- Department of Counseling Psychology, University of Texas, San Antonio, TX, USA
| | | |
Collapse
|
40
|
Cruz SL, Rivera-García MT, Woodward JJ. Review of toluene action: clinical evidence, animal studies and molecular targets. ACTA ACUST UNITED AC 2014; 3. [PMID: 25360325 DOI: 10.4303/jdar/235840] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It has long been known that individuals will engage in voluntary inhalation of volatile solvents for their rewarding effects. However, research into the neurobiology of these agents has lagged behind that of more commonly used drugs of abuse such as psychostimulants, alcohol and nicotine. This imbalance has begun to shift in recent years as the serious effects of abused inhalants, especially among children and adolescents, on brain function and behavior have become appreciated and scientifically documented. In this review, we discuss the physicochemical and pharmacological properties of toluene, a representative member of a large class of organic solvents commonly used as inhalants. This is followed by a brief summary of the clinical and pre-clinical evidence showing that toluene and related solvents produce significant effects on brain structures and processes involved in the rewarding aspects of drugs. This is highlighted by tables highlighting toluene's effect on behaviors (reward, motor effects, learning, etc.) and cellular proteins (e.g. voltage and ligand-gated ion channels) closely associated the actions of abused substances. These sections demonstrate not only the significant progress that has been made in understanding the neurobiological basis for solvent abuse but also reveal the challenges that remain in developing a coherent understanding of this often overlooked class of drugs of abuse.
Collapse
Affiliation(s)
- Silvia L Cruz
- Departamento de Farmacobiología, Cinvestav, México, D.F., University of South Carolina, Charleston, SC
| | | | - John J Woodward
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
41
|
Beckley JT, Woodward JJ. Volatile solvents as drugs of abuse: focus on the cortico-mesolimbic circuitry. Neuropsychopharmacology 2013; 38:2555-67. [PMID: 23954847 PMCID: PMC3828545 DOI: 10.1038/npp.2013.206] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/15/2022]
Abstract
Volatile solvents such as those found in fuels, paints, and thinners are found throughout the world and are used in a variety of industrial applications. However, these compounds are also often intentionally inhaled at high concentrations to produce intoxication. While solvent use has been recognized as a potential drug problem for many years, research on the sites and mechanisms of action of these compounds lags behind that of other drugs of abuse. In this review, we first discuss the epidemiology of voluntary solvent use throughout the world and then consider what is known about their basic pharmacology and how this may explain their use as drugs of abuse. We next present data from preclinical and clinical studies indicating that these substances induce common addiction sequelae such as dependence, withdrawal, and cognitive impairments. We describe how toluene, the most commonly studied psychoactive volatile solvent, alters synaptic transmission in key brain circuits such as the mesolimbic dopamine system and medial prefrontal cortex (mPFC) that are thought to underlie addiction pathology. Finally, we make the case that activity in mPFC circuits is a critical regulator of the mesolimbic dopamine system's ability to respond to volatile solvents like toluene. Overall, this review provides evidence that volatile solvents have high abuse liability because of their selective effects on critical nodes of the addiction neurocircuitry, and underscores the need for more research into how these compounds induce adaptations in neural circuits that underlie addiction pathology.
Collapse
Affiliation(s)
- Jacob T Beckley
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA,Center for Drug and Alcohol Programs, Department of Psychiatry/Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA,Center for Drug and Alcohol Programs, Department of Psychiatry/Neurosciences, Medical University of South Carolina, Charleston, SC, USA,Department of Neurosciences, Medical University of South Carolina, IOP 4 North, 67 President Street, MSC 861, Charleston, SC 29425, USA, Tel: +(843) 792 5225, Fax: +(843) 792 7353, E-mail:
| |
Collapse
|
42
|
Tomaszycki ML, Aulerich KE, Bowen SE. Repeated toluene exposure increases c-Fos in catecholaminergic cells of the nucleus accumbens shell. Neurotoxicol Teratol 2013; 40:28-34. [PMID: 24036183 DOI: 10.1016/j.ntt.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/26/2022]
Abstract
Toluene is a frequently abused solvent. Previous studies have suggested that toluene acts like other drugs of abuse, specifically on the dopaminergic system in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of the mesolimbic pathway. Although changes in dopamine (DA) levels and c-Fos have been observed in both acute and repeated exposure paradigms, the extent to which c-Fos is localized to catecholaminergic cells is unknown. The present study tested the effects of repeated toluene exposure (1000-4000ppm) on locomotor activity and cells containing c-Fos, tyrosine hydroxylase (TH), or both in the core and shell of the NAc, as well as the anterior and posterior VTA. We focused our study on adolescents, since adolescence is a time of great neural change and a time when individuals tend to be more susceptible to drug abuse. In early tests, toluene dose-dependently increased locomotor activity. Repeated exposure to the highest concentration of toluene resulted in sensitization to toluene's effects on locomotor activity. Although the number of cells immunopositive for c-Fos or TH did not significantly differ across groups, cells immunopositive for TH+c-Fos were higher in the NAc shell of animals exposed to 4000ppm than in animals exposed to air (control) or 1000ppm. Taken together, these findings demonstrate that repeated high dose toluene exposure increases locomotor activity as well as activation of catecholaminergic cells in the shell of the NAc.
Collapse
Affiliation(s)
- Michelle L Tomaszycki
- Department of Psychology, Wayne State University, Detroit, MI, United States; The Behavioral Neuroscience of Social Relationships Laboratory, Wayne State University, Detroit, MI, United States.
| | | | | |
Collapse
|
43
|
Physiological concentrations of zinc reduce taurine-activated GlyR responses to drugs of abuse. Neuropharmacology 2013; 75:286-94. [PMID: 23973295 DOI: 10.1016/j.neuropharm.2013.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
Taurine is an endogenous ligand acting on glycine receptors in many brain regions, including the hippocampus, prefrontal cortex, and nucleus accumbens (nAcc). These areas also contain low concentrations of zinc, which is known to potentiate glycine receptor responses. Despite an increasing awareness of the role of the glycine receptor in the rewarding properties of drugs of abuse, the possible interactions of these compounds with zinc has not been thoroughly addressed. Two-electrode voltage-clamp electrophysiological experiments were performed on α1, α2 α1β and α2β glycine receptors expressed in Xenopus laevis oocytes. The effects of zinc alone, and zinc in combination with other positive modulators on the glycine receptor, were investigated when activated by the full agonist glycine versus the partial agonist taurine. Low concentrations of zinc enhanced responses of maximally-effective concentrations of taurine but not glycine. Likewise, chelation of zinc from buffers decreased responses of taurine- but not glycine-mediated currents. Potentiating concentrations of zinc decreased ethanol, isoflurane, and toluene enhancement of maximal taurine currents with no effects on maximal glycine currents. Our findings suggest that the concurrence of high concentrations of taurine and low concentrations of zinc attenuate the effects of additional modulators on the glycine receptor, and that these conditions are more representative of in vivo functioning than effects seen when these modulators are applied in isolation.
Collapse
|
44
|
Samuel-Herter SR, Slaght SL, McKay BE. Age-dependent time courses of recovery for motor functions following acute toluene intoxication in rats. Dev Psychobiol 2013; 56:657-73. [PMID: 23765908 DOI: 10.1002/dev.21134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 04/12/2013] [Indexed: 12/13/2022]
Abstract
Toluene is a psychoactive chemical found in many household products including adhesives and thinners. Inhalation of these vapors can cause euphoria and impairments in motor control and neurological functioning. Misuse and abuse of toluene is most common in children, which may in part be due to an age-dependent neurobehavioral sensitivity to toluene. Here we assessed the effects of acute binge-like toluene inhalations (15 or 30 min; ∼5,000 ppm) on tasks that examine locomotion, exploration, balance, gait, and neurological functioning for adolescent (1 month), young adult (2-3 months), adult (5-6 months), and older adult (10-12 months) rats. Both motor and neurological functions were impaired following acute toluene inhalation at all ages. However, only the duration to recover from deficits in motor functions differed among age groups, with adolescent and young adult rats requiring notably longer recovery times than older rats. Our results are suggestive of an age-dependent vulnerability to the intoxicating effects of toluene.
Collapse
Affiliation(s)
- Susan R Samuel-Herter
- Department of Psychology, Wilfrid Laurier University, 75 University Ave W., Waterloo, Ontario, Canada, N2L 3C5
| | | | | |
Collapse
|
45
|
Ford JB, Sutter ME, Owen KP, Albertson TE. Volatile Substance Misuse: An Updated Review of Toxicity and Treatment. Clin Rev Allergy Immunol 2013; 46:19-33. [DOI: 10.1007/s12016-013-8371-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Medial prefrontal cortex inversely regulates toluene-induced changes in markers of synaptic plasticity of mesolimbic dopamine neurons. J Neurosci 2013; 33:804-13. [PMID: 23303956 DOI: 10.1523/jneurosci.3729-12.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Toluene is a volatile solvent that is intentionally inhaled by children, adolescents, and adults for its intoxicating effects. Although voluntary use of toluene suggests that it possesses rewarding properties and abuse potential, it is unknown whether toluene alters excitatory synaptic transmission in reward-sensitive dopamine neurons like other drugs of abuse. Here, using a combination of retrograde labeling and slice electrophysiology, we show that a brief in vivo exposure of rats to a behaviorally relevant concentration of toluene vapor enhances glutamatergic synaptic strength of dopamine (DA) neurons projecting to nucleus accumbens core and medial shell neurons. This effect persisted for up to 3 d in mesoaccumbens core DA neurons and for at least 21 d in those projecting to the medial shell. In contrast, toluene vapor exposure had no effect on synaptic strength of DA neurons that project to the medial prefrontal cortex (mPFC). Furthermore, infusion of GABAergic modulators into the mPFC before vapor exposure to pharmacologically manipulate output, inhibited, or potentiated toluene's action on mesoaccumbens DA neurons. Together, the results of these studies indicate that toluene induces a target-selective increase in mesolimbic DA neuron synaptic transmission and strongly implicates the mPFC as an important regulator of drug-induced plasticity of mesolimbic dopamine neurons.
Collapse
|
47
|
Duncan JR, Lawrence AJ. Conventional Concepts and New Perspectives for Understanding the Addictive Properties of Inhalants. J Pharmacol Sci 2013; 122:237-43. [DOI: 10.1254/jphs.13r04cp] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
48
|
Espana RA, Jones SR. Presynaptic dopamine modulation by stimulant self-administration. Front Biosci (Schol Ed) 2013; 5:261-76. [PMID: 23277050 DOI: 10.2741/s371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine.
Collapse
Affiliation(s)
- Rodrigo A Espana
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
49
|
Volatile substance misuse : clinical considerations, neuropsychopharmacology and potential role of pharmacotherapy in management. CNS Drugs 2012; 26:927-35. [PMID: 23018545 DOI: 10.1007/s40263-012-0001-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Volatile substance misuse is among the most prevalent and toxic forms of psychoactive drug use, and often results in highly deleterious social, psychological and medical consequences. The prevalence of this pernicious form of substance misuse owes in part to the fact that volatile substances of misuse are ubiquitous in the natural environment. Commonly misused commercial products include glue, shoe polish, nail polish remover, butane lighter fluid, gasoline and computer duster spray. National samples of volatile substance misusers tend to exhibit high rates of psychiatric problems and antisocial behaviour. In addition, cognitive impairments and affective dysregulation are often observed among these individuals. Volatile substances exert their complex neuropharmacological effects on dopaminergic, glutamatergic, GABAergic and serotoninergic receptor systems, as well as on cell membranes and ion channels. Concomitantly, pharmacotherapies for volatile substance abuse might profitably target a number of mechanisms, including reward circuitry in the brain, symptoms of craving and withdrawal, neuropsychiatric and emotional impairments that promote volatile substance abuse, and cognitive enhancement to rectify deficits in executive function. This review details the modes of use, subjective effects, epidemiology, adverse consequences, neuropsychopharmacology and drug treatment of volatile substance misuse, and discusses the potential role of novel forms of pharmacological intervention for this oft-overlooked public health threat of epidemic proportions.
Collapse
|
50
|
Paez-Martinez N, Aldrete-Audiffred J, Gallardo-Tenorio A, Castro-Garcia M, Estrada-Camarena E, Lopez-Rubalcava C. Participation of GABAA, GABA(B) receptors and neurosteroids in toluene-induced hypothermia: evidence of concentration-dependent differences in the mechanism of action. Eur J Pharmacol 2012; 698:178-85. [PMID: 23085024 DOI: 10.1016/j.ejphar.2012.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 09/21/2012] [Accepted: 10/06/2012] [Indexed: 12/12/2022]
Abstract
Toluene is a misused substance that modifies γ-aminobutyric acid (GABA) release and shares behavioral and molecular effects with GABA(A) and GABA(B) receptor agonists. GABAergic compounds are involved in thermoregulation processes and volatile substance users have reported that one of the reasons to inhale is to avoid feeling cold. At present, no studies have analyzed the effects of inhalants on body temperature and the mechanism of action involved. Thus, the main purpose of this study was to evaluate the effects of a (60 min) acute toluene inhalation (2000, 4000 and 6000 ppm) in core temperature. In addition, we tried to prevent the changes of temperature induced by toluene with the specific GABA(A) receptor blockers picrotoxin (0.01-0.1mg/kg), bicuculline (0.1-0.3mg/kg), and flumazenil (3-30 mg/kg); the GABA(B) receptor antagonist phaclofen (10-30 mg/kg) and the neurosteroid synthesis inhibitor finasteride (10-30 mg/kg). Results show that toluene reduced core temperature in mice in a concentration-dependent manner. The hypothermia produced by 4000 ppm toluene was prevented by picrotoxin, bicuculline, phaclofen and finasteride but not by flumazenil. In contrast none of these antagonists tested blocked the effects of 6000 ppm toluene. In conclusion, toluene decreases core temperature, GABA receptors and neurosteroids participate in toluene's action at 4000 ppm; but other mechanisms of action are involved in the hypothermic effects of 6000 ppm toluene.
Collapse
Affiliation(s)
- Nayeli Paez-Martinez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Santo Tomás, CP 11340 Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|