1
|
Kunikullaya U K, Pranjić M, Rigby A, Pallás-Ferrer I, Anand H, Kunnavil R, Jaschke AC. The molecular basis of music-induced neuroplasticity in humans: A systematic review. Neurosci Biobehav Rev 2025; 175:106219. [PMID: 40412457 DOI: 10.1016/j.neubiorev.2025.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/28/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Neuroscientific research on music-based activities has grown rapidly, shedding light on the health benefits of music across various domains. However, the molecular mechanisms by which music influences neuroplasticity in humans remain largely unexplored. This review aimed to synthesize and critically appraise existing research on molecular neuroplasticity in humans, with a specific focus on the effects of receptive and active music-based interventions (MBIs) and musical training. Following the PRISMA guidelines, a systematic search was conducted across four databases (MEDLINE, Embase, PsycINFO, and Scopus), for articles published between 2000 and December 2023. From an initial return of 3239 records, 15 studies met the inclusion criteria and were synthesized into three categories of music experiences: (1) receptive MBIs, (2) active MBIs, and (3) musical training. Both active and receptive MBIs were found to enhance neuroplasticity. Specifically, music listening was associated with relaxation and improved immune function, marked by the upregulation of genes related to neuroprotection and synaptic plasticity, while active MBIs consistently enhanced peripheral neurotrophic factors in both healthy and patient populations. Among musicians, neurogenetic alterations linked to music perception and production, neurogenesis, and neurotransmission were identified, with multiple studies highlighting the roles of Brain-Derived Neurotrophic Factor (BDNF), Alpha Synuclein (SNCA), and GATA2 (GATA Binding Protein 2) genes. Collectively, both MBIs and musical training induce neuroplastic changes by modulating neurogenetics, enhancing neurotrophins, altering hormonal levels, and reducing stress in humans. These findings highlight the need for further research to elucidate the molecular mechanisms underlying music's effects on the human brain, which could have implications for advancing therapeutic interventions for neuropsychological disorders.
Collapse
Affiliation(s)
- Kirthana Kunikullaya U
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden.
| | - Marija Pranjić
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Alison Rigby
- Neurosciences Graduate Program, University of California San Diego, School of Medicine, La Jolla, CA, United States; Center for Human Development, University of California, San Diego, La Jolla, CA, United States; Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, La Jolla, CA, United States.
| | | | - Harshini Anand
- National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru 560012, India.
| | - Radhika Kunnavil
- National Institute of Unani Medicine, (Under Ministry of AYUSH, Govt. of India), Bangalore 560091, India.
| | - Artur C Jaschke
- Department of Psychiatry, University of Cambridge, UK; ArtEZ University of the Arts, Enschede, the Netherlands; University Medical Centre Groningen and University of Cambridge, UK.
| |
Collapse
|
2
|
Von Gunten M, Hoffman S, Smartt A, Edwards JG. Three-day delta-9-tetrahydrocannabinol (THC) exposure eliminates long-term depression in ventral tegmental area of young, but not adult mice. J Cannabis Res 2025; 7:30. [PMID: 40450354 DOI: 10.1186/s42238-025-00287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 05/13/2025] [Indexed: 06/03/2025] Open
Abstract
Ventral tegmental area (VTA) dopamine signaling plays a key role in reward learning and drug dependence. VTA dopamine cell activity is regulated in part by local GABA interneurons, which participate in regulating reward prediction. Previously, our lab identified a cannabinoid type 1 receptor (CB1)-dependent form of excitatory long-term depression (LTD) in VTA GABA cells. LTD was eliminated in both young and adult mice after 7-10-day delta-9-tetrahydrocannabinol (THC) exposure. To build off these previous findings, we used mouse ex vivo brain slices to examine whether young mice undergo THC-induced alterations to VTA GABA cell plasticity after fewer exposures than their adult counterparts, as human adolescents have increased sensitivity to THC. Whole-cell electrophysiological recordings were performed on young (P14-P54) and adult (P66-P240) mice treated with THC or vehicle control for 3 days, after which we attempted to induce CB1-dependent LTD ex vivo. Plasticity was eliminated in young but not adult mice after 3 days of THC treatment. Because our previous work illustrated age-dependent alterations to mRNA transcripts after chronic THC-treatment, we also performed quantitative real-time PCR to assess any age dependent differences of 3-day THC exposure on mRNA levels in the VTA. Quantitative PCR revealed no THC-induced changes for young or adult mice but did show several differences between young and adult control mice. This age-dependent impact of THC on synaptic activity could reveal a physiological mechanism underlying increased sensitivity of adolescents to THC-induced alterations to plasticity.
Collapse
Affiliation(s)
| | - Seth Hoffman
- Neuroscience Center, Brigham Young University, Provo, UT, 84602, USA
| | - Addison Smartt
- Department of Cell Biology and Physiology, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Jeffrey G Edwards
- Department of Cell Biology and Physiology, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA.
- Neuroscience Center, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
3
|
Gupta AK, Gupta S, Mehan S, Khan Z, Das Gupta G, Narula AS. Exploring the Connection Between BDNF/TrkB and AC/cAMP/PKA/CREB Signaling Pathways: Potential for Neuroprotection and Therapeutic Targets for Neurological Disorders. Mol Neurobiol 2025:10.1007/s12035-025-05001-5. [PMID: 40342191 DOI: 10.1007/s12035-025-05001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
The BDNF/TrkB and AC/cAMP/PKA/CREB signaling pathways play a vital role in neuroplasticity, neuronal survival, and cognitive functions. This review explores its physiological and pathological implications in neurological disorders, with a focus on neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs). Neurological conditions increasingly burden public health, making understanding the biochemical mechanisms that underpin these diseases critical. BDNF, a neurotrophic factor, binds to the TrkB receptor, activating multiple intracellular signaling cascades that regulate cellular responses essential for neurogenesis, memory, and learning. Dysregulation within this pathway has been linked to various NDDs, as well as NPDs. Key components of the path, including adenylyl cyclase and cyclic AMP, mediate the effects of neurotransmitters and growth factors, influencing downstream targets like PKA and CREB, which are crucial for gene expression and synaptic changes. Furthermore, the review discusses the challenges of targeting this pathway for therapeutic interventions, including receptor isoform diversity, blood-brain barrier penetration, and potential side effects. Future strategies may include the development of selective TrkB modulators, nanoparticle carriers for drug delivery, and innovative gene therapy techniques. Advancing the understanding of this complex signaling network holds promise for effective interventions in treating neurological and psychiatric disorders, ultimately enhancing neuroprotection and cognitive resilience.
Collapse
Affiliation(s)
- Abhishek Kumar Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
4
|
Martínez-Rivera FJ, Holt LM, Minier-Toribio A, Estill M, Yeh SY, Tofani S, Futamura R, Browne CJ, Mews P, Shen L, Nestler EJ. Transcriptional characterization of cocaine withdrawal versus extinction within nucleus accumbens in male rats. Nat Commun 2025; 16:2886. [PMID: 40133300 PMCID: PMC11937236 DOI: 10.1038/s41467-025-58151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Neurobiological alterations seen in addiction amplify during abstinence and compromise relapse prevention. Cocaine use disorder (CUD) exemplifies this phenomenon in which reward regions such as nucleus accumbens (NAc) undergo withdrawal-associated modifications. While genome-wide transcriptional changes in NAc are linked to specific addiction phases, these have not been examined in a context- and NAc-subregion-specific manner during withdrawal vs. extinction. We used cocaine self-administration in male rats combined with RNA-sequencing of NAc-core and -shell to transcriptionally profile withdrawal in the home-cage, in the previous drug context, or after extinction. As expected, home-cage withdrawal maintained seeking, whereas extinction reduced it. By contrast, withdrawal involving the drug context only increased seeking. Bioinformatic analyses revealed specific gene expression patterns and networks associated with these states. Comparing NAc datasets of CUD patients highlighted conserved transcriptomic signatures with rats experiencing withdrawal in the drug context. Together, this work reveals fundamental mechanisms that can be targeted to attenuate relapse.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Angélica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Szu-Ying Yeh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Solange Tofani
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
5
|
Loth MK, Schmidt JC, Gonzalez CA, Brusman LE, Sadino JM, Winther KE, Protter DSW, Donaldson ZR. Oxytocin and Dopamine Receptor Expression: Cellular Level Implications for Pair Bonding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.640889. [PMID: 40093070 PMCID: PMC11908164 DOI: 10.1101/2025.03.03.640889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Oxytocin (Oxtr) and dopamine (Drd1, Drd2) receptors provide a canonical example for how differences in neuromodulatory receptors drive individual and species-level behavioral variation. These systems exhibit striking and functionally-relevant differences in nucleus accumbens (NAc) expression across monogamous prairie voles (Microtus ochrogaster) and promiscuous meadow voles (Microtus pennsylvanicus). However, their cellular organization remains largely unknown. Using multiplex in situ hybridization, we mapped Oxtr, Drd1, and Drd2 expression in sexually naïve and mate-paired prairie and meadow voles. Prairie voles have more Oxtr+ cells than meadow voles, but Oxtr distribution across dopamine-receptor cell class was similar, indicating a general upregulation rather than cell class bias. Oxtr was enriched in cells that express both dopamine receptors (Drd1+/Drd2+) in prairie voles, suggesting these cells may be particularly sensitive to oxytocin. We found no species or pairing-induced differences in Drd1+ or Drd2+ cell counts, suggesting prior reports of expression differences may reflect upregulation in cells already expressing these receptors. Finally, we used single-nucleus sequencing to provide the first comprehensive map of Oxtr and Drd1-5 across molecularly-defined NAc cell types in the prairie vole. These results provide a critical framework for understanding how nonapeptide and catecholamine systems may recruit distinct NAc cell types to shape social behavior.
Collapse
Affiliation(s)
- Meredith K Loth
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Julia C Schmidt
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - Cassandra A Gonzalez
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Liza E Brusman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Julie M Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Kelly E Winther
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - David S W Protter
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| |
Collapse
|
6
|
Sgro M, Kodila Z, Salberg S, Li CN, Smith MJ, Freeman J, Vlassopoulos E, Harris S, Shultz SR, Yamakawa GR, Noel M, Mychasiuk R. Exposure to perinatal trauma modifies nociception and gene expression in the prefrontal cortex and hypothalamus of adolescent rats. THE JOURNAL OF PAIN 2025; 28:104762. [PMID: 39730020 DOI: 10.1016/j.jpain.2024.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
The perinatal period encompasses a critical window for neurodevelopment that renders the brain highly responsive to experience. Trauma, such as intimate partner violence (IPV) and early life stress/neglect, during this period negatively affects physical and mental health outcomes, including increasing ones risk for chronic pain. Although epigenetic programming likely contributes, the mechanisms that drive the relationship between perinatal trauma and adverse health outcomes, are not fully understood. Therefore, we explored the relationship between perinatal trauma (in utero exposure to IPV and/or early life neglect) and socio-emotional functioning, nociceptive sensitivity, and transcriptomic changes within the prefrontal cortex (PFC) and hypothalamus in dams and their adolescent offspring. Rat dams were randomly assigned to an IPV (i.e., combined mild traumatic brain injury and strangulation) or sham procedure during pregnancy. Following birth, offspring were subsequently assigned the early life neglect or control paradigm. In adolescence, offspring received a plantar incision or sham injury. Perinatal trauma altered nociception and emotional functioning in a sex-dependent manner when combined with the surgical procedure. We identified transcriptomic changes related to DNA transcription and expression within the PFC and hypothalamus of the dams. Examination of the offspring transcriptome highlighted impairment in immune regulation, dysfunction in stress-reactivity, as well as microglia activation. We also identified altered expression of genes associated with chronic pain. This demonstrates that perinatal trauma modifies offspring behaviour, including nociceptive sensitivity. We provide insight into the mechanisms that contribute to the chronification of pain, thereby informing future research targeted at the generation of prevention and therapeutic strategies. PERSPECTIVE: Perinatal trauma impaired cognitive, socio-emotional, and pain processing in offspring, while also inducing changes in gene expression, in both mothers and offspring. The findings highlight possible mechanisms responsible for intergenerational transmission of risk for chronic pain and provide targets for therapeutics which could potentially reverse perinatal-trauma induced epigenetic change.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Zoe Kodila
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Crystal N Li
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Madeleine J Smith
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - James Freeman
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Elaina Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Sydney Harris
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia; Centre for Trauma and Mental Health Research, Vancouver Island University, Nanaimo, B.C., Canada
| | - Glenn R Yamakawa
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Melanie Noel
- Department of Psychology, Alberta Children's Hospital, Hotchkiss Brain Institute, University of Calgary,AB, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Mabry SJ, Cao X, Zhu Y, Rowe C, Patel S, González-Arancibia C, Romanazzi T, Saleeby DP, Elam A, Lee HT, Turkmen S, Lauzon SN, Hernandez CE, Sun H, Wu H, Carter AM, Galli A. Fusobacterium nucleatum determines the expression of amphetamine-induced behavioral responses through an epigenetic phenomenon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633210. [PMID: 39868090 PMCID: PMC11761806 DOI: 10.1101/2025.01.15.633210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Amphetamines (AMPHs) are psychostimulants commonly used for the treatment of neuropsychiatric disorders. They are also misused (AMPH use disorder; AUD), with devastating outcomes. Recent studies have implicated dysbiosis in the pathogenesis of AUD. However, the mechanistic roles of microbes in AUD are unknown. Fusobacterium nucleatum (Fn) is a bacterium that increases in abundance in both rats and humans upon AMPH exposure. Fn releases short-chain fatty acids (SCFAs), bacterial byproducts thought to play a fundamental role in the gut-brain axis as well as the pathogenesis of AUD. We demonstrate that in gnotobiotic Drosophila melanogaster, colonization with Fn or dietary supplementation of the SCFA butyrate, a potent inhibitor of histone deacetylases (HDACs), enhances the psychomotor and rewarding properties of AMPH as well as its ability to promote male sexual motivation. Furthermore, solely HDAC1 RNAi targeted inhibition recapitulates these enhancements, pointing to a specific process underlying this Fn phenomenon. Of note is that the expression of these AMPH behaviors is determined by the increase in extracellular dopamine (DA) levels that result from AMPH-induced reversal of DA transporter (DAT) function, termed non-vesicular DA release (NVDR). The magnitude of AMPH-induced NVDR is dictated, at least in part, by DAT expression levels. Consistent with our behavioral data, we show that Fn, butyrate, and HDAC1 inhibition enhance NVDR by elevating DAT expression. Thus, the participation of Fn in AUD stems from its ability to release butyrate and inhibit HDAC1. These data offer a microbial target and probiotic interventions for AUD treatment.
Collapse
Affiliation(s)
- Samuel J Mabry
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Xixi Cao
- Oregon Health & Science University, School of Dentistry, Portland, Oregon
| | - Yanqi Zhu
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Caleb Rowe
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Shalin Patel
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | | | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - David P Saleeby
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Anna Elam
- University of Alabama Birmingham, Department of Psychiatry, Birmingham, Alabama
| | - Hui-Ting Lee
- University of Alabama Birmingham, Department of Chemistry, Birmingham, Alabama
| | - Serhat Turkmen
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Shelby N Lauzon
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Cesar E Hernandez
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - HaoSheng Sun
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Hui Wu
- Oregon Health & Science University, School of Dentistry, Portland, Oregon
| | - Angela M Carter
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
- University of Alabama Birmingham, Center for Inter-systemic Networks and Enteric Medical Advances (CINEMA), Birmingham, Alabama
| | - Aurelio Galli
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
- University of Alabama Birmingham, Center for Inter-systemic Networks and Enteric Medical Advances (CINEMA), Birmingham, Alabama
| |
Collapse
|
8
|
Rosas-Sánchez GU, Germán-Ponciano LJ, Guillen-Ruiz G, Cueto-Escobedo J, Limón-Vázquez AK, Rodríguez-Landa JF, Soria-Fregozo C. Neuroplasticity and Mechanisms of Action of Acute and Chronic Treatment with Antidepressants in Preclinical Studies. Biomedicines 2024; 12:2744. [PMID: 39767650 PMCID: PMC11727250 DOI: 10.3390/biomedicines12122744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Pharmacotherapy for depression includes drugs such as monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), noradrenaline (NA) and serotonin (5-HT) reuptake inhibitors (NaSSAs), and atypical antidepressants; these drugs exert differentially beneficial effects on symptoms of depression after acute and chronic treatment in animal models. Said effects are established through neuroplastic mechanisms involving changes in neurogenesis and synaptogenesis as result of the activation of intracellular signaling pathways associated with neurochemical and behavioral changes. Antidepressants increase the synaptic availability of monoamines (monoaminergic hypothesis) such as 5-HT, NA, and gamma-aminobutyric acid (GABA) by inhibiting their reuptake or degradation and activating intracellular signaling pathways such as the responsive element binding protein (cAMP-CREB) cascade, which regulates the expression of genes related to neuroplasticity and neurogenesis, such as brain-derived neurotrophic factor (BDNF), in various brain structures implicated in depression. The aim of this review is to analyze the mechanisms of action of different antidepressants and to compare the effects of acute and chronic treatment on neuroplasticity in animal models of depression. A thorough search was conducted in PubMed, Scopus, and Web of Science, focusing on studies since 1996 with keywords like antidepressants, acute and chronic treatment, neuroplasticity, and experimental depression. Studies included had to investigate antidepressant effects experimentally, with full-text access, while excluding those that did not. Data extraction focused on study design, findings, and relevance to understanding treatment differences. Only high-quality, peer-reviewed studies were considered to ensure a comprehensive synthesis of current knowledge.
Collapse
Affiliation(s)
| | - León Jesús Germán-Ponciano
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.J.G.-P.); (A.K.L.-V.)
| | - Gabriel Guillen-Ruiz
- Programa Investigadoras e Investigadores por México-CONAHCYT-Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico;
| | | | - Ana Karen Limón-Vázquez
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.J.G.-P.); (A.K.L.-V.)
| | - Juan Francisco Rodríguez-Landa
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.J.G.-P.); (A.K.L.-V.)
| | - César Soria-Fregozo
- Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Jalisco, Mexico;
| |
Collapse
|
9
|
Machado JPD, de Almeida V, Zuardi AW, Hallak JEC, Crippa JA, Vieira AS. Cannabidiol modulates hippocampal genes involved in mitochondrial function, ribosome biogenesis, synapse organization, and chromatin modifications. Acta Neuropsychiatr 2024; 36:330-336. [PMID: 38528655 DOI: 10.1017/neu.2024.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the main cannabinoids present in Cannabis sativa female flowers. Previous investigation has already provided insights into the CBD molecular mechanism; however, there is no transcriptome data for CBD effects on hippocampal subfields. Here, we investigate transcriptomic changes in dorsal and ventral CA1 of adult mice hippocampus after 100 mg/kg of CBD administration (i.p.) for one or seven consecutive days. METHODS C57BL/6JUnib mice were treated with either vehicle or CBD for 1 or 7 days. The collected brains were sectioned, and the hippocampal sub-regions were laser microdissected for RNA-Seq analysis. RESULTS The transcriptome analysis following 7 days of CBD administration indicates the differential expression of 1559 genes in dCA1 and 2924 genes in vCA1. Furthermore, GO/KEGG analysis identified 88 significantly enriched biological process and 26 significantly enriched pathways for dCBD7, whereas vCBD7 revealed 128 enriched BPs and 24 pathways. CONCLUSION This dataset indicates a widespread decrease of electron transport chain and ribosome biogenesis transcripts in CA1, while chromatin modifications and synapse organization transcripts were increased following CBD administration for 7 days.
Collapse
Affiliation(s)
- João P D Machado
- Laboratory of Electrophysiology, Neurobiology and Behaviour, Dept Functional and Structural Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics,, Dept Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinsas, São Paulo, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André S Vieira
- Laboratory of Electrophysiology, Neurobiology and Behaviour, Dept Functional and Structural Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
Wani SN, Grewal AK, Khan H, Singh TG. Elucidating the molecular symphony: unweaving the transcriptional & epigenetic pathways underlying neuroplasticity in opioid dependence and withdrawal. Psychopharmacology (Berl) 2024; 241:1955-1981. [PMID: 39254835 DOI: 10.1007/s00213-024-06684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
The persistent use of opioids leads to profound changes in neuroplasticity of the brain, contributing to the emergence and persistence of addiction. However, chronic opioid use disrupts the delicate balance of the reward system in the brain, leading to neuroadaptations that underlie addiction. Chronic cocaine usage leads to synchronized alterations in gene expression, causing modifications in the Nucleus Accumbens (NAc), a vital part of the reward system of the brain. These modifications assist in the development of maladaptive behaviors that resemble addiction. Neuroplasticity in the context of addiction involves changes in synaptic connectivity, neuronal morphology, and molecular signaling pathways. Drug-evoked neuroplasticity in opioid addiction and withdrawal represents a complicated interaction between environmental, genetic, and epigenetic factors. Identifying specific transcriptional and epigenetic targets that can be modulated to restore normal neuroplasticity without disrupting essential physiological processes is a critical consideration. The discussion in this article focuses on the transcriptional aspects of drug-evoked neuroplasticity, emphasizing the role of key transcription factors, including cAMP response element-binding protein (CREB), ΔFosB, NF-kB, Myocyte-enhancing factor 2 (MEF2), Methyl-CpG binding protein 2 (MeCP2), E2F3a, and FOXO3a. These factors regulate gene expression and lead to the neuroadaptive changes observed in addiction and withdrawal. Epigenetic regulation, which involves modifying gene accessibility by controlling these structures, has been identified as a critical component of addiction development. By unraveling these complex molecular processes, this study provides valuable insights that may pave the way for future therapeutic interventions targeting the mechanisms underlying addiction and withdrawal.
Collapse
Affiliation(s)
- Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Aman Pharmacy College, Dholakhera, Udaipurwati, Jhunjhunu, Rajasthan, 333307, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
11
|
Morandell J, Monziani A, Lazioli M, Donzel D, Döring J, Oss Pegorar C, D'Anzi A, Pellegrini M, Mattiello A, Bortolotti D, Bergonzoni G, Tripathi T, Mattis VB, Kovalenko M, Rosati J, Dieterich C, Dassi E, Wheeler VC, Ellederová Z, Wilusz JE, Viero G, Biagioli M. CircHTT(2,3,4,5,6) - co-evolving with the HTT CAG-repeat tract - modulates Huntington's disease phenotypes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102234. [PMID: 38974999 PMCID: PMC11225910 DOI: 10.1016/j.omtn.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Circular RNA (circRNA) molecules have critical functions during brain development and in brain-related disorders. Here, we identified and validated a circRNA, circHTT(2,3,4,5,6), stemming from the Huntington's disease (HD) gene locus that is most abundant in the central nervous system (CNS). We uncovered its evolutionary conservation in diverse mammalian species, and a correlation between circHTT(2,3,4,5,6) levels and the length of the CAG-repeat tract in exon-1 of HTT in human and mouse HD model systems. The mouse orthologue, circHtt(2,3,4,5,6), is expressed during embryogenesis, increases during nervous system development, and is aberrantly upregulated in the presence of the expanded CAG tract. While an IRES-like motif was predicted in circH TT (2,3,4,5,6), the circRNA does not appear to be translated in adult mouse brain tissue. Nonetheless, a modest, but consistent fraction of circHtt(2,3,4,5,6) associates with the 40S ribosomal subunit, suggesting a possible role in the regulation of protein translation. Finally, circHtt(2,3,4,5,6) overexpression experiments in HD-relevant STHdh striatal cells revealed its ability to modulate CAG expansion-driven cellular defects in cell-to-substrate adhesion, thus uncovering an unconventional modifier of HD pathology.
Collapse
Affiliation(s)
- Jasmin Morandell
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Alan Monziani
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Martina Lazioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Deborah Donzel
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Jessica Döring
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Claudio Oss Pegorar
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Angela D'Anzi
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Miguel Pellegrini
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Andrea Mattiello
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Dalia Bortolotti
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Takshashila Tripathi
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Virginia B Mattis
- Board of Governor's Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marina Kovalenko
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jessica Rosati
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zdenka Ellederová
- Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriella Viero
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| |
Collapse
|
12
|
Zhu J, Hou Y, Li W, Wang X, Li F, Li N, Hu Y, Wang X, Ge SN. miR-181a expressed in the dorsal hippocampus regulates the reinstatement of cocaine CPP by targeting PRKAA1. Behav Brain Res 2024; 471:115097. [PMID: 38878971 DOI: 10.1016/j.bbr.2024.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Neuroadaptive changes in the hippocampus underlie addictive-like behaviors in humans or animals chronically exposed to cocaine. miR-181a, which is widely expressed in the hippocampus, acts as a regulator for synaptic plasticity, while its role in drug reinstatement is unclear. In this study, we found that miR-181a regulates the reinstatement of cocaine conditioned place preference(CPP), and altered miR-181a expression changes the complexity of hippocampal neurons and the density and morphology of dendritic spines. By using a luciferase gene reporter, we found that miR-181a targets PRKAA1, an upstream molecule in the mTOR pathway. High miR-181a expression reduced the expression of the PRKAA1 mRNA and promoted mTOR activity and the reinstatement of cocaine CPP. These results indicate that miR-181a is involved in neuronal structural plasticity induced by reinstatement of cocaine CPP, possibly through the activation of the mTOR signaling pathway. This study provides new microRNA targets and a theoretical foundation for the prevention of cocaine-induced reinstatement.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China; Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China
| | - Yueru Hou
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China; Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China
| | - Wan Li
- Xi'an Technological University, Xi'an 710021, China
| | - Xin Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Fei Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Nan Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yan Hu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Xuelian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| | - Shun-Nan Ge
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| |
Collapse
|
13
|
Ritz NL, Bastiaanssen TFS, Cowan CSM, Smith L, Theune N, Brocka M, Myers EM, Moloney RD, Moloney GM, Shkoporov AN, Draper LA, Hill C, Dinan TG, Slattery DA, Cryan JF. Social fear extinction susceptibility is associated with Microbiota-Gut-Brain axis alterations. Brain Behav Immun 2024; 120:315-326. [PMID: 38852762 DOI: 10.1016/j.bbi.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Social anxiety disorder is a common psychiatric condition that severely affects quality of life of individuals and is a significant societal burden. Although many risk factors for social anxiety exist, it is currently unknown how social fear sensitivity manifests biologically. Furthermore, since some individuals are resilient and others are susceptible to social fear, it is important to interrogate the mechanisms underpinning individual response to social fear situations. The microbiota-gut-brain axis has been associated with social behaviour, has recently been linked with social anxiety disorder, and may serve as a therapeutic target for modulation. Here, we assess the potential of this axis to be linked with social fear extinction processes in a murine model of social anxiety disorder. To this end, we correlated differential social fear responses with microbiota composition, central gene expression, and immune responses. Our data provide evidence that microbiota variability is strongly correlated with alterations in social fear behaviour. Moreover, we identified altered gene candidates by amygdalar transcriptomics that are linked with social fear sensitivity. These include genes associated with social behaviour (Armcx1, Fam69b, Kcnj9, Maoa, Serinc5, Slc6a17, Spata2, and Syngr1), inflammation and immunity (Cars, Ckmt1, Klf5, Maoa, Map3k12, Pex5, Serinc5, Sidt1, Spata2), and microbe-host interaction (Klf5, Map3k12, Serinc5, Sidt1). Together, these data provide further evidence for a role of the microbiota-gut-brain axis in social fear responses.
Collapse
Affiliation(s)
- Nathaniel L Ritz
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Caitlin S M Cowan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Linda Smith
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Nigel Theune
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Marta Brocka
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Eibhlís M Myers
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Rachel D Moloney
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12YT20, Ireland
| | - David A Slattery
- Dept. of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt 60528, Germany
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland.
| |
Collapse
|
14
|
Jino K, Miyamoto K, Kanbara T, Unemura C, Horiguchi N, Ago Y. Allosteric inhibition of phosphodiesterase 4D induces biphasic memory-enhancing effects associated with learning-activated signaling pathways. Psychopharmacology (Berl) 2024; 241:805-816. [PMID: 38114603 DOI: 10.1007/s00213-023-06510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
RATIONALE Phosphodiesterase 4D negative allosteric modulators (PDE4D NAMs) enhance memory and cognitive function in animal models without emetic-like side effects. However, the relationship between increased cyclic adenosine monophosphate (cAMP) signaling and the effects of PDE4D NAM remains elusive. OBJECTIVE To investigate the roles of hippocampal cAMP metabolism and synaptic activation in the effects of D159687, a PDE4D NAM, under baseline and learning-stimulated conditions. RESULTS At 3 mg/kg, D159687 enhanced memory formation and consolidation in contextual fear conditioning; however, neither lower (0.3 mg/kg) nor higher (30 mg/kg) doses induced memory-enhancing effects. A biphasic (bell-shaped) dose-response effect was also observed in a scopolamine-induced model of amnesia in the Y-maze, whereas D159687 dose-dependently caused an emetic-like effect in the xylazine/ketamine anesthesia test. At 3 mg/kg, D159687 increased cAMP levels in the hippocampal CA1 region after conditioning in the fear conditioning test, but not in the home-cage or conditioning cage (i.e., context only). By contrast, 30 mg/kg of D159687 increased hippocampal cAMP levels under all conditions. Although both 3 and 30 mg/kg of D159687 upregulated learning-induced Fos expression in the hippocampal CA1 30 min after conditioning, 3 mg/kg, but not 30 mg/kg, of D159687 induced phosphorylation of synaptic plasticity-related proteins such as cAMP-responsive element-binding protein, synaptosomal-associated protein 25 kDa, and the N-methyl-D-aspartate receptor subunit NR2A. CONCLUSIONS Our findings suggest that learning-stimulated conditions can alter the effects of a PDE4D NAM on hippocampal cAMP levels and imply that a PDE4D NAM exerts biphasic memory-enhancing effects associated with synaptic plasticity-related signaling activation.
Collapse
Affiliation(s)
- Kohei Jino
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Keisuke Miyamoto
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Tomoe Kanbara
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Chie Unemura
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Naotaka Horiguchi
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan.
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.
| |
Collapse
|
15
|
Abstract
The harmful side effects of opioid drugs such as respiratory depression, tolerance, dependence, and abuse potential have limited the therapeutic utility of opioids for their entire clinical history. However, no previous attempt to develop effective pain drugs that substantially ameliorate these effects has succeeded, and the current opioid epidemic affirms that they are a greater hindrance to the field of pain management than ever. Recent attempts at new opioid development have sought to reduce these side effects by minimizing engagement of the regulatory protein arrestin-3 at the mu-opioid receptor, but there is significant controversy around this approach. Here, we discuss the ongoing effort to develop safer opioids and its relevant historical context. We propose a new model that reconciles results previously assumed to be in direct conflict to explain how different signaling profiles at the mu-opioid receptor contribute to opioid tolerance and dependence. Our goal is for this framework to inform the search for a new generation of lower liability opioid analgesics.
Collapse
Affiliation(s)
| | - Jennifer L Whistler
- Center for Neuroscience, University of California, Davis, California, USA;
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, California, USA
| |
Collapse
|
16
|
Rezayof A, Ghasemzadeh Z, Sahafi OH. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem Int 2023; 169:105572. [PMID: 37423274 DOI: 10.1016/j.neuint.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Drug abuse changes neurophysiological functions at multiple cellular and molecular levels in the addicted brain. Well-supported scientific evidence suggests that drugs negatively affect memory formation, decision-making and inhibition, and emotional and cognitive behaviors. The mesocorticolimbic brain regions are involved in reward-related learning and habitual drug-seeking/taking behaviors to develop physiological and psychological dependence on the drugs. This review highlights the importance of specific drug-induced chemical imbalances resulting in memory impairment through various neurotransmitter receptor-mediated signaling pathways. The mesocorticolimbic modifications in the expression levels of brain-derived neurotrophic factor (BDNF) and the cAMP-response element binding protein (CREB) impair reward-related memory formation following drug abuse. The contributions of protein kinases and microRNAs (miRNAs), along with the transcriptional and epigenetic regulation have also been considered in memory impairment underlying drug addiction. Overall, we integrate the research on various types of drug-induced memory impairment in distinguished brain regions and provide a comprehensive review with clinical implications addressing the upcoming studies.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
17
|
Liu M, Mu S, Han W, Tan X, Liu E, Hang Z, Zhu S, Yue Q, Sun J. Dopamine D1 receptor in orbitofrontal cortex to dorsal striatum pathway modulates methamphetamine addiction. Biochem Biophys Res Commun 2023; 671:96-104. [PMID: 37300946 DOI: 10.1016/j.bbrc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The orbitofrontal cortex (OFC)-dorsal striatum (DS) is an important neural circuit that contributes to addictive behavior, including compulsive reinforcement, yet the specific types of neurons that play a major role still need to be further elucidated. Here, we used a place conditioning paradigm to measure the conditioned responses to methamphetamine (MA). The results demonstrated that MA increases the expression of c-Fos, synaptic plasticity in OFC and DS. Patch-clamp recording showed that MA activated projection neurons from the OFC to the DS, and chemogenetic manipulation of neuronal activity in OFC-DS projection neurons affects conditioned place preference (CPP) scores. And the combined patch-electrochemical technique was used to detect the DA release in OFC, the data indicated that the DA release was increased in MA group. Additionally, SCH23390, a D1R antagonist, was used to verify the function of D1R projection neurons, showing that SCH23390 reversed MA addiction-like behavior. Collectively, these findings provide evidence for the D1R neuron is sufficient to regulate MA addiction in the OFC-DS pathway, and the study provides new insight into the underlying mechanism of pathological changes in MA addiction.
Collapse
Affiliation(s)
- Min Liu
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shouhong Mu
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Weikai Han
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xu Tan
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - E Liu
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhaofang Hang
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shaowei Zhu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Qingwei Yue
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jinhao Sun
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
18
|
Damiani F, Cornuti S, Tognini P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology 2023; 231:109491. [PMID: 36924923 DOI: 10.1016/j.neuropharm.2023.109491] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Neuroplasticity refers to the ability of brain circuits to reorganize and change the properties of the network, resulting in alterations in brain function and behavior. It is traditionally believed that neuroplasticity is influenced by external stimuli, learning, and experience. Intriguingly, there is new evidence suggesting that endogenous signals from the body's periphery may play a role. The gut microbiota, a diverse community of microorganisms living in harmony with their host, may be able to influence plasticity through its modulation of the gut-brain axis. Interestingly, the maturation of the gut microbiota coincides with critical periods of neurodevelopment, during which neural circuits are highly plastic and potentially vulnerable. As such, dysbiosis (an imbalance in the gut microbiota composition) during early life may contribute to the disruption of normal developmental trajectories, leading to neurodevelopmental disorders. This review aims to examine the ways in which the gut microbiota can affect neuroplasticity. It will also discuss recent research linking gastrointestinal issues and bacterial dysbiosis to various neurodevelopmental disorders and their potential impact on neurological outcomes.
Collapse
Affiliation(s)
| | - Sara Cornuti
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Paola Tognini
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
19
|
Almeida MM, Cabrita E, Fatsini E. The Use of Sand Substrate Modulates Dominance Behaviour and Brain Gene Expression in a Flatfish Species. Animals (Basel) 2023; 13:ani13060978. [PMID: 36978519 PMCID: PMC10044175 DOI: 10.3390/ani13060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Physical complexity adds physical enrichment to rearing conditions. This enrichment promotes fish welfare and reduces detrimental characteristics that fish develop in captivity. Senegalese sole (Solea senegalensis) is an important species for European aquaculture, where it is reared in intensive conditions using fibreglass tanks. However, reproductive dysfunctions present in this species do not allow it to complete its life cycle in captivity. Recently, dominance behaviour has been studied to try to solve this problem. The present study aimed to assess the effect of sand as environmental enrichment in the dominance behaviour and brain mRNA abundance of Senegalese sole juveniles. Four tanks of sole (n = 48 fish in total) were established in two different environments (with and without sand). Juveniles were subjected to dominance tests of feeding and territoriality. Behaviours analysed by video recordings related to the distance from the food delivered and harassment behaviour towards other individuals (e.g., resting of the head on another individual). In both environments, dominant sole were the first to feed, displayed more head-resting behaviour and dominated the area close to the feeding point, where the events were reduced in fish maintained in the sand. mRNA expression related to differentiation of dopamine neurons (nr4a2) and regulation of maturation (fshra) were significantly upregulated in dominant fish in the sand environment compared to dominants maintained without sand. The use of an enriched environment may affect Senegalese sole dominance, enhance welfare and possibly advance future maturation.
Collapse
|
20
|
Poisel E, Zillich L, Streit F, Frank J, Friske MM, Foo JC, Mechawar N, Turecki G, Hansson AC, Nöthen MM, Rietschel M, Spanagel R, Witt SH. DNA methylation in cocaine use disorder-An epigenome-wide approach in the human prefrontal cortex. Front Psychiatry 2023; 14:1075250. [PMID: 36865068 PMCID: PMC9970996 DOI: 10.3389/fpsyt.2023.1075250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Cocaine use disorder (CUD) is characterized by a loss of control over cocaine intake and is associated with structural, functional, and molecular alterations in the human brain. At the molecular level, epigenetic alterations are hypothesized to contribute to the higher-level functional and structural brain changes observed in CUD. Most evidence of cocaine-associated epigenetic changes comes from animal studies while only a few studies have been performed using human tissue. METHODS We investigated epigenome-wide DNA methylation (DNAm) signatures of CUD in human post-mortem brain tissue of Brodmann area 9 (BA9). A total of N = 42 BA9 brain samples were obtained from N = 21 individuals with CUD and N = 21 individuals without a CUD diagnosis. We performed an epigenome-wide association study (EWAS) and analyzed CUD-associated differentially methylated regions (DMRs). To assess the functional role of CUD-associated differential methylation, we performed Gene Ontology (GO) enrichment analyses and characterized co-methylation networks using a weighted correlation network analysis. We further investigated epigenetic age in CUD using epigenetic clocks for the assessment of biological age. RESULTS While no cytosine-phosphate-guanine (CpG) site was associated with CUD at epigenome-wide significance in BA9, we detected a total of 20 CUD-associated DMRs. After annotation of DMRs to genes, we identified Neuropeptide FF Receptor 2 (NPFFR2) and Kalirin RhoGEF Kinase (KALRN) for which a previous role in the behavioral response to cocaine in rodents is known. Three of the four identified CUD-associated co-methylation modules were functionally related to neurotransmission and neuroplasticity. Protein-protein interaction (PPI) networks derived from module hub genes revealed several addiction-related genes as highly connected nodes such as Calcium Voltage-Gated Channel Subunit Alpha1 C (CACNA1C), Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1), and Jun Proto-Oncogene, AP-1 Transcription Factor Subunit (JUN). In BA9, we observed a trend toward epigenetic age acceleration (EAA) in individuals with CUD remaining stable even after adjustment for covariates. CONCLUSION Results from our study highlight that CUD is associated with epigenome-wide differences in DNAm levels in BA9 particularly related to synaptic signaling and neuroplasticity. This supports findings from previous studies that report on the strong impact of cocaine on neurocircuits in the human prefrontal cortex (PFC). Further studies are needed to follow up on the role of epigenetic alterations in CUD focusing on the integration of epigenetic signatures with transcriptomic and proteomic data.
Collapse
Affiliation(s)
- Eric Poisel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marion M Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Innovative Psychiatric and Psychotherapeutic Research, Biobank, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
21
|
Yeom M, Ahn S, Jang SY, Jang JH, Lee Y, Hahm DH, Park HJ. Acupuncture attenuates comorbid anxiety- and depressive-like behaviors of atopic dermatitis through modulating neuroadaptation in the brain reward circuit in mice. Biol Res 2022; 55:28. [PMID: 36088447 PMCID: PMC9463810 DOI: 10.1186/s40659-022-00396-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
Atopic dermatitis (AD) is highly comorbid with negative emotions such as anxiety and depression. Although acupuncture has demonstrated efficacy in AD, its influence on comorbid anxiety and depression remains unclear. We sought to explore the impact and mechanisms of action of acupuncture on comorbid anxiety and depression of AD. AD-like skin lesions were induced by the topical application of MC903 to the mouse cheek. Acupuncture was performed at Gok-Ji (LI11) acupoints. AD-like phenotypes were quantified by lesion scores, scratching behavior, and histopathological changes. The effects of acupuncture on comorbid anxiety and depression-like behaviors were assessed using the elevated plus-maze (EPM), open-field tests (OFT), and tail-suspension test (TST). In addition, biochemical changes in the brain reward regions were investigated by immunoblotting for the expression of tyrosine hydroxylase (TH), dopamine D1 receptor (D1R), phospho-dopamine and cAMP-regulated phosphoprotein-32 kDa (pDARPP-32), phospho-cAMP response element binding protein (pCREB), ΔFosB, and brain-derived neurotrophic factor (BDNF) in the nucleus accumbens, dorsolateral striatum, and ventral tegmental area. Acupuncture effectively improved the chronic itching and robust AD-like skin lesions with epidermal thickening. Additionally, it considerably reduced comorbid anxiety- and depression-like symptoms, as indicated by more time spent in the open arms of the EPM and in the center of the open field and less time spent immobile in the TST. Higher pCREB, ΔFosB, BDNF, and pDARPP-32 levels, and reduced TH and D1R protein expression in the brain reward regions of AD mice were reversed by acupuncture treatment. The beneficial effects of acupuncture on clinical symptoms (scratching behavior) and comorbid psychological distress in AD strongly correlated with dorsal striatal ΔFosB levels. Collectively, these data indicate that acupuncture had a significant, positive impact on comorbid anxiety- and depression-like behaviors by modulating neuroadaptation in the brain reward circuit in mice with AD, providing a novel perspective for the non-pharmacological management of psychiatric comorbidities of AD.
Collapse
|
22
|
Porcu A, Nilsson A, Booreddy S, Barnes SA, Welsh DK, Dulcis D. Seasonal changes in day length induce multisynaptic neurotransmitter switching to regulate hypothalamic network activity and behavior. SCIENCE ADVANCES 2022; 8:eabn9867. [PMID: 36054362 PMCID: PMC10848959 DOI: 10.1126/sciadv.abn9867] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/19/2022] [Indexed: 05/18/2023]
Abstract
Seasonal changes in day length (photoperiod) affect numerous physiological functions. The suprachiasmatic nucleus (SCN)-paraventricular nucleus (PVN) axis plays a key role in processing photoperiod-related information. Seasonal variations in SCN and PVN neurotransmitter expression have been observed in humans and animal models. However, the molecular mechanisms by which the SCN-PVN network responds to altered photoperiod is unknown. Here, we show in mice that neuromedin S (NMS) and vasoactive intestinal polypeptide (VIP) neurons in the SCN display photoperiod-induced neurotransmitter plasticity. In vivo recording of calcium dynamics revealed that NMS neurons alter PVN network activity in response to winter-like photoperiod. Chronic manipulation of NMS neurons is sufficient to induce neurotransmitter switching in PVN neurons and affects locomotor activity. Our findings reveal previously unidentified molecular adaptations of the SCN-PVN network in response to seasonality and the role for NMS neurons in adjusting hypothalamic function to day length via a coordinated multisynaptic neurotransmitter switching affecting behavior.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Anna Nilsson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sathwik Booreddy
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - David K. Welsh
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Berger TC, Taubøll E, Heuser K. The potential role of DNA methylation as preventive treatment target of epileptogenesis. Front Cell Neurosci 2022; 16:931356. [PMID: 35936496 PMCID: PMC9353008 DOI: 10.3389/fncel.2022.931356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Pharmacological therapy of epilepsy has so far been limited to symptomatic treatment aimed at neuronal targets, with the result of an unchanged high proportion of patients lacking seizure control. The dissection of the intricate pathological mechanisms that transform normal brain matter to a focus for epileptic seizures—the process of epileptogenesis—could yield targets for novel treatment strategies preventing the development or progression of epilepsy. While many pathological features of epileptogenesis have been identified, obvious shortcomings in drug development are now believed to be based on the lack of knowledge of molecular upstream mechanisms, such as DNA methylation (DNAm), and as well as a failure to recognize glial cell involvement in epileptogenesis. This article highlights the potential role of DNAm and related gene expression (GE) as a treatment target in epileptogenesis.
Collapse
Affiliation(s)
- Toni Christoph Berger
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- *Correspondence: Toni Christoph Berger
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Kjell Heuser
| |
Collapse
|
24
|
Inactivation of the Lateral Hypothalamus Attenuates Methamphetamine-Induced Conditioned Place Preference through Regulation of Kcnq3 Expression. Int J Mol Sci 2022; 23:ijms23137305. [PMID: 35806315 PMCID: PMC9266452 DOI: 10.3390/ijms23137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/03/2022] Open
Abstract
Repeated administration of methylamphetamine (MA) induces MA addiction, which is featured by awfully unpleasant physical and emotional experiences after drug use is terminated. Neurophysiological studies show that the lateral hypothalamus (LH) is involved in reward development and addictive behaviors. Here, we show that repeated administration of MA activates the expression of c-Fos in LH neurons responding to conditioned place preference (CPP). Chemogenetic inhibition of the LH can disrupt the addiction behavior, demonstrating that the LH plays an important role in MA-induced reward processing. Critically, MA remodels the neurons of LH synaptic plasticity, increases intracellular calcium level, and enhances spontaneous current and evoked potentials of neurons compared to the saline group. Furthermore, overexpression of the potassium voltage-gated channel subfamily Q member 3 (Kcnq3) expression can reverse the CPP score and alleviate the occurrence of addictive behaviors. Together, these results unravel a new neurobiological mechanism underlying the MA-induced addiction in the lateral hypothalamus, which could pave the way toward new and effective interventions for this addiction disease.
Collapse
|
25
|
Truong TT, Bortolasci CC, Kidnapillai S, Spolding B, Panizzutti B, Liu ZS, Watmuff B, Kim JH, Dean OM, Richardson M, Berk M, Walder K. Common effects of bipolar disorder medications on expression quantitative trait loci genes. J Psychiatr Res 2022; 150:105-112. [PMID: 35366598 DOI: 10.1016/j.jpsychires.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
The molecular mechanism(s) underpinning the clinical efficacy of the current drugs for bipolar disorder (BD) are largely unknown. This study evaluated the transcriptional perturbations potentially playing roles in the therapeutic efficacy of four commonly prescribed psychotropic drugs used to treat BD. NT2-N cells were treated with lamotrigine, lithium, quetiapine, valproate or vehicle control for 24 h. Genome-wide mRNA expression was quantified by RNA-sequencing. Incorporating drug-induced gene expression profiles with BD-associated transcriptional changes from post-mortem brains, we identified potential therapeutic-relevant genes associated with both drug treatments and BD pathophysiology and focused on expression quantitative trait loci (eQTL) genes with genome-wide association with BD. Each eQTL gene was ranked based on its potential role in the therapeutic effect across multiple drugs. The expression of highest-ranked eQTL genes were measured by RT-qPCR to confirm their transcriptional changes observed in RNA-seq. We found 775 genes for which at least 2 drugs reversed expression levels relative to the differential expression in post-mortem brains. Pathway analysis identified enriched biological processes highlighting mitochondrial and endoplasmic reticulum function. Differential expression of SRPK2 and CHDH was confirmed by RT-qPCR following multiple-dose treatments. We pinpointed potential genes involved in the beneficial effects of drugs used for BD and their main associated biological pathways. CHDH, which encodes a mitochondrial protein, had a significant dose-responsive downregulation following treatment with increasing doses of quetiapine and lamotrigine, which in combination with the enriched mitochondrial pathways suggests potential therapeutic roles and demand more studies on mitochondrial involvement in BD to identify novel treatment targets.
Collapse
Affiliation(s)
- Trang Tt Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia.
| | - Chiara C Bortolasci
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Briana Spolding
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Zoe Sj Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Brad Watmuff
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mark Richardson
- Bioinformatics Core Research Facility (BCRF), Deakin University, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| |
Collapse
|
26
|
Vindas-Smith R, Quesada D, Hernández-Solano MI, Castro M, Sequeira-Cordero A, Fornaguera J, Gómez G, Brenes JC. Fat intake and obesity-related parameters predict striatal BDNF gene expression and dopamine metabolite levels in cafeteria diet-fed rats. Neuroscience 2022; 491:225-239. [DOI: 10.1016/j.neuroscience.2022.03.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
27
|
Major Plant in Herbal Mixture Gan-Mai-Da-Zao for the Alleviation of Depression in Rat Models. PLANTS 2022; 11:plants11030258. [PMID: 35161241 PMCID: PMC8839286 DOI: 10.3390/plants11030258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
Gan-Mai-Da-Zao (GMDZ) is a well-known product in Chinese traditional medicine and includes three major plants: blighted wheat (Fu Mai), licorice (Gan Cao), and jujube (Da Zao). GMDZ is widely used as an efficacious and well-tolerated prescription for depression in clinics. The present study was designed to investigate the main plant of GMDZ for its antidepressant-like effect using the unpredictable chronic mild stress (UCMS) model on rats who received an injection with p-chlorophenylalanine (PCPA) to produce the chemical model. In rats subjected to the UCMS model, forced swim tests, open field tests, and sucrose preference tests were applied to estimate the chronic effect of GMDZ. We found that the oral administration of GMDZ for 21 days significantly alleviated the behavior in rats with depression induced by either UCMS or PCPA. The expression levels of the serotonin transporter (5-HTT) and brain-derived neurotrophic factor (BDNF) in the hippocampus of the rats with depression were markedly increased by GMDZ. Additionally, rats that received the herbal mixture without licorice showed a markedly lower response than GMDZ. These results suggest that GMDZ may alleviate the depressive-like behaviors in depressive rats, possibly via licorice (Gan Cao), to increase 5-HTT and BDNF signals in the hippocampus. The present study confirmed the antidepressant-like effects of GMDZ. Additionally, licorice (Gan Cao) may play a key role in the effectiveness of GMDZ.
Collapse
|
28
|
Karam CS, Williams BL, Morozova I, Yuan Q, Panarsky R, Zhang Y, Hodgkinson CA, Goldman D, Kalachikov S, Javitch JA. Functional Genomic Analysis of Amphetamine Sensitivity in Drosophila. Front Psychiatry 2022; 13:831597. [PMID: 35250674 PMCID: PMC8894854 DOI: 10.3389/fpsyt.2022.831597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Abstract
Abuse of psychostimulants, including amphetamines (AMPHs), is a major public health problem with profound psychiatric, medical, and psychosocial complications. The actions of these drugs at the dopamine transporter (DAT) play a critical role in their therapeutic efficacy as well as their liability for abuse and dependence. To date, however, the mechanisms that mediate these actions are not well-understood, and therapeutic interventions for AMPH abuse have been limited. Drug exposure can induce broad changes in gene expression that can contribute to neuroplasticity and effect long-lasting changes in neuronal function. Identifying genes and gene pathways perturbed by drug exposure is essential to our understanding of the molecular basis of drug addiction. In this study, we used Drosophila as a model to examine AMPH-induced transcriptional changes that are DAT-dependent, as those would be the most relevant to the stimulatory effects of the drug. Using this approach, we found genes involved in the control of mRNA translation to be significantly upregulated in response to AMPH in a DAT-dependent manner. To further prioritize genes for validation, we explored functional convergence between these genes and genes we identified in a genome-wide association study of AMPH sensitivity using the Drosophila Genetic Reference Panel. We validated a number of these genes by showing that they act specifically in dopamine neurons to mediate the behavioral effects of AMPH. Taken together, our data establish Drosophila as a powerful model that enables the integration of behavioral, genomic and transcriptomic data, followed by rapid gene validation, to investigate the molecular underpinnings of psychostimulant action.
Collapse
Affiliation(s)
- Caline S Karam
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Brenna L Williams
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Irina Morozova
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, United States.,Department of Chemical Engineering, Columbia University, New York, NY, United States
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Rony Panarsky
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Yuchao Zhang
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, United States.,Department of Chemical Engineering, Columbia University, New York, NY, United States
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States.,Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
29
|
Prasad MP, Detchou DKE, Wang F, Ledwidge LL, Kingston SE, Wilson Horch H. Transcriptional expression changes during compensatory plasticity in the terminal ganglion of the adult cricket Gryllus bimaculatus. BMC Genomics 2021; 22:742. [PMID: 34649498 PMCID: PMC8518198 DOI: 10.1186/s12864-021-08018-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Damage to the adult central nervous system often leads to long-term disruptions in function due to the limited capacity for neurological recovery. The central nervous system of the Mediterranean field cricket, Gryllus bimaculatus, shows an unusual capacity for compensatory plasticity, most obviously in the auditory system and the cercal escape system. In both systems, unilateral sensory disruption leads the central circuitry to compensate by forming and/or strengthening connections with the contralateral sensory organ. While this compensatory plasticity in the auditory system relies on robust dendritic sprouting and novel synapse formation, the compensatory plasticity in the cercal escape circuitry shows little obvious dendritic sprouting and instead may rely on shifts in excitatory and inhibitory synaptic strength. RESULTS In order to better understand what types of molecular pathways might underlie this compensatory shift in the cercal system, we used a multiple k-mer approach to assemble a terminal ganglion transcriptome that included ganglia collected one, three, and 7 days after unilateral cercal ablation in adult, male animals. We performed differential expression analysis using EdgeR and DESeq2 and examined Gene Ontologies to identify candidates potentially involved in this plasticity. Enriched GO terms included those related to the ubiquitin-proteosome protein degradation system, chromatin-mediated transcriptional pathways, and the GTPase-related signaling system. CONCLUSION Further exploration of these GO terms will provide a clearer picture of the processes involved in compensatory recovery of the cercal escape system in the cricket and can be compared and contrasted with the distinct pathways that have been identified upon deafferentation of the auditory system in this same animal.
Collapse
Affiliation(s)
- Meera P Prasad
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Donald K E Detchou
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Felicia Wang
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Lisa L Ledwidge
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Sarah E Kingston
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
- Present address: School of Marine Sciences and Darling Marine Center, University of Maine, 193 Clarks Cove Rd, Walpole, ME, 04573, USA
- University of California Santa Cruz, Ecology and Evolutionary Biology Department and UC Natural Reserves, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Hadley Wilson Horch
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA.
| |
Collapse
|
30
|
Effect of histone acetylation on maintenance and reinstatement of morphine-induced conditioned place preference and ΔFosB expression in the nucleus accumbens and prefrontal cortex of male rats. Behav Brain Res 2021; 414:113477. [PMID: 34302880 DOI: 10.1016/j.bbr.2021.113477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023]
Abstract
Recently, epigenetic mechanisms are considered as the new potential targets for addiction treatment. This research was designed to explore the effect of histone acetylation on ΔFosB gene expression in morphine-induced conditioned place preference (CPP) in male rats. CPP was induced via morphine injection (5 mg/kg) for three consecutive days. Animals received low-dose theophylline (LDT) or Suberoylanilide Hydroxamic acid (SAHA), as an histone deacetylase (HDAC) activator or inhibitor, respectively, and a combination of both in subsequent extinction days. Following extinction, a priming dose of morphine (1 mg/kg) was administered to induce reinstatement. H4 acetylation and ΔFosB expression in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) were assessed on the last day of extinction and the following CPP reinstatement. Our results demonstrated that daily administration of SAHA (25 mg/kg; i.p.), facilitated morphine-extinction and decreased CPP score in reinstatement of place preference. Conversely, injections of LDT (20 mg/kg; i.p.) prolonged extinction in animals. Co-administration of LDT and SAHA on extinction days counterbalanced each other, such that maintenance and reinstatement were no different than the control group. The gene expression of ΔFosB was increased by SAHA in NAc and mPFC compared to the control group. Administration of SAHA during extinction days, also altered histone acetylation in the NAc and mPFC on the last day of extinction, but not on reinstatement day. Collectively, administration of SAHA facilitated extinction and reduced reinstatement of morphine-induced CPP in rats. This study confirms the essential role of epigenetic mechanisms, specifically histone acetylation, in regulating drug-induced plasticity and seeking behaviors.
Collapse
|
31
|
Kawatake-Kuno A, Murai T, Uchida S. The Molecular Basis of Depression: Implications of Sex-Related Differences in Epigenetic Regulation. Front Mol Neurosci 2021; 14:708004. [PMID: 34276306 PMCID: PMC8282210 DOI: 10.3389/fnmol.2021.708004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Although the etiology and pathophysiology of MDD remain poorly understood, aberrant neuroplasticity mediated by the epigenetic dysregulation of gene expression within the brain, which may occur due to genetic and environmental factors, may increase the risk of this disorder. Evidence has also been reported for sex-related differences in the pathophysiology of MDD, with female patients showing a greater severity of symptoms, higher degree of functional impairment, and more atypical depressive symptoms. Males and females also differ in their responsiveness to antidepressants. These clinical findings suggest that sex-dependent molecular and neural mechanisms may underlie the development of depression and the actions of antidepressant medications. This review discusses recent advances regarding the role of epigenetics in stress and depression. The first section presents a brief introduction of the basic mechanisms of epigenetic regulation, including histone modifications, DNA methylation, and non-coding RNAs. The second section reviews their contributions to neural plasticity, the risk of depression, and resilience against depression, with a particular focus on epigenetic modulators that have causal relationships with stress and depression in both clinical and animal studies. The third section highlights studies exploring sex-dependent epigenetic alterations associated with susceptibility to stress and depression. Finally, we discuss future directions to understand the etiology and pathophysiology of MDD, which would contribute to optimized and personalized therapy.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
32
|
Bandeira ID, Lins-Silva DH, Barouh JL, Faria-Guimarães D, Dorea-Bandeira I, Souza LS, Alves GS, Brunoni AR, Nitsche M, Fregni F, Lucena R. Neuroplasticity and non-invasive brain stimulation in the developing brain. PROGRESS IN BRAIN RESEARCH 2021; 264:57-89. [PMID: 34167665 DOI: 10.1016/bs.pbr.2021.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain is a dynamic organ whose growth and organization varies according to each subject's life experiences. Through adaptations in gene expression and the release of neurotrophins and neurotransmitters, these experiences induce a process of cellular realignment and neural network reorganization, which consolidate what is called neuroplasticity. However, despite the brain's resilience and dynamism, neuroplasticity is maximized during the first years of life, when the developing brain is more sensitive to structural reorganization and the repair of damaged neurons. This review presents an overview of non-invasive brain stimulation (NIBS) techniques that have increasingly been a focus for experimental research and the development of therapeutic methods involving neuroplasticity, especially Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS). Due to its safety risk profile and extensive tolerability, several trials have demonstrated the benefits of NIBS as a feasible experimental alternative for the treatment of brain and mind disorders in children and adolescents. However, little is known about the late impact of neuroplasticity-inducing tools on the developing brain, and there are concerns about aberrant plasticity. There are also ethical considerations when performing interventions in the pediatric population. This article will therefore review these aspects and also obstacles related to the premature application of NIBS, given the limited evidence available concerning the extent to which these methods interfere with the developing brain.
Collapse
Affiliation(s)
- Igor D Bandeira
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.
| | - Daniel H Lins-Silva
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Judah L Barouh
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Daniela Faria-Guimarães
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Ingrid Dorea-Bandeira
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucca S Souza
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Gustavo S Alves
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Charlestown, MA, United States
| | - Rita Lucena
- Department of Neuroscience and Mental Health, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
33
|
Gowen AM, Odegaard KE, Hernandez J, Chand S, Koul S, Pendyala G, Yelamanchili SV. Role of microRNAs in the pathophysiology of addiction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1637. [PMID: 33336550 PMCID: PMC8026578 DOI: 10.1002/wrna.1637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Addiction is a chronic and relapsing brain disorder characterized by compulsive seeking despite adverse consequences. There are both heritable and epigenetic mechanisms underlying drug addiction. Emerging evidence suggests that non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs, and circular RNAs regulate synaptic plasticity and related behaviors caused by substances of abuse. These ncRNAs modify gene expression and may contribute to the behavioral phenotypes of addiction. Among the ncRNAs, the most widely researched and impactful are miRNAs. The goal in this systematic review is to provide a detailed account of recent research involving the role of miRNAs in addiction. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Austin M Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katherine E Odegaard
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jordan Hernandez
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
34
|
Dick AL, Zhao Q, Crossin R, Baker‐Andresen D, Li X, Edson J, Roeh S, Marshall V, Bredy TW, Lawrence AJ, Duncan JR. Adolescent chronic intermittent toluene inhalation dynamically regulates the transcriptome and neuronal methylome within the rat medial prefrontal cortex. Addict Biol 2021; 26:e12937. [PMID: 32638524 DOI: 10.1111/adb.12937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
Inhalants containing the volatile solvent toluene are misused to induce euphoria or intoxication. Inhalant abuse is most common during adolescence and can result in cognitive impairments during an important maturational period. Despite evidence suggesting that epigenetic modifications may underpin the cognitive effects of inhalants, no studies to date have thoroughly investigated toluene-induced regulation of the transcriptome or discrete epigenetic modifications within the brain. To address this, we investigated effects of adolescent chronic intermittent toluene (CIT) inhalation on gene expression and DNA methylation profiles within the rat medial prefrontal cortex (mPFC), which undergoes maturation throughout adolescence and has been implicated in toluene-induced cognitive deficits. Employing both RNA-seq and genome-wide Methyl CpG Binding Domain (MBD) Ultra-seq analysis, we demonstrate that adolescent CIT inhalation (10 000 ppm for 1 h/day, 3 days/week for 4 weeks) induces both transient and persistent changes to the transcriptome and DNA methylome within the rat mPFC for at least 2 weeks following toluene exposure. We demonstrate for the first time that adolescent CIT exposure results in dynamic regulation of the mPFC transcriptome likely relating to acute inflammatory responses and persistent deficits in synaptic plasticity. These adaptations may contribute to the cognitive deficits associated with chronic toluene exposure and provide novel molecular targets for preventing long-term neurophysiological abnormalities following chronic toluene inhalation.
Collapse
Affiliation(s)
- Alec L.W. Dick
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
- Department of Stress Neurobiology and Neurogenetics Max Planck Institute of Psychiatry Munich Germany
| | - Qiongyi Zhao
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Rose Crossin
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
| | | | - Xiang Li
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Janette Edson
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Simone Roeh
- Department of Translational Research in Psychiatry Max Planck Institute of Psychiatry Munich Germany
| | - Victoria Marshall
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Timothy W. Bredy
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
| | - Jhodie R. Duncan
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
| |
Collapse
|
35
|
De Sa Nogueira D, Bourdy R, Filliol D, Romieu P, Befort K. Hippocampal mu opioid receptors are modulated following cocaine self-administration in rat. Eur J Neurosci 2021; 53:3341-3349. [PMID: 33811699 DOI: 10.1111/ejn.15217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Cocaine addiction is a complex pathology induced by long-term brain changes. Understanding the neurochemical changes underlying the reinforcing effects of this drug of abuse is critical for reducing the societal burden of drug addiction. The mu opioid receptor plays a major role in drug reward. This receptor is modulated by chronic cocaine treatment in specific brain structures, but few studies investigated neurochemical adaptations induced by voluntary cocaine intake. In this study, we investigated whether intravenous cocaine-self administration (0.33 mg/kg/injection, fixed-ratio 1 [FR1], 10 days) in rats induces transcriptional and functional changes of the mu opioid receptor in reward-related brain regions. Epigenetic processes with histone modifications were examined for two activating marks, H3K4Me3, and H3K27Ac. We found an increase of mu opioid receptor gene expression along with a potentiation of its functionality in hippocampus of cocaine self-administering animals compared to saline controls. Chromatin immunoprecipitation followed by qPCR revealed no modifications of the histone mark H3K4Me3 and H3K27Ac levels at mu opioid receptor promoter. Our study highlights the hippocampus as an important target to further investigate neuroadaptive processes leading to cocaine addiction.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Romain Bourdy
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Dominique Filliol
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Pascal Romieu
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
36
|
Mukherjee D, Gonzales BJ, Ashwal-Fluss R, Turm H, Groysman M, Citri A. Egr2 induction in spiny projection neurons of the ventrolateral striatum contributes to cocaine place preference in mice. eLife 2021; 10:65228. [PMID: 33724178 PMCID: PMC8057818 DOI: 10.7554/elife.65228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Drug addiction develops due to brain-wide plasticity within neuronal ensembles, mediated by dynamic gene expression. Though the most common approach to identify such ensembles relies on immediate early gene expression, little is known of how the activity of these genes is linked to modified behavior observed following repeated drug exposure. To address this gap, we present a broad-to-specific approach, beginning with a comprehensive investigation of brain-wide cocaine-driven gene expression, through the description of dynamic spatial patterns of gene induction in subregions of the striatum, and finally address functionality of region-specific gene induction in the development of cocaine preference. Our findings reveal differential cell-type specific dynamic transcriptional recruitment patterns within two subdomains of the dorsal striatum following repeated cocaine exposure. Furthermore, we demonstrate that induction of the IEG Egr2 in the ventrolateral striatum, as well as the cells within which it is expressed, are required for the development of cocaine seeking. The human brain is ever changing, constantly rewiring itself in response to new experiences, knowledge or information from the environment. Addictive drugs such as cocaine can hijack the genetic mechanisms responsible for this plasticity, creating dangerous, obsessive drug-seeking and consuming behaviors. Cocaine-induced plasticity is difficult to apprehend, however, as brain regions or even cell populations can react differently to the compound. For instance, sub-regions in the striatum – the brain area that responds to rewards and helps to plan movement – show distinct responses during progressive exposure to cocaine. And while researchers know that the drug immediately changes how neurons switch certain genes on and off, it is still unclear how these genetic modifications later affect behavior. Mukherjee, Gonzales et al. explored these questions at different scales, first focusing on how progressive cocaine exposure changed the way various gene programs were activated across the entire brain. This revealed that programs in the striatum were the most affected by the drug. Examining this region more closely showed that cocaine switches on genes in specific ‘spiny projection’ neuron populations, depending on where these cells are located and the drug history of the mouse. Finally, Mukherjee, Gonzales et al. used genetically modified mice to piece together cocaine exposure, genetic changes and modifications in behavior. These experiments revealed that the drive to seek cocaine depended on activation of the Egr2 gene in populations of spiny projection neurons in a specific sub-region of the striatum. The gene, which codes for a protein that regulates how genes are switched on and off, was itself strongly activated by cocaine intake. Cocaine addiction can have devastating consequences for individuals. Grasping how this drug alters the brain could pave the way for new treatments, while also providing information on the basic mechanisms underlying brain plasticity.
Collapse
Affiliation(s)
- Diptendu Mukherjee
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ben Jerry Gonzales
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Ashwal-Fluss
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Hagit Turm
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, Toronto, Canada
| |
Collapse
|
37
|
Abiero A, Perez Custodio RJ, Botanas CJ, Ortiz DM, Sayson LV, Kim M, Lee HJ, Yoon S, Lee YS, Cheong JH, Kim HJ. 1-Phenylcyclohexan-1-amine hydrochloride (PCA HCl) alters mesolimbic dopamine system accompanied by neuroplastic changes: A neuropsychopharmacological evaluation in rodents. Neurochem Int 2021; 144:104962. [PMID: 33460722 DOI: 10.1016/j.neuint.2021.104962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
The recreational use of N-methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP) and ketamine have grown rapidly due to their psychotomimetic properties. These compounds induce both non-fatal and fatal adverse effects and despite the enhanced regulation, they are continuously synthesized and are being sold in the illegal drug market, including 1-phenylcyclohexan-1-amine hydrochloride (PCA). Therefore, we evaluated its abuse potential through the conditioned-place preference (CPP), self-administration, and locomotor sensitization paradigms. Pretreatment with SCH 2 3390 and haloperidol was also performed during a CPP test. We used ELISA to measure dopamine (DA) levels and western blotting to determine effects on the DA-related proteins as well as on phosphorylated CREB, deltaFosB, and brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) and nucleus accumbens (NAc). Finally, we examined the effects on brain wave activity using electroencephalography (EEG). PCA induced CPP in mice and was self-administered by rats, suggesting that PCA has rewarding and reinforcing properties. PCA increased locomotor of mice on the first treatment and challenge days. SCH 23390 and haloperidol blocked the CPP. PCA altered the DA, tyrosine hydroxylase, dopamine D1 and D2 receptors as well as p-CREB and deltaFosB. Also, PCA altered the delta and gamma waves in the brain, which were then normalized by SCH 2 3390 and haloperidol. The present findings indicate that PCA may induce abuse potential through the dopaminergic system and probably accompanied with alterations in brain wave activity which is similar to that of other psychotomimetic NMDA antagonists. We advocate thorough monitoring of PCP analogs as they pose potential harm to public health.
Collapse
Affiliation(s)
- Arvie Abiero
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea; Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, New South Wales, 2007, Australia
| | - Raly James Perez Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea; Department of Chemistry & Life Science, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Seolmin Yoon
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea; School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
38
|
Salmanzadeh H, Ahmadi-Soleimani SM, Azadi M, Halliwell RF, Azizi H. Adolescent Substance Abuse, Transgenerational Consequences and Epigenetics. Curr Neuropharmacol 2021; 19:1560-1569. [PMID: 33655865 PMCID: PMC8762180 DOI: 10.2174/1570159x19666210303121519] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
Adolescence is the transitional period between childhood and adulthood and a critical period in brain development. Adolescence in humans is also associated with increased expression of risk-taking behaviors. Epidemiological and clinical studies, for example, show a surge of drug abuse and raise the hypothesis that the adolescent brain undergoes critical changes resulting in diminished control. Determining how substance abuse during this critical period might cause longterm neurobiological changes in cognition and behavior is therefore critically important. The present work aims to provide an evaluation of the transgenerational and multi-generational phenotypes derived from parent animals exposed to drugs of abuse only during their adolescence. Specifically, we will consider changes found following the administration of cannabinoids, nicotine, alcohol and opiates. In addition, epigenetic modifications of the genome following drug exposure will be discussed as emerging evidence of the underlying adverse transgenerational effects. Notwithstanding, much of the new data discussed here is from animal models, indicating that future clinical studies are much needed to better understand the neurobiological consequences and mechanisms of drug actions on the human brains' development and maturation.
Collapse
Affiliation(s)
| | | | | | - Robert F. Halliwell
- Address correspondence to this author at the TJ Long School of Pharmacy, University of the Pacific, Stockton, California, USA; Tel: +1 (209) 946 2074; E-mail: and Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Tel: +98-21-82884587; Fax: +98-21-82884528; E-mail:
| | - Hossein Azizi
- Address correspondence to this author at the TJ Long School of Pharmacy, University of the Pacific, Stockton, California, USA; Tel: +1 (209) 946 2074; E-mail: and Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Tel: +98-21-82884587; Fax: +98-21-82884528; E-mail:
| |
Collapse
|
39
|
Ibi D, Hirashima K, Kojima Y, Sumiya K, Kondo S, Yamamoto M, Ando T, Hiramatsu M. Preventive Effects of Continuous Betaine Intake on Cognitive Impairment and Aberrant Gene Expression in Hippocampus of 3xTg Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 79:639-652. [PMID: 33337369 DOI: 10.3233/jad-200972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The deposition of amyloid-β (Aβ) and hyperphosphorylation of tau are well-known as the pathophysiological features of Alzheimer's disease (AD), leading to oxidative stress and synaptic deficits followed by cognitive symptoms. We already demonstrated that betaine (glycine betaine) prevented cognitive impairment and hippocampal oxidative stress in mice intracerebroventricularly injected with an active fragment of Aβ, whereas the effect of betaine in chronic models of AD remains unknown. OBJECTIVE Our objective was to investigate the effects of chronic betaine intake on cognitive impairment and aberrant expression of genes involved in synapse and antioxidant activity in the hippocampus of a genetic AD model. METHODS We performed cognitive tests and RT-PCR in the hippocampus in 3xTg mice, a genetic AD model. RESULTS Cognitive impairment in the Y-maze and novel object recognition tests became evident in 3xTg mice at 9 months old, and not earlier, indicating that cognitive impairment in 3xTg mice developed age-dependently. To examine the preventive effect of betaine on such cognitive impairment, 3xTg mice were fed betaine-containing water for 3 months from 6 to 9 months old, and subsequently subjected to behavioral tests, in which betaine intake prevented the development of cognitive impairment in 3xTg mice. Additionally, the expression levels of genes involved in synapse and antioxidant activity were downregulated in hippocampus of 3xTg mice at 9 months old compared with age-matched wild-type mice, which were suppressed by betaine intake. CONCLUSION Betaine may be applicable as an agent preventing the progression of AD by improving the synaptic structure/function and/or antioxidant activity.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Kazuki Hirashima
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Yuya Kojima
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Kahori Sumiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Sari Kondo
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Mirai Yamamoto
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Toshihiro Ando
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya, Japan
| |
Collapse
|
40
|
Girard M, Labrunie A, Malauzat D, Nubukpo P. Evolution of BDNF serum levels during the first six months after alcohol withdrawal. World J Biol Psychiatry 2020; 21:739-747. [PMID: 32081048 DOI: 10.1080/15622975.2020.1733079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Brain-Derived Neurotrophic Factor (BDNF) has been associated with alcohol dependence and appear to vary after withdrawal, although the link with the withdrawal outcome on the long term is unknown. We aimed to assess the evolution of BDNF levels during the six months following withdrawal and determine the association with the status of alcohol consumption. METHODS Serum BDNF levels of alcohol-dependent patients (n = 248) and biological and clinical parameters were determined at the time of alcohol cessation (D0), 14 days (D14), 28 days (D28), and 2, 4, and 6 months after (M2, M4, M6). RESULTS Abstinence decreased during follow-up and was 31.9% after six months. BDNF levels increased by 14 days after withdrawal and remained elevated throughout the six-month period, independently of alcohol consumption. Serum BDNF levels evolved over time (p < 0.0001), with a correlation between BDNF and GGT levels. The prescription of baclofen at the time of withdrawal was associated with higher serum BDNF levels throughout the follow-up and that of anti-inflammatory drugs with lower BDNF levels. CONCLUSIONS A link between BDNF levels, liver function, and the inflammatory state in the context of alcohol abuse and not only with alcohol dependence itself is proposed.
Collapse
Affiliation(s)
- Murielle Girard
- Unité de Recherche et de Neurostimulation, Centre Hospitalier Esquirol, Limoges, France
| | | | - Dominique Malauzat
- Unité de Recherche et de Neurostimulation, Centre Hospitalier Esquirol, Limoges, France
| | - Philippe Nubukpo
- Unité de Recherche et de Neurostimulation, Centre Hospitalier Esquirol, Limoges, France.,Centre Hospitalier Esquirol, Pôle Universitaire d'Addictologie, Limoges, France
| |
Collapse
|
41
|
Conboy K, Henshall DC, Brennan GP. Epigenetic principles underlying epileptogenesis and epilepsy syndromes. Neurobiol Dis 2020; 148:105179. [PMID: 33181318 DOI: 10.1016/j.nbd.2020.105179] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a network disorder driven by fundamental changes in the function of the cells which compose these networks. Driving this aberrant cellular function are large scale changes in gene expression and gene expression regulation. Recent studies have revealed rapid and persistent changes in epigenetic control of gene expression as a critical regulator of the epileptic transcriptome. Epigenetic-mediated gene output regulates many aspects of cellular physiology including neuronal structure, neurotransmitter assembly and abundance, protein abundance of ion channels and other critical neuronal processes. Thus, understanding the contribution of epigenetic-mediated gene regulation could illuminate novel regulatory mechanisms which may form the basis of novel therapeutic approaches to treat epilepsy. In this review we discuss the effects of epileptogenic brain insults on epigenetic regulation of gene expression, recent efforts to target epigenetic processes to block epileptogenesis and the prospects of an epigenetic-based therapy for epilepsy, and finally we discuss technological advancements which have facilitated the interrogation of the epigenome.
Collapse
Affiliation(s)
- Karen Conboy
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Gary P Brennan
- FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
López AJ, Hecking JK, White AO. The Emerging Role of ATP-Dependent Chromatin Remodeling in Memory and Substance Use Disorders. Int J Mol Sci 2020; 21:E6816. [PMID: 32957495 PMCID: PMC7555352 DOI: 10.3390/ijms21186816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Long-term memory formation requires coordinated regulation of gene expression and persistent changes in cell function. For decades, research has implicated histone modifications in regulating chromatin compaction necessary for experience-dependent changes to gene expression and cell function during memory formation. Recent evidence suggests that another epigenetic mechanism, ATP-dependent chromatin remodeling, works in concert with the histone-modifying enzymes to produce large-scale changes to chromatin structure. This review examines how histone-modifying enzymes and chromatin remodelers restructure chromatin to facilitate memory formation. We highlight the emerging evidence implicating ATP-dependent chromatin remodeling as an essential mechanism that mediates activity-dependent gene expression, plasticity, and cell function in developing and adult brains. Finally, we discuss how studies that target chromatin remodelers have expanded our understanding of the role that these complexes play in substance use disorders.
Collapse
Affiliation(s)
- Alberto J. López
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Julia K. Hecking
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - André O. White
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| |
Collapse
|
43
|
Duke CG, Bach SV, Revanna JS, Sultan FA, Southern NT, Davis MN, Carullo NVN, Bauman AJ, Phillips RA, Day JJ. An Improved CRISPR/dCas9 Interference Tool for Neuronal Gene Suppression. Front Genome Ed 2020; 2:9. [PMID: 34713218 PMCID: PMC8525373 DOI: 10.3389/fgeed.2020.00009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
The expression of genetic material governs brain development, differentiation, and function, and targeted manipulation of gene expression is required to understand contributions of gene function to health and disease states. Although recent improvements in CRISPR/dCas9 interference (CRISPRi) technology have enabled targeted transcriptional repression at selected genomic sites, integrating these techniques for use in non-dividing neuronal systems remains challenging. Previously, we optimized a dual lentivirus expression system to express CRISPR-based activation machinery in post-mitotic neurons. Here we used a similar strategy to adapt an improved dCas9-KRAB-MeCP2 repression system for robust transcriptional inhibition in neurons. We find that lentiviral delivery of a dCas9-KRAB-MeCP2 construct driven by the neuron-selective human synapsin promoter enabled transgene expression in primary rat neurons. Next, we demonstrate transcriptional repression using CRISPR sgRNAs targeting diverse gene promoters, and show superiority of this system in neurons compared to existing RNA interference methods for robust transcript specific manipulation at the complex Brain-derived neurotrophic factor (Bdnf) gene. Our findings advance this improved CRISPRi technology for use in neuronal systems for the first time, potentially enabling improved ability to manipulate gene expression states in the nervous system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jeremy J. Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
44
|
Abstract
From an embodied and enactive point of view, the mind-body problem has been reformulated as the relation between the lived or subject body on the one hand and the physiological or object body on the other ("body-body problem"). The aim of the paper is to explore the concept of circularity as a means of explaining the relation between the phenomenology of lived experience and the dynamics of organism-environment interactions. This concept of circularity also seems suitable for connecting enactive accounts with ecological psychology. It will be developed in a threefold way: (1) As the circular structure of embodiment, which manifests itself (a) in the homeostatic cycles between the brain and body and (b) in the sensorimotor cycles between the brain, body, and environment. This includes the interdependence of an organism's dispositions of sense-making and the affordances of the environment. (2) As the circular causality, which characterizes the relation between parts and whole within the living organism as well as within the organism-environment system. (3) As the circularity of process and structure in development and learning. Here, it will be argued that subjective experience constitutes a process of sense-making that implies (neuro-)physiological processes so as to form modified neuronal structures, which in turn enable altered future interactions. On this basis, embodied experience may ultimately be conceived as the integration of brain-body and body-environment interactions, which has a top-down, formative, or ordering effect on physiological processes. This will serve as an approach to a solution of the body-body problem.
Collapse
Affiliation(s)
- Thomas Fuchs
- Phenomenological Psychopathology and Psychotherapy, Psychiatric Clinic, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
45
|
Li Y, Lu X, Nie J, Hu P, Ge F, Yuan TF, Guan X. MicroRNA134 of Ventral Hippocampus Is Involved in Cocaine Extinction-Induced Anxiety-like and Depression-like Behaviors in Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:937-950. [PMID: 32004865 PMCID: PMC6994828 DOI: 10.1016/j.omtn.2019.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/16/2022]
Abstract
We previously found that cocaine abuse could increase microRNA134 (miR134) levels in the hippocampus; yet the roles of miR134 in cocaine-related abnormal psychiatric outcomes remain unknown. In this study, using the cocaine-induced conditioned place preference (CPP) mice model, we found that mice exhibit enhanced anxiety-like and depression-like behaviors during the cocaine extinction (CE) period of CPP, accompanied by obviously increased miR134 levels and decreased levels of 19 genes that are associated with synaptic plasticity, glia activity, and neurochemical microenvironments, in the ventral hippocampus (vHP). Knockdown of miR134 in vHP in vivo reversed the changes in 15 of 19 potential gene targets of miR134 and rescued the abnormal anxiety-like and depression-like behavioral outcomes in CE mice. In parallel, knockdown of miR134 reversed CE-induced changes in dendritic spines and synaptic proteins and increased the field excitatory postsynaptic potential (fEPSP) of CA1 pyramidal neurons in the vHP of CE mice. In addition, knockdown of miR134 suppressed the CE-enhanced microglia activity, inflammatory, apoptotic, and oxidative stress statuses in the vHP. With the data taken together, miR134 may be involved in cocaine-associated psychiatric problems, potentially via regulating the expressions of its gene targets that are related to synaptic plasticity and neurochemical microenvironments.
Collapse
Affiliation(s)
- Yuehan Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue Lu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaxun Nie
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Panpan Hu
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
46
|
Abiero A, Botanas CJ, Custodio RJ, Sayson LV, Kim M, Lee HJ, Kim HJ, Lee KW, Jeong Y, Seo JW, Ryu IS, Lee YS, Cheong JH. 4-MeO-PCP and 3-MeO-PCMo, new dissociative drugs, produce rewarding and reinforcing effects through activation of mesolimbic dopamine pathway and alteration of accumbal CREB, deltaFosB, and BDNF levels. Psychopharmacology (Berl) 2020; 237:757-772. [PMID: 31828394 DOI: 10.1007/s00213-019-05412-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE A high number of synthetic dissociative drugs continue to be available through online stores, leading to their misuse. Recent inclusions in this category are 4-MeO-PCP and 3-MeO-PCMo, analogs of phencyclidine. Although the dissociative effects of these drugs and their recreational use have been reported, no studies have investigated their abuse potential. OBJECTIVES To examine their rewarding and reinforcing effects and explore the mechanistic correlations. METHODS We used conditioned place preference (CPP), self-administration, and locomotor sensitization tests to assess the rewarding and reinforcing effects of the drugs. We explored their mechanism of action by pretreating dopamine receptor (DR) D1 antagonist SCH23390 and DRD2 antagonist haloperidol during CPP test and investigated the effects of 4-MeO-PCP and 3-MeO-PCMo on dopamine-related proteins in the ventral tegmental area and nucleus accumbens. We also measured the levels of dopamine, phosphorylated cyclic-AMP response element-binding (p-CREB) protein, deltaFosB, and brain-derived neurotrophic factor (BDNF) in the nucleus accumbens. Additionally, we examined the effects of both drugs on brain wave activity using electroencephalography. RESULTS While both 4-MeO-PCP and 3-MeO-PCMo induced CPP and self-administration, only 4-MeO-PCP elicited locomotor sensitization. SCH23390 and haloperidol inhibited the acquisition of drug CPP. 4-MeO-PCP and 3-MeO-PCMo altered the levels of tyrosine hydroxylase, DRD1, DRD2, and dopamine, as well as that of p-CREB, deltaFosB, and BDNF. All drugs increased the delta and gamma wave activity, whereas pretreatment with SCH23390 and haloperidol inhibited it. CONCLUSION Our results indicate that 4-MeO-PCP and 3-MeO-PCMo induce rewarding and reinforcing effects that are probably mediated by the mesolimbic dopamine system, suggesting an abuse liability in humans.
Collapse
Affiliation(s)
- Arvie Abiero
- Uimyung Research Institute for Neuroscience, College of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, College of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, College of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, College of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, College of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, College of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, College of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Kun Won Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Youngdo Jeong
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Joung-Wook Seo
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea
| | - In Soo Ryu
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, College of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea. .,School of Pharmacy, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
47
|
Baumbach JL, Zovkic IB. Hormone-epigenome interactions in behavioural regulation. Horm Behav 2020; 118:104680. [PMID: 31927018 DOI: 10.1016/j.yhbeh.2020.104680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Interactions between hormones and epigenetic factors are key regulators of behaviour, but the mechanisms that underlie their effects are complex. Epigenetic factors can modify sensitivity to hormones by altering hormone receptor expression, and hormones can regulate epigenetic factors by recruiting epigenetic regulators to DNA. The bidirectional nature of this relationship is becoming increasingly evident and suggests that the ability of hormones to regulate certain forms of behaviour may depend on their ability to induce changes in the epigenome. Moreover, sex differences have been reported for several epigenetic modifications, and epigenetic factors are thought to regulate sexual differentiation of behaviour, although specific mechanisms remain to be understood. Indeed, hormone-epigenome interactions are highly complex and involve both canonical and non-canonical regulatory pathways that may permit for highly specific gene regulation to promote variable forms of behavioural adaptation.
Collapse
Affiliation(s)
- Jennet L Baumbach
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada.
| |
Collapse
|
48
|
Phosphorylation of Npas4 by MAPK Regulates Reward-Related Gene Expression and Behaviors. Cell Rep 2019; 29:3235-3252.e9. [DOI: 10.1016/j.celrep.2019.10.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/02/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
|
49
|
Hilliard AT, Xie D, Ma Z, Snyder MP, Fernald RD. Genome-wide effects of social status on DNA methylation in the brain of a cichlid fish, Astatotilapia burtoni. BMC Genomics 2019; 20:699. [PMID: 31506062 PMCID: PMC6737626 DOI: 10.1186/s12864-019-6047-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Successful social behavior requires real-time integration of information about the environment, internal physiology, and past experience. The molecular substrates of this integration are poorly understood, but likely modulate neural plasticity and gene regulation. In the cichlid fish species Astatotilapia burtoni, male social status can shift rapidly depending on the environment, causing fast behavioral modifications and a cascade of changes in gene transcription, the brain, and the reproductive system. These changes can be permanent but are also reversible, implying the involvement of a robust but flexible mechanism that regulates plasticity based on internal and external conditions. One candidate mechanism is DNA methylation, which has been linked to social behavior in many species, including A. burtoni. But, the extent of its effects after A. burtoni social change were previously unknown. RESULTS We performed the first genome-wide search for DNA methylation patterns associated with social status in the brains of male A. burtoni, identifying hundreds of Differentially Methylated genomic Regions (DMRs) in dominant versus non-dominant fish. Most DMRs were inside genes supporting neural development, synapse function, and other processes relevant to neural plasticity, and DMRs could affect gene expression in multiple ways. DMR genes were more likely to be transcription factors, have a duplicate elsewhere in the genome, have an anti-sense lncRNA, and have more splice variants than other genes. Dozens of genes had multiple DMRs that were often seemingly positioned to regulate specific splice variants. CONCLUSIONS Our results revealed genome-wide effects of A. burtoni social status on DNA methylation in the brain and strongly suggest a role for methylation in modulating plasticity across multiple biological levels. They also suggest many novel hypotheses to address in mechanistic follow-up studies, and will be a rich resource for identifying the relationships between behavioral, neural, and transcriptional plasticity in the context of social status.
Collapse
Affiliation(s)
| | - Dan Xie
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | |
Collapse
|
50
|
Martínez-Rivera FJ, Martínez NA, Martínez M, Ayala-Pagán RN, Silva WI, Barreto-Estrada JL. Neuroplasticity transcript profile of the ventral striatum in the extinction of opioid-induced conditioned place preference. Neurobiol Learn Mem 2019; 163:107031. [PMID: 31173919 PMCID: PMC6689252 DOI: 10.1016/j.nlm.2019.107031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
Persistent drug-seeking behavior has been associated with deficits in neural circuits that regulate the extinction of addictive behaviors. Although there is extensive data that associates addiction phases with neuroplasticity changes in the reward circuit, little is known about the underlying mechanisms of extinction learning of opioid associated cues. Here, we combined morphine-conditioned place preference (CPP) with real-time polymerase chain reaction (RT-PCR) to identify the effects of extinction training on the expression of genes (mRNAs) associated with synaptic plasticity and opioid receptors in the ventral striatum/nucleus accumbens (VS/NAc). Following morphine extinction training, we identified two animal subgroups showing either extinction (low CPP) or extinction-resistance (high CPP). A third group were conditioned to morphine but did not receive extinction training (sham-extinction; high CPP). RT-PCR results showed that brain derived neurotrophic factor (Bdnf) was upregulated in rats showing successful extinction. Conversely, the lack of extinction training (sham-extinction) upregulated genes associated with kinases (Camk2g), neurotrophins (Ngfr), synaptic connectivity factors (Ephb2), glutamate neurotransmission (Grm8) and opioid receptors (μ1, Δ1). To further identify genes modulated by morphine itself, comparisons with their saline-counterparts were performed. Results revealed that Bdnf was consistently upregulated in the extinction group. Alternatively, widespread gene modulation was observed in the group with lack of extinction training (i.e. Drd2, Cnr1, Creb, μ1, Δ1) and the group showing extinction resistance (i.e. Crem, Rheb, Tnfa). Together, our study builds on the identification of putative genetic markers for the extinction learning of drug-associated cues.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA
| | - Namyr A Martínez
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Magdiel Martínez
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Roxsana N Ayala-Pagán
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA
| | - Walter I Silva
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Jennifer L Barreto-Estrada
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA.
| |
Collapse
|