1
|
Tomlinson DC, Baxter EW, Loadman PM, Hull MA, Knowles MA. FGFR1-induced epithelial to mesenchymal transition through MAPK/PLCγ/COX-2-mediated mechanisms. PLoS One 2012; 7:e38972. [PMID: 22701738 PMCID: PMC3373505 DOI: 10.1371/journal.pone.0038972] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/14/2012] [Indexed: 12/17/2022] Open
Abstract
Tumour invasion and metastasis is the most common cause of death from cancer. For epithelial cells to invade surrounding tissues and metastasise, an epithelial-mesenchymal transition (EMT) is required. We have demonstrated that FGFR1 expression is increased in bladder cancer and that activation of FGFR1 induces an EMT in urothelial carcinoma (UC) cell lines. Here, we created an in vitro FGFR1-inducible model of EMT, and used this model to identify regulators of urothelial EMT. FGFR1 activation promoted EMT over a period of 72 hours. Initially a rapid increase in actin stress fibres occurred, followed by an increase in cell size, altered morphology and increased migration and invasion. By using site-directed mutagenesis and small molecule inhibitors we demonstrated that combined activation of the mitogen activated protein kinase (MAPK) and phospholipase C gamma (PLCγ) pathways regulated this EMT. Actin stress fibre formation was regulated by PLCγ activation, and was also important for the increase in cell size, migration and altered morphology. MAPK activation regulated migration and E-cadherin expression, indicating that combined activation of PLCγ and MAPK is required for a full EMT. We used expression microarrays to assess changes in gene expression downstream of these signalling cascades. COX-2 was transcriptionally upregulated by FGFR1 and caused increased intracellular prostaglandin E(2) levels, which promoted migration. In conclusion, we have demonstrated that FGFR1 activation in UC cells lines promotes EMT via coordinated activation of multiple signalling pathways and by promoting activation of prostaglandin synthesis.
Collapse
Affiliation(s)
- Darren C. Tomlinson
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Euan W. Baxter
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Paul M. Loadman
- Instititue of Cancer Therapeutics, University of Bradford, Richmond Road, Bradford, United Kingdom
| | - Mark A. Hull
- Section of Molecular Gastroenterology, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Margaret A. Knowles
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
2
|
The ORF 113 of Helicoverpa armigera single nucleopolyhedrovirus encodes a functional fibroblast growth factor. Virol Sin 2008. [DOI: 10.1007/s12250-008-2969-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
3
|
Li XK, Lin ZF, Li Y, Hu S, Tan Y, Huang Z, Meng J, Liang LM, Xiao J, Qu J, Cai L. Cardiovascular protection of nonmitogenic human acidic fibroblast growth factor from oxidative damage in vitro and in vivo. Cardiovasc Pathol 2007; 16:85-91. [PMID: 17317541 DOI: 10.1016/j.carpath.2006.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Revised: 08/23/2006] [Accepted: 11/10/2006] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In our previous study, a mutant human acidic fibroblast growth factor without mitogenic action (nonmitogenic human acidic fibroblast growth factor) was created, and its protection from the cytotoxic effect of hydrogen peroxide treatment was confirmed in cultured cardiomyocytes. METHODS The present study was performed to further investigate whether genetically overexpressing nonmitogenic human acidic fibroblast growth factor in cardiomyocytes provides similar protection from the cytotoxic effect of hydrogen peroxide and whether in vivo administration of nonmitogenic human acidic fibroblast growth factor attenuates ischemia/reperfusion-induced cardiac dysfunction and tissue damage and protects the carotid sinus baroreceptor from alcohol-induced damage, as shown by a reduced response of blood pressure to short carotid artery occlusion. RESULTS AND CONCLUSIONS Cardiomyocytes transfected by nonmitogenic human acidic fibroblast growth factor, with significant increases in the cellular expression and secretion of nonmitogenic human acidic fibroblast growth factor into a culture medium, were resistant to hydrogen-peroxide-induced cytotoxicity, as measured by cell viability. Hearts isolated from rats pretreated with saline, human acidic fibroblast growth factor, or nonmitogenic human acidic fibroblast growth factor for 24 h were subjected to ischemia/reperfusion in the Langendorff system. Ischemia/reperfusion induced cardiac dysfunction in the saline group, but not in the group pretreated with human acidic fibroblast growth factor or nonmitogenic human acidic fibroblast growth factor. Ischemia/reperfusion also caused a release of the cardiac enzyme lactic dehydrogenase into-and an increase in lipid peroxide content in the efflux of-the hearts of saline-treated rats, but not in rats pretreated with human acidic fibroblast growth factor or nonmitogenic human acidic fibroblast growth factor. There was no difference in cardioprotective effects between human acidic fibroblast growth factor and nonmitogenic human acidic fibroblast growth factor. Furthermore, the protective effect of in-vivo-administered nonmitogenic acidic fibroblast growth factor on alcohol-induced damage to the carotid sinus baroreceptor, as shown by the reduced response of blood pressure to short carotid artery occlusion, was also observed. These results suggest that nonmitogenic human acidic fibroblast growth factor, similar to the native human acidic fibroblast growth factor, provides significant cardiovascular protection from oxidative damage in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao-Kun Li
- Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical College, Wenzhou, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lin ZF, Li XK, Lin Y, Wu F, Liang LM, Fu XB. Protective effects of non-mitogenic human acidic fibroblast growth factor on hydrogen peroxide-induced damage to cardiomyocytes in vitro. World J Gastroenterol 2005; 11:5492-7. [PMID: 16222742 PMCID: PMC4320359 DOI: 10.3748/wjg.v11.i35.5492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the protective effect of non-mitogenic human acidic fibroblast growth factor (FGF) on cardiac oxidative injury in vivo.
METHODS: Ventricular cardiomyocytes were isolated from 1- to 3-d-old neonatal SD mice and cultured in Dulbecco’s minimum essential medium supplemented with 15% fetal bovine serum under an atmosphere of 50 mL/L CO2-95% air at 37 °C, as well as assessed by immunocyto-chemical assay. We constructed the cardiomyocyte injury model by exposure to a certain concentration of H2O2. Cellular viability, superoxide dismutase (SOD) activity, leakage of maleic dialdehyde and anti-apoptosis effect were included to evaluate the cardiac protective effect of non-mitogenic human acidic FGF.
RESULTS: Over 50% of the cardiomyocytes beat spontaneously on the 2nd d of culture and synchronously beat after being cultured for 3 d. Forty-eight hours after plating was completed, the purity of such cultures was 95% myocytes, assessed by an immunocytochemical assay. Cellular viability dramatically decreased with the increasing of the concentration of H2O2. Non-mitogenic human acidic FGF showed significant resistance to the toxic effect of H2O2, significantly increased the cellular viability as well as the activity of SOD, and dramatically decreased the leakage of maleic dialdehyde as well as the cellular apoptosis rate.
CONCLUSION: Hydrogen peroxide shows strong cytotoxicity to the cultured cardiac myocytes, and non-mitogenic human acidic FGF shows strong cardio-protective effect when exposed to a certain concentration of H2O2.
Collapse
Affiliation(s)
- Zhuo-Feng Lin
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510632, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
5
|
Rocha AS, De Wever O, Moreira S, Costa MJ, Vandekerckhove J, Mareel M, Soares P. Mutated E-cadherin: genomic and functional characterization in thyroid cells from the KAT family. Thyroid 2004; 14:902-9. [PMID: 15671768 DOI: 10.1089/thy.2004.14.902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Members of a family of thyroid cell lines (KAT) were analyzed because they expressed a higher molecular weight (135 kd) form of E-cadherin at their surface. We found that this aberrant E-cadherin is the result of a point mutation in the exon 9 donor splice site causing a skipping of exon 9 with consequent deletion of the corresponding aminoacids on E-cadherin protein. As a spin-off, we report that the various members of the KAT family share this mutation as well as the genetic background. Furthermore we found that this mutated protein leads to disturbed cell-cell adhesion although E-cadherin is still able to mediate the formation of the cadherin/ catenin complex. We also demonstrate the presence of another cell-cell adhesion complex, formed by Pcadherin and the catenins. The latter is also not able to mediate cell-cell adhesion. Although these cells lack cell-cell adhesion they are not invasive without exogenous stimulus.
Collapse
Affiliation(s)
- Ana Sofia Rocha
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
6
|
Malavaud B, Pedron S, Sordello S, Mazerolles C, Billottet C, Thiery JP, Jouanneau J, Plouët J. Direct FGF receptor 1 activation through an anti-idiotypic strategy mimicks the biological activity of FGF-2 and inhibits the progression of the bladder carcinoma derived from NBT-II cells. Oncogene 2004; 23:6769-78. [PMID: 15273729 DOI: 10.1038/sj.onc.1207135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hypothesis that tumor growth is angiogenesis-dependent has been documented by a considerable body of direct and indirect experimental data. Since the discovery of the vascular endothelial growth factor (VEGF), most attention has been focused on the VEGF system. Although fibroblast growth factors 1 and 2 (FGF-1 and FGF-2) can exert a strong angiogenic activity when they are supplied as a single pharmacological agent, their role in pathological angiogenesis in preclinical models remains controversial. To decipher the contribution of FGF receptors in various models of angiogenesis, we took advantage of the anti-idiotypic strategy to obtain circulating agonists specific for FGFR-1 and FGFR-2 (AIdF-1 and AIdF-2). They mimicked FGF-1 and FGF-2 for receptor binding, signal transduction, proliferation of endothelial cells and differentiation of the bladder carcinoma cell NBT-II which expresses FGFR-2b but not FGFR-1. The constitutive expression of FGFR-1 allowed binding of FGF-2 and AIdF-2 and inhibition of the proliferation of NBT-II cells. AIdF-1 and AIdF-2 induced angiogenesis in the corneal pocket assay. Although FGFR-1 dimerization achieved by AIdF-2 injection led to highly differentiated and smaller NBT-II tumors, no sign of reduction of tumor angiogenesis was observed, thus suggesting that endothelial cells are resistant to FGF.
Collapse
MESH Headings
- Adrenal Cortex/blood supply
- Animals
- Antibodies, Anti-Idiotypic/immunology
- Capillaries
- Cell Division
- Cell Line, Tumor
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Fibroblast Growth Factor 2/physiology
- Humans
- Mice
- Mice, Nude
- Phosphorylation
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/physiology
- Signal Transduction/physiology
- Transplantation, Heterologous
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/immunology
- Urinary Bladder Neoplasms/pathology
- Vascular Endothelial Growth Factor A/pharmacology
- Vascular Endothelial Growth Factor A/physiology
Collapse
Affiliation(s)
- Bernard Malavaud
- Institut de Pharmacologie et Biologie Structurale, UMR CNRS 5089, 205 Route de Narbonne, Toulouse 31077, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Billottet C, Janji B, Thiery JP, Jouanneau J. Rapid tumor development and potent vascularization are independent events in carcinoma producing FGF-1 or FGF-2. Oncogene 2002; 21:8128-39. [PMID: 12444548 DOI: 10.1038/sj.onc.1205935] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Revised: 08/02/2002] [Accepted: 08/05/2002] [Indexed: 11/09/2022]
Abstract
FGF-1 and FGF-2 are pleiotropic growth factors for many cell types, operating through the activation of specific transmembrane FGF receptors (FGFRs). The role of these factors in tumor progression was investigated, with specific discrimination between their autocrine and non autocrine cellular activity. The rat bladder carcinoma NBT-II cells were engineered to produce FGF-1 or 18 kDa FGF-2 in the presence or absence of their specific receptor. Non-autocrine cells that produced FGF-1 or FGF-2 but lacked FGFRs were epithelial and reminiscent of the parental NBT-II cells. Whilst autocrine cells, which both constitutively produced and secreted the growth factor and expressed FGFRs, had a highly invasive mesenchymal phenotype. Correspondingly, the autocrine cells were highly tumorigenic in vivo compared to the parental and non-autocrine cells, which correlated with the increased production of uPAR and active uPA and increased in vitro invasive potential. Although all cells produced VEGF, only tumors derived from cells that produced FGF-1 or FGF-2 were highly vascularized, suggesting that these two growth factors could be involved in the angiogenic process by activating host endothelial cells. As a result of activation of the FGFR in autocrine cells, changes in cell morphology and an increase in the invasive and tumorigenic properties were observed, however no in vitro or in vivo differential functions between FGF-1 and FGF-2 could be identified in this system. In conclusion, our data demonstrates that rapid tumor development is not dependent upon increased tumor vascularization, suggesting that 'basal' angiogenesis, probably mediated by VEGF, is sufficient to support tumor growth.
Collapse
MESH Headings
- Animals
- Autocrine Communication
- Carcinoma/blood supply
- Carcinoma/genetics
- Carcinoma/metabolism
- Carcinoma/pathology
- Disease Progression
- Endothelial Growth Factors/metabolism
- Epithelial Cells/pathology
- Female
- Fibroblast Growth Factor 1/genetics
- Fibroblast Growth Factor 1/physiology
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/physiology
- Gene Expression Regulation, Neoplastic
- Intercellular Signaling Peptides and Proteins/metabolism
- Lymphokines/metabolism
- Matrix Metalloproteinases/biosynthesis
- Matrix Metalloproteinases/genetics
- Mesoderm
- Mice
- Mice, Nude
- Neoplasm Invasiveness
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/physiopathology
- Phenotype
- Rats
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Receptors, Urokinase Plasminogen Activator
- Recombinant Fusion Proteins/physiology
- Sequence Deletion
- Tissue Inhibitor of Metalloproteinase-2/biosynthesis
- Tissue Inhibitor of Metalloproteinase-2/genetics
- Transfection
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Cells, Cultured/transplantation
- Urinary Bladder Neoplasms/blood supply
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Urokinase-Type Plasminogen Activator/biosynthesis
- Urokinase-Type Plasminogen Activator/genetics
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- Clotilde Billottet
- Laboratory of Cell Morphogenesis and Tumor Progression, UMR 144 CNRS, Institut Curie, Section de recherche, 26 rue d'Ulm, 75248 Paris, cedex 05, France
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Jean Paul Thiery
- Centre National Recherche Scientifique Unité Mixte Recherche, 144 Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France.
| |
Collapse
|
9
|
Lesueur F, Mesnil M, Delouvée A, Girault JM, Yamasaki H, Thiery JP, Jouanneau J. NBT-II carcinoma behaviour is not dependent on cell-cell communication through gap junctions. Biochem Biophys Res Commun 2002; 294:108-15. [PMID: 12054748 DOI: 10.1016/s0006-291x(02)00451-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To study the mechanism(s) underlying the proliferation of heterogeneous cell populations within a solid tumour, the NBT-II rat bladder carcinoma system was used. It has been first investigated whether the different cell populations are coupled through gap junctions (GJIC). Cells overexpressing the Cx43 were generated to test for any tumour suppressive activity in vivo. To determine whether GJIC is essential for tumour proliferation and the establishment of a cooperative community effect, NBT-II cells that are incompetent for cell coupling were generated. The data report that (i) carcinoma cells expressing or not FGF-1 are coupled through GJIC in vitro and in coculture and express the gap junction protein Cx43, (ii) overexpression of Cx43 in these cells does not affect their in vitro coupling capacities and in vivo tumourigenic growth properties, (iii) inhibition of GJIC through antisense strategy has no in vivo obvious consequence on the tumour growth properties of the carcinoma, and (iv) the community effect between two carcinoma cell populations does not critically involve cell coupling through gap junctions.
Collapse
Affiliation(s)
- F Lesueur
- Genetic and Cancer Susceptibility Unit, IARC, 150 Cours Albert Thomas, 69372 Lyon Cedex, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Filleur S, Volpert OV, Degeorges A, Voland C, Reiher F, Clézardin P, Bouck N, Cabon F. In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes Dev 2001; 15:1373-82. [PMID: 11390357 PMCID: PMC312711 DOI: 10.1101/gad.193501] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thrombospondin 1 (TSP1) is a multifunctional protein able to activate TGFbeta and to inhibit angiogenesis in vivo. Although usually thought of as an inhibitor of tumor growth, TSP1 may sometimes be present at high levels during tumor progression, suggesting that tumors can eventually overcome their anti-tumor effects. Using a tet-repressible expression system, we demonstrate that murine TSP1 delayed the onset of tumor growth when produced in the tumor bed by rat fibrosarcoma tumor cells or by stromal fibroblasts coinjected with unmodified C6 glioma tumor cells. Yet upon prolonged exposure to TSP1, tumors came to grow at the same rate in the presence as in the absence of TSP1 and transplantation experiments showed that they had become insensitive to inhibition by TSP1 in both syngeneic and immune compromised hosts. Tumor resistance to TSP1 developed as a result of the in vivo outgrowth of pre-existing tumor cell variants that (1) secreted increased amounts of angiogenic factors that counterbalanced the inhibitory effect of TSP1 on neovascularization and (2) grew more efficiently in the presence of TSP1-activated TGFbeta. These results indicate that prolonged and continuous local delivery of a single multifunctional angiogenesis inhibitor like TSP1 to fast-growing tumors can lead to tumor resistance in vivo by fostering the outgrowth of subpopulations that are a by-product of the genetic instability of the tumor cells themselves.
Collapse
Affiliation(s)
- S Filleur
- Institut André Lwoff, Centre National de la Recherche Scientifique UPR 9079, 94801 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Steelant WF, Goeman JL, Philippé J, Oomen LC, Hilkens J, Krzewinski-Recchi MA, Huet G, Van der Eycken J, Delannoy P, Bruyneel EA, Mareel MM. Alkyl-lysophospholipid 1-O-octadecyl-2-O-methyl- glycerophosphocholine induces invasion through episialin-mediated neutralization of E-cadherin in human mammary MCF-7 cells in vitro. Int J Cancer 2001; 92:527-36. [PMID: 11304687 DOI: 10.1002/ijc.1216] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1-O-octadecyl-2-O-methyl-glycerophosphocholine (ET-18-OMe) is an analogue of the naturally occurring 2-lysophosphatidylcholine belonging to the class of antitumor lipids. Previously, we demonstrated that ET-18-OMe modulates cell-cell adhesion of human breast cancer MCF-7 cells. In the present study, we tested the effect of ET-18-OMe on adhesion, invasion and localisation of episialin and E-cadherin in MCF-7/AZ cells expressing a functional E-cadherin/catenin complex. The MCF-7/6 human breast cancer cells were used as negative control since their E-cadherin/catenin complex is functional in cells grown on solid substrate but not in suspension. The function of E-cadherin, a calcium-dependent transmembrane cell-cell adhesion and signal-transducing molecule, is disturbed in invasive cancers by mutation, loss of mRNA stability, proteolytic degradation, tyrosine phosphorylation of associated proteins and large cell-associated proteoglycans or mucin-like molecules such as episialin. Episialin, also called MUC1, is an anti-adhesion molecule that by its large number of glycosylated tandem repeats can sterically hinder the adhesive properties of other glycoproteins. ET-18-OMe inhibited the E-cadherin functions of MCF-7/AZ cells as measured by inhibition of fast and slow aggregation and by the induction of collagen invasion. These effects were enhanced by MB2, an antibody against E-cadherin and blocked by monoclonal antibodies (MAbs) 214D4 or M8 against episialin. ET-18-OMe had no influence on tyrosine phosphorylation of beta-catenin and the E-cadherin/catenin complex remained intact. Transcription, translation, protein turnover and cell surface localisation of episialin were not altered. ET-18-OMe induced finger-like extensions with clustering of episialin together with E-cadherin and carcinoembryonic antigen but not with occludin. In cells in suspension, ET-18-OMe caused a shift in the flow-cytometric profile of episialin toward a lower intensity for MCF-7/AZ cells. In contrast with MCF-7/AZ cells, the adhesion-deficient and noninvasive MCF-7/6 cells showed neither morphotypic changes nor induction of aggregation nor invasion in collagen I upon treatment with ET-18-OMe. Co-localisation of episialin with E-cadherin was rarely observed. We conclude that in the human breast cancer cells MCF-7/AZ, E-cadherin and episialin are key molecular players in the regulation of promotion and suppression of cell-cell adhesion and invasion.
Collapse
Affiliation(s)
- W F Steelant
- Laboratory of Experimental Cancerology, Ghent University Hospital, Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|