1
|
Hua H, Yang X, Meng D, Gan R, Chen N, He L, Wang D, Jiang W, Si D, Wang X, Zhang X, Wei X, Wang Y, Li B, Zhang H, Gao C. CTSG restraines the proliferation and metastasis of head and neck squamous cell carcinoma by blocking the JAK2/STAT3 pathway. Cell Signal 2025; 127:111562. [PMID: 39672353 DOI: 10.1016/j.cellsig.2024.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSC) is recognized as the sixth most prevalent cancer globally, with around 900,000 new cases diagnosed each year. The management of HNSC poses significant challenges due to its rising incidence and suboptimal treatment outcomes in many patients. Thus, understanding the underlying molecular mechanisms that drive the onset and advancement of HNSC is crucial in order to steer the creation of novel treatment strategies. Previous researches have suggested that Cathepsin G (CTSG), a serine protease, may play a role in tumorigenesis, but its exact function in HNSC is still unknown. METHODS The TCGA and GTEx datasets were utilized to examine the expression and potential role of CTSG in pancancer. CTSG expression in HNSC tissues and normal tissues was analyzed using qRT-PCR, Western blot and immunohistochemistry techniques. The effects of altering CTSG expression on proliferation, migration, and apoptosis of HNSC cells were evaluated using various tests such as MTT assays, colony formation assays, wound-healing assays, transwell assays, flow cytometry, and xenograft tumor growth models. The functionality of CTSG on the JAK2/STAT3 pathway was validated using activators and inhibitors of this pathway after comfirming that CTSG could regulate this pathway. RESULTS In our study, we indicated that CTSG expression in HNSC tumor tissues was significantly lower than in adjacent normal tissues and CTSG gene level was positively correlated with patient prognosis. Additionally, we observed a decrease in tumor proliferation and migration, as well as an increase in apoptosis, following CTSG overexpression. Conversely, opposite effects were noted upon CTSG knockdown. Mechanistically, CTSG overexpression inhibited JAK2/STAT3 signaling, while CTSG knockdown activated it. This was confirmed by using IL-6 and JAK2 inhibitor. CONCLUSION CTSG impedes the proliferation and metastasis of HNSC in vivo and in vitro. CTSG is potential to act as a cancer suppressor in HNSC by focusing on the JAK2/STAT3 signaling pathway, indicating its possible use as a diagnostic marker and treatment target for HNSC.
Collapse
Affiliation(s)
- Hongting Hua
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xiaonan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Dongdong Meng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Ruijia Gan
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Nuo Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Lanqiaofeng He
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Dong Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Wanjin Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Dongyu Si
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xiaomin Zhang
- Department of Biochemistry & Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xiang Wei
- Department of Biochemistry & Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yiming Wang
- Department of Biochemistry & Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China
| | - Bao Li
- Synthetic Laboratory of School of Basic Medicine Sciences, Anhui Medical University, Hefei 230032, China
| | - Huabing Zhang
- Department of Biochemistry & Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China.
| | - Chaobing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.
| |
Collapse
|
2
|
Li Y, Bai X. Naringenin induces ferroptosis in osteosarcoma cells through the STAT3-MGST2 signaling pathway. J Bone Oncol 2025; 50:100657. [PMID: 39835176 PMCID: PMC11743371 DOI: 10.1016/j.jbo.2024.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Osteosarcoma is a common malignant tumor found in adolescents, characterized by a high metastatic potential and poor prognosis, but it is sensitive to radiotherapy and chemotherapy. Ferroptosis is a novel form of regulated cell death induced by excessive iron accumulation, leading to lipid peroxidation that results in cellular dysfunction and death. Naringenin is a flavonoid known for its anti-cancer properties, yet its role in osteosarcoma has not been thoroughly studied. In this study, we found that naringenin significantly reduced the viability of osteosarcoma cells while increasing the accumulation of reactive oxygen species (ROS), iron overload, and the excessive expression of malondialdehyde (MDA). Bioinformatics analysis revealed that microsomal glutathione S-transferase 2 (MGST2) is highly expressed in osteosarcoma cells. Silencing MGST2 decreased the proliferation, migration, and invasion of these cells and enhanced their sensitivity to ferroptosis. Mechanistically, signal transducer and activator of transcription 3 (STAT3) binds to the MGST2 promoter, promoting its transcription. Naringenin inhibits STAT3, blocking the expression of MGST2, while the STAT3 agonist Colivelin reverses this effect. In vivo experiments further confirmed that naringenin inhibited tumor growth in subcutaneous xenograft models and exhibited good biosafety. In summary, our study demonstrates that naringenin induces ferroptosis in osteosarcoma cells through the STAT3-MGST2 signaling pathway, providing a promising strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yingang Li
- China Medical University, Shenyang, Liaoning, China
- Liaoning Provincial People’s Hospital, Shenyang, Liaoning, China
| | - Xizhuang Bai
- Liaoning Provincial People’s Hospital, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Almouh M, Soukkarieh C, Kassouha M, Ibrahim S. Crosstalk between circular RNAs and the STAT3 signaling pathway in human cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195051. [PMID: 39121909 DOI: 10.1016/j.bbagrm.2024.195051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Circular RNAs (circRNAs) are endogenous covalently closed single-stranded RNAs produced by reverse splicing of pre-mRNA. Emerging evidence suggests that circRNAs contribute to cancer progression by modulating the oncogenic STAT3 signaling pathway, which plays key roles in human malignancies. STAT3 signaling-related circRNAs expression appears to be extensively dysregulated in diverse cancer types, where they function either as tumor suppressors or oncogenes. However, the biological effects of STAT3 signaling-related circRNAs and their associations with cancer have not been systematically studied before. Given this, shedding light on the interaction between circRNAs and STAT3 signaling pathway in human malignancies may provide several novel insights into cancer therapy. In this review, we provide a comprehensive introduction to the molecular mechanisms by which circRNAs regulate STAT3 signaling in cancer progression, and the crosstalk between STAT3 signaling-related circRNAs and other signaling pathways. We also further discuss the role of the circRNA/STAT3 axis in cancer chemotherapy sensitivity.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Animal Production, Faculty of Veterinary Medicine, Hama University, Hama, Syria.
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Morshed Kassouha
- Department of Microbiology, Faculty of Veterinary Medicine, Hama University, Hama, Syria
| | - Samer Ibrahim
- Department of Microbiology, Faculty of Veterinary Medicine, Hama University, Hama, Syria; Faculty of Dentistry, Arab Private University of science and Technology, Hama, Syria
| |
Collapse
|
4
|
Tobe-Nishimoto A, Morita Y, Nishimura J, Kitahira Y, Takayama S, Kishimoto S, Matsumiya-Matsumoto Y, Matsunaga K, Imai T, Uzawa N. Tumor microenvironment dynamics in oral cancer: unveiling the role of inflammatory cytokines in a syngeneic mouse model. Clin Exp Metastasis 2024; 41:891-908. [PMID: 39126553 PMCID: PMC11607012 DOI: 10.1007/s10585-024-10306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The process of cervical lymph node metastasis is dependent on the phenotype of the tumor cells and their interaction with the host microenvironment and immune system; conventional research methods that focus exclusively on tumor cells are limited in their ability to elucidate the metastatic mechanism. In cancer tissues, a specialized environment called the tumor microenvironment (TME) is established around tumor cells, and inflammation in the TME has been reported to be closely associated with the development and progression of many types of cancer and with the response to anticancer therapy. In this study, to elucidate the mechanism of metastasis establishment, including the TME, in the cervical lymph node metastasis of oral cancer, we established a mouse-derived oral squamous cell carcinoma cervical lymph node highly metastatic cell line and generated a syngeneic orthotopic transplantation mouse model. In the established highly metastatic cells, epithelial-mesenchymal transition (EMT) induction was enhanced compared to that in parental cells. In the syngeneic mouse model, lymph node metastasis was observed more frequently in tumors of highly metastatic cells than in parental cells, and Cyclooxygenase-2 (COX-2) expression and lymphatic vessels in primary tumor tissues were increased, suggesting that this model is highly useful. Moreover, in the established highly metastatic cells, EMT induction was enhanced compared to that in the parent cell line, and CCL5 and IL-6 secreted during inflammation further enhanced EMT induction in cancer cells. This suggests the possibility of a synergistic effect between EMT induction and inflammation. This model, which allows for the use of two types of cells with different metastatic and tumor growth potentials, is very useful for oral cancer research involving the interaction between cancer cells and the TME in tumor tissues and for further searching for new therapeutic agents.
Collapse
Affiliation(s)
- Ayano Tobe-Nishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yoshihiro Morita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Junya Nishimura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yukiko Kitahira
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Shun Takayama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Satoko Kishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yuka Matsumiya-Matsumoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kazuhide Matsunaga
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Tomoaki Imai
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
6
|
Jiang Y, Li L, Li W, Liu K, Wu Y, Wang Z. NFS1 inhibits ferroptosis in gastric cancer by regulating the STAT3 pathway. J Bioenerg Biomembr 2024; 56:573-587. [PMID: 39254861 DOI: 10.1007/s10863-024-10038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Cysteine desulfurase (NFS1) is highly expressed in a variety of tumors, which is closely related to ferroptosis of tumor cells and affects prognosis. The relationship between NFS1 and the development of gastric cancer (GC) remains unknown. Here we showed that NFS1 expression was significantly higher in GC tissues compared to adjacent normal tissues. Patients with high expression of NFS1 in GC tissues had a lower overall survival rate than those with low expression. NFS1 was highly expressed in cultured GC cells compared to normal gastric cells. Knockdown of NFS1 expression reduced the viability, migration and invasion of GC cells. In cultured GC cells, NFS1 deficiency promoted ferroptosis. Mechanistically, NFS1 inhibited ferroptosis by upregulating the signal transduction and activator of transcription 3 (STAT3) signaling pathway in cultured GC cells. NFS1 knockdown using siRNA inhibited the STAT3 pathway, reduced the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and elevated intracellular levels of reactive oxygen species (ROS), ferrous ion (Fe2+), and malondialdehyde (MDA) in cultured GC cells. A specific STAT3 activator significantly reversed the inhibitory effect of NFS1 deficiency on ferroptosis in cultured GC cells. These in vitro results were further confirmed by experiments in vivo using a mouse xenograft tumor model. Collectively, THESE RESULTS INDICATE THAT NFS1 is overexpressed in human GC tissues and correlated with prognosis. NFS1 inhibits ferroptosis by activating the STAT3 pathway in GC cells. These results suggest that NFS1 may be a potential prognostic biomarker and therapeutic target to treat GC.
Collapse
Affiliation(s)
- You Jiang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, P.R. China
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Liqiang Li
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Wenbo Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, P.R. China
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Kun Liu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Yuee Wu
- Department of Electrocardiogram Diagnosis, Second Affiliated Hospital of Anhui Medical University, Hefei, 230060, Anhui, P.R. China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, P.R. China.
| |
Collapse
|
7
|
Almatroodi SA, Almatroudi A, Alharbi HOA, Khan AA, Rahmani AH. Effects and Mechanisms of Luteolin, a Plant-Based Flavonoid, in the Prevention of Cancers via Modulation of Inflammation and Cell Signaling Molecules. Molecules 2024; 29:1093. [PMID: 38474604 DOI: 10.3390/molecules29051093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/β-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
8
|
Köseer AS, Di Gaetano S, Arndt C, Bachmann M, Dubrovska A. Immunotargeting of Cancer Stem Cells. Cancers (Basel) 2023; 15:1608. [PMID: 36900399 PMCID: PMC10001158 DOI: 10.3390/cancers15051608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The generally accepted view is that CSCs hijack the signaling pathways attributed to normal stem cells that regulate the self-renewal and differentiation processes. Therefore, the development of selective targeting strategies for CSC, although clinically meaningful, is associated with significant challenges because CSC and normal stem cells share many important signaling mechanisms for their maintenance and survival. Furthermore, the efficacy of this therapy is opposed by tumor heterogeneity and CSC plasticity. While there have been considerable efforts to target CSC populations by the chemical inhibition of the developmental pathways such as Notch, Hedgehog (Hh), and Wnt/β-catenin, noticeably fewer attempts were focused on the stimulation of the immune response by CSC-specific antigens, including cell-surface targets. Cancer immunotherapies are based on triggering the anti-tumor immune response by specific activation and targeted redirecting of immune cells toward tumor cells. This review is focused on CSC-directed immunotherapeutic approaches such as bispecific antibodies and antibody-drug candidates, CSC-targeted cellular immunotherapies, and immune-based vaccines. We discuss the strategies to improve the safety and efficacy of the different immunotherapeutic approaches and describe the current state of their clinical development.
Collapse
Affiliation(s)
- Ayse Sedef Köseer
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Simona Di Gaetano
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| |
Collapse
|
9
|
Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:31. [PMID: 36646686 PMCID: PMC9842704 DOI: 10.1038/s41392-022-01297-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
Collapse
Affiliation(s)
- Qingfang Li
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Jin J, Wu Y, Zhao Z, Wu Y, Zhou YD, Liu S, Sun Q, Yang G, Lin J, Nagle DG, Qin J, Zhang Z, Chen HZ, Zhang W, Sun S, Luan X. Small-molecule PROTAC mediates targeted protein degradation to treat STAT3-dependent epithelial cancer. JCI Insight 2022; 7:160606. [PMID: 36509291 DOI: 10.1172/jci.insight.160606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
The aberrant activation of STAT3 is associated with the etiology and progression in a variety of malignant epithelial-derived tumors, including head and neck squamous cell carcinoma (HNSCC) and colorectal cancer (CRC). Due to the lack of an enzymatic catalytic site or a ligand-binding pocket, there are no small-molecule inhibitors directly targeting STAT3 that have been approved for clinical translation. Emerging proteolysis targeting chimeric (PROTAC) technology-based approach represents a potential strategy to overcome the limitations of conventional inhibitors and inhibit activation of STAT3 and downstream genes. In this study, the heterobifunctional small-molecule-based PROTACs are successfully prepared from toosendanin (TSN), with 1 portion binding to STAT3 and the other portion binding to an E3 ubiquitin ligase. The optimized lead PROTAC (TSM-1) exhibits superior selectivity, potency, and robust antitumor effects in STAT3-dependent HNSCC and CRC - especially in clinically relevant patient-derived xenografts (PDX) and patient-derived organoids (PDO). The following mechanistic investigation identifies the reduced expression of critical downstream STAT3 effectors, through which TSM-1 promotes cell cycle arrest and apoptosis in tumor cells. These findings provide the first demonstration to our knowledge of a successful PROTAC-targeting strategy in STAT3-dependent epithelial cancer.
Collapse
Affiliation(s)
- Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaping Wu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, and.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zeng Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,China Institute of Pharmaceutical Industry, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Dong Zhou
- Department of Chemistry and Biochemistry, College of Liberal Arts, and
| | - Sanhong Liu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyan Sun
- China Institute of Pharmaceutical Industry, Shanghai, China
| | - Guizhu Yang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, and.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dale G Nagle
- Department of Chemistry and Biochemistry, College of Liberal Arts, and.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Jiangjiang Qin
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (CAS), Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, and.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, and.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Wang H, Man Q, Huo F, Gao X, Lin H, Li S, Wang J, Su F, Cai, L, Shi Y, Liu, B, Bu L. STAT3 pathway in cancers: Past, present, and future. MedComm (Beijing) 2022; 3:e124. [PMID: 35356799 PMCID: PMC8942302 DOI: 10.1002/mco2.124] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, discovered in the cytoplasm of almost all types of mammalian cells, plays a significant role in biological functions. The duration of STAT3 activation in normal tissues is a transient event and is strictly regulated. However, in cancer tissues, STAT3 is activated in an aberrant manner and is induced by certain cytokines. The continuous activation of STAT3 regulates the expression of downstream proteins associated with the formation, progression, and metastasis of cancers. Thus, elucidating the mechanisms of STAT3 regulation and designing inhibitors targeting the STAT3 pathway are considered promising strategies for cancer treatment. This review aims to introduce the history, research advances, and prospects concerning the STAT3 pathway in cancer. We review the mechanisms of STAT3 pathway regulation and the consequent cancer hallmarks associated with tumor biology that are induced by the STAT3 pathway. Moreover, we summarize the emerging development of inhibitors that target the STAT3 pathway and novel drug delivery systems for delivering these inhibitors. The barriers against targeting the STAT3 pathway, the focus of future research on promising targets in the STAT3 pathway, and our perspective on the overall utility of STAT3 pathway inhibitors in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Han‐Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Qi‐Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fang‐Yi Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Su‐Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fu‐Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lulu Cai,
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySchool of MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bing Liu,
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lin‐Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
12
|
Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol 2022; 52:102317. [PMID: 35483272 PMCID: PMC9108091 DOI: 10.1016/j.redox.2022.102317] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/26/2022] Open
Abstract
Chemotherapy is still one of the principal treatments for gastric cancer, but the clinical application of 5-FU is limited by drug resistance. Here, we demonstrate that ferroptosis triggered by STAT3 inhibition may provide a novel opportunity to explore a new effective therapeutic strategy for gastric cancer and chemotherapy resistance. We find that ferroptosis negative regulation (FNR) signatures are closely correlated with the progression and chemoresistance of gastric cancer. FNR associated genes (GPX4, SLC7A11, and FTH1) and STAT3 are upregulated in 5-FU resistant cells and xenografts. Further evidence demonstrates that STAT3 binds to consensus DNA response elements in the promoters of the FNR associated genes (GPX4, SLC7A11, and FTH1) and regulates their expression, thereby establishing a negative STAT3-ferroptosis regulatory axis in gastric cancer. Genetic inhibition of STAT3 activity triggers ferroptosis through lipid peroxidation and Fe2+ accumulation in gastric cancer cells. We further develop a potent and selective STAT3 inhibitor, W1131, which demonstrates significant anti-tumor effects in gastric cancer cell xenograft model, organoids model, and patient-derived xenografts (PDX) model partly by inducing ferroptosis, thus providing a new candidate compound for advanced gastric cancer. Moreover, targeting the STAT3-ferroptosis circuit promotes ferroptosis and restores sensitivity to chemotherapy. Our finding reveals that STAT3 acts as a key negative regulator of ferroptosis in gastric cancer through a multi-pronged mechanism and provides a new therapeutic strategy for advanced gastric cancer and chemotherapy resistance. Genetic and pharmacological inhibition of STAT3 triggers ferroptosis by transcriptionlly regulation of GPX4, SLC7A11, and FTH1 in gastric cancer. A potent and selective STAT3 inhibitor W1131, with strong anti-tumor effects, is developed. Ferroptosis plays a key role in the progression and chemoresistance of gastric cancer. Targeting the STAT3-ferroptosis circuit provides a new therapeutic strategy for advanced gastric cancer and chemotherapy resistance.
Collapse
|
13
|
Vageli DP, Doukas PG, Siametis A, Judson BL. Targeting STAT3 prevents bile reflux-induced oncogenic molecular events linked to hypopharyngeal carcinogenesis. J Cell Mol Med 2021; 26:75-87. [PMID: 34850540 PMCID: PMC8742186 DOI: 10.1111/jcmm.17011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) oncogene is a transcription factor with a central role in head and neck cancer. Hypopharyngeal cells (HCs) exposed to acidic bile present aberrant activation of STAT3, possibly contributing to its oncogenic effect. We hypothesized that STAT3 contributes substantially to the bile reflux‐induced molecular oncogenic profile, which can be suppressed by STAT3 silencing or pharmacological inhibition. To explore our hypothesis, we targeted the STAT3 pathway, by knocking down STAT3 (STAT3 siRNA), and inhibiting STAT3 phosphorylation (Nifuroxazide) or dimerization (SI3‐201; STA‐21), in acidic bile (pH 4.0)‐exposed human HCs. Immunofluorescence, luciferase assay, Western blot, enzyme‐linked immunosorbent assay and qPCR analyses revealed that STAT3 knockdown or pharmacologic inhibition significantly suppressed acidic bile‐induced STAT3 activation and its transcriptional activity, Bcl‐2 overexpression, transcriptional activation of IL6, TNF‐α, BCL2, EGFR, STAT3, RELA(p65), REL and WNT5A, and cell survival. Our novel findings document the important role of STAT3 in bile reflux‐related molecular oncogenic events, which can be dramatically prevented by STAT3 silencing. STA‐21, SI3‐201 or Nifuroxazide effectively inhibited STAT3 and cancer‐related inflammatory phenotype, encouraging their single or combined application in preventive or therapeutic strategies of bile reflux‐related hypopharyngeal carcinogenesis.
Collapse
Affiliation(s)
- Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Panagiotis G Doukas
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Athanasios Siametis
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Benjamin L Judson
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Overview of Candida albicans and Human Papillomavirus (HPV) Infection Agents and their Biomolecular Mechanisms in Promoting Oral Cancer in Pediatric Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7312611. [PMID: 34765678 PMCID: PMC8577934 DOI: 10.1155/2021/7312611] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022]
Abstract
Oral carcinoma represents one of the most common malignancies worldwide. Oral squamous cell carcinomas (OSCCs) account over 90% of all oral malignant tumors and are characterized by high mortality in the advanced stages. Early diagnosis is often a challenge for its ambiguous appearance in early stages. Mucosal infection by the human papillomavirus (HPV) is responsible for a growing number of malignancies, particularly cervical cancer and oropharyngeal carcinomas. In addition, Candida albicans (C. albicans), which is the principal fungi involved in the oral cancer development, may induce carcinogenesis through several mechanisms, mainly promoting inflammation. Medical knowledge and research on adolescent/pediatric patients' management and prevention are in continuous evolution. Besides, microbiota can play an important role in maintaining oral health and therefore all human health. The aim of this review is to evaluate epidemiological and pathophysiological characteristics of the several biochemical pathways involved during HPV and C. albicans infections in pediatric dentistry.
Collapse
|
15
|
Shi S, Ma HY, Zhang ZG. Clinicopathological and prognostic value of STAT3/p-STAT3 in cervical cancer: A meta and bioinformatics analysis. Pathol Res Pract 2021; 227:153624. [PMID: 34571355 DOI: 10.1016/j.prp.2021.153624] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Signal transducer and activator of transcription-3 (STAT3) is an important member of the STAT family. Studies have found that it can participate in cell signal transduction and transcriptional activation. STAT3 plays an important role in tumor angiogenesis, immunity and tumor invasion and metastasis. Previous studies have found that STAT3 and phosphorylated STAT3(p-STAT3) are abnormally expressed in cervical cancer. In the research, we systematically analyzed the expression of STAT3 and phospho-STAT3(p-STAT3) in cervical cancer tissues and their correlation with clinicopathological features in patients with cervical cancer. We searched literature using PubMed, Web of Science and China National Knowledge Infrastructure(CNKI) on 10th Dec, 2020. Our results showed that the expression of STAT3 and p-STAT3 in cervical cancer tissues was significantly higher than that in normal tissues and cervical intraepithelial lesions, and the expression of STAT3 in cervical intraepithelial lesions was higher than that in normal cervical tissues (P < 0.05). The expression of STAT3 in cervical squamous cell carcinoma tissue was higher than that in adenocarcinoma tissue(p < 0.05). A positive association was found STAT3 expression and Lymph node metastasis, Infiltrating depth and TNM staging of cervical cancer patients(p < 0.05). p-STAT3 expression was also associated with Dedifferentiation, Lymph node metastasis and Depth of invasion(p < 0.05). According to oncomine database, STAT3 mRNA and DNA expression were obviously higher in cervical cancer tissue than cervix uteri tissue(p < 0.05). According to kmplotter, GEPIA and UALCAN databases, the expression of STAT3 in cervical cancer tissues is higher than that in normal tissues(p < 0.05), but it has no significant correlation with the prognosis of patients(p > 0.05). The high expression of STAT3 and p-STAT3 might be a potential marker for tumor occurrence and metastasis in cervical cancer patients.
Collapse
Affiliation(s)
- Shuai Shi
- Department of Pathology, Cangzhou People's Hospital, Cangzhou 061000, China
| | - Hong-Yan Ma
- Department of Pathology, Cangzhou People's Hospital, Cangzhou 061000, China
| | - Zhi-Gang Zhang
- Department of Pathology, Cangzhou People's Hospital, Cangzhou 061000, China.
| |
Collapse
|
16
|
Aggarwal N, Yadav J, Chhakara S, Janjua D, Tripathi T, Chaudhary A, Chhokar A, Thakur K, Singh T, Bharti AC. Phytochemicals as Potential Chemopreventive and Chemotherapeutic Agents for Emerging Human Papillomavirus-Driven Head and Neck Cancer: Current Evidence and Future Prospects. Front Pharmacol 2021; 12:699044. [PMID: 34354591 PMCID: PMC8329252 DOI: 10.3389/fphar.2021.699044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer (HNC) usually arises from squamous cells of the upper aerodigestive tract that line the mucosal surface in the head and neck region. In India, HNC is common in males, and it is the sixth most common cancer globally. Conventionally, HNC attributes to the use of alcohol or chewing tobacco. Over the past four decades, portions of human papillomavirus (HPV)-positive HNC are increasing at an alarming rate. Identification based on the etiological factors and molecular signatures demonstrates that these neoplastic lesions belong to a distinct category that differs in pathological characteristics and therapeutic response. Slow development in HNC therapeutics has resulted in a low 5-year survival rate in the last two decades. Interestingly, HPV-positive HNC has shown better outcomes following conservative treatments and immunotherapies. This raises demand to have a pre-therapy assessment of HPV status to decide the treatment strategy. Moreover, there is no HPV-specific treatment for HPV-positive HNC patients. Accumulating evidence suggests that phytochemicals are promising leads against HNC and show potential as adjuvants to chemoradiotherapy in HNC. However, only a few of these phytochemicals target HPV. The aim of the present article was to collate data on various leading phytochemicals that have shown promising results in the prevention and treatment of HNC in general and HPV-driven HNC. The review explores the possibility of using these leads against HPV-positive tumors as some of the signaling pathways are common. The review also addresses various challenges in the field that prevent their use in clinical settings.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Suhail Chhakara
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| |
Collapse
|
17
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
18
|
Ghaderi F, Jokar N, Gholamrezanezhad A, Assadi M, Ahmadzadehfar H. Toward radiotheranostics in cancer stem cells: a promising initial step for tumour eradication. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Beneficial effects and health benefits of Astaxanthin molecules on animal production: A review. Res Vet Sci 2021; 138:69-78. [PMID: 34111716 DOI: 10.1016/j.rvsc.2021.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AST) is a red pigment of carotenoid and is considered a high-quality keto-carotenoid pigment with food, livestock, cosmetic, therapeutic and nutraceutical proposes. Astaxanthin exists naturally in fish, crustacean, algae, and birds that naturally exists, principally as fatty acid esters. Many investigations have exhibited the beneficial impacts of astaxanthin when utilized as a pharmaceutical agent in animal nutrition. Astaxanthin has a variety of considerable biological actions, such as being antihypertensive, an antioxidant, anti-obesity properties, and anti-carcinogenic. Astaxanthin has recently acquired popularity as a powerful immunomodulator to maintain the health status and well-being of both animals and humans. The use of astaxanthin is broadly utilized in medical sciences and the nutrition pf aquatic species; however, it presently has limited applications in broader animal nutrition. Understanding astaxanthin's structure, source, and mode of action in the body provides a conceptual base for its clinical application and could enhance the screening of compounds associated with the treatment of many diseases. This review article aims to clarify the important aspects of astaxanthin such as its synthesis, bioavailability, and therapeutics actions, with special interest in practical applications. Awareness of this benefits and production is expected to aid the livestock industry to develop nutritional strategies that ensure the protection of animal health.
Collapse
|
20
|
Zafar E, Maqbool MF, Iqbal A, Maryam A, Shakir HA, Irfan M, Khan M, Li Y, Ma T. A comprehensive review on anticancer mechanism of bazedoxifene. Biotechnol Appl Biochem 2021; 69:767-782. [PMID: 33759222 DOI: 10.1002/bab.2150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
Cancer is counted as a second leading cause of death among nontransmissible diseases. Identification of novel anticancer drugs is therefore necessary for the effective treatment of cancer. Conventional drug discovery is time consuming and expensive process. Unlike conventional drug discovery, drug repositioning offers a novel strategy for urgent drug discovery since it is a cost-effective and faster process. Bazedoxifene (BZA) is a synthetic selective estrogen receptor modulator, approved by the United States Food and Drug Administration for the treatment of osteoporosis in postmenopausal women. BZA is now being studied for its anticancer activity in various cancers including breast cancer, liver cancer, pancreatic cancer, colon cancer, head and neck cancer, medulloblastoma, brain cancer, and gastrointestinal cancer. Studies have reported that BZA is effective in reducing cancer progression through multiple mechanisms. BZA could effectively inhibit STAT3, PI3K/AKT, and MAPK signaling pathways and induce apoptosis. In addition to its anticancer activity as monotherapy, BZA has been shown to enhance the chemotherapeutic efficacy of clinical drugs such as paclitaxel, cisplatin, palbociclib, and oxaliplatin in multiple neoplasms. This review mainly focused on the anticancer activity, cellular targets, and anticancer mechanism of BZA, which may help the further design and conduct of research and repositioning it for oncological clinic trials.
Collapse
Affiliation(s)
- Erum Zafar
- Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | | | - Asia Iqbal
- Department of Wild Life and Ecology, University of Veternary and Animal Sciences, Ravi Campus, Patoki, Pakistan
| | - Amara Maryam
- Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Hafiz Abdullah Shakir
- Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Khan
- Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Yongming Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Tonghui Ma
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Correlations between serum cetuximab and EGFR-related markers, and skin disorders in head and neck cancer patients. Cancer Chemother Pharmacol 2021; 87:555-565. [PMID: 33462734 DOI: 10.1007/s00280-020-04228-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Cetuximab inhibits epidermal growth factor receptor (EGFR) signaling in cancer and skin cells, thereby inducing anti-cancer effects and skin disorders. The present study aimed to evaluate the relationships between serum cetuximab and EGFR-related markers, and adverse effects in head and neck cancer patients. METHODS Thirty-four head and neck cancer patients receiving weekly intravenous cetuximab were enrolled. Serum cetuximab levels were determined just before dosing. Blood samples for determination of serum EGFR-related markers including soluble epidermal growth factor receptor (sEGFR) and interleukin-6 (IL-6) were obtained. The severities of skin disorders, their medications, and hypomagnesemia treatment were also assessed. RESULTS Serum levels of cetuximab and sEGFR were negatively and positively correlated with that of IL-6, respectively. The serum cetuximab level was twofold higher in the patients with a grade 2-3 skin rash than with a grade 0-1 rash. The serum cetuximab cutoff value related to severe skin rash was 71 μg/mL (sensitivity, 59%; and specificity, 94%). The use of a strong topical corticosteroid for skin rash was also associated with a higher serum cetuximab level. Serum levels of sEGFR and IL-6 had no correlations with the skin disorder severities or their medications. Hypomagnesemia treatment using intravenous magnesium sulfate was not related to serum cetuximab and EGFR-related markers. CONCLUSIONS Head and neck cancer patients with a higher serum IL-6 level tended to have a lower serum cetuximab level. Serum cetuximab had positive correlations to skin rash severity and its medication in the study population.
Collapse
|
22
|
Tolomeo M, Cascio A. The Multifaced Role of STAT3 in Cancer and Its Implication for Anticancer Therapy. Int J Mol Sci 2021; 22:ijms22020603. [PMID: 33435349 PMCID: PMC7826746 DOI: 10.3390/ijms22020603] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) 3 is one of the most complex regulators of transcription. Constitutive activation of STAT3 has been reported in many types of tumors and depends on mechanisms such as hyperactivation of receptors for pro-oncogenic cytokines and growth factors, loss of negative regulation, and excessive cytokine stimulation. In contrast, somatic STAT3 mutations are less frequent in cancer. Several oncogenic targets of STAT3 have been recently identified such as c-myc, c-Jun, PLK-1, Pim1/2, Bcl-2, VEGF, bFGF, and Cten, and inhibitors of STAT3 have been developed for cancer prevention and treatment. However, despite the oncogenic role of STAT3 having been widely demonstrated, an increasing amount of data indicate that STAT3 functions are multifaced and not easy to classify. In fact, the specific cellular role of STAT3 seems to be determined by the integration of multiple signals, by the oncogenic environment, and by the alternative splicing into two distinct isoforms, STAT3α and STAT3β. On the basis of these different conditions, STAT3 can act both as a potent tumor promoter or tumor suppressor factor. This implies that the therapies based on STAT3 modulators should be performed considering the pleiotropic functions of this transcription factor and tailored to the specific tumor type.
Collapse
|
23
|
Luo K, Zhang L, Liao Y, Zhou H, Yang H, Luo M, Qing C. Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncol Rep 2021; 45:824-834. [PMID: 33432368 PMCID: PMC7859916 DOI: 10.3892/or.2021.7927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor pathway substrate 8 (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which is involved in cell mitosis, differentiation and other physiological functions. Numerous studies over the last decade have demonstrated that Eps8 is overexpressed in most ubiquitous malignant tumours and subsequently binds with its receptor to activate multiple signalling pathways. Eps8 not only participates in the regulation of malignant phenotypes, such as tumour proliferation, invasion, metastasis and drug resistance, but is also related to the clinicopathological characteristics and prognosis of patients. Therefore, Eps8 is a potential tumour diagnosis and prognostic biomarker and even a therapeutic target. This review aimed to describe the structural characteristics, role and related molecular mechanism of Eps8 in malignant tumours. In addition, the prospect of Eps8 as a target for cancer therapy is examined.
Collapse
Affiliation(s)
- Kaili Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lei Zhang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongyu Zhou
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongying Yang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Min Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
24
|
Aggarwal N, Yadav J, Thakur K, Bibban R, Chhokar A, Tripathi T, Bhat A, Singh T, Jadli M, Singh U, Kashyap MK, Bharti AC. Human Papillomavirus Infection in Head and Neck Squamous Cell Carcinomas: Transcriptional Triggers and Changed Disease Patterns. Front Cell Infect Microbiol 2020. [PMID: 33344262 DOI: 10.3389/fcimb.2020.537650,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of cancers. Collectively, HNSCC ranks sixth in incidence rate worldwide. Apart from classical risk factors like tobacco and alcohol, infection of human papillomavirus (HPV) is emerging as a discrete risk factor for HNSCC. HPV-positive HNSCC represent a distinct group of diseases that differ in their clinical presentation. These lesions are well-differentiated, occur at an early age, and have better prognosis. Epidemiological studies have demonstrated a specific increase in the proportions of the HPV-positive HNSCC. HPV-positive and HPV-negative HNSCC lesions display different disease progression and clinical response. For tumorigenic-transformation, HPV essentially requires a permissive cellular environment and host cell factors for induction of viral transcription. As the spectrum of host factors is independent of HPV infection at the time of viral entry, presumably entry of HPV only selects host cells that are permissive to establishment of HPV infection. Growing evidence suggest that HPV plays a more active role in a subset of HNSCC, where they are transcriptionally-active. A variety of factors provide a favorable environment for HPV to become transcriptionally-active. The most notable are the set of transcription factors that have direct binding sites on the viral genome. As HPV does not have its own transcription machinery, it is fully dependent on host transcription factors to complete the life cycle. Here, we review and evaluate the current evidence on level of a subset of host transcription factors that influence viral genome, directly or indirectly, in HNSCC. Since many of these transcription factors can independently promote carcinogenesis, the composition of HPV permissive transcription factors in a tumor can serve as a surrogate marker of a separate molecularly-distinct class of HNSCC lesions including those cases, where HPV could not get a chance to infect but may manifest better prognosis.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Rakhi Bibban
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ujala Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Manoj K Kashyap
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Amity Medical School, Stem Cell Institute, Amity University Haryana, Amity Education Valley Panchgaon, Gurugram, India
| | - Alok C Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
25
|
Aggarwal N, Yadav J, Thakur K, Bibban R, Chhokar A, Tripathi T, Bhat A, Singh T, Jadli M, Singh U, Kashyap MK, Bharti AC. Human Papillomavirus Infection in Head and Neck Squamous Cell Carcinomas: Transcriptional Triggers and Changed Disease Patterns. Front Cell Infect Microbiol 2020; 10:537650. [PMID: 33344262 PMCID: PMC7738612 DOI: 10.3389/fcimb.2020.537650] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of cancers. Collectively, HNSCC ranks sixth in incidence rate worldwide. Apart from classical risk factors like tobacco and alcohol, infection of human papillomavirus (HPV) is emerging as a discrete risk factor for HNSCC. HPV-positive HNSCC represent a distinct group of diseases that differ in their clinical presentation. These lesions are well-differentiated, occur at an early age, and have better prognosis. Epidemiological studies have demonstrated a specific increase in the proportions of the HPV-positive HNSCC. HPV-positive and HPV-negative HNSCC lesions display different disease progression and clinical response. For tumorigenic-transformation, HPV essentially requires a permissive cellular environment and host cell factors for induction of viral transcription. As the spectrum of host factors is independent of HPV infection at the time of viral entry, presumably entry of HPV only selects host cells that are permissive to establishment of HPV infection. Growing evidence suggest that HPV plays a more active role in a subset of HNSCC, where they are transcriptionally-active. A variety of factors provide a favorable environment for HPV to become transcriptionally-active. The most notable are the set of transcription factors that have direct binding sites on the viral genome. As HPV does not have its own transcription machinery, it is fully dependent on host transcription factors to complete the life cycle. Here, we review and evaluate the current evidence on level of a subset of host transcription factors that influence viral genome, directly or indirectly, in HNSCC. Since many of these transcription factors can independently promote carcinogenesis, the composition of HPV permissive transcription factors in a tumor can serve as a surrogate marker of a separate molecularly-distinct class of HNSCC lesions including those cases, where HPV could not get a chance to infect but may manifest better prognosis.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Rakhi Bibban
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ujala Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Manoj K. Kashyap
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Amity Medical School, Stem Cell Institute, Amity University Haryana, Amity Education Valley Panchgaon, Gurugram, India
| | - Alok C. Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
26
|
Long X, Zhao B, Lu W, Chen X, Yang X, Huang J, Zhang Y, An S, Qin Y, Xing Z, Shen Y, Wu H, Qi Y. The Critical Roles of the SUMO-Specific Protease SENP3 in Human Diseases and Clinical Implications. Front Physiol 2020; 11:558220. [PMID: 33192553 PMCID: PMC7662461 DOI: 10.3389/fphys.2020.558220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Post-translational modification by SUMO (small ubiquitin-like modifier) proteins has been shown to regulate a variety of functions of proteins, including protein stability, chromatin organization, transcription, DNA repair, subcellular localization, protein–protein interactions, and protein homeostasis. SENP (sentrin/SUMO-specific protease) regulates precursor processing and deconjugation of SUMO to control cellular mechanisms. SENP3, which is one of the SENP family members, deconjugates target proteins to alter protein modification. The effect of modification via SUMO and SENP3 is crucial to maintain the balance of SUMOylation and guarantee normal protein function and cellular activities. SENP3 acts as an oxidative stress-responsive molecule under physiological conditions. Under pathological conditions, if the SUMOylation process of proteins is affected by variations in SENP3 levels, it will cause a cellular reaction and ultimately lead to abnormal cellular activities and the occurrence and development of human diseases, including cardiovascular diseases, neurological diseases, and various cancers. In this review, we summarized the most recent advances concerning the critical roles of SENP3 in normal physiological and pathological conditions as well as the potential clinical implications in various diseases. Targeting SENP3 alone or in combination with current therapies might provide powerful targeted therapeutic strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jifang Huang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
27
|
Cui J, Li H, Wang Y, Tian T, Liu C, Wang Y, Sun S, Feng B. Skullcapflavone I has a potent anti-pancreatic cancer activity by targeting miR-23a. Biofactors 2020; 46:821-830. [PMID: 32141657 DOI: 10.1002/biof.1621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/16/2020] [Indexed: 01/06/2023]
Abstract
Baicalein has been widely studied and showed a potent activity against pancreatic cancer in both in vivo and in vitro studies. Little is known regarding the effects of Skullcapflavone I (SFI), despite they have similar structures. So, this study was to explore the function of SFI on human pancreatic cancer. Panc-1 cells were transfected with miR-23a precursor, miR-23a inhibitor or the negative controls, and subsequently treated by SFI. Cell viability, Bromodeoxyuridine (BrdU)-positive cell rate, apoptosis, migration, invasion, and related protein expression were assessed by utilizing Cell Counting Kit-8 (CCK-8), BrdU staining, apoptosis assessment, transwell assay, and western blot. SFI significantly reduced the proliferation, migration, and invasion, as well as induced apoptosis of Panc-1 cells. MiR-23a, miR-21, and miR-155 were lowly expressed while miR-145 and miR-146a were highly expressed in SFI-treated cell. Of note, the antitumor effects of SFI were promoted by miR-23a suppression whereas attenuated by miR-23a overexpression. JAK/STAT and MAPK pathways were inhibited by SFI. Also, the pathway inhibition in SFI-treated cells was reversed by miR-23a overexpression. SFI might be a promising anti-pancreatic cancer agent by inhibiting cancer cells growth and motility. The anticancer activities of SFI might be through downregulation of miR-23a, as well as inhibition of JAK/STAT and MAPK pathways.
Collapse
Affiliation(s)
- Jing Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Li
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tian Tian
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shukai Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Anti-Tumor Effects of Astaxanthin by Inhibition of the Expression of STAT3 in Prostate Cancer. Mar Drugs 2020; 18:md18080415. [PMID: 32784629 PMCID: PMC7459748 DOI: 10.3390/md18080415] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Astaxanthin is a natural product gaining increasing attention due to its safety and anti-cancer properties. In this study, we investigated the mechanisms of the anti-cancer effects of astaxanthin on prostate cancer (PCa) cell lines using aggressive PCa DU145 cells. Also an instantaneous silenced cell line (si-STAT3) derived from DU145 and a control cell line (si-NK) were used for the MTT and colony formation assays to determine the role of astaxanthin in proliferation and colony formation abilities. Flow cytometry assays were used to detect the apoptosis of tumor cells. Migration and invasion assays detected the weakening of the respective abilities. Western blot and RT-PCR tests detected the levels of STAT3 protein and mRNA. Astaxanthin resulted in suppression of the proliferation of DU145 cells and the level of STAT3. The treatment of DU145 cells with astaxanthin decreased the cloning ability, increased the apoptosis percentage and weakened the abilities of migration and invasion of the cells. Furthermore, astaxanthin reduced the expression of STAT3 at protein and mRNA levels. The effects were enhanced when astaxanthin and si-STAT3 were combined. The results of animal experiments were consistent with the results in cells. Thus, astaxanthin inhibits the proliferation of DU145 cells by reducing the expression of STAT3.
Collapse
|
29
|
El Haouari M, Quintero JE, Rosado JA. Anticancer molecular mechanisms of oleocanthal. Phytother Res 2020; 34:2820-2834. [PMID: 32449241 DOI: 10.1002/ptr.6722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/23/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
Cancer is among the leading causes of mortality worldwide. Current cancer therapies are associated with serious side effects, which further damage patients' health. Therefore, the search for new anticancer agents with no toxic effects on normal and healthy cells is of great interest. Recently, we and other groups have demonstrated that oleocanthal (OLC), a phenolic compound from extra virgin olive oil, exhibits antitumor activity in various tumor models. However, the underlying mechanisms and intracellular targets of OLC remain to be completely elucidated. This review summarizes the current advancers concerning the anticancer activity of OLC, with particular emphasis on the molecular signaling pathways modulated by this compound in different tumor cell types. The major mechanisms of action of OLC include modulation of the apoptotic pathway, the HGF/c-Met pathway, and the signal transducer and activator of transcription 3 signaling pathway, among others. Furthermore, OLC has synergistic effects with anticancer drugs in vitro. Also discussed are OLC bioavailability and its concentration in olive oil. Data summarized here will represent a database for more extensive studies aimed at providing information on molecular mechanisms against cancer induced by OLC.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Laboratoire d'Ingénierie Pédagogique et Didactique des Sciences (IPDSM), Centre Régional des Métiers de l'Education et de la Formation (CRMEF Fès-Meknès), Taza, Morocco.,Laboratoire Substances Naturelles, Pharmacologie, Environnement, Modélisation, Santé & Qualité de vie (SNAMOPEQ), Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
| | - Juan E Quintero
- Department of Physiology (Cell Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| |
Collapse
|
30
|
Lopez-Aguiar AG, Postlewait LM, Ethun CG, Zaidi MY, Zhelnin K, Krasinskas A, Russell MC, Kooby DA, Cardona K, El-Rayes BF, Maithel SK. STAT3 Inhibition for Gastroenteropancreatic Neuroendocrine Tumors: Potential for a New Therapeutic Target? J Gastrointest Surg 2020; 24:1138-1148. [PMID: 31144189 DOI: 10.1007/s11605-019-04261-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/06/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are highly vascular neoplasms treated similarly, irrespective of tumor location. The expression of pro-angiogenic factors (STAT3, VEGF, and HIF-1α) and their association with adverse pathologic factors and disease recurrence following resection remains unclear. METHODS All patients with non-metastatic GEP-NETs who underwent curative-intent resection from 2000 to 2013 were included. Immunohistochemistry was performed for pro-angiogenic factors, Ki-67 index, and CD31 using tissue microarrays made in triplicate by a pathologist blinded to other clinicopathologic variables. Primary outcome was a 3-year recurrence-free survival (3-yrRFS); secondary outcomes were correlation of pro-angiogenic factors with Ki-67 index, adverse pathologic factors, and CD31 expression, a marker of microvascular density. RESULTS Of 144 GEP-NETs resected, STAT3 expression was high in 12 (8%) and low in 132 (92%) pts. High STAT3 expression was associated with worse 3-yrRFS compared to low expression (55% vs 84%; p = 0.003). High VEGF expression had a 3-yrRFS of 76% vs 82% for low expression (p = 0.09). HIF-1α expression was not associated with RFS. Ki-67 ≥ 3% was associated with worse 3-yrRFS (≥ 3%: 51% vs < 3%: 84%; p < 0.001), as was the presence of increased microvascular density (CD31 > median: 75% vs CD31 < median: 86%; p = 0.04). High STAT3 expressing tumors were more likely to have a Ki-67 ≥ 3% (42% vs 7%; p < 0.001). LVI was present in 82% of high STAT3 tumors compared to only 50% with low STAT3 (p = 0.058). CD31 expression was similar between groups (58% vs 49%; p = 0.5). CONCLUSIONS In resected GEP-NETs, high STAT3 expression is associated with an increased Ki-67 index, presence of lymphovascular invasion and worse 3-yr RFS. STAT3 may be a novel therapeutic target for patients undergoing resection of high-risk tumors.
Collapse
Affiliation(s)
- Alexandra G Lopez-Aguiar
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Lauren M Postlewait
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Cecilia G Ethun
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Mohammad Y Zaidi
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Kristen Zhelnin
- Department of Pathology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Alyssa Krasinskas
- Department of Pathology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Maria C Russell
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - David A Kooby
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Kenneth Cardona
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA
| | - Bassel F El-Rayes
- Department of Hematology Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Shishir K Maithel
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, 1365C Clifton Road NE, 2nd Floor, Atlanta, GA, 30322, USA.
| |
Collapse
|
31
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1156] [Impact Index Per Article: 231.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
32
|
Cui J, Li H, Wang Y, Tian T, Liu C, Wang Y, Sun S, Feng B. WITHDRAWN: Skullcapflavone I has a potent anti-pancreatic cancer activity by targeting miR-23a. Life Sci 2019:S0024-3205(19)30371-6. [PMID: 31085241 DOI: 10.1016/j.lfs.2019.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/01/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Jing Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Hao Li
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Ying Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Tian Tian
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Chao Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Yanan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Shukai Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| |
Collapse
|
33
|
Retrospective investigation of the prognostic value of the β1 integrin expression in patients with head and neck squamous cell carcinoma receiving primary radio(chemo)therapy. PLoS One 2018; 13:e0209479. [PMID: 30571736 PMCID: PMC6301664 DOI: 10.1371/journal.pone.0209479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/25/2018] [Indexed: 01/02/2023] Open
Abstract
This retrospective study evaluated the expression of β1 integrins and associated proteins as prognostic markers for primary radio(chemo)therapy outcome of patients with locally advanced head and neck squamous cell carcinomas (HNSCC). Tissue microarrays were prepared from 224 HNSCC patients undergoing curative primary radio(chemo)therapy from 1996 to 2005. Staining intensities of β1 integrin and its downstream-proteins FAK, phosphorylated FAK as well as the β1 integrin ECM ligands fibronectin and collagen type-I were determined. Their association to the primary endpoint loco-regional control and the secondary endpoints overall survival and freedom from distant metastasis was analyzed by Cox regression. None of the considered molecular parameters showed a significant association with loco-regional control and freedom from distant metastasis. Patients with p16 positive tumors or tumors with a low intensity of fibronectin showed significantly higher overall survival in univariable regression. In multivariable regression including additional clinical parameters, however, these parameters were not significantly associated with overall survival. Our study in a HNSCC patient cohort treated with primary radio(chemo)therapy does not reveal a prognostic value of β1 integrin expression.
Collapse
|
34
|
Vallée A, Guillevin R, Vallée JN. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev Neurosci 2018; 29:71-91. [PMID: 28822229 DOI: 10.1515/revneuro-2017-0032] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
The canonical Wnt/β-catenin pathway is up-regulated in gliomas and involved in proliferation, invasion, apoptosis, vasculogenesis and angiogenesis. Nuclear β-catenin accumulation correlates with malignancy. Hypoxia activates hypoxia-inducible factor (HIF)-1α by inhibiting HIF-1α prolyl hydroxylation, which promotes glycolytic energy metabolism, vasculogenesis and angiogenesis, whereas HIF-1α is degraded by the HIF prolyl hydroxylase under normoxic conditions. We focus this review on the links between the activated Wnt/β-catenin pathway and the mechanisms underlying vasculogenesis and angiogenesis through HIF-1α under normoxic conditions in gliomas. Wnt-induced epidermal growth factor receptor/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, Wnt-induced signal transducers and activators of transcription 3 (STAT3) signaling, and Wnt/β-catenin target gene transduction (c-Myc) can activate HIF-1α in a hypoxia-independent manner. The PI3K/Akt/mammalian target of rapamycin pathway activates HIF-1α through eukaryotic translation initiation factor 4E-binding protein 1 and STAT3. The β-catenin/T-cell factor 4 complex directly binds to STAT3 and activates HIF-1α, which up-regulates the Wnt/β-catenin target genes cyclin D1 and c-Myc in a positive feedback loop. Phosphorylated STAT3 by interleukin-6 or leukemia inhibitory factor activates HIF-1α even under normoxic conditions. The activation of the Wnt/β-catenin pathway induces, via the Wnt target genes c-Myc and cyclin D1 or via HIF-1α, gene transactivation encoding aerobic glycolysis enzymes, such as glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production, as the primary alternative of ATP, at all oxygen levels, even in normoxic conditions. Lactate released by glioma cells via the monocarboxylate lactate transporter-1 up-regulated by HIF-1α and lactate anion activates HIF-1α in normoxic endothelial cells by inhibiting HIF-1α prolyl hydroxylation and preventing HIF labeling by the von Hippel-Lindau protein. Increased lactate with acid environment and HIF-1α overexpression induce the vascular endothelial growth factor (VEGF) pathway of vasculogenesis and angiogenesis under normoxic conditions. Hypoxia and acidic pH have no synergistic effect on VEGF transcription.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, 11 Boulevard Marie et Pierre Curie, F-86000 Poitiers, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, F-86000 Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, F-86000 Poitiers, France
| |
Collapse
|
35
|
Baek M, Kim M, Lim JS, Morales LD, Hernandez J, Mummidi S, Williams-Blangero S, Jang IS, Tsin AT, Kim DJ. Epidermal-specific deletion of TC-PTP promotes UVB-induced epidermal cell survival through the regulation of Flk-1/JNK signaling. Cell Death Dis 2018; 9:730. [PMID: 29955047 PMCID: PMC6023867 DOI: 10.1038/s41419-018-0781-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/24/2018] [Accepted: 06/04/2018] [Indexed: 01/27/2023]
Abstract
UVB exposure can contribute to the development of skin cancer by modulating protein tyrosine kinase (PTK) signaling. It has been suggested that UVB radiation increases the ligand-dependent activation of PTKs and induces PTP inactivation. Our recent studies have shown that T-cell protein tyrosine phosphatase (TC-PTP) attenuates skin carcinogenesis induced by chemical regimens, which indicates its critical role in the prevention of skin cancer. In the current work, we report that TC-PTP increases keratinocyte susceptibility to UVB-induced apoptosis via the downregulation of Flk-1/JNK signaling. We showed that loss of TC-PTP led to resistance to UVB-induced apoptosis in vivo epidermis. We established immortalized primary keratinocytes (IPKs) from epidermal-specific TC-PTP-deficient (K14Cre.Ptpn2fl/fl) mice. Immortalized TC-PTP-deficient keratinocytes (TC-PTP/KO IPKs) showed increased cell survival against UVB-induced apoptosis which was concomitant with a UVB-mediated increase in Flk-1 phosphorylation, especially on tyrosine residue 1173. Inhibition of Flk-1 by either its specific inhibitors or siRNA in TC-PTP/KO IPKs reversed this effect and significantly increased cell death after UVB irradiation in comparison with untreated TC-PTP/KO IPKs. Immunoprecipitation analysis using the TC-PTP substrate-trapping mutant TCPTP-D182A indicated that TC-PTP directly interacts with Flk-1 to dephosphorylate it and their interaction was stimulated by UVB. Following UVB-mediated Flk-1 activation, the level of JNK phosphorylation was also significantly increased in TC-PTP/KO IPKs compared to control IPKs. Similar to our results with Flk-1, treatment of TC-PTP/KO IPKs with the JNK inhibitor SP600125 significantly increased apoptosis after UVB irradiation, confirming that the effect of TC-PTP on UVB-mediated apoptosis is regulated by Flk-1/JNK signaling. Western blot analysis showed that both phosphorylated Flk-1 and phosphorylated JNK were significantly increased in the epidermis of TC-PTP-deficient mice compared to control mice following UVB. Our results suggest that TC-PTP plays a protective role against UVB-induced keratinocyte cell damage by promoting apoptosis via negative regulation of Flk-1/JNK survival signaling.
Collapse
Affiliation(s)
- Minwoo Baek
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.,College of Pharmacy, University of Minnesota, Duluth, MN, USA
| | - Mihwa Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Jae Sung Lim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Liza D Morales
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.,South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Joselin Hernandez
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.,South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Srinivas Mummidi
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.,South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Sarah Williams-Blangero
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.,South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Ik-Soon Jang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, 305-333, Republic of Korea
| | - Andrew T Tsin
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Dae Joon Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA. .,Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.
| |
Collapse
|
36
|
Grimster NP, Anderson E, Alimzhanov M, Bebernitz G, Bell K, Chuaqui C, Deegan T, Ferguson AD, Gero T, Harsch A, Huszar D, Kawatkar A, Kettle JG, Lyne P, Read JA, Rivard Costa C, Ruston L, Schroeder P, Shi J, Su Q, Throner S, Toader D, Vasbinder M, Woessner R, Wang H, Wu A, Ye M, Zheng W, Zinda M. Discovery and Optimization of a Novel Series of Highly Selective JAK1 Kinase Inhibitors. J Med Chem 2018; 61:5235-5244. [DOI: 10.1021/acs.jmedchem.8b00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Linette Ruston
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S. STAT3 and apoptosis challenges in cancer. Int J Biol Macromol 2018; 117:993-1001. [PMID: 29782972 DOI: 10.1016/j.ijbiomac.2018.05.121] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022]
Abstract
Several studies have processed conceivable evidence for the vital role of Signal Transducer and Activator of Transcription 3 (STAT3) in cancer transformation and carcinogenesis. Therefore, one of the important factors in formation of cancer is STAT3 and for design of novel anticancer drugs is a suitable target. On the other hand, apoptosis pathway has a critical role in the cancers pathogenesis. Generally, increasing developments have been existed to expression, production, phosphorylation or activation of STAT3 in the effective or responsible cells of most of the cancers. In return, apoptosis process in this cells have been suffered inhibition, decrease in expression, produce or activation in some related factors which lead to debilitation or inhibition of the process. Further understanding of the STAT3 related signaling and apoptosis pathway can lead to the invention of novel approaches for therapies in unstudied disease. In this manuscript, review and highlight recent knowledge of the STAT3 pathway and its connection with apoptosis process in cancers and discuss STAT3-targeting agents to therapeutic developments.
Collapse
Affiliation(s)
- Nazanin Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golnaz Rashidi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahriar Shahi
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Wu M, Shi H, He Y, Yuan L, Qu X, Zhang J, Wang Z, Cai H, Qi J. Colivelin Ameliorates Impairments in Cognitive Behaviors and Synaptic Plasticity in APP/PS1 Transgenic Mice. J Alzheimers Dis 2018; 59:1067-1078. [PMID: 28731445 DOI: 10.3233/jad-170307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and effective therapeutics are lacking. Colivelin (CLN), a novel, strong humanin derivative, is effective in vitro in preventing cell death induced by AD-causative genes and amyloid-β protein (Aβ) even at a low concentration. We recently demonstrated that intrahippocampal injection of CLN prevents Aβ25-35-induced deficits in spatial memory and synaptic plasticity in normal rats. Here, we further observed the effects of chronically intranasally (i.n.) administered CLN on cognitive behaviors and pathological hallmarks in 9-month-old APPswe/PS1dE9 (APP/PS1) AD mice using multiple behavioral tests and immunochemistry. The electrophysiological mechanism of CLN neuroprotection was also investigated by recording in vivo hippocampal long-term potentiation (LTP). CLN pretreatment effectively prevented impairments in new object recognition, working memory, and long-term spatial memory and reversed the depression of in vivo hippocampal LTP in APP/PS1 mice. Additionally, chronic application of CLN obviously reduced Aβ deposition in the hippocampus in APP/PS1 mice. These results indicate that CLN has strong neuroprotective effects on learning and memory behaviors in APP/PS1 mice and that this behavioral improvement is closely associated with the reduction of Aβ deposition and alleviation of LTP suppression in the hippocampus, supporting the potential of CLN for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Meina Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Hui Shi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Intensive Care Unit, Chifeng Municipal Hospital of Inner Mongolia, Chifeng, China
| | - Yexin He
- Department of Radiology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Li Yuan
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xuesong Qu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jun Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhaojun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Hongyan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jinshun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
39
|
Guo XX, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu TR. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42:756-768. [DOI: 10.1002/cbin.10948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Xi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Su An
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yang Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Ying Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qian Hao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tao Tang
- Faculty of Medicine; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
40
|
Nakajima K, Sano S. Mouse models of psoriasis and their relevance. J Dermatol 2018; 45:252-263. [PMID: 29226571 DOI: 10.1111/1346-8138.14112] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
Abstract
Psoriasis is an inflammatory skin disorder that includes dynamic interactions between the immune system and skin and is clinically characterized by keratinocyte proliferation and distinct inflammatory cell infiltrates. Cross-talk between keratinocytes and immunocytes is essential for the development of psoriasis given that it mediates the production of cytokines, chemokines and growth factors. To resolve the pathogenesis of psoriasis, numerous experimental animal models have been generated. In this review, we discuss recent findings from mouse models, their relevancy to psoriasis and use, including the discovery of new therapies.
Collapse
Affiliation(s)
- Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
41
|
Yeudall A, Patel V. EPS8 signaling as a therapeutic target in oral cancer. Oral Dis 2018; 24:128-131. [DOI: 10.1111/odi.12766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/28/2022]
Affiliation(s)
- A Yeudall
- Department of Oral Biology; The Dental College of Georgia at Augusta University; Augusta GA USA
| | - V Patel
- Department of Oral Biology; The Dental College of Georgia at Augusta University; Augusta GA USA
| |
Collapse
|
42
|
Geletu M, Mohan R, Arulanandam R, Berger-Becvar A, Nabi IR, Gunning PT, Raptis L. Reciprocal regulation of the Cadherin-11/Stat3 axis by caveolin-1 in mouse fibroblasts and lung carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:794-802. [PMID: 29458077 DOI: 10.1016/j.bbamcr.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 01/05/2023]
Abstract
Caveolin-1 (Cav1) is an integral plasma membrane protein and a complex regulator of signal transduction. The Signal Transducer and Activator of Transcription-3 (Stat3) is activated by a number of receptor and non-receptor tyrosine kinases and is positively implicated in cancer. Despite extensive efforts, the relationship between Cav1 and Stat3 has been a matter of controversy. We previously demonstrated that engagement of E- or N-cadherin or cadherin-11 cell to cell adhesion molecules, as occurs with confluence of cultured cells, triggers a dramatic increase in the levels of tyr705 phosphorylated i.e. activated Stat3, by a mechanism requiring the cRac1 small GTPase. Since confluence was not taken into account in previous studies, we revisited the question of the relationship between Cav1 and Stat3-ptyr705 in non-transformed mouse fibroblasts and in human lung carcinoma cells, by examining their effect at different cell densities. Our results unequivocally demonstrate that Cav1 downregulates cadherin-11, by a mechanism which requires the Cav1 scaffolding domain. This cadherin-11 downregulation, in turn, leads to a reduction in cRac1 and Stat3 activity levels. Furthermore, in a feedback loop possibly through p53 upregulation, Stat3 downregulation increases Cav1 levels. Our data reveal the presence of a potent, negative regulatory loop between Cav1 and cadherin-11/Stat3, leading to Stat3 inhibition and apoptosis.
Collapse
Affiliation(s)
- M Geletu
- Department of Biomedical and Molecular Sciences, Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada.
| | - R Mohan
- Department of Biomedical and Molecular Sciences, Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R Arulanandam
- Department of Biomedical and Molecular Sciences, Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - A Berger-Becvar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada
| | - I R Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - P T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada
| | - L Raptis
- Department of Biomedical and Molecular Sciences, Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
43
|
Significance of Interleukin-6/STAT Pathway for the Gene Expression of REG Iα, a New Autoantigen in Sjögren's Syndrome Patients, in Salivary Duct Epithelial Cells. Clin Rev Allergy Immunol 2018; 52:351-363. [PMID: 27339601 DOI: 10.1007/s12016-016-8570-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The regenerating gene, Reg, was originally isolated from a rat regenerating islet complementary DNA (cDNA) library, and its human homologue was named REG Iα. Recently, we reported that REG Iα messenger RNA (mRNA), as well as its product, was overexpressed in ductal epithelial cells in the salivary glands of Sjögren's syndrome patients. Furthermore, autoantibodies against REG Iα were found in the sera of Sjögren's syndrome patients, and the patients who were positive for the anti-REG Iα antibody showed significantly lower saliva secretion than antibody-negative patients. We found the mechanism of REG Iα induction in salivary ductal epithelial cells. Reporter plasmid containing REG Iα promoter (-1190/+26) upstream of a luciferase gene was introduced into human NS-SV-DC and rat A5 salivary ductal cells. The cells were treated with several cytokines (interleukin (IL)-6, IL-8, etc.), upregulated in Sjögren's syndrome salivary ducts, and the transcriptional activity was measured. IL-6 stimulation significantly enhanced the REG Iα promoter activity in both cells. Deletion analysis revealed that the -141∼-117 region of the REG Iα gene was responsible for the promoter activation by IL-6, which contains a consensus sequence for signal transducer and activator of transcription (STAT) binding. The introduction of small interfering RNA for human STAT3 abolished IL-6-induced REG Iα transcription. These results indicated that IL-6 stimulation induced REG Iα transcription through STAT3 activation and binding to the REG Iα promoter in salivary ductal cells. This dependence of REG Iα induction upon IL-6/STAT in salivary duct epithelial cells may play an important role in the pathogenesis/progression of Sjögren's syndrome.
Collapse
|
44
|
Molecular mechanism of inhibitory effects of bovine lactoferrin on the growth of oral squamous cell carcinoma. PLoS One 2018; 13:e0191683. [PMID: 29381751 PMCID: PMC5790278 DOI: 10.1371/journal.pone.0191683] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background Lactoferrin (LF), a member of the transferrin family, recently has been demonstrated to have anticancer effects on various cancers including oral squamous cell carcinoma (OSCC). However, little is known about the underlying mechanisms of its effects on OSCC. Therefore, we aimed to investigate the mechanism of the suppressive effects of bovine LF (bLF) on the growth of OSCC cells. Methods In the current study, HSC2, HSC3, HSC4 and normal human oral keratinocytes (RT7) cell lines were tested with bLF 1, 10, and 100 μg/ml. The effects and detail mechanisms of bLF on proliferation and apoptosis of cells were investigated using flow cytometry and western blotting. Results We found that bLF (1, 10, and 100 μg/ml) induced activation of p53, a tumor suppressor gene, is associated with the induction of cell cycle arrest in G1/S phase and apoptosis in OSCC. Moreover, bLF downregulated the phosphorylation of Akt and activated suppressor of cytokine signaling 3 (SOCS3), thereby attenuating multiple signaling pathways including mTOR/S6K and JAK/STAT3. Interestingly, we revealed that bLF exerted its effect selectively against HSC3 but not on RT7 via different effects on the phosphorylation status of NF-κB and Akt. Conclusion This is the first report showing that bLF selectively suppresses proliferation through mTOR/S6K and JAK/STAT3 pathways and induction of apoptosis in OSCC. This study provides important new findings, which might be useful in the prevention and treatment of OSCC.
Collapse
|
45
|
Yang B, Qian F, Li W, Li Y, Han Y. Effects of general anesthesia with or without epidural block on tumor metastasis and mechanisms. Oncol Lett 2018. [PMID: 29541238 DOI: 10.3892/ol.2018.7870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to assess whether different anesthesia methods (general anesthesia and general anesthesia combined with epidural block) were associated with tumor metastasis during the perioperative period and the possible molecular mechanisms of tumor metastasis. A rat hepatoma tumor xenograft model was constructed via the subcutaneous injection of Morris hepatoma 3924A cells into the upper axillary fossa. General anesthesia and general anesthesia combined with epidural block prior to hepatectomy were conducted on tumor-bearing rats. The average numbers of metastatic nodules on the lung surface were calculated in the different groups and the presence of abdominal lymph node metastases, rate of malignant ascites and abdominal wall-implanted nodules were recorded. Blood samples were collected from the orbits of rats immediately prior to surgery and at 2, 7 and 30 days following surgery. Plasma levels of interferon-γ, transforming growth factor-α and vascular endothelial growth factor (VEGF) were measured. Finally, the expression of phosphorylated signal transducer and activator of transcription-3 and phosphorylated VEGF were measured by western blot analysis. The results of this analysis demonstrated that tumor metastasis was greatly suppressed when the rats underwent general anesthesia combined with epidural block prior to hepatectomy, compared with general anesthesia alone. The results of cytokine quantification and western blot analysis revealed that the anti-metastatic effect of general anesthesia combined with epidural block may have been mediated by inhibition of STAT3 and the relevant cytokines.
Collapse
Affiliation(s)
- Bin Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Feng Qian
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wenjia Li
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yang Li
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yangdong Han
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
46
|
Shah NG, Trivedi TI, Tankshali RA, Goswami JA, Jetly DH, Kobawala TP, Shukla SN, Shah PM, Verma RJ. Stat3 Expression in Oral Squamous Cell Carcinoma: Association with Clinicopathological Parameters and Survival. Int J Biol Markers 2018; 21:175-83. [PMID: 17013800 DOI: 10.1177/172460080602100307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study sought to explore the occurrence of signal transducer and activator of transcription 3 (Stat3) in patients with oral squamous cell carcinoma (n=135) and its potential relationship with clinicopathological parameters and survival. Stat3 expression was studied by immunohistochemistry. Cytoplasmic or nuclear localization of Stat3 was observed in 62% of patients, whereas only nuclear Stat3 expression was found in 44%. Stat3 positivity in early-stage patients was 45% compared to 79% in advanced-stage patients. However, early-stage Stat3-positive patients showed a gradual increase in staining intensity, with intense staining seen in 52% of the tumors compared to 18% in Stat3-positive advanced-stage patients, where a gradual decrease in intensity expression was observed (p=0.001). Stat3 showed a significant positive correlation with disease stage (p=0.001), nodal status (p=0.033) and tumor size (p=0.001). Multivariate survival analysis using the Cox proportional hazard regression model showed that nuclear Stat3 was a significant independent prognosticator for both relapse-free survival (p=0.014) and overall survival (p=0.042) in early-stage patients. Our results indicated that Stat3 activation is an early event in oral squamous cell carcinoma and represents a potential risk factor for poor prognosis in early-stage patients.
Collapse
Affiliation(s)
- N G Shah
- Division of Molecular Endocrinology, Gujarat Cancer and Research Institute, Asarwa, Ahmedabad, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shah NG, Trivedi TI, Tankshali RA, Goswami JA, Shah JS, Jetly DH, Kobawala TP, Patel KC, Shukla SN, Shah PM, Verma RJ. Molecular Alterations in Oral Carcinogenesis: Significant Risk Predictors in Malignant Transformation and Tumor Progression. Int J Biol Markers 2018; 22:132-43. [PMID: 17549669 DOI: 10.1177/172460080702200207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study an attempt was made to establish the significance of a battery of molecular alterations and thereby identify risk predictors in oral carcinogenesis. For this purpose, EGFR, Stat3, H-ras, c-myc, p53, cyclin D1, p16, Rb, Ki-67 and Bcl-2 were localized immunohistochemically in normal mucosa (n=12), hyperplasia (n=35), dysplasia (n=25), early stage carcinoma (n=65) and advanced stage carcinoma (n=70). Deregulation occurred at an early stage and the number of alterations increased with disease progression. Using multivariate logistic regression analysis, the significant risk predictor for hyperplasia from normal mucosa was Ki-67 (OR=5.75, p=0.021); the significant risk predictors for dysplasia from hyperplasia were EGFR (OR=12.96, p=0.002), Stat3 (OR=17.16, p=0.0001), p16 (OR=5.50, p=0.039) and c-myc (OR=5.99, p=0.052); the significant risk predictors for early stage carcinoma from dysplasia were p53 (OR=6.63, p=0.0001) and Rb (OR=3.81, p=0.056); and the significant risk predictors for further progression were EGFR (OR=5.50, p=0.0001), Stat3 (OR=4.49, p=0.0001), H-ras (OR=4.05, p=0.001) and c-myc (OR=2.99, p=0.015). Cyclin D1 holds a key position linking upstream signaling pathways to cell cycle regulation. Gene products of the mitogenic signaling pathway play an equally significant role as cell cycle regulatory proteins in the hyperplasia-dysplasia-early-advanced-carcinoma sequence and together may provide a reference panel of markers for use in defining premalignant lesions and predicting the risk of malignant transformation and tumor progression.
Collapse
Affiliation(s)
- N G Shah
- Division of Molecular Endocrinology, Gujarat Cancer and Research Institute, Ahmedabad, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Del Papa N, Vitali C. Management of primary Sjögren's syndrome: recent developments and new classification criteria. Ther Adv Musculoskelet Dis 2018; 10:39-54. [PMID: 29387177 DOI: 10.1177/1759720x17746319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/12/2017] [Indexed: 12/14/2022] Open
Abstract
For many years primary Sjögren's syndrome (pSS) has been considered an orphan disease, since no specific therapies were recognized as being capable of contrasting the development and progression of this disorder. The treatment of oral and ocular features, as well as of the systemic organ involvement, has been entrusted to the joint management of different subspecialty physicians, like ophthalmologists, otolaryngologists, dentists and rheumatologists. These latter subspecialty doctors are usually more involved in the treatment of systemic extraglandular involvement and, to do it, they have long been using the conventional therapies borrowed by the treatment schedules adopted in other systemic autoimmune diseases. The increasing knowledge of the biological pathways that are operative in patients with pSS, and the parallel development of molecular biology technology, have allowed the production and availability of a number of biological agents able to positively act on different disease mechanisms, and thus are candidates for testing in therapeutic trials. Meanwhile, the scientific community has made a great effort to develop new accurate and validated classification criteria and outcome measures to be applied in the selection of patients to be included and monitored in therapeutic studies. Some of the new-generation biotechnological agents have been tested in a number of open-label and randomized controlled trials that have produced in many cases inconclusive or contradictory results. Behind the differences in trial protocols, adopted outcome measures and predefined endpoints, reasons for such unsatisfactory results can be found in the large heterogeneity of clinical subtypes in the examined cohorts. The future challenge for a substantial advancement in the therapeutic approach to pSS could be to identify the pathologic mechanisms, outcome tools and biomarkers that characterize the different subsets of the disease in order to test carefully selected target therapies with the highest probability of success in each different clinical phenotype.
Collapse
Affiliation(s)
- Nicoletta Del Papa
- Day Hospital of Rheumatology, Department of Rheumatology, ASST G. Pini-CTO, via Pini 3, 20122 Milan, Italy
| | | |
Collapse
|
49
|
Chen YD, Zhang Y, Dong TX, Xu YT, Zhang W, An TT, Liu PF, Yang XH. Hyperthermia with different temperatures inhibits proliferation and promotes apoptosis through the EGFR/STAT3 pathway in C6 rat glioma cells. Mol Med Rep 2017; 16:9401-9408. [PMID: 29039593 PMCID: PMC5779992 DOI: 10.3892/mmr.2017.7769] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are a group of aggressive neoplasms among human cancers. The curative effects of current treatments are finite for improving the prognosis of patients. Hyperthermia (HT) is an effective treatment for cancers; however, the effects of HT with different temperatures in treatment of MG and relevant mechanisms remain unclear. MTT assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining were used for investigating the proliferation and apoptosis of C6 cells, respectively. Western blotting was applied to detect the expression of proteins. Ultrasonography was employed to evaluate the tumor formation rate, growth rate, angiogenesis rate and degree of hardness of tumors in vivo. The authors certified that HT with 42–46°C × 1 h, 1 t could inhibit proliferation, promote apoptosis, reduce tumor formation rate, growth rate, angiogenesis rate, degree of hardness of tumors, ischemic tolerance and anoxic tolerance, and have synergy with temozolomide in C6 cells. Long-term HT (43°C × 1 h, 1 t/5 d, 90 d) did not cut down the sensitivity of C6 cells to HT, and sustainably inhibited the proliferation of C6 cells. Furthermore, the authors proved HT produced these effects primarily through inhibition of the EGFR/STAT3/HIF-1A/VEGF-A pathway.
Collapse
Affiliation(s)
- Yao-Dong Chen
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu Zhang
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tian-Xiu Dong
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu-Tong Xu
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Zhang
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ting-Ting An
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Peng-Fei Liu
- Department of Magnetic Resonance, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiu-Hua Yang
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
50
|
Wang S, Shen M, Wen X, Han XR, Wang YJ, Fan SH, Zhuang J, Zhang ZF, Shan Q, Li MQ, Hu B, Sun CH, Ge X, Lei QM, Wu DM, Lu J, Zheng YL. Correlation of the expressions of IGF1R-RACK1-STAT3 and Bcl-xl in nasopharyngeal carcinoma with the clinicopathological features and prognosis of nasopharyngeal carcinoma. J Cell Biochem 2017; 119:1931-1941. [PMID: 28816378 DOI: 10.1002/jcb.26354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate the correlation of expression of IGF1R-RACK1-STAT3 and Bcl-xl in nasopharyngeal carcinoma (NPC) with the clinicopathological features and the prognosis of NPC. Our study selected 215 NPC tissues and 178 chronic nasopharyngitis tissues (control group). Positive expression rates of IGF1R, RACK1, STAT3, and Bcl-xl were tested by immunohistochemical method, and expression of IGF1R, RACK1, STAT3, Bcl-xl, Bcl-2, and Bax by western blotting. Correlation of IGF1R, RACK1, STAT3, and Bcl-xl with the clinicopathological features of NPC was analyzed. The correlation among those four expression was analyzed by Spearman. The survival of NPC and independent factors of prognosis were tested by Kaplan-Meier and COX proportional hazards model respectively. The NPC group had higher positive expression rates of IGF1R, RACK1, STAT3, and Bcl-xl, and elevated expression of IGF1R, RACK1, STAT3, Bcl-xl, Bcl-2, and Bax. The lymph node metastasis (LNM) group had higher positive expression rates of IGF1R and RACK1 when compared with the non-LNM group. Patients with stage III and IV had higher positive expression rates of IGF1R, RACK1, STAT3, and Bcl-xl. There was positive correlation between expression of IGF1R and RACK1, STAT3. Such correlation was found between RACK1 and STAT3. Patients with negative expression of IGF1R, RACK1, STAT3, and Bcl-xl had higher survival rates. The risky factors of poor prognosis of NPC were positive expression of IGF1R, RACK1, STAT3 and Bcl-xl, and LNM. IGF1R-RACK1-STAT3 and Bcl-xl expression correlated with the clinicopathological features and poor prognosis of NPC.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China.,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, P.R. China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, P.R. China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Chun-Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Xia Ge
- Department of Oncology, Linyi People's Hospital, Linyi, P.R. China
| | - Qiu-Mei Lei
- Department of Oncology, Linyi People's Hospital, Linyi, P.R. China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| |
Collapse
|