1
|
Skelin J, Sabol I, Tomaić V. Do or Die: HPV E5, E6 and E7 in Cell Death Evasion. Pathogens 2022; 11:pathogens11091027. [PMID: 36145459 PMCID: PMC9502459 DOI: 10.3390/pathogens11091027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Human papillomaviruses (HPVs) infect the dividing cells of human epithelia and hijack the cellular replication machinery to ensure their own propagation. In the effort to adapt the cell to suit their own reproductive needs, the virus changes a number of processes, amongst which is the ability of the cell to undergo programmed cell death. Viral infections, forced cell divisions and mutations, which accumulate as a result of uncontrolled proliferation, all trigger one of several cell death pathways. Here, we examine the mechanisms employed by HPVs to ensure the survival of infected cells manipulated into cell cycle progression and proliferation.
Collapse
|
2
|
Rasheed K, Sveinbjørnsson B, Moens U. Reciprocal transactivation of Merkel cell polyomavirus and high-risk human papillomavirus promoter activities and increased expression of their oncoproteins. Virol J 2021; 18:139. [PMID: 34217322 PMCID: PMC8254899 DOI: 10.1186/s12985-021-01613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Approximately 15% of human cancers are attributed to viruses. Numerous studies have shown that high-risk human polyomaviruses (HR-HPV) and Merkel cell polyomavirus (MCPyV) are two human tumor viruses associated with anogenetal and oropharyngeal cancers, and with Merkel cell carcinoma, respectively. MCPyV has been found in HR-HPV positive anogenetal and oropharyngeal tumors, suggesting that MCPyV can act as a co-factor in HR-HPV induced oncogenesis. This prompted us to investigate whether the oncoproteins large T-antigen (LT) and small antigen (sT) of MCPyV could affect the transcriptional activity HPV16 and HPV18 and vice versa whether HPV16 and HPV18 E6 and E7 oncoproteins affected the expression of MCPyV LT and sT. Reciprocal stimulation of these viral oncoproteinscould enhance the oncogenic processes triggered by these tumor viruses. METHODS Transient co-transfection studies using a luciferase reporter plasmid with the long control region of HPV16 or HPV18, or the early or late promoter of MCPyV and expression plasmids for LT and sT, or E6 and E7, respectively were performed in the HPV-negative cervical cancer cell line C33A, in the keratinocyte cell line HaCaT, and in the oral squamous cell carcinoma cell line HSC-3. Transfections were also performed with deletion mutants of all these promoters and with mutants of all four oncoproteins. Finally, the effect of E6 and E7 on LT and sT expression in the MCPyV-positive Merkel cell carcinoma cell line WaGa and the effect of LT and sT on the expression of E6 and E7 was monitored by Western blotting. RESULTS LT and sT stimulated the transcriptional activity of the HPV16 and HPV18 LCR and v.v. E6 and E7 potentiated the MCPyV early and late promoter in all cell lines. Induction by E6 and E7 was p53- and pRb-independent, and transactivation by LT did not require DNA binding, nuclear localization and HSC70/pRb interaction, whereas sT stimulated the HPV16/18 LCR activity in a PP2A- and DnaJ-independent manner. CONCLUSIONS These results indicate that the co-infection of MCPyV may act as a co-factor in the initiation and/or progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Kashif Rasheed
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037, Tromsø, Norway.,Institute for Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU Trondheim, Trondheim, Norway
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037, Tromsø, Norway.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 1176, Stockholm, Sweden
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
3
|
Altamura G, Corteggio A, Pacini L, Conte A, Pierantoni GM, Tommasino M, Accardi R, Borzacchiello G. Transforming properties of Felis catus papillomavirus type 2 E6 and E7 putative oncogenes in vitro and their transcriptional activity in feline squamous cell carcinoma in vivo. Virology 2016; 496:1-8. [PMID: 27236740 DOI: 10.1016/j.virol.2016.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/12/2016] [Accepted: 05/20/2016] [Indexed: 01/18/2023]
Abstract
Felis catus papillomavirus type 2 (FcaPV2) DNA is found in feline cutaneous squamous cell carcinomas (SCCs); however, its biological properties are still uncharacterized. In this study, we successfully expressed FcaPV2 E6 and E7 putative oncogenes in feline epithelial cells and demonstrated that FcaPV2 E6 binds to p53, impairing its protein level. In addition, E6 and E7 inhibited ultraviolet B (UVB)-triggered accumulation of p53, p21 and pro-apoptotic markers such as Cleaved Caspase3, Bax and Bak, suggesting a synergistic action of the virus with UV exposure in tumour pathogenesis. Furthermore, FcaPV2 E7 bound to feline pRb and impaired pRb levels, resulting in upregulation of the downstream pro-proliferative genes Cyclin A and Cdc2. Importantly, we demonstrated mRNA expression of FcaPV2 E2, E6 and E7 in feline SCC samples, strengthening the hypothesis of a causative role in the development of feline SCC.
Collapse
Affiliation(s)
- Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy.
| | - Annunziata Corteggio
- Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy.
| | - Laura Pacini
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France.
| | - Andrea Conte
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy.
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy.
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France.
| | - Rosita Accardi
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France.
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy.
| |
Collapse
|
4
|
A growth model of human papillomavirus type 16 designed from cellular automata and agent-based models. Artif Intell Med 2013. [DOI: 10.1016/j.artmed.2012.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Yuan CH, Filippova M, Duerksen-Hughes P. Modulation of apoptotic pathways by human papillomaviruses (HPV): mechanisms and implications for therapy. Viruses 2012; 4:3831-50. [PMID: 23250450 PMCID: PMC3528293 DOI: 10.3390/v4123831] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 12/14/2022] Open
Abstract
The ability of the host to trigger apoptosis in infected cells is perhaps the most powerful tool by which viruses can be cleared from the host organism. To avoid elimination by this mechanism, human papillomaviruses (HPV) have developed several mechanisms that enable the cells they infect to elude both extrinsic and intrinsic apoptosis. In this manuscript, we review the current literature regarding how HPV-infected cells avoid apoptosis and the molecular mechanisms involved in these events. In particular, we will discuss the modifications in intrinsic and extrinsic apoptotic pathways caused by proteins encoded by HPV early genes. Many of the current efforts regarding anti-cancer drug development are focused on directing tumor cells to undergo apoptosis. However, the ability of HPV-infected cells to resist apoptotic signals renders such therapies ineffective. Possible mechanisms for overcoming the resistance of HPV-infected tumor cells to anticancer drugs will be discussed.
Collapse
Affiliation(s)
- Chung-Hsiang Yuan
- Department of Basic Sciences, Loma Linda University School of Medicine, 11085 Campus St., Loma Linda, CA 92354, USA.
| | | | | |
Collapse
|
6
|
Yue J, Shukla R, Accardi R, Zanella-Cleon I, Siouda M, Cros MP, Krutovskikh V, Hussain I, Niu Y, Hu S, Becchi M, Jurdic P, Tommasino M, Sylla BS. Cutaneous human papillomavirus type 38 E7 regulates actin cytoskeleton structure for increasing cell proliferation through CK2 and the eukaryotic elongation factor 1A. J Virol 2011; 85:8477-94. [PMID: 21697493 PMCID: PMC3165781 DOI: 10.1128/jvi.02561-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 06/06/2011] [Indexed: 01/13/2023] Open
Abstract
We previously reported that the oncoproteins E6 and E7 from cutaneous human papillomavirus type 38 (HPV38) can immortalize primary human keratinocytes in vitro and sensitize transgenic mice to develop skin cancer in vivo. Immunofluorescence staining revealed that human keratinocytes immortalized by HPV38 E6 and E7 display fewer actin stress fibers than do control primary keratinocyte cells, raising the possibility of a role of the viral oncoproteins in the remodeling of the actin cytoskeleton. In this study, we show that HPV38 E7 induces actin stress fiber disruption and that this phenomenon correlates with its ability to downregulate Rho activity. The downregulation of Rho activity by HPV38 E7 is mediated through the activation of the CK2-MEK-extracellular signal-regulated kinase (ERK) pathway. In addition, HPV38 E7 is able to induce actin fiber disruption by binding directly to eukaryotic elongation factor 1A (eEF1A) and abolishing its effects on actin fiber formation. Finally, we found that the downregulation of Rho activity by HPV38 E7 through the CK2-MEK-ERK pathway facilitates cell growth proliferation. Taken together, our data support the conclusion that HPV38 E7 promotes keratinocyte proliferation in part by negatively regulating actin cytoskeleton fiber formation through the CK2-MEK-ERK-Rho pathway and by binding to eEF1A and inhibiting its effects on actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Jiping Yue
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Ruchi Shukla
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Rosita Accardi
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Isabelle Zanella-Cleon
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, IFR 128 Biosciences, Lyon, France
| | - Maha Siouda
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Ishraq Hussain
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Yamei Niu
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Shiqiong Hu
- Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Michel Becchi
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, IFR 128 Biosciences, Lyon, France
| | - Pierre Jurdic
- Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | - Bakary S. Sylla
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
7
|
Abstract
Adjuvants are becoming the key players of vaccine formulations to enhance the immunogenicity of subunit (peptides, proteins, virus-like particles (VLPs)) and DNA vaccines, as well as to reach the current new goals of preventing and/or treating chronic infectious diseases and cancers. Induction of humoral response, in particular neutralizing antibodies able to inhibit the binding of pathogens to their cellular receptors, remains a major goal of vaccines targeted to prevent acute lytic infections; induction/modulation of cellular immunity is, however, critical to fight latently/chronically infected cells as well as cancer cells. The new adjuvants, included in vaccine preparations, are currently able to modify the presentation of epitopes to the immune system with a specific T(H)1 versus T(H)2 polarization efficacy. A paradigm of the relevance of these new adjuvants is the immunological result obtained with the inclusion of monophosphoryl lipid A in the formulation of L1-based human papillomavirus (HPV)-naked VLPs. In the May issue of this journal, Garcon and colleagues describe the highly enhanced humoral and memory B cellular immunity of the AS04-adjuvanted HPV vaccine, which results in a long-lasting and broad spectrum immunity.
Collapse
Affiliation(s)
- Franco M Buonaguro
- Molecular Biology and Viral Oncology, Dpt of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Napoli, Italy.
| | | | | |
Collapse
|
8
|
Rosa MID, Medeiros LR, Rosa DD, Bozzeti MC, Silva FR, Silva BR. [Human papillomavirus and cervical neoplasia]. CAD SAUDE PUBLICA 2009; 25:953-64. [PMID: 19488480 DOI: 10.1590/s0102-311x2009000500002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/26/2008] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) has been established as an important etiological factor for the development of cervical cancer. This DNA virus primarily infects the epithelium and can induce benign and malignant lesions of the mucous membranes and skin. Some HPVs are considered high risk due to their role in malignant progression of cervical tumors. Genital HPV infections are common and usually transient among young sexually active women. Only a small fraction of infected women develop cervical cancer, implying the involvement of environmental and genetic cofactors in cervical carcinogenesis. Classification, virology, pathology, natural history, epidemiological features of genital HPV infection, and future prospects for cervical cancer prevention with HPV vaccines will be reviewed here.
Collapse
Affiliation(s)
- Maria Inês da Rosa
- Curso de Medicina, Universidade do Extremo Sul Catarinense, Criciúma, Brasil.
| | | | | | | | | | | |
Collapse
|
9
|
Cladel NM, Hu J, Balogh KK, Christensen ND. CRPV genomes with synonymous codon optimizations in the CRPV E7 gene show phenotypic differences in growth and altered immunity upon E7 vaccination. PLoS One 2008; 3:e2947. [PMID: 18698362 PMCID: PMC2491898 DOI: 10.1371/journal.pone.0002947] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/08/2008] [Indexed: 01/24/2023] Open
Abstract
Papillomaviruses use rare codons relative to their hosts. Recent studies have demonstrated that synonymous codon changes in viral genes can lead to increased protein production when the codons are matched to those of cells in which the protein is being expressed. We theorized that the immunogenicity of the virus would be enhanced by matching codons of selected viral genes to those of the host. We report here that synonymous codon changes in the E7 oncogene are tolerated in the context of the cottontail rabbit papillomavirus (CRPV) genome. Papilloma growth rates differ depending upon the changes made indicating that synonymous codons are not necessarily neutral. Immunization with wild type E7 DNA yielded significant protection from subsequent challenge by both wild type and codon-modified genomes. The reduction in growth was most dramatic with the genome containing the greatest number of synonymous codon changes.
Collapse
Affiliation(s)
- Nancy M Cladel
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America.
| | | | | | | |
Collapse
|
10
|
Casein kinase II motif-dependent phosphorylation of human papillomavirus E7 protein promotes p130 degradation and S-phase induction in differentiated human keratinocytes. J Virol 2008; 82:4862-73. [PMID: 18321970 DOI: 10.1128/jvi.01202-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The E7 proteins of human papillomaviruses (HPVs) promote S-phase reentry in differentiated keratinocytes of the squamous epithelia to support viral DNA amplification. In this study, we showed that nuclear p130 was present in the differentiated strata of several native squamous epithelia susceptible to HPV infection. In contrast, p130 was below the level of detection in HPV-infected patient specimens. In submerged and organotypic cultures of primary human keratinocytes, the E7 proteins of the high-risk mucosotrophic HPV-18, the benign cutaneous HPV-1, and, to a lesser extent, the low-risk mucosotropic HPV-11 destabilized p130. This E7 activity depends on an intact pocket protein binding domain and a casein kinase II (CKII) phosphorylation motif. Coimmunoprecipitation experiments showed that both E7 domains were important for binding to p130 in extracts of organotypic cultures. Metabolic labeling in vivo demonstrated that E7 proteins were indeed phosphorylated in a CKII motif-dependent manner. Moreover, the efficiencies of the E7 proteins of various HPV types or mutations to induce S-phase reentry in spinous cells correlated with their relative abilities to bind and to destabilize p130. Collectively, these data support the notion that p130 controls the homeostasis of the differentiated keratinocytes and is therefore targeted by E7 for degradation to establish conditions permissive for viral DNA amplification.
Collapse
|
11
|
Kisseljov F, Sakharova O, Kondratjeva T. Chapter 2 Cellular and Molecular Biological Aspects of Cervical Intraepithelial Neoplasia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:35-95. [DOI: 10.1016/s1937-6448(08)01202-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Mansour M, Touka M, Malena A, Indiveri C, Dong W, Gionfriddo I, Accardi R, Paradiso A, Sylla BS, Gabet AS, Tommasino M. Human papillomavirus type 77 E7 protein is a weak deregulator of cell cycle. Cancer Lett 2007; 246:274-81. [PMID: 16650526 DOI: 10.1016/j.canlet.2006.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
Human Papillomavirus type 77 is a skin type found in non-melanoma skin cancers of immuno-compromised individuals. Although, the HPV77 E6 oncoprotein has been well studied, nothing is known about E7. Studies on mucosal HPV types (e.g. HPV16) showed that E7 deregulates the cell cycle by binding to and promoting degradation of retinoblastoma protein (pRb). Here, we characterized the impact of HPV77 E7 on the cell cycle. We observed that HPV77 E7 associated with pRb with a lower affinity than HPV16 E7, promoting weakly its degradation. Although, HPV16 E7 led to cellular proliferation and accumulation of the cell cycle inhibitor p16(INK4a), both events were not clearly observed in HPV77 E7 cells. Together, these data indicate that HPV77 E7 does not efficiently deregulate the cell cycle, in contrast to several E7s of mucosal HPV types.
Collapse
Affiliation(s)
- Mariam Mansour
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Psyrri A, DeFilippis RA, Edwards APB, Yates KE, Manuelidis L, DiMaio D. Role of the retinoblastoma pathway in senescence triggered by repression of the human papillomavirus E7 protein in cervical carcinoma cells. Cancer Res 2004; 64:3079-86. [PMID: 15126344 DOI: 10.1158/0008-5472.can-03-3739] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Repression of the endogenous human papillomavirus (HPV) type 18 E7 gene in HeLa cervical carcinoma cells by the bovine papillomavirus E2 transcription factor activates the retinoblastoma (Rb) pathway and induces cells to undergo senescence. To determine whether activation of the Rb pathway is responsible for senescence in response to HPV18 E7 repression, we tested the ability of wild-type and mutant E7 proteins to affect the activity of the Rb pathway and to modulate senescence in these cells. Enforced expression of the wild-type HPV16 E7 protein prevented Rb activation in response to E2 expression and impaired senescence. Importantly, there was an absolute correlation between the ability of mutant E7 proteins to inactivate the Rb pathway and to inhibit senescence in HeLa cells. Similar results were obtained in HT-3 cervical carcinoma cells. These results provide strong genetic evidence that activation of the Rb pathway is required for senescence in response to E7 repression. Hence, continuous neutralization of the Rb pathway by the E7 protein is required to maintain the proliferation of cervical carcinoma cells. Similarly, our results indicate that activation of the Rb pathway can prevent apoptosis induced by repression of the HPV18 E6 gene in HeLa cells.
Collapse
Affiliation(s)
- Amanda Psyrri
- Section of Medical Oncology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
14
|
Erkek E, Bozdoğan O, Atasoy P, Birol A, Koçak M. BCL-2–Related Apoptosis Markers in Cutaneous Human Papillomavirus-Associated Lesions. Am J Dermatopathol 2004; 26:113-8. [PMID: 15024192 DOI: 10.1097/00000372-200404000-00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Human papilloma virus (HPV) is an etiological agent in benign and malignant epithelial tumors. Resistance to apoptotic stimuli by viral strategies represents an immunologic escape mechanism during virus-induced tumor development and is critical for efficient replication of the virus. OBJECTIVE The aim of the present study was to investigate a role of bcl-family proteins in the anti-apoptotic pathways modulated by low-risk HPVs in the development of benign HPV-associated cutaneous tumors. METHODS Forty lesional biopsy specimens from HPV-associated cutaneous lesions and 11 non-lesional control skin biopsies were studied by immunohistochemical analysis for the differential expressions of HPV antigens, the pro-apoptotic bax protein, and the anti-apoptotic bcl-2 and bcl-x proteins. RESULTS Compared with the normal epidermis, bcl-2 and bcl-x expression were significantly reduced in the lesional epidermis. Bax was expressed in HPV-associated cutaneous lesions, although the expression did not reveal a significant deviation from that in normal skin. CONCLUSION These findings indicate a discordant expression of bcl-2/ bcl-x and bax proteins in HPV-associated skin lesions and suggest that low-risk HPVs mediate other pathways that bypass the action of anti-apoptotic bcl-2 and bcl-x proteins. The presence of bax expression with a prominent decrease in bcl-2/ bax ratio and the lack of massive apoptosis in HPV-associated benign epithelial lesions may imply that interference with the pro-apoptotic proteins of bcl-family may constitute one of the several mechanisms mediated by HPV oncoproteins for the suppression of apoptotic process.
Collapse
Affiliation(s)
- Emel Erkek
- Kirikkale University Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
15
|
Cid-Arregui A, Juárez V, zur Hausen H. A synthetic E7 gene of human papillomavirus type 16 that yields enhanced expression of the protein in mammalian cells and is useful for DNA immunization studies. J Virol 2003; 77:4928-37. [PMID: 12663798 PMCID: PMC152128 DOI: 10.1128/jvi.77.8.4928-4937.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A synthetic E7 gene of human papillomavirus (HPV) type 16 was generated that consists entirely of preferred human codons. Expression analysis of the synthetic E7 gene in human and animal cells showed levels of E7 protein 20- to 100-fold higher than those obtained with wild-type E7. Enhanced expression of E7 protein resulted from highly efficient translation, as well as increased stability of the E7 mRNA due to its codon optimization. Higher levels of E7 protein in cells transfected with synthetic E7 correlated with significant loss of cell viability in various human cell lines. In contrast, lower E7 protein expression driven by the wild-type gene resulted in a slight induction of cell proliferation. Furthermore, mice inoculated with plasmids expressing the synthetic E7 gene produced significantly higher levels of E7 antibodies than littermates injected with wild-type E7, suggesting that synthetic E7 may be useful for DNA immunization studies and the development of genetic vaccines against HPV-16. In view of these results, we hypothesize that HPVs may have retained a pattern of G + C content and codon usage distinct from that of their host cells in response to selective pressure. Thus, the nonhuman codon bias may have been conserved by HPVs to prevent compromising viability of the host cells by excessive viral early protein expression, as well as to evade the immune system.
Collapse
Affiliation(s)
- Angel Cid-Arregui
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
16
|
Caldeira S, Zehbe I, Accardi R, Malanchi I, Dong W, Giarrè M, de Villiers EM, Filotico R, Boukamp P, Tommasino M. The E6 and E7 proteins of the cutaneous human papillomavirus type 38 display transforming properties. J Virol 2003; 77:2195-206. [PMID: 12525654 PMCID: PMC140944 DOI: 10.1128/jvi.77.3.2195-2206.2003] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several studies have suggested the involvement of cutaneous human papillomaviruses (HPVs) in the development of nonmelanoma skin cancers. Here we have characterized the in vitro properties of E7 proteins of three cutaneous HPV types, 10, 20, and 38, which are frequently detected in skin specimens. We show that HPV38 E7 is able to inactivate the tumor suppressor pRb and induces loss of G(1)/S transition control, a key event in carcinogenesis. In contrast, HPV10 and HPV20 E7 proteins do not display these in vitro transforming activities. We also show that the two early proteins E6 and E7 of HPV38 are sufficient to corrupt the cell cycle and senescence programs in primary cells, inducing active and long-lasting proliferation of primary human keratinocytes, the natural host cells. Our study shows that E6 and E7 of this cutaneous HPV type have transforming activity in primary human cells, suggesting a role for HPV38 infection in skin carcinogenesis. In further support of such a role, we detected HPV38 DNA in approximately 50% of nonmelanoma skin cancers, but only in 10% of healthy skin specimens (P < 0.001).
Collapse
Affiliation(s)
- Sandra Caldeira
- Angewandte Tumorvirologie. Genetik der Hautcarcinogenese, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany. Istituto di Dermatologia, Facoltà di Medicina, Università di Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Malanchi I, Caldeira S, Krützfeldt M, Giarre M, Alunni-Fabbroni M, Tommasino M. Identification of a novel activity of human papillomavirus type 16 E6 protein in deregulating the G1/S transition. Oncogene 2002; 21:5665-72. [PMID: 12173036 DOI: 10.1038/sj.onc.1205617] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 04/17/2002] [Accepted: 04/26/2002] [Indexed: 11/08/2022]
Abstract
In this study we show that E6 of human papillomavirus has the ability to deregulate the cell cycle G1/S transition. In rodent immortalized fibroblasts (NIH3T3) serum deprivation or over-expression of the cyclin-dependent kinase inhibitors, p16(INK4a) or p27(KIP1), leads to G1 cell cycle arrest. HPV16 E6 overcomes the antiproliferative signals, gaining the ability to drive serum-deprived and p16(INK4a) or p27(KIP1) over-expressing cells into S phase. E6 protein from the benign HPV type 1 displays a similar activity to HPV16 E6 to deregulate the G1/S transition. Thus, this activity appears to be conserved between E6 proteins from non-oncogenic and oncogenic HPV types. Furthermore, we show that HPV16 E6 is not able to circumvent a G1 arrest imposed by pRb mutant in which all CDK phosphorylation sites have been mutated. These data indicate that the viral protein acts upstream of pRb and its mechanism in promoting cell cycle progression is dependent on pRb phosphorylation. In summary, this study describes a novel biological function of HPV E6 and shows that the S phase entry, required for viral DNA replication, is not exclusively controlled by E7, but that E6 also is involved in this event.
Collapse
Affiliation(s)
- Ilaria Malanchi
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, INF 242, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Nguyen DX, Westbrook TF, McCance DJ. Human papillomavirus type 16 E7 maintains elevated levels of the cdc25A tyrosine phosphatase during deregulation of cell cycle arrest. J Virol 2002; 76:619-32. [PMID: 11752153 PMCID: PMC136809 DOI: 10.1128/jvi.76.2.619-632.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Essential to the oncogenic properties of human papillomavirus type 16 (HPV-16) are the activities encoded by the early gene product E7. HPV-16 E7 (E7.16) binds to cellular factors involved in cell cycle regulation and differentiation. These include the retinoblastoma tumor suppressor protein (Rb) and histone deacetylase (HDAC) complexes. While the biological significance of these interactions remains unclear, E7 is believed to help maintain cells in a proliferative state, thus establishing an environment that is conducive to viral replication. Most pathways that govern cell growth converge on downstream effectors. Among these is the cdc25A tyrosine phosphatase. cdc25A is required for G(1)/S transition, and its deregulation is associated with carcinogenesis. Considering the importance of cdc25A in cell cycle progression, it represents a relevant target for viral oncoproteins. Accordingly, the present study focuses on the putative deregulation of cdc25A by E7.16. Our results indicate that E7.16 can impede growth arrest induced during serum starvation and keratinocyte differentiation. Importantly, these E7-specific phenotypes correlate with elevated cdc25A steady-state levels. Reporter assays performed with NIH 3T3 cell lines and human keratinocytes indicate that E7 can transactivate the cdc25A promoter. In addition, transcriptional activation by E7.16 requires the distal E2F site within the cdc25A promoter. We further demonstrate that the ability of E7 to abrogate cell cycle arrest, activate cdc25A transcription, and increase cdc25A protein levels requires intact Rb and HDAC-1 binding domains. Finally, by using the cdk inhibitor roscovitine, we reveal that E7 activates the cdc25A promoter independently of cell cycle progression and cdk activity. Consequently, we propose that E7.16 can directly target cdc25A transcription and maintains cdc25A gene expression by disrupting Rb/E2F/HDAC-1 repressor complexes.
Collapse
Affiliation(s)
- Don X Nguyen
- Department of Microbiology and Immunology, The Cancer Center, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
19
|
Abdulkarim B, Bourhis J. Antiviral approaches for cancers related to Epstein-Barr virus and human papillomavirus. Lancet Oncol 2001; 2:622-30. [PMID: 11902553 DOI: 10.1016/s1470-2045(01)00520-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Epstein-Barr virus and human papillomaviruses (HPV) are DNA viruses underlying the carcinogenesis of 15-20% of human cancers worldwide. Viral oncoproteins are involved in malignant transformation and maintenance of the malignant phenotype, mainly through interaction between oncoproteins and products of tumour-suppressor genes. The use of vaccines to prevent the occurrence of HPV-related cancers is being investigated. Several approaches have been used to inhibit expression of viral oncoproteins. The first strategy uses antisense oligodeoxynucleotides against viral oncoproteins; downregulation of the oncoproteins can influence tumour cell growth and restore sensitivity to cytotoxic agents. Another approach uses antiviral drugs such as acyclic nucleoside phosphonates; inhibition of virus replication can lead to downregulation of viral oncoproteinsand ultimately reactivate tumour-suppressor-gene pathways. In addition, the combination of acyclic nucleoside phosphonates with conventional cytotoxic agents is more effective than either agent alone. These data provide the basis for a novel anticancer strategy to improve the therapeutic ratio in virus-related cancers, which needs to be further investigated for clinical applications.
Collapse
Affiliation(s)
- B Abdulkarim
- Departement de Radiotherapie, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
20
|
Dong WL, Caldeira S, Sehr P, Pawlita M, Tommasino M. Determination of the binding affinity of different human papillomavirus E7 proteins for the tumour suppressor pRb by a plate-binding assay. J Virol Methods 2001; 98:91-8. [PMID: 11543887 DOI: 10.1016/s0166-0934(01)00361-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A plate-binding assay was developed to quantify the affinity of the E7 oncoprotein from different human papillomavirus (HPV) types for the tumour suppressor pRb. The method is highly reproducible, sensitive and easy to handle. It could be easily adapted for the quantitative study of other interacting proteins and for screenings of inhibitors of protein/protein interactions. The pRb-binding affinity of six different E7 proteins has been quantified. The K(D) values vary from approximately 4.5x10(-9) M for HPV16 E7 to more than 1x10(-7) M for HPV10 and HPV48 E7. Point mutation C24G in the high affinity pRb-binding domain of HPV16 E7 results in a 3-fold affinity reduction. The data indicate that the high affinity pRb-binding domain of E7, LXCXE, is essential for the association between the viral and cellular proteins. However, other E7 domain(s), which appear(s) not to be present in all E7s, contribute to stabilize the E7-pRb association.
Collapse
Affiliation(s)
- W L Dong
- Angewandte Tumorvirologie, Abt. F0200, Deutsches Krebsforschungszentrum, INF 242, D-69120, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
21
|
Gonzalez SL, Stremlau M, He X, Basile JR, Münger K. Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J Virol 2001; 75:7583-91. [PMID: 11462030 PMCID: PMC114993 DOI: 10.1128/jvi.75.16.7583-7591.2001] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The steady-state level and metabolic half-life of retinoblastoma tumor suppressor protein pRB are decreased in cells that express high-risk human papillomavirus (HPV) E7 proteins. Here we show that pRB degradation is a direct activity of E7 and does not reflect a property of cell lines acquired during the selection process for E7 expression. An amino-terminal domain of E7 that does not directly contribute to pRB binding but is required for transformation is also necessary for E7-mediated pRB degradation. Treatment with inhibitors of the 26S proteasome not only blocks E7-mediated pRB degradation but also causes the stabilization of E7. Mutagenic analyses, however, reveal that the processes of proteasomal degradation of E7 and pRB are not linked processes. HPV type 16 E7 also targets the pRB-related proteins p107 and p130 for destabilization by a proteasome-dependent mechanism. Using the SAOS2 flat-cell assay as a biological indicator for pRB function, we demonstrate that pRB degradation, not solely binding, is important for the E7-induced inactivation of pRB.
Collapse
Affiliation(s)
- S L Gonzalez
- Program in Biological Sciences in Public Health, Harvard School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
22
|
Osen W, Peiler T, Ohlschläger P, Caldeira S, Faath S, Michel N, Müller M, Tommasino M, Jochmus I, Gissmann L. A DNA vaccine based on a shuffled E7 oncogene of the human papillomavirus type 16 (HPV 16) induces E7-specific cytotoxic T cells but lacks transforming activity. Vaccine 2001; 19:4276-86. [PMID: 11457555 DOI: 10.1016/s0264-410x(01)00154-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vaccination with oncogene-derived DNA for anti-cancer treatment carries a risk of de-novo tumor induction triggered by the persisting recombinant DNA. We hypothesized that an oncoprotein whose primary sequence has been rearranged ('shuffled') to maintain all possible T cell epitopes still induces cytotoxic T cells against the authentic protein but is devoid of transforming properties. As a model antigen, we used the E7 oncoprotein of the human papillomavirus (HPV) type 16, the major cause of cervical cancer. We have generated an artificial E7 molecule in which four domains were rearranged and, in order to maintain all possible T cell epitopes, certain sequences were duplicated. Upon transfection of this shuffled E7 gene (E7SH) into RMA cells, presentation of an E7 Db-restricted T cell epitope was shown by an E7-specific CTL line in vitro. Immunization of C57BL/6 mice with E7SH DNA induced E7-specific CTL and also conveyed protection against E7-positive syngeneic tumor cells. No transforming activity of E7SH DNA in NIH3T3 cells was detected, as determined by focus formation, induction of S-phase under conditions of serum deprivation and degradation of endogenous pRB. Our results suggest that DNA shuffling may become a promising concept for DNA-based anti-cancer vaccines.
Collapse
Affiliation(s)
- W Osen
- Deutsches Krebsforschungszentrum, Angewandte Tumorvirologie Im Neuenheimer Feld 242, D-69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Beniston RG, Morgan IM, O'Brien V, Campo MS. Quercetin, E7 and p53 in papillomavirus oncogenic cell transformation. Carcinogenesis 2001; 22:1069-76. [PMID: 11408351 DOI: 10.1093/carcin/22.7.1069] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bovine papillomavirus type 4 (BPV-4) infects the upper alimentary canal of cattle causing benign papillomas which can progress to squamous carcinomas in cattle grazing on bracken fern (BF). We have previously shown that quercetin, a well characterized and potent mutagen found in BF, causes cell cycle arrest of primary bovine cells (PalF), but that a single exposure to quercetin can cause full oncogenic transformation of PalF cells partially transformed by BPV-4. Here we show that cell cycle arrest correlates with an increase in p53 protein levels and transcriptional activity. However, in cells transformed but non-tumorigenic, p53 protein is elevated and transcriptionally activated in response to quercetin or other DNA damaging stimuli, but the cells bypass quercetin-induced G1 arrest likely due to E7 expression. In transformed tumorigenic cells, p53 is elevated in response to quercetin but its transcriptional activity is inhibited due to mutation, and the cells fail to stop in G1 in the presence of quercetin.
Collapse
Affiliation(s)
- R G Beniston
- Department of Veterinary Pathology, Glasgow University, Garscube Estate, Glasgow G61 1QH, UK
| | | | | | | |
Collapse
|
24
|
Giarrè M, Caldeira S, Malanchi I, Ciccolini F, Leão MJ, Tommasino M. Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle Arrest. J Virol 2001; 75:4705-12. [PMID: 11312342 PMCID: PMC114225 DOI: 10.1128/jvi.75.10.4705-4712.2001] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has previously been shown that the E7 protein from the cutaneous human papillomavirus type 1 (HPV1), which is associated with benign skin lesions, binds the product of the tumor suppressor gene retinoblastoma (pRb) with an efficiency similar to that of the E7 protein from the oncogenic HPV type 16. Despite this ability, HPV1 E7 does not display any activity in transforming primary cells. In addition, the two viral proteins differ in their mechanisms of targeting pRb. HPV16 E7 promotes pRb destabilization, while cells expressing HPV1 E7 do not show any decrease in pRb levels. In this study, we show that HPV1 E7, in contrast to HPV16 E7, has only a weak activity to neutralize the effect of cyclin-dependent kinase inhibitor p16INK4a. By generation of HPV1/16 E7 chimeric proteins, we have identified a central motif in the two E7 proteins, which determines their different abilities to overcome the p16INK4a-mediated cell cycle arrest. This motif is located downstream of the pRb-binding domain and comprises only three amino acids in HPV16 E7. Swapping this central motif in the two viral proteins causes an exchange of their activities involved in circumventing the inhibitory function of p16INK4a. Most importantly, our data show that the efficiency of the E7 proteins in neutralizing the inhibitory effect of p16INK4a correlates with their ability to promote pRb degradation.
Collapse
Affiliation(s)
- M Giarrè
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|