1
|
Tu Y, Yao S, Chen Q, Li W, Song Y, Zhang P. 5-Hydroxytryptamine activates a 5-HT/c-Myc/SLC6A4 signaling loop in non–small cell lung cancer. Biochim Biophys Acta Gen Subj 2022; 1866:130093. [DOI: 10.1016/j.bbagen.2022.130093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
2
|
Tran E, Shi T, Li X, Chowdhury AY, Jiang D, Liu Y, Wang H, Yan C, Wallace WD, Lu R, Ryan AL, Marconett CN, Zhou B, Borok Z, Offringa IA. Development of human alveolar epithelial cell models to study distal lung biology and disease. iScience 2022; 25:103780. [PMID: 35169685 PMCID: PMC8829779 DOI: 10.1016/j.isci.2022.103780] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Many acute and chronic diseases affect the distal lung alveoli. Alveolar epithelial cell (AEC) lines are needed to better model these diseases. We used de-identified human remnant transplant lungs to develop a method to establish AEC lines. The lines grow well in 2-dimensional (2D) culture as epithelial monolayers expressing lung progenitor markers. In 3-dimensional (3D) culture with fibroblasts, Matrigel, and specific media conditions, the cells form alveolar-like organoids expressing mature AEC markers including aquaporin 5 (AQP5), G-protein-coupled receptor class C group 5 member A (GPRC5A), and surface marker HTII280. Single-cell RNA sequencing of an AEC line in 2D versus 3D culture revealed increased cellular heterogeneity and induction of cytokine and lipoprotein signaling in 3D organoids. Our approach yields lung progenitor lines that retain the ability to differentiate along the alveolar cell lineage despite long-term expansion and provides a valuable system to model and study the distal lung in vitro.
Collapse
Affiliation(s)
- Evelyn Tran
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Tuo Shi
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Xiuwen Li
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Translational Genomics, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Adnan Y. Chowdhury
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Du Jiang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Yixin Liu
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Hongjun Wang
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Chunli Yan
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - William D. Wallace
- Department of Pathology, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Amy L. Ryan
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Crystal N. Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Beiyun Zhou
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Zea Borok
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ite A. Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Chan JM, Quintanal-Villalonga Á, Gao VR, Xie Y, Allaj V, Chaudhary O, Masilionis I, Egger J, Chow A, Walle T, Mattar M, Yarlagadda DVK, Wang JL, Uddin F, Offin M, Ciampricotti M, Qeriqi B, Bahr A, de Stanchina E, Bhanot UK, Lai WV, Bott MJ, Jones DR, Ruiz A, Baine MK, Li Y, Rekhtman N, Poirier JT, Nawy T, Sen T, Mazutis L, Hollmann TJ, Pe'er D, Rudin CM. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell 2021; 39:1479-1496.e18. [PMID: 34653364 PMCID: PMC8628860 DOI: 10.1016/j.ccell.2021.09.008] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcriptomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes. We discover a PLCG2-high SCLC phenotype with stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall survival. SCLC exhibits greater immune sequestration and less immune infiltration than lung adenocarcinoma, and SCLC-N shows less immune infiltrate and greater T cell dysfunction than SCLC-A. We identify a profibrotic, immunosuppressive monocyte/macrophage population in SCLC tumors that is particularly associated with the recurrent, PLCG2-high subpopulation.
Collapse
Affiliation(s)
- Joseph M Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Álvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vianne Ran Gao
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Viola Allaj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Jacklynn Egger
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Walle
- Department of Medical Oncology; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marissa Mattar
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dig V K Yarlagadda
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - James L Wang
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Fathema Uddin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Offin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Metamia Ciampricotti
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Besnik Qeriqi
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amber Bahr
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Umesh K Bhanot
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - W Victoria Lai
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew J Bott
- Thoracic Service, Department of Surgery, Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arvin Ruiz
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina K Baine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyun Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10065, USA
| | - Tal Nawy
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Triparna Sen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Linas Mazutis
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
4
|
Abstract
Despite high mortality rates, molecular understanding of metastasis remains limited. It can be regulated by both pro- and anti-metastasis genes. The metastasis suppressor, breast cancer metastasis suppressor 1 (BRMS1), has been positively correlated with patient outcomes, but molecular functions are still being characterized. BRMS1 has been implicated in focal adhesion kinase (FAK), epidermal growth factor receptor (EGFR), and NF-κB signaling pathways. We review evidence that BRMS1 regulates these vast signaling pathways through chromatin remodeling as a member of mSin3 histone deacetylase complexes.
Collapse
|
5
|
Dimitrakopoulos FID, Kottorou AE, Kalofonou M, Kalofonos HP. The Fire Within: NF-κB Involvement in Non-Small Cell Lung Cancer. Cancer Res 2020; 80:4025-4036. [PMID: 32616502 DOI: 10.1158/0008-5472.can-19-3578] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/01/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
Thirty-four years since its discovery, NF-κB remains a transcription factor with great potential for cancer therapy. However, NF-κB-targeted therapies have yet to find a way to be clinically translatable. Here, we focus exclusively on the role of NF-κB in non-small cell lung cancer (NSCLC) and discuss its contributing effect on cancer hallmarks such as inflammation, proliferation, survival, apoptosis, angiogenesis, epithelial-mesenchymal transition, metastasis, stemness, metabolism, and therapy resistance. In addition, we present our current knowledge of the clinical significance of NF-κB and its involvement in the treatment of patients with NSCLC with chemotherapy, targeted therapies, and immunotherapy.
Collapse
Affiliation(s)
- Foteinos-Ioannis D Dimitrakopoulos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Anastasia E Kottorou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Melpomeni Kalofonou
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Haralabos P Kalofonos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
6
|
Hong KP, Shin MH, Yoon S, Ji GY, Moon YR, Lee OJ, Choi SY, Lee YM, Koo JH, Lee HC, Lee GK, Kim SR, Lee KH, Han HS, Choe KH, Lee KM, Hong JM, Kim SW, Yi JH, Ji HJ, Kim YB, Song HG. Therapeutic effect of anti CEACAM6 monoclonal antibody against lung adenocarcinoma by enhancing anoikis sensitivity. Biomaterials 2015; 67:32-41. [PMID: 26204223 DOI: 10.1016/j.biomaterials.2015.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 12/26/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) plays a crucial role in tumorigenesis of lung cancer. However, the therapeutic potential for anti CEACAM6 monoclonal antibody (mAb) has only been limitedly explored. Here, we evaluate the therapeutic potential of naked anti CEACAM6 mAb against lung adenocarcinoma. Clone 8F5, recognizing B domain of CEACAM6, is established by immunizing A549 cells and screening for clones double positive for A549 and CEACAM6-Fc recombinant protein. We found that 85.7% of 70 resected lung adenocarcinoma tissue sections were positive for CEACAM6, whereas all squamous cell carcinoma examined were negative. A549 cells with high levels of CEACAM6 demonstrated more aggressive growth nature and showed increased paclitaxel chemosensitivity upon 8F5 binding. Treatment with 8F5 to A549 decreased cellular CEACAM6 expression and reversed anoikis resistance. 8F5 also decreased cellular status of Akt phosphorylation and increased apoptosis via caspase activation. In a mouse model of lung adenocarcinoma with xenotransplanted A549 cells, 8F5 treatment alone demonstrated 40% tumor growth inhibition. When combined with paclitaxel treatment, 8F5 markedly enhanced tumor growth inhibition, up to 80%. In summary, we demonstrate that anti CEACAM6 mAb is an effective therapeutic treatment for lung adenocarcinoma whose effect is further enhanced by combined treatment with paclitaxel.
Collapse
Affiliation(s)
- Kwon Pyo Hong
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute of DiNonA Inc., Seoul, 138-736, Republic of Korea
| | - Mi Hyang Shin
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute of DiNonA Inc., Seoul, 138-736, Republic of Korea
| | - SangSoon Yoon
- Research Institute of DiNonA Inc., Seoul, 138-736, Republic of Korea
| | - Gil Yong Ji
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute of DiNonA Inc., Seoul, 138-736, Republic of Korea
| | - Yoo Ri Moon
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute of DiNonA Inc., Seoul, 138-736, Republic of Korea
| | - Ok-Jun Lee
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Song-Yi Choi
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Yong-Moon Lee
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Ji Hae Koo
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Ho-Chang Lee
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Geon Kook Lee
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Seung Ryul Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Ki Hyeong Lee
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Hye-Suk Han
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Kang Hyeon Choe
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Ki Man Lee
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Jong-Myeon Hong
- Department of Thoracic and Cardiovascular Surgery, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Si-Wook Kim
- Department of Thoracic and Cardiovascular Surgery, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Jae Hyuk Yi
- Research Institute, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea
| | - Hyeong-Jin Ji
- Laboratory Animal Research Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, 362-763, Republic of Korea
| | - Yun-Bae Kim
- Laboratory Animal Research Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, 362-763, Republic of Korea
| | - Hyung Geun Song
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea; Research Institute of DiNonA Inc., Seoul, 138-736, Republic of Korea; Research Institute, Chungbuk National University College of Medicine, Cheongju, 362-763, Republic of Korea.
| |
Collapse
|
7
|
Phoon YP, Cheung AKL, Cheung FMF, Chan KF, Wong S, Wong BWY, Tung SY, Yau CC, Ng WT, Lung ML. IKBB tumor suppressive role in nasopharyngeal carcinomaviaNF-κB-mediated signalling. Int J Cancer 2015; 138:160-70. [PMID: 26227166 DOI: 10.1002/ijc.29702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Yee Peng Phoon
- Department of Clinical Oncology; University of Hong Kong; People's Republic of China
| | - Arthur Kwok Leung Cheung
- Department of Clinical Oncology; University of Hong Kong; People's Republic of China
- Center for Cancer Research, University of Hong Kong; People's Republic of China
| | - Florence Man Fung Cheung
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong; People's Republic of China
- Department of Pathology; HKU-Shenzhen Hospital; Shenzhen People's Republic of China
| | - Kui Fat Chan
- Department of Pathology; Tuen Mun Hospital; Hong Kong
| | - Shun Wong
- Department of Pathology; Princess Margaret Hospital; Hong Kong
| | - Bonnie Wing Yan Wong
- Department of Clinical Oncology; University of Hong Kong; People's Republic of China
| | - Stewart Yuk Tung
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong; People's Republic of China
- Department of Clinical Oncology; Tuen Mun Hospital; Hong Kong
| | - Chun Chung Yau
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong; People's Republic of China
- Department of Oncology; Princess Margaret Hospital; Hong Kong
| | - Wai Tong Ng
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong; People's Republic of China
- Department of Clinical Oncology; Pamela Youde Nethersole Eastern Hospital; Hong Kong
| | - Maria Li Lung
- Department of Clinical Oncology; University of Hong Kong; People's Republic of China
- Center for Cancer Research, University of Hong Kong; People's Republic of China
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong; People's Republic of China
| |
Collapse
|
8
|
McAdam E, Haboubi HN, Griffiths AP, Baxter JN, Spencer-Harty S, Davies C, Jenkins GJ. Reflux composition influences the level of NF-κB activation and upstream kinase preference in oesophageal adenocarcinoma cells. Int J Cancer 2014; 136:527-35. [PMID: 24931696 DOI: 10.1002/ijc.29029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 01/17/2023]
Abstract
Oesophageal adenocarcinoma (OA) incidence is rising and prognosis is poor. Understanding the molecular basis of this malignancy is key to finding new prevention and treatment strategies. Gastroesophageal reflux disease is the primary cause of OA, usually managed with acid suppression therapy. However, this often does little to control carcinogenic bile acid reflux. The transcription factor nuclear factor kappa B (NF-κB) plays a key role in the pathogenesis of OA and its activity is associated with a poor response to chemotherapy, making it an attractive therapeutic target. We sought to decipher the role of different bile acids in NF-κB activation in oesophageal cell lines using short, physiologically relevant exposure times. The effect of an acidic or neutral extracellular pH was investigated concurrently, to mimic in vivo conditions associated with or without acid suppression. We found that some bile acids activated NF-κB to a greater extent when combined with acid, whereas others did so in its absence, at neutral pH. The precise composition of an individual's reflux, coupled with whether they are taking acid suppressants may therefore dictate the extent of NF-κB activation in the oesophagus, and hence the likelihood of histological progression and chemotherapy success. Regardless of pH, the kinase inhibitor of κB kinase was pivotal in mediating reflux induced NF-κB activation. Its importance was confirmed further as its increased activation was associated with histological progression in patient samples. We identified further kinases important in acid or bile induced NF-κB signalling in oesophageal cells, which may provide suitable targets for therapeutic intervention.
Collapse
Affiliation(s)
- E McAdam
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
Hwang SG, Park J, Park JY, Park CH, Lee KH, Cho JW, Hwang JI, Seong JY. Anti-cancer activity of a novel small molecule compound that simultaneously activates p53 and inhibits NF-κB signaling. PLoS One 2012; 7:e44259. [PMID: 23028510 PMCID: PMC3441512 DOI: 10.1371/journal.pone.0044259] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/31/2012] [Indexed: 01/26/2023] Open
Abstract
The p53 and NF-κB pathways play important roles in diverse cellular functions, including cell growth, apoptosis, and tumorigenesis. Mutations that inactivate the p53 gene and constitutive NF-κB pathway activation are common occurrences in human cancers. Although many drugs are being developed that selectively activate p53 or inhibit NF-κB, there are few drug candidates that can do both. Simultaneous activation of p53 and inhibition of the NF-κB pathway is therefore a prime target for new cancer drug development. This study is the first report of a high-throughput approach with mass compounds that concurrently target both pathways. Using a cell-based screening assay and a library of 200,000 synthetic compounds, we identified 9 small molecules that simultaneously inhibit NF-κB and activate p53. One of these compounds, N-2, increased the expression of p53 target genes, including p21 and GADD45a. In addition, N-2 inhibited the transcriptional activity of NF-κB, concomitantly repressing interleukin-6 and monocyte chemotactic protein-1 (MCP-1) expression. When cell lines derived from a diverse range of cancers were treated in vitro with N-2, we observed increased cell death. N-2 also significantly inhibited allograft growth in murine models of melanoma and lung carcinoma. Our findings suggest that N-2 may act as a bivalent anti-cancer agent through simultaneous modulation of NF-κB and p53 activities.
Collapse
Affiliation(s)
- Sun Gwan Hwang
- Drug Development Center, SK Biopharmaceuticals Co., Ltd., Daejeon, Korea
- Laboratory of G Protein Coupled Receptors, Graduate School of Medicine Korea University, Seoul, Korea
| | - Jinah Park
- Korean Bioinformation Center, KRIBB, Daejeon, Korea
| | - Joo Young Park
- Drug Development Center, SK Biopharmaceuticals Co., Ltd., Daejeon, Korea
| | - Cheol Hyoung Park
- Drug Development Center, SK Biopharmaceuticals Co., Ltd., Daejeon, Korea
| | - Ki-Ho Lee
- Drug Development Center, SK Biopharmaceuticals Co., Ltd., Daejeon, Korea
| | - Jeong Woo Cho
- Drug Development Center, SK Biopharmaceuticals Co., Ltd., Daejeon, Korea
| | - Jong-Ik Hwang
- Laboratory of G Protein Coupled Receptors, Graduate School of Medicine Korea University, Seoul, Korea
| | - Jae Young Seong
- Laboratory of G Protein Coupled Receptors, Graduate School of Medicine Korea University, Seoul, Korea
- * E-mail:
| |
Collapse
|
10
|
Gastonguay A, Berg T, Hauser AD, Schuld N, Lorimer E, Williams CL. The role of Rac1 in the regulation of NF-κB activity, cell proliferation, and cell migration in non-small cell lung carcinoma. Cancer Biol Ther 2012; 13:647-56. [PMID: 22549160 DOI: 10.4161/cbt.20082] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The small GTPase Rac1 regulates many cellular processes, including cytoskeletal reorganization, cell migration, proliferation, and survival. Additionally, Rac1 plays a major role in activating NF-κB-mediated transcription. Both Rac1 and NF-κB regulate many properties of the malignant phenotype, including anchorage-independent proliferation and survival, metastasis, and angiogenesis. Despite these findings, the roles of Rac1and NF-κB in non-small cell lung carcinoma, a leading cause of cancer deaths, have not been thoroughly investigated. Here, we compared the effects of Rac1 siRNA to that of the Rac1 inhibitor NSC23766 on multiple features of the NSCLC malignant phenotype, including NF-κB activity. We show that the siRNA-mediated silencing of Rac1 in lung cancer cells results in decreased cell proliferation and migration. The decrease in proliferation was observed in both anchorage-dependent and anchorage-independent assays. Furthermore, cells with decreased Rac1 expression have a slowed progression through the G 1 phase of the cell cycle. These effects induced by Rac1 siRNA correlated with a decrease in NF-κB transcriptional activity. Additionally, inhibition of NF-κB signaling with BAY 11-7082 inhibited proliferation; indicating that the loss of cell proliferation and migration induced by the silencing of Rac1 expression may be attributed in part to loss of NF-κB activity. Interestingly, treatment with the Rac1 inhibitor NSC23766 strongly inhibits cell proliferation, cell cycle progression, and NF-κB activity in lung cancer cells, to an even greater extent than the inhibition induced by Rac1 siRNA. These findings indicate that Rac1 plays an important role in lung cancer cell proliferation and migration, most likely through its ability to promote NF-κB activity, and highlight Rac1 pathways as therapeutic targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Adam Gastonguay
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|
11
|
Tamminen JA, Myllärniemi M, Hyytiäinen M, Keski-Oja J, Koli K. Asbestos exposure induces alveolar epithelial cell plasticity through MAPK/Erk signaling. J Cell Biochem 2012; 113:2234-47. [DOI: 10.1002/jcb.24094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Caino MC, Lopez-Haber C, Kissil JL, Kazanietz MG. Non-small cell lung carcinoma cell motility, rac activation and metastatic dissemination are mediated by protein kinase C epsilon. PLoS One 2012; 7:e31714. [PMID: 22384062 PMCID: PMC3288050 DOI: 10.1371/journal.pone.0031714] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
Background Protein kinase C (PKC) ε, a key signaling transducer implicated in mitogenesis, survival, and cancer progression, is overexpressed in human primary non-small cell lung cancer (NSCLC). The role of PKCε in lung cancer metastasis has not yet been established. Principal Findings Here we show that RNAi-mediated knockdown of PKCε in H358, H1299, H322, and A549 NSCLC impairs activation of the small GTPase Rac1 in response to phorbol 12-myristate 13-acetate (PMA), serum, or epidermal growth factor (EGF). PKCε depletion markedly impaired the ability of NSCLC cells to form membrane ruffles and migrate. Similar results were observed by pharmacological inhibition of PKCε with εV1-2, a specific PKCε inhibitor. PKCε was also required for invasiveness of NSCLC cells and modulated the secretion of extracellular matrix proteases and protease inhibitors. Finally, we found that PKCε-depleted NSCLC cells fail to disseminate to lungs in a mouse model of metastasis. Conclusions Our results implicate PKCε as a key mediator of Rac signaling and motility of lung cancer cells, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- M Cecilia Caino
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | | |
Collapse
|
13
|
NF-kappaB in lung tumorigenesis. Cancers (Basel) 2011; 3:4258-68. [PMID: 24213137 PMCID: PMC3763422 DOI: 10.3390/cancers3044258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/29/2011] [Accepted: 12/06/2011] [Indexed: 12/17/2022] Open
Abstract
The development of lung cancer in humans can be divided into three steps initiation, promotion and progression. This process is driven by alterations in related signal transduction pathways. These pathways signal the aberrant activation of NF-kappaB, a transcription factor that regulates the expression of genes important for lung tumorigenesis. Our current knowledge about the role of the NF-kappaB signaling pathway in the development of lung cancer has been bolstered by animal models demonstrating the connection between K-ras and tobacco induced lung transformation with NF-kappaB. Activation of downstream genes leads to cell proliferation, inhibition of apoptosis, angiogenesis, inflammation, invasion, and metastasis.
Collapse
|
14
|
Thériault BL, Pajovic S, Bernardini MQ, Shaw PA, Gallie BL. Kinesin family member 14: an independent prognostic marker and potential therapeutic target for ovarian cancer. Int J Cancer 2011; 130:1844-54. [PMID: 21618518 DOI: 10.1002/ijc.26189] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/02/2011] [Indexed: 02/06/2023]
Abstract
The novel oncogene KIF14 (kinesin family member 14) shows genomic gain and overexpression in many cancers including OvCa (ovarian cancer). We discovered that expression of the mitotic kinesin KIF14 is predictive of poor outcome in breast and lung cancers. We now determine the prognostic significance of KIF14 expression in primary OvCa tumors, and evaluate KIF14 action on OvCa cell tumorigenicity in vitro. Gene-specific multiplex PCR and real-time QPCR were used to measure KIF14 genomic (109 samples) and mRNA levels (122 samples) in OvCa tumors. Association of KIF14 with clinical variables was studied using Kaplan-Meier survival and Cox regression analyses. Cellular effects of KIF14 overexpression (stable transfection) and inhibition (stable shRNA knockdown) were studied by proliferation (cell counts), survival (Annexin V immunocytochemistry) and colony formation (soft-agar growth). KIF14 genomic gain (>2.6 copies) was present in 30% of serous OvCas, and KIF14 mRNA was elevated in 91% of tumors versus normal epithelium. High KIF14 in tumors independently predicted for worse outcome (p = 0.03) with loss of correlation with proliferation marker expression and increased rates of recurrence. Overexpression of KIF14 in OvCa cell lines increased proliferation and colony formation (p < 0.01), whereas KIF14 knockdown induced apoptosis and dramatically reduced colony formation (p < 0.05). Our findings indicate that KIF14 mRNA is an independent prognostic marker in serous OvCa. Dependence of OvCa cells on KIF14 for maintenance of in vitro colony formation suggests a role of KIF14 in promoting a tumorigenic phenotype, beyond its known role in proliferation.
Collapse
Affiliation(s)
- Brigitte L Thériault
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
15
|
Mino K, Ozaki M, Nakanishi K, Haga S, Sato M, Kina M, Takahashi M, Takahashi N, Kataoka A, Yanagihara K, Ochiya T, Kamiyama T, Umezawa K, Todo S. Inhibition of nuclear factor-kappaB suppresses peritoneal dissemination of gastric cancer by blocking cancer cell adhesion. Cancer Sci 2011; 102:1052-8. [PMID: 21288284 DOI: 10.1111/j.1349-7006.2011.01901.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Currently, patients with peritoneal dissemination of gastric cancer must accept a poor prognosis because there is no standard effective therapy. To inhibit peritoneal dissemination it is important to inhibit interactions between extracellular matrices (ECM) and cell surface integrins, which are important for cancer cell adhesion. Although nuclear factor-kappa B (NF-κB) is involved in various processes in cancer progression, its involvement in the expression of integrins has not been elucidated. We used a novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), to study whether NF-κB blocks cancer cell adhesion via integrins in a gastric cancer dissemination model in mice and found that DHMEQ is a potent suppressor of cancer cell dissemination. Dehydroxymethylepoxyquinomicin suppressed the NF-κB activity of human gastric cancer cells NUGC-4 and 44As3Luc and blocked the adhesion of cancer cells to ECM when compared with the control. Dehydroxymethylepoxyquinomicin also inhibited expression of integrin (α2, α3, β1) in in vitro studies. In the in vivo model, we injected 44As3Luc cells pretreated with DHMEQ into the peritoneal cavity of mice and performed peritoneal lavage after the injection of cancer cells. Viable cancer cells in the peritoneal cavities were evaluated sequentially by in vivo imaging. In mice injected with DHMEQ-pretreated cells and lavaged, live cancer cells in the peritoneum were significantly reduced compared with the control, and these mice survived longer. These results indicate that DHMEQ could inhibit cancer cell adhesion to the peritoneum possibly by suppressing integrin expression. Nuclear factor-kappa B inhibition may be a new therapeutic option for suppressing postoperative cancer dissemination.
Collapse
Affiliation(s)
- Kazuhiro Mino
- Department of General Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Man JH, Liang B, Gu YX, Zhou T, Li AL, Li T, Jin BF, Bai B, Zhang HY, Zhang WN, Li WH, Gong WL, Li HY, Zhang XM. Gankyrin plays an essential role in Ras-induced tumorigenesis through regulation of the RhoA/ROCK pathway in mammalian cells. J Clin Invest 2010; 120:2829-41. [PMID: 20628200 DOI: 10.1172/jci42542] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/26/2010] [Indexed: 12/30/2022] Open
Abstract
Activating mutations in Ras proteins are present in about 30% of human cancers. Despite tremendous progress in the study of Ras oncogenes, many aspects of the molecular mechanisms underlying Ras-induced tumorigenesis remain unknown. Through proteomics analysis, we previously found that the protein Gankyrin, a known oncoprotein in hepatocellular carcinoma, was upregulated during Ras-mediated transformation, although the functional consequences of this were not clear. Here we present evidence that Gankyrin plays an essential role in Ras-initiated tumorigenesis in mouse and human cells. We found that the increased Gankyrin present following Ras activation increased the interaction between the RhoA GTPase and its GDP dissociation inhibitor RhoGDI, which resulted in inhibition of the RhoA effector kinase Rho-associated coiled coil-containing protein kinase (ROCK). Importantly, Gankyrin-mediated ROCK inhibition led to prolonged Akt activation, a critical step in activated Ras-induced transformation and tumorigenesis. In addition, we found that Gankyrin is highly expressed in human lung cancers that have Ras mutations and that increased Gankyrin expression is required for the constitutive activation of Akt and tumorigenesis in these lung cancers. Our findings suggest that Gankyrin is a key regulator of Ras-mediated activation of Akt through inhibition of the downstream RhoA/ROCK pathway and thus plays an essential role in Ras-induced tumorigenesis.
Collapse
Affiliation(s)
- Jiang-Hong Man
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Subcellular localization of apurinic endonuclease 1 promotes lung tumor aggressiveness via NF-kappaB activation. Oncogene 2010; 29:4330-40. [PMID: 20498636 DOI: 10.1038/onc.2010.178] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apurinic endonuclease 1 (Ape1) is not only involved in base excision repair, but also activates some transcriptional factors through its redox activity. However, which subcellular localization of Ape1 is involved in the activation of transcriptional factor remains unclear. We first observed that Cox-2 expression was associated with cytoplasmic Ape1 expression in lung tumors and cancer cell lines. We thus hypothesize that nuclear factor (NF)-kappaB is activated by cytoplasmic Ape1 to cause Cox-2 expression. Herein, we generated cytoplasmic and nuclear Ape1 in Ape1-knockdown lung cancer cells by exogenous expression of Ape1 containing various deletions and/or mutations of the nuclear localization sequence. It was observed that cytoplasmic Ape1, but not nuclear Ape1, induced Cox-2 expression through NF-kappaB activation. NF-kappaB activation by cytoplasmic Ape1 was diminished by the Ape1 redox activity inhibitor resveratrol. Cells expressing cytoplasmic Ape1 exhibited tumor progression and metastasis in vitro and in vivo as xenografts, but cells expressing nuclear Ape1 did not. Patients with tumors containing elevated cytoplasmic Ape1 had a poor prognosis and a 3.722-fold risk of tumor recurrence and/or metastasis. Cytoplasmic Ape1 could therefore enhance lung tumor malignancy through NF-kappaB activation, suggesting that combination of cisplatin and specific redox inhibitor could improve chemotherapeutic response in patients with tumors containing elevated cytoplasmic Ape1.
Collapse
|
18
|
Yi H, Cho HJ, Cho SM, Lee DG, Abd El-Aty AM, Yoon SJ, Bae GW, Nho K, Kim B, Lee CH, Kim JS, Bartlett MG, Shin HC. Pharmacokinetic properties and antitumor efficacy of the 5-fluorouracil loaded PEG-hydrogel. BMC Cancer 2010; 10:211. [PMID: 20482808 PMCID: PMC2889891 DOI: 10.1186/1471-2407-10-211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 05/18/2010] [Indexed: 11/21/2022] Open
Abstract
Background We have studied the in vitro and in vivo utility of polyethylene glycol (PEG)-hydrogels for the development of an anticancer drug 5-fluorouracil (5-FU) delivery system. Methods A 5-FU-loaded PEG-hydrogel was implanted subcutaneously to evaluate the drug retention time and the anticancer effect. For the pharmacokinetic study, two groups of male rats were administered either an aqueous solution of 5-FU (control group)/or a 5-FU-loaded PEG-hydrogel (treated group) at a dose of 100 mg/kg. For the pharmacodynamic study, a human non-small-cell lung adenocarcinoma (NSCLC) cell line, A549 was inoculated to male nude mice with a cell density of 3 × 106. Once tumors start growing, the mice were injected with 5-FU/or 5-FU-loaded PEG-hydrogel once a week for 4 weeks. The growth of the tumors was monitored by measuring the tumor volume and calculating the tumor inhibition rate (IR) over the duration of the study. Results In the pharmacokinetic study, the 5-FU-loaded PEG-hydrogel gave a mean residence time (MRT) of 8.0 h and the elimination half-life of 0.9 h; these values were 14- and 6-fold, respectively, longer than those for the free solution of 5-FU (p < 0.05). In the pharmacodynamic study, A549 tumor growth was significantly inhibited in the 5-FU-loaded PEG-hydrogel group in comparison to the untreated group beginning on Day 14 (p < 0.05-0.01). Moreover, the 5-FU-loaded PEG-hydrogel group had a significantly enhanced tumor IR (p < 0.05) compared to the free 5-FU drug treatment group. Conclusion We suggest that 5-FU-loaded PEG-hydrogels could provide a useful tool for the development of an anticancer drug delivery system.
Collapse
Affiliation(s)
- Hee Yi
- Department of Veterinary Pharmacology and Toxicology, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ho JN, Lee SB, Lee SS, Yoon SH, Kang GY, Hwang SG, Um HD. Phospholipase A2 activity of peroxiredoxin 6 promotes invasion and metastasis of lung cancer cells. Mol Cancer Ther 2010; 9:825-32. [PMID: 20354123 DOI: 10.1158/1535-7163.mct-09-0904] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peroxiredoxins (PRDX) are a family of thiol-dependent peroxidases. Among the six mammalian members of this family, PRDX6 is the only protein that additionally exhibits phospholipase A(2) (PLA(2)) activity. The physiologic role of this interesting PRDX6 feature is largely unknown at present. In this study, we show that PRDX6 increases the metastatic potential of lung cancer cells. Functional analyses of the enzymatic activities of PRDX6, using specific pharmacologic inhibitors and mutagenesis studies, reveal that both peroxidase and PLA(2) activities are required for metastasis. Specifically, peroxidase activity facilitates the growth of cancer cells, and PLA(2) activity promotes invasiveness. Further investigation of the latter event discloses that PLA(2) activity promotes accumulation of arachidonic acid, which, in turn, induces the invasive pathway involving p38 kinase, phosphoinositide 3-kinase, Akt, and urokinase-type plasminogen activator. This study is the first to define the functions of the enzymatic activities of PRDX6 in metastasis and to show the involvement of arachidonic acid in PRDX6 action in intact cells. These novel findings provide a significant step toward elucidating the role of PRDX6 in cancer and the mechanism of its action. Mol Cancer Ther; 9(4); 825-32. (c)2010 AACR.
Collapse
Affiliation(s)
- Jin-Nyoung Ho
- Laboratory of Radiation Tumor Physiology, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul 139-706, Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Namba H, Saenko V, Yamashita S. Nuclear factor-kB in thyroid carcinogenesis and progression: a novel therapeutic target for advanced thyroid cancer. ACTA ACUST UNITED AC 2008; 51:843-51. [PMID: 17891249 DOI: 10.1590/s0004-27302007000500023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 02/25/2007] [Indexed: 12/16/2022]
Abstract
Apoptosis is an essential physiological process of elimination of destined cells during the development and differentiation or after damage from external stresses such as ionizing radiation or chemotherapeutic agents. Disruption of apoptosis is proved to cause various diseases including cancer. Among numerous molecules involved in diverse anti- or pro-apoptotic signaling pathways, NF-kappaB is one of the key factors controlling anti-apoptotic responses. Its anti-apoptotic effect is thought to be mediated through not only transcriptional activation of dependent genes but also by crosstalking with the JNK pathway. Oncogenic proteins such as Ret/PTC, Ras and BRAF can induce NF-kappaB activation making it an important change in thyroid cancer. A number of specific or non-specific NF-kappaB inhibitors have been tried to take over the cascade in in vitro and in vivo experiments. These agents can induce massive apoptosis especially in combination with radio- or chemotherapy. Current results suggest that the inhibition of the NF-kappaB may be a promising strategy for advanced thyroid cancer treatment but further investigations are warranted to develop specific and clinically effective NF-kappaB inhibitors in future.
Collapse
Affiliation(s)
- Hiroyuki Namba
- Department of Molecular Medicine, Nagasaki University, Graduate School of Biomedical Sciences, Japan.
| | | | | |
Collapse
|
21
|
Stathopoulos GT, Sherrill TP, Han W, Sadikot RT, Yull FE, Blackwell TS, Fingleton B. Host nuclear factor-kappaB activation potentiates lung cancer metastasis. Mol Cancer Res 2008; 6:364-71. [PMID: 18337446 DOI: 10.1158/1541-7786.mcr-07-0309] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidemiologic and experimental evidence suggests that a link exists between inflammation and cancer, although this relationship has only recently begun to be elucidated for lung cancer, the most frequently fatal human tumor. Nuclear factor-kappaB (NF-kappaB), a transcription factor that controls innate immune responses in the lungs, has been implicated as an important determinant of cancer cell proliferative and metastatic potential; however, its role in lung tumorigenesis is uncertain. Here, we specifically examine the role of NF-kappaB-induced airway inflammation in lung cancer metastasis using a model of intravenous injection of Lewis lung carcinoma cells into immunocompetent C57Bl/6 mice. Induction of lung inflammation by direct and specific NF-kappaB activation in airway epithelial cells potentiates lung adenocarcinoma metastasis. Moreover, we identify resident lung macrophages as crucial effectors of lung susceptibility to metastatic cancer growth. We conclude that NF-kappaB activity in host tissue is a significant factor in the development of lung metastasis.
Collapse
Affiliation(s)
- Georgios T Stathopoulos
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6840, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Stathopoulos GT, Sherrill TP, Han W, Sadikot RT, Polosukhin VV, Fingleton B, Yull FE, Blackwell TS. Use of bioluminescent imaging to investigate the role of nuclear factor-kappaBeta in experimental non-small cell lung cancer metastasis. Clin Exp Metastasis 2007; 25:43-51. [PMID: 18008176 DOI: 10.1007/s10585-007-9100-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
Abstract
Nuclear factor (NF)-kappaB is frequently over-expressed in non-small cell lung cancer (NSCLC), but the exact role of this observation remains unclear. In this regard, activation of the transcription factor may govern distinct steps of NSCLC progression, such as carcinogenesis, angiogenesis, and metastasis. In these studies we attempted to dissect the effects of two proteins of the NF-kappaB pathway (p65/RelA and IkappaBetaalpha) on experimental metastasis of murine NSCLC, using a novel approach of bioluminescent detection of NF-kappaB activation in tumor cells. Stable integration of a NF-kappaBeta reporter confirmed high basal activation of the transcription factor in mouse NSCLC cells in vitro and during experimental metastasis to the lungs, like human NSCLC. In the mouse model of NSCLC metastasis, NF-kappaBeta-dependent luciferase expression served as a reliable indicator of tumor cell delivery to the lungs, establishment of metastatic tumors, and lung tumor burden. In vitro transient p65/RelA and IkappaBetaalpha gene transfer to mouse NSCLC cells resulted, respectively, in significant NF-kappaB activation and inhibition, without affecting cell growth. However, p65/RelA overexpression in NSCLC cells drastically reduced in vivo metastasis to the lungs, while overexpression of IkappaBetaalpha had no effect. In conclusion, using bioluminescent detection of NF-kappaB activation in mouse lug adenocarcinoma cells, we found a negative impact of p65/RelA on NSCLC metastasis.
Collapse
Affiliation(s)
- Georgios T Stathopoulos
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bassères DS, Baldwin AS. Nuclear factor-κB and inhibitor of κB kinase pathways in oncogenic initiation and progression. Oncogene 2006; 25:6817-30. [PMID: 17072330 DOI: 10.1038/sj.onc.1209942] [Citation(s) in RCA: 554] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abundant data support a key role for the transcription factor nuclear factor-kappaB (NF-kappaB) signaling pathway in controlling the initiation and progression of human cancer. NF-kappaB and associated regulatory proteins such as IkappaB kinase (IKK) are activated downstream of many oncoproteins and there is much evidence for the activation of NF-kappaB-dependent target genes in a variety of solid tumors and hematologic malignancies. This review focuses on the mechanisms by which the NF-kappaB pathway is activated in cancer and on the oncogenic functions controlled by activated NF-kappaB. Additionally, the effects of NF-kappaB activation in tumors relative to cancer therapy are also discussed.
Collapse
Affiliation(s)
- D S Bassères
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
24
|
Affiliation(s)
- Patricia S Steeg
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute Building 37, Room 1122, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
25
|
La Ferla-Brühl K, Westhoff MA, Karl S, Kasperczyk H, Zwacka RM, Debatin KM, Fulda S. NF-kappaB-independent sensitization of glioblastoma cells for TRAIL-induced apoptosis by proteasome inhibition. Oncogene 2006; 26:571-82. [PMID: 16909119 DOI: 10.1038/sj.onc.1209841] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) is a key regulator of stress-induced transcriptional activation and has been implicated in mediating primary or acquired apoptosis resistance in various cancers. In the present study, we therefore investigated the role of NF-kappaB in regulating apoptosis in malignant glioma, a prototypic tumor refractory to current treatment approaches. Here, we report that constitutive NF-kappaB DNA-binding activity was low or moderate in eight different glioblastoma cell lines compared to Hodgkin's lymphoma cells, known to harbor aberrant constitutive NF-kappaB activity. Specific inhibition of NF-kappaB by overexpression of inhibitor of kappaB (IkappaB)alpha superrepressor did not enhance spontaneous apoptosis of glioblastoma cells. Also, overexpression of IkappaBalpha superrepressor had no significant impact on apoptosis induced by two prototypic classes of apoptotic stimuli, that is, chemotherapeutic drugs or death-inducing ligands such as TNF-related apoptosis inducing ligand (TRAIL), which are known to trigger NF-kappaB activation as part of a cellular stress response. Similarly, inhibition of NF-kappaB by the proteasome inhibitor MG132 did not increase doxorubicin (Doxo)-induced apoptosis of glioblastoma cells, although it prevented DNA binding of NF-kappaB complexes in response to Doxo. Interestingly, proteasome inhibition significantly sensitized glioblastoma cells for TRAIL-induced apoptosis. These findings indicate that the characteristic antiapoptotic function of NF-kappaB reported for many cancers is not a primary feature of glioblastoma and thus, specific NF-kappaB inhibition may not be effective for chemosensitization of glioblastoma. Instead, proteasome inhibitors, which enhanced TRAIL-induced apoptosis in an NF-kappaB-independent manner, may open new perspectives to increase the efficacy of TRAIL-based regimens in glioblastoma, which warrants further investigation.
Collapse
|
26
|
Falvella FS, Manenti G, Spinola M, Pignatiello C, Conti B, Pastorino U, Dragani TA. Identification of RASSF8 as a candidate lung tumor suppressor gene. Oncogene 2006; 25:3934-8. [PMID: 16462760 DOI: 10.1038/sj.onc.1209422] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The RASSF8 gene, which maps close to the KRAS2 gene, contains a RAS-associated domain and encodes a protein that is evolutionarily conserved from fish to humans. Analysis of the RASSF8 transcript revealed a complex expression pattern of 5'-UTR mRNA isoforms in normal lung and in lung adenocarcinomas (ADCAs), with no apparent differences. However, RASSF8 gene transcript levels were approximately seven-fold-lower in lung ADCAs as compared to normal lung tissue. Expression of RASSF8 protein by transfected lung cancer cells led to inhibition of anchorage-independent growth in soft agar in A549 cells and reduction of clonogenic activity in NCI-H520 cells. These results raise the possibility protein encoded by RASSF8 is a novel tumor suppressor for lung cancer.
Collapse
Affiliation(s)
- F S Falvella
- Department of Experimental Oncology and Laboratories, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Tichelaar JW, Zhang Y, leRiche JC, Biddinger PW, Lam S, Anderson MW. Increased staining for phospho-Akt, p65/RELA and cIAP-2 in pre-neoplastic human bronchial biopsies. BMC Cancer 2005; 5:155. [PMID: 16332260 PMCID: PMC1325242 DOI: 10.1186/1471-2407-5-155] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 12/06/2005] [Indexed: 11/26/2022] Open
Abstract
Background The development of non-small cell lung carcinoma proceeds through a series of well-defined pathological steps before the appearance of invasive lung carcinoma. The molecular changes that correspond with pathology changes are not well defined and identification of the molecular events may provide clues on the progression of intraepithelial neoplasia in the lung, as well as suggest potential targets for chemoprevention. The acquisition of anti-apoptotic signals is critical for the survival of cancer cells but the pathways involved are incompletely characterized in developing intra-epithelial neoplasia (IEN). Methods We used immunohistochemistry to determine the presence, relative levels, and localization of proteins that mediate anti-apoptotic pathways in developing human bronchial neoplasia. Results Bronchial epithelial protein levels of the phosphorylated (active) form of AKT kinase and the caspase inhibitor cIAP-2 were increased in more advanced grades of bronchial IEN lesions than in normal bronchial epithelium. Additionally, the percentage of biopsies with nuclear localization of p65/RELA in epithelial cells increased with advancing pathology grade, suggesting that NF-κB transcriptional activity was induced more frequently in advanced IEN lesions. Conclusion Our results indicate that anti-apoptotic pathways are elevated in bronchial IEN lesions prior to the onset of invasive carcinoma and that targeting these pathways therapeutically may offer promise in prevention of non-small cell lung carcinoma.
Collapse
Affiliation(s)
- Jay W Tichelaar
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267 USA
| | - Yu Zhang
- Department of Genome Science, University of Cincinnati College of Medicine, Cincinnati, OH, 45237 USA
| | - Jean C leRiche
- Cancer Imaging Department, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z4E6. USA
| | - Paul W Biddinger
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267. USA
| | - Stephen Lam
- Cancer Imaging Department, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z4E6. USA
| | - Marshall W Anderson
- Department of Genome Science, University of Cincinnati College of Medicine, Cincinnati, OH, 45237 USA
| |
Collapse
|
28
|
Creighton CJ, Bromberg-White JL, Misek DE, Monsma DJ, Brichory F, Kuick R, Giordano TJ, Gao W, Omenn GS, Webb CP, Hanash SM. Analysis of tumor-host interactions by gene expression profiling of lung adenocarcinoma xenografts identifies genes involved in tumor formation. Mol Cancer Res 2005; 3:119-29. [PMID: 15798092 DOI: 10.1158/1541-7786.mcr-04-0189] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor cell lines are relied on extensively for cancer investigations, yet cultured cells in an in vitro environment differ considerably in behavior compared with those of the same cancer cells that proliferate and form tumors in vivo. To uncover gene expression changes related to tumor formation, gene expression profiles of human lung adenocarcinoma (A549) cells grown as lung tumors in immune-compromised mice were compared with profiles of the same cells grown in vitro. Additionally, profiles of uninvolved adjacent mouse tissue were determined. A profound interplay between cancer cells and the host was shown that affected a complex protein interaction network involving processes of extracellular interaction, growth factor signaling, hemostasis, immune response, and transcriptional regulation. Growth in vivo of A549 cells, which carry an activating k-ras mutation, induced changes in gene expression that corresponded highly to a pattern characteristic of human lung tumors with k-ras mutation. Cytokines interleukin-4, interleukin-6, and IFN-gamma each induced distinct in vitro genomic responses in cancer cells that emulated many of the changes in gene expression observed in vivo. Genes that were both selectively induced in vivo and overexpressed in human lung adenocarcinoma tumors included CSPG2, which has not been associated previously with tumor formation. Knockdown in A549 of CSPG2 by RNA interference significantly inhibited tumor growth in vivo but not in vitro. Thus, analysis of tumor xenografts by gene expression profiling has the potential for identifying genes involved in tumor development that may not be expressed in cancer cells grown in vitro.
Collapse
Affiliation(s)
- Chad J Creighton
- Bioinformatics Program, Department of Pathology, University of Michigan, 4237 Med Sci I, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Regala RP, Weems C, Jamieson L, Copland JA, Thompson EA, Fields AP. Atypical protein kinase Ciota plays a critical role in human lung cancer cell growth and tumorigenicity. J Biol Chem 2005; 280:31109-15. [PMID: 15994303 DOI: 10.1074/jbc.m505402200] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Atypical protein kinase C (aPKC) isozymes function in epithelial cell polarity, proliferation, and survival and have been implicated in cellular transformation. However, the role of these enzymes in human cancer is largely unexplored. Here, we report that aPKCiota is highly expressed in human non-small cell lung cancer cell lines, whereas the closely related aPKC isozyme PKCzeta is undetectable in these cells. Disruption of PKCiota signaling reveals that PKCiota is dispensable for adherent growth of non-small cell lung cancer cells but is required for transformed growth in soft agar in vitro and for tumorigenicity in vivo. Molecular dissection of signaling down-stream of PKCiota demonstrates that Rac1 is a critical molecular target for PKCiota-dependent transformation, whereas PKCiota is not necessary for NFkappaB activation in vitro or in vivo. Expression of the PB1 domain of PKCiota (PKCiota-(1-113)) blocks PKCiota-dependent Rac1 activity and inhibits cellular transformation indicating a role for this domain in the transforming activity of PKCiota. Taken together, our data demonstrate that PKCiota is a critical lung cancer gene that activates a Rac1-->Pak-->Mek1,2-->Erk1,2 signaling pathway required for transformed growth. Our data indicate that PKCiota may be an attractive molecular target for mechanism-based therapies for treatment of lung cancer.
Collapse
Affiliation(s)
- Roderick P Regala
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | | | | | |
Collapse
|
30
|
Sanlioglu AD, Aydin C, Bozcuk H, Terzioglu E, Sanlioglu S. Fundamental principals of tumor necrosis factor-alpha gene therapy approach and implications for patients with lung carcinoma. Lung Cancer 2004; 44:199-211. [PMID: 15084385 DOI: 10.1016/j.lungcan.2003.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 11/05/2003] [Accepted: 11/18/2003] [Indexed: 10/26/2022]
Abstract
Apoptosis, known as programmed cell death, is defined as a cell's preferred form of death under hectic conditions through genetically conserved and complex pathways. There is a decisive balance between stimulatory and inhibitory signaling pathways to maintain homeostasis in cells. In order to shift the balance towards apoptosis, the modulation of both apoptotic and anti-apoptotic pathways represents an attractive target for cancer therapeutics. Currently, chemotherapy and radiotherapy are among the most commonly used treatment modalities against lung cancer. Tumor suppressor gene, p53, is required in order for both of these treatment methods to work as anti-tumor agents. As a result, tumors lacking p53 display resistance to both chemotherapy and radiotherapy. However, death ligands induce apoptosis regardless of p53 status of cells. Thus, these methods constitute a complementary therapeutic approach to currently employed conventional treatment modalities. At present, death ligands are being evaluated as potential cancer therapeutic agents. Since resistance to tumor necrosis factor (TNF)-alpha-mediated apoptosis represented an obstacle for the treatment of patients with lung carcinoma in the earlier attempts, an extensive research was recently initiated to understand molecular mechanism of TNF-alpha signaling. NF-kappaB transcription factors have been demonstrated to modulate the apoptotic program, mostly as blockers of apoptosis in different cell types. In this review, we concentrate on the current progress in the understanding of TNF-alpha-mediated apoptosis for lung carcinoma. Representative models of NF-kappaB-inhibiting gene therapy strategies from various labs including ours are also provided as examples of up-to-date approaches to defeat TNF resistance. In order to give the reader better understanding and appreciation of such approaches, previously unpublished in vivo assays are also incorporated into this review. Current progress in clinical trials using adenovirus-mediated delivery of TNF-alpha is also discussed.
Collapse
Affiliation(s)
- Ahter D Sanlioglu
- The Human Gene Therapy Unit, Faculty of Medicine, Akdeniz University Campus, B-Block, 1st Floor, Antalya 07070, Turkey.
| | | | | | | | | |
Collapse
|
31
|
Jin G, Klika A, Callahan M, Faga B, Danzig J, Jiang Z, Li X, Stark GR, Harrington J, Sherf B. Identification of a human NF-kappaB-activating protein, TAB3. Proc Natl Acad Sci U S A 2004; 101:2028-33. [PMID: 14766965 PMCID: PMC357046 DOI: 10.1073/pnas.0307314101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The NF-kappaB pathway plays a critical role in regulating cellular processes such as immune responses, stress responses, apoptosis, proliferation and differentiation, whereas dysfunction of this pathway has been associated with numerous cancer and immune disorders. We have applied our Random Activation of Gene Expression technology to an NF-kappaB reporter cell line to facilitate the discovery of positive regulators of NF-kappaB activation. A small protein expression library, corresponding to approximately 0.1x genome coverage, was generated and screened for clones exhibiting constitutive activation of NF-kappaB. After isolation of cellular clones displaying the relevant phenotypes, we identified two known components of the NF-kappaB pathway and a hypothetical gene that we have designated the human ortholog of Xenopus TAK1-binding protein 3 (TAB3). Overexpression of human TAB3 was found to activate both NF-kappaB and AP-1 transcription factors. Furthermore, the activation of NF-kappaB by TAB3 was blocked by the NF-kappaB inhibitor, SN50, and by expression of dominant-negative forms of tumor necrosis factor alpha-associated factor 6 and transforming growth factor beta-activated kinase. Taken together, these data demonstrate that TAB3 transforming growth factor is a constituent of the NF-kappaB pathway functioning upstream of tumor necrosis factor alpha-associated factor 6/transforming growth factor beta-activated kinase. Interestingly, increased expression of TAB3 was found in some cancer tissues, and its overexpression in NIH 3T3 cells resulted in cellular transformation, thus establishing a causative link between elevated TAB3 expression, constitutive NF-kappaB activation, and oncogenesis.
Collapse
Affiliation(s)
- Ge Jin
- Athersys, Inc., 3201 Carnegie Avenue, Cleveland, OH 44115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Russo G, Claudio PP, Fu Y, Stiegler P, Yu Z, Macaluso M, Giordano A. pRB2/p130 target genes in non-small lung cancer cells identified by microarray analysis. Oncogene 2003; 22:6959-69. [PMID: 14534545 DOI: 10.1038/sj.onc.1206866] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The retinoblastoma gene family consisting of RB/p105, p107, and RB2/p130 cooperate to regulate cell-cycle progression through the G1 phase of the cell cycle. Previous data demonstrated an independent role for the reduction or loss of pRb2/p130 expression in the formation and/or progression of lung carcinoma. Rb2/p130 is mutated in a human cell line of lung small cell carcinoma as well as in primary lung tumors. To identify potential pRb2/p130 target genes in an unbiased manner, we have utilized an adenovirus-mediated expression system of pRb2/p130 in a non-small lung cancer cell line to identify specific genes that are regulated by pRb2/p130. Using oligonucleotide arrays, a number of Rb2/p130 downregulated genes were identified and their regulation was confirmed by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. As a result, 40 genes showed greater than 2.0-fold modification in their expression level after the RB2/p130 viral transduction. In conclusion, coupling adenoviral overexpression with microarray and semiquantitative RT-PCR analyses proved to be a versatile strategy for identifying pRb2/p130 target genes and for better understanding the expression profiles of these genes. Our results may also contribute to identifying novel therapeutic biomarkers in lung carcinoma.
Collapse
Affiliation(s)
- Giuseppe Russo
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Chang TY, Tsai WJ, Chou CK, Chow NH, Leu TH, Liu HS. Identifying the factors and signal pathways necessary for anchorage-independent growth of Ha-ras oncogene-transformed NIH/3T3 cells. Life Sci 2003; 73:1265-74. [PMID: 12850242 DOI: 10.1016/s0024-3205(03)00428-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ha-ras(Val 12) overexpression was positively correlated with colony formation by NIH/3T3 derivative "2-12" cells harboring an inducible Ha-ras(Val 12) transgene. The ras-farnesylation inhibitor, Lovastatin, completely suppressed colony formation at higher dosages. However, Ha-ras oncogene overexpression alone could not stimulate colony formation under serum-deprived conditions, suggesting that ras is required but not sufficient for supporting colony formation. Substituting cow colostrum (AC-2) for serum did not result in colony formation from 2-12 cells in soft agar, suggesting the colostrum lacked or contained insufficient amounts of factors that stimulate colony formation. Supplementation of AC-2-containing medium with growth factors, such as insulin-like growth factor-1 (IGF-1), partially restored the capability of anchorage-independent cell growth induced by Ha-ras overexpression. Consistently, antibodies specific for IGF-1 receptors only partially blocked colony formation from 2-12 cells. The data indicate that multiple factors, including IGF-1, are required for Ha-ras-dependent colony formation. Signal transduction studies revealed that, under Ha-ras overexpression conditions, IGF-1 utilizes phosphatidyl inositol 3-kinase and NF-kappaB to transduce colony formation-related signaling.
Collapse
Affiliation(s)
- Tsuey-Yu Chang
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
34
|
Osada H, Takahashi T. Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene 2002; 21:7421-34. [PMID: 12379883 DOI: 10.1038/sj.onc.1205802] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung cancer has become the leading cause of cancer death in many economically well-developed countries. Recent molecular biological studies have revealed that overt lung cancers frequently develop through sequential morphological steps, with the accumulation of multiple genetic and epigenetic alterations affecting both tumor suppressor genes and dominant oncogenes. Cell cycle progression needs to be properly regulated, while cells have built-in complex and minute mechanisms such as cell cycle checkpoints to maintain genomic integrity. Genes in the p16INK4A-RB and p14ARF-p53 pathways appear to be a major target for genetic alterations involved in the pathogenesis of lung cancer. Several oncogenes are also known to be altered in lung cancer, leading to the stimulation of autocrine/paracrine loops and activation of multiple signaling pathways. It is widely acknowledged that carcinogens in cigarette smoke are deeply involved in these multiple genetic alterations, mainly through the formation of DNA adducts. A current understanding of the molecular mechanisms of lung cancer pathogenesis and progression is presented in relation to cigarette smoking, an absolute major risk factor for lung cancer development, by reviewing genetic alterations of various tumor suppressor genes and oncogenes thus far identified in lung cancer, with brief summaries of their functions and regulation.
Collapse
Affiliation(s)
- Hirotaka Osada
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | |
Collapse
|
35
|
To C, Seiden I, Liu N, Wigle D, Tsao MS. High expression of Met/hepatocyte growth factor receptor suppresses tumorigenicity in NCI-H1264 lung carcinoma cells. Exp Cell Res 2002; 273:45-53. [PMID: 11795945 DOI: 10.1006/excr.2001.5433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The protein product of c-met proto-oncogene, Met, is a tyrosine kinase receptor for the hepatocyte growth factor (HGF). Met receptor is expressed in normal human bronchial epithelium. In comparison, its expression in squamous cell carcinoma (SQCC) of the lung is markedly decreased in a great majority of cases. To understand further the role of Met receptor overexpression in non-small-cell lung carcinoma, we forced-expressed the full-length met cDNA in the NCI-H1264 (H1264) lung carcinoma cell line with low constitutive expression of this receptor. In vitro studies demonstrated that increased Met expression in H1264 cells resulted in strong inhibition of their ability to form soft agar colonies and in marked suppression of tumorigenicity in the subcutaneous tissue of immune-deficient mice. This is despite inconsistent alteration in the proliferation rate on plastic surfaces. Tumor cells explanted from occasional xenograft tumors formed by the Met-overexpressing H1264 cells also demonstrated marked down-regulation of the receptor protein levels as compared to the transplanted cells. The results suggest that constitutive overexpression of Met receptor may negatively regulate the malignancy of certain human lung cancer cells.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Carcinogenicity Tests
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Differentiation
- Cell Division
- DNA Primers/chemistry
- Endothelial Growth Factors/metabolism
- Hepatocyte Growth Factor/metabolism
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lymphokines/metabolism
- Male
- Mice
- Mice, SCID
- Middle Aged
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- Christine To
- University Health Network-Ontario Cancer Institute/Princess Margaret Hospital, University of Toronto, Ontario, Toronto, M5G 2M9, Canada
| | | | | | | | | |
Collapse
|