1
|
Hou M, Huang Q, Chen S, Lei J, Zhang Y. RNA binding protein RBM22 suppresses non-small cell lung cancer tumorigenesis by stabilizing LATS1 mRNA. J Mol Histol 2024; 56:15. [PMID: 39612045 DOI: 10.1007/s10735-024-10285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality worldwide. Despite advancements in diagnostics and therapeutics, the prognosis for NSCLC remains poor, highlighting the urgent need for novel treatment options. RNA binding proteins, particularly RBM22, have emerged as significant contributors to cancer progression by influencing RNA splicing and gene expression. This study investigates the role of RBM22 in NSCLC and its potential as a therapeutic target. We focus on the effects of RBM22 on cell proliferation, invasion, stemness, and its interaction with LATS1 mRNA. RBM22 expression was assessed in samples and cell lines of NSCLC through techniques such as real-time PCR and western blot analysis. To modify RBM22 levels, overexpression and knockdown methods were employed utilizing vectors and siRNAs. We conducted assays for cell proliferation, invasion, and stemness to evaluate the effects of altering RBM22. The interaction between RBM22 and LATS1 mRNA was investigated using RNA immunoprecipitation. In addition, in vivo studies involving subdermal tumor and lung metastasis models in athymic mice were carried out to evaluate how changes in RBM22 influence the tumorigenic and metastatic characteristics of NSCLC. Our analysis revealed a significant underexpression of RBM22 in NSCLC tissues compared to adjacent healthy tissues. Increasing RBM22 expression in NSCLC cell lines led to a marked decrease in cellular proliferation, invasiveness, and stemness, while silencing RBM22 produced opposing effects. Further investigations confirmed that RBM22 directly interacts with LATS1 mRNA, thereby stabilizing and enhancing its expression. In vivo studies validated that elevated RBM22 expression substantially reduced tumor formation and pulmonary metastases, as evidenced by decreased tumor size, mass, and Ki-67 proliferation marker expression, along with a significant reduction in the number of metastatic nodules in the lungs. Our study demonstrates that RBM22 suppresses NSCLC by stabilizing LATS1 mRNA, which in turn reduces tumor growth and metastasis. Consequently, RBM22 emerges as a valuable therapeutic target for NSCLC, offering new strategies for addressing this challenging condition.
Collapse
Affiliation(s)
- Min Hou
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China.
| | - Qingmei Huang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Shan Chen
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Jing Lei
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yakun Zhang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| |
Collapse
|
2
|
Amanda B, Pragasta R, Cakrasana H, Mustika A, Faizah Z, Oceandy D. The Hippo Signaling Pathway, Reactive Oxygen Species Production, and Oxidative Stress: A Two-Way Traffic Regulation. Cells 2024; 13:1868. [PMID: 39594616 PMCID: PMC11592687 DOI: 10.3390/cells13221868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The Hippo signaling pathway is recognized for its significant role in cell differentiation, proliferation, survival, and tissue regeneration. Recently, the Hippo signaling pathway was also found to be associated with oxidative stress and reactive oxygen species (ROS) regulation, which are important in the regulation of cell survival. Studies indicate a correlation between components of the Hippo signaling pathway, including MST1, YAP, and TAZ, and the generation of ROS. On the other hand, ROS and oxidative stress can activate key components of the Hippo signaling pathway. For example, ROS production activates MST1, which subsequently phosphorylates FOXO3, leading to apoptotic cell death. ROS was also found to regulate YAP, in addition to MST1/2. Oxidative stress and ROS formation can impair lipids, proteins, and DNA, leading to many disorders, including aging, neurodegeneration, atherosclerosis, and diabetes. Consequently, understanding the interplay between the Hippo signaling pathway, ROS, and oxidative stress is crucial for developing future disease management strategies. This paper aimed to review the association between the Hippo signaling pathway, regulation of ROS production, and oxidative stress to provide beneficial information in understanding cell function and pathological processes.
Collapse
Affiliation(s)
- Bella Amanda
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
- Airlangga University Teaching Hospital, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Rangga Pragasta
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
- Faculty of Medicine, Universitas Islam Malang, Malang 65144, Indonesia
| | - Haris Cakrasana
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
| | - Arifa Mustika
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia;
| | - Zakiyatul Faizah
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| |
Collapse
|
3
|
Li N, Liu YH, Wu J, Liu QG, Niu JB, Zhang Y, Fu XJ, Song J, Zhang SY. Strategies that regulate Hippo signaling pathway for novel anticancer therapeutics. Eur J Med Chem 2024; 276:116694. [PMID: 39047607 DOI: 10.1016/j.ejmech.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Nabatchian F, Davoudi M, Ashtiani M, Davoudi N, Afrisham R. Hydroalcoholic Extract of Achillea Wilhelmsii Decreases the Expressions
of Hippo Signaling Pathway-Associated Oncogenes in the A549 Lung
Cancer Cell Line. CURRENT CHEMICAL BIOLOGY 2023; 17:140-146. [DOI: 10.2174/2212796817666230214100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/19/2022] [Accepted: 12/29/2022] [Indexed: 05/17/2025]
Abstract
Background:
Achillea wilhelmsii used in traditional Iranian medicine to treat a variety of
disorders, has been proven to contribute to some signaling pathways in cancers. Evidence suggests
that the Hippo pathway, which regulates organ size, is altered in a few conditions like lung cancer. In
this regard, this study aimed to evaluate the effect of the hydroalcoholic extract of this plant on the viability
and mRNA expression of some Hippo signaling pathway-associated oncogenes and suppressors
in A549 lung cancer cell lines.
Methods:
Hydroalcoholic extract was prepared using a Soxhlet extractor and its antiproliferative activity
was studied by MTT assay. Then, the mRNA expressions of "large tumour suppressor kinases 1
and 2" (LATS1 and LATS2), "Yes1 Associated Transcriptional Regulator" (YAP1), and "Transcriptional
co‑activator with PDZ‑binding motif" (TAZ) were measured using real-time PCR.
Results:
According to MTT, the viability was decreased significantly after 24 h treatment with A. wilhelmsii
at the concentrations of 800-1000 μg/ml and after 48 h treatment at the concentration of 400-
1000 μg/ml. While the mRNA levels of LATS1, TAZ, and YAP1 decreased significantly compared to
untreated cells at the concentration of 200 μg/ml after 48 h treatment. However, the mRNA expression
of LATS2 did not change.
Conclusion:
Our findings showed that hydroalcoholic extract of A. wilhelmsii inhibited the viability of
lung cancer cells as well as it could decrease the expression of both oncogenes in the Hippo pathway.
However, it had suppressing effects on LATS1, which should be considered in further studies.
conclusion:
Hydroalcoholic extract of A. wilhelmsii might inhibit proliferation of lung cancer cells as well as it could decrease the expression of both oncogenes in them. However, it had suppressing effects on LATS1, which should be considered in further studies.
Collapse
Affiliation(s)
- Fariba Nabatchian
- Department of Medical Laboratory Sciences, School of Allied Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| | - Mojtaba Ashtiani
- Department of Medical Laboratory Sciences, School of Allied Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| | - Negin Davoudi
- Department of Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| |
Collapse
|
5
|
Zhu N, Yang R, Wang X, Yuan L, Li X, Wei F, Zhang L. The Hippo signaling pathway: from multiple signals to the hallmarks of cancers. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 36942989 DOI: 10.3724/abbs.2023035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Evolutionarily conserved, the Hippo signaling pathway is critical in regulating organ size and tissue homeostasis. The activity of this pathway is tightly regulated under normal circumstances, since its physical function is precisely maintained to control the rate of cell proliferation. Failure of maintenance leads to a variety of tumors. Our understanding of the mechanism of Hippo dysregulation and tumorigenesis is becoming increasingly precise, relying on the emergence of upstream inhibitor or activator and the connection linking Hippo target genes, mutations, and related signaling pathways with phenotypes. In this review, we summarize recent reports on the signaling network of the Hippo pathway in tumorigenesis and progression by exploring its critical mechanisms in cancer biology and potential targeting in cancer therapy.
Collapse
Affiliation(s)
- Ning Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruizeng Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaodong Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Liang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
6
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
7
|
Ramdas B, Yuen LD, Palam LR, Patel R, Pasupuleti SK, Jideonwo V, Zhang J, Maguire C, Wong E, Kanumuri R, Zhang C, Sandusky G, Chan RJ, Zhang C, Stieglitz E, Haneline L, Kapur R. Inhibition of BTK and PI3Kδ impairs the development of human JMML stem and progenitor cells. Mol Ther 2022; 30:2505-2521. [PMID: 35443935 PMCID: PMC9263321 DOI: 10.1016/j.ymthe.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasia that lacks effective targeted chemotherapies. Clinically, JMML manifests as monocytic leukocytosis, splenomegaly with consequential thrombocytopenia. Most commonly, patients have gain-of-function (GOF) oncogenic mutations in PTPN11 (SHP2), leading to Erk and Akt hyperactivation. Mechanism(s) involved in co-regulation of Erk and Akt in the context of GOF SHP2 are poorly understood. Here, we show that Bruton's tyrosine kinase (BTK) is hyperphosphorylated in GOF Shp2-bearing cells and utilizes B cell adaptor for PI3K to cooperate with p110δ, the catalytic subunit of PI3K. Dual inhibition of BTK and p110δ reduces the activation of both Erk and Akt. In vivo, individual targeting of BTK or p110δ in a mouse model of human JMML equally reduces monocytosis and splenomegaly; however, the combined treatment results in a more robust inhibition and uniquely rescues anemia and thrombocytopenia. RNA-seq analysis of drug-treated mice showed a profound reduction in the expression of genes associated with leukemic cell migration and inflammation, leading to correction in the infiltration of leukemic cells in the lung, liver, and spleen. Remarkably, in a patient derived xenograft model of JMML, leukemia-initiating stem and progenitor cells were potently inhibited in response to the dual drug treatment.
Collapse
Affiliation(s)
- Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Lisa Deng Yuen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lakshmi Reddy Palam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roshini Patel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Santhosh Kumar Pasupuleti
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victoria Jideonwo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ji Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Callista Maguire
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric Wong
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Rahul Kanumuri
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chujing Zhang
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - George Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca J Chan
- Senior Director, Oncology, U.S. Medical Affairs, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Laura Haneline
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Cai JH, Sun YT, Bao S. HucMSCs-exosomes containing miR-21 promoted estrogen production in ovarian granulosa cells via LATS1-mediated phosphorylation of LOXL2 and YAP. Gen Comp Endocrinol 2022; 321-322:114015. [PMID: 35271888 DOI: 10.1016/j.ygcen.2022.114015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Premature ovarian failure (POF) is one of the common disorders found in women leading to 1% female infertility. Clinical features of POF are hypoestrogenism or estrogen deficiency. With the development of regenerative medicine, human mesenchymal stem cells (hMSCs) therapy brings new prospects for POF. This research aims to reveal the therapeutic effects and potential mechanisms of human umbilical cord mesenchymal stem cells (hucMSCs)-derived exosomes on POF. METHODS The mRNA and protein expressions in hucMSCs and ovarian granulosa cells (KGN and SVOG cells) were assessed using qRT-PCR and western blot. ELISA assay was performed to evaluate estradiol (E2) secretion in granulosa cells. The binding relationship between miR-21 and LATS1 was verified by dual-luciferase reporter assay and RNA binding protein immunoprecipitation assay (RIP) assay. Additionally, Immunoprecipitation assay was carried out to confirm Lysyl oxidase like 2 (LOXL2) was phosphorylated by large tumor suppressor 1 (LATS1). Finally, the binding relationships between Yes-associated protein (YAP), StAR and LOXL2 were verified by dual-luciferase reporter assay and/or chromatin immunoprecipitation assay (ChIP) assay. RESULTS Here our results displayed that miR-21 was overexpressed in hucMSCs and hucMSCs-derived exosomes, compared with that ovarian granulosa cells. hucMSC-exo with overexpressing miR-21 could markedly promote the secretion of estrogen in ovarian granulosa cells. LATS1 overexpression in ovarian granulosa cells reduced the secretion of estrogen. We subsequently confirmed that LATS1 was the target of miR-21. In addition, LATS1 could regulate StAR expression by phosphorylating LOXL2 and YAP. CONCLUSION miR-21 carried by hucMSCs-derived exosomes could downregulate LATS1, thereby reducing phosphorylated LOXL2 and YAP, and ultimately promoting estrogen secretion in ovarian granulosa cells.
Collapse
Affiliation(s)
- Jun-Hong Cai
- Central Laboratory, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570311, People's Republic of China
| | - Yu-Ting Sun
- Hainan Medical University, Haikou, Hainan Province 571199, People's Republic of China
| | - Shan Bao
- Department of Gynaecology and Obstetrics, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, Hainan Province 570311, People's Republic of China.
| |
Collapse
|
9
|
Kilanowska A, Ziółkowska A. Apoptosis in Type 2 Diabetes: Can It Be Prevented? Hippo Pathway Prospects. Int J Mol Sci 2022; 23:636. [PMID: 35054822 PMCID: PMC8775644 DOI: 10.3390/ijms23020636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is a heterogeneous disease of complex etiology and pathogenesis. Hyperglycemia leads to many serious complications, but also directly initiates the process of β cell apoptosis. A potential strategy for the preservation of pancreatic β cells in diabetes may be to inhibit the implementation of pro-apoptotic pathways or to enhance the action of pancreatic protective factors. The Hippo signaling pathway is proposed and selected as a target to manipulate the activity of its core proteins in therapy-basic research. MST1 and LATS2, as major upstream signaling kinases of the Hippo pathway, are considered as target candidates for pharmacologically induced tissue regeneration and inhibition of apoptosis. Manipulating the activity of components of the Hippo pathway offers a wide range of possibilities, and thus is a potential tool in the treatment of diabetes and the regeneration of β cells. Therefore, it is important to fully understand the processes involved in apoptosis in diabetic states and completely characterize the role of this pathway in diabetes. Therapy consisting of slowing down or stopping the mechanisms of apoptosis may be an important direction of diabetes treatment in the future.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-001 Zielona Gora, Poland;
| | | |
Collapse
|
10
|
Jin J, Zhang L, Li X, Xu W, Yang S, Song J, Zhang W, Zhan J, Luo J, Zhang H. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3817-3834. [PMID: 35349706 PMCID: PMC9023286 DOI: 10.1093/nar/gkac189] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Reactive oxygen species (ROS) are constantly produced in cells, an excess of which causes oxidative stress. ROS has been linked to regulation of the Hippo pathway; however, the underlying detailed mechanisms remain unclear. Here, we report that MOB1, a substrate of MST1/2 and co-activator of LATS1/2 in the canonical Hippo pathway, interacts with and is acetylated at lysine 11 by acetyltransferase CBP and deacetylated by HDAC6. MOB1-K11 acetylation stabilizes itself by reducing its binding capacity with E3 ligase Praja2 and subsequent ubiquitination. MOB1-K11 acetylation increases its phosphorylation and activates LATS1. Importantly, upstream oxidative stress signals promote MOB1 acetylation by suppressing CBP degradation, independent of MST1/2 kinase activity and HDAC6 deacetylation effect, thereby linking oxidative stress to activation of the Hippo pathway. Functionally, the acetylation-deficient mutant MOB1-K11R promotes lung cancer cell proliferation, migration and invasion in vitro and accelerates tumor growth in vivo, compared to the wild-type MOB1. Clinically, acetylated MOB1 corresponds to better prediction of overall survival in patients with non-small cell lung cancer. Therefore, as demonstrated, an oxidative stress-CBP regulatory axis controls MOB1-K11 acetylation and activates LATS1, thereby activating the Hippo pathway and suppressing YAP/TAZ nuclear translocation and tumor progression.
Collapse
Affiliation(s)
- Jiaqi Jin
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Xueying Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Weizhi Xu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Siyuan Yang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Wenhao Zhang
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- To whom correspondence should be addressed. Tel: +86 10 82802424; Fax: +86 10 82802424;
| |
Collapse
|
11
|
Xiao Y, Dong J. The Hippo Signaling Pathway in Cancer: A Cell Cycle Perspective. Cancers (Basel) 2021; 13:cancers13246214. [PMID: 34944834 PMCID: PMC8699626 DOI: 10.3390/cancers13246214] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Cancer is increasingly viewed as a cell cycle disease in that the dysregulation of the cell cycle machinery is a common feature in cancer. The Hippo signaling pathway consists of a core kinase cascade as well as extended regulators, which together control organ size and tissue homeostasis. The aberrant expression of cell cycle regulators and/or Hippo pathway components contributes to cancer development, and for this reason, we specifically focus on delineating the roles of the Hippo pathway in the cell cycle. Improving our understanding of the Hippo pathway from a cell cycle perspective could be used as a powerful weapon in the cancer battlefield. Abstract Cell cycle progression is an elaborate process that requires stringent control for normal cellular function. Defects in cell cycle control, however, contribute to genomic instability and have become a characteristic phenomenon in cancers. Over the years, advancement in the understanding of disrupted cell cycle regulation in tumors has led to the development of powerful anti-cancer drugs. Therefore, an in-depth exploration of cell cycle dysregulation in cancers could provide therapeutic avenues for cancer treatment. The Hippo pathway is an evolutionarily conserved regulator network that controls organ size, and its dysregulation is implicated in various types of cancers. Although the role of the Hippo pathway in oncogenesis has been widely investigated, its role in cell cycle regulation has not been comprehensively scrutinized. Here, we specifically focus on delineating the involvement of the Hippo pathway in cell cycle regulation. To that end, we first compare the structural as well as functional conservation of the core Hippo pathway in yeasts, flies, and mammals. Then, we detail the multi-faceted aspects in which the core components of the mammalian Hippo pathway and their regulators affect the cell cycle, particularly with regard to the regulation of E2F activity, the G1 tetraploidy checkpoint, DNA synthesis, DNA damage checkpoint, centrosome dynamics, and mitosis. Finally, we briefly discuss how a collective understanding of cell cycle regulation and the Hippo pathway could be weaponized in combating cancer.
Collapse
Affiliation(s)
| | - Jixin Dong
- Correspondence: ; Tel.: +402-559-5596; Fax: +402-559-4651
| |
Collapse
|
12
|
Kasturirangan S, Mehdi B, Chadee DN. LATS1 Regulates Mixed-Lineage Kinase 3 (MLK3) Subcellular Localization and MLK3-Mediated Invasion in Ovarian Epithelial Cells. Mol Cell Biol 2021; 41:e0007821. [PMID: 33875576 PMCID: PMC8224236 DOI: 10.1128/mcb.00078-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Mixed-lineage kinase 3 (MLK3) activates mammalian mitogen-activated protein kinase (MAPK) signaling pathways in response to cytokines and stress stimuli. MLK3 is important for proliferation, migration, and invasion of different types of human tumor cells. We observed that endogenous MLK3 was localized to both the cytoplasm and the nucleus in immortalized ovarian epithelial (T80) and ovarian cancer cells, and mutation of arginines 474 and 475 within a putative MLK3 nuclear localization sequence (NLS) resulted in exclusion of MLK3 from the nucleus. The large tumor suppressor (LATS) Ser/Thr kinase regulates cell proliferation, morphology, apoptosis, and mitotic exit in response to cell-cell contact. RNA interference (RNAi)-mediated knockdown of LATS1 increased nuclear, endogenous MLK3 in T80 cells. LATS1 phosphorylated MLK3 on Thr477, which is within the putative NLS, and LATS1 expression enhanced the association between MLK3 and the adapter protein 14-3-3ζ. Thr477 is essential for MLK3-14-3-3ζ association and MLK3 retention in the cytoplasm, and a T477A MLK3 mutant had predominantly nuclear localization and significantly increased invasiveness of SKOV3 ovarian cancer cells. This study identified a novel link between the MAPK and Hippo/LATS1 signaling pathways. Our results reveal LATS1 as a novel regulator of MLK3 that controls MLK3 nuclear/cytoplasmic localization and MLK3-dependent ovarian cancer cell invasion.
Collapse
Affiliation(s)
| | - Batool Mehdi
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Deborah N. Chadee
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
13
|
Chinese Propolis Suppressed Pancreatic Cancer Panc-1 Cells Proliferation and Migration via Hippo-YAP Pathway. Molecules 2021; 26:molecules26092803. [PMID: 34068565 PMCID: PMC8126155 DOI: 10.3390/molecules26092803] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the most malignant cancers with high mortality. Therefore, it is of great urgency to develop new agents that could improve the prognosis of Pancreatic cancer patients. Chinese propolis (CP), a flavonoid-rich beehive product, has been reported to have an anticancer effect. In this study, we applied CP to the human Pancreatic cancer cell line Panc-1 to verify its impact on tumor development. CP induced apoptosis in Panc-1 cells from 12.5 µg/mL in a time- and dose-dependent manner with an IC50 value of approximately 50 µg/mL. Apoptosis rate induced by CP was examined by Annexing FITC/PI assay. We found that 48 h treatment with 50 µg/mL CP resulted in 34.25 ± 3.81% apoptotic cells, as compared to 9.13 ± 1.76% in the control group. We further discovered that the Panc-1 cells tended to be arrested at G2/M phase after CP treatment, which is considered to contribute to the anti-proliferation effect of CP. Furthermore, our results demonstrated that CP suppressed Panc-1 cell migration by regulating epithelial-mesenchymal transition (EMT). Interestingly, the Hippo pathway was activated in Panc-1 cells after CP treatment, serving as a mechanism for the anti-pancreatic cancer effect of CP. These findings provide a possibility of beehive products as an alternative treatment for pancreatic cancer.
Collapse
|
14
|
IQGAP1 Is a Scaffold of the Core Proteins of the Hippo Pathway and Negatively Regulates the Pro-Apoptotic Signal Mediated by This Pathway. Cells 2021; 10:cells10020478. [PMID: 33672268 PMCID: PMC7926663 DOI: 10.3390/cells10020478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway regulates a complex signalling network which mediates several biological functions including cell proliferation, organ size and apoptosis. Several scaffold proteins regulate the crosstalk of the members of the pathway with other signalling pathways and play an important role in the diverse output controlled by this pathway. In this study we have identified the scaffold protein IQGAP1 as a novel interactor of the core kinases of the Hippo pathway, MST2 and LATS1. Our results indicate that IQGAP1 scaffolds MST2 and LATS1 supresses their kinase activity and YAP1-dependent transcription. Additionally, we show that IQGAP1 is a negative regulator of the non-canonical pro-apoptotic pathway and may enable the crosstalk between this pathway and the ERK and AKT signalling modules. Our data also show that bile acids regulate the IQGAP1-MST2-LATS1 signalling module in hepatocellular carcinoma cells, which could be necessary for the inhibition of MST2-dependent apoptosis and hepatocyte transformation.
Collapse
|
15
|
Masliantsev K, Karayan-Tapon L, Guichet PO. Hippo Signaling Pathway in Gliomas. Cells 2021; 10:184. [PMID: 33477668 PMCID: PMC7831924 DOI: 10.3390/cells10010184] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway involved in tissue development and regeneration that controls organ size through the regulation of cell proliferation and apoptosis. The core Hippo pathway is composed of a block of kinases, MST1/2 (Mammalian STE20-like protein kinase 1/2) and LATS1/2 (Large tumor suppressor 1/2), which inhibits nuclear translocation of YAP/TAZ (Yes-Associated Protein 1/Transcriptional co-activator with PDZ-binding motif) and its downstream association with the TEAD (TEA domain) family of transcription factors. This pathway was recently shown to be involved in tumorigenesis and metastasis in several cancers such as lung, breast, or colorectal cancers but is still poorly investigated in brain tumors. Gliomas are the most common and the most lethal primary brain tumors representing about 80% of malignant central nervous system neoplasms. Despite intensive clinical protocol, the prognosis for patients remains very poor due to systematic relapse and treatment failure. Growing evidence demonstrating the role of Hippo signaling in cancer biology and the lack of efficient treatments for malignant gliomas support the idea that this pathway could represent a potential target paving the way for alternative therapeutics. Based on recent advances in the Hippo pathway deciphering, the main goal of this review is to highlight the role of this pathway in gliomas by a state-of-the-art synthesis.
Collapse
Affiliation(s)
- Konstantin Masliantsev
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Lucie Karayan-Tapon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Pierre-Olivier Guichet
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| |
Collapse
|
16
|
ROCK1 knockdown inhibits non-small-cell lung cancer progression by activating the LATS2-JNK signaling pathway. Aging (Albany NY) 2020; 12:12160-12174. [PMID: 32554853 PMCID: PMC7343464 DOI: 10.18632/aging.103386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Rho-associated kinase 1 (ROCK1) regulates tumor metastasis by maintaining cellular cytoskeleton homeostasis. However, the precise role of ROCK1 in non-small-cell lung cancer (NSCLC) apoptosis remains largely unknown. In this study, we examined the function of ROCK1 in NSCLS survival using RNA interference-mediated knockdown. Our results showed that ROCK1 knockdown reduced A549 lung cancer cell viability in vitro. It also inhibited A549 cell migration and proliferation. Transfection of ROCK1 siRNA was associated with increased expression of large tumor suppressor kinase 2 (LATS2) and c-Jun N-terminal kinase (JNK). Moreover, ROCK1 knockdown-induced A549 cell apoptosis and inhibition of proliferation were suppressed by LATS2 knockdown or JNK inactivation, suggesting that ROCK1 deficiency triggers NSCLC apoptosis in a LATS2-JNK pathway-dependent manner. Functional analysis further demonstrated that ROCK1 knockdown dysregulated mitochondrial dynamics and inhibited mitochondrial biogenesis. This effect too was reversed by LATS2 knockdown or JNK inactivation. We have thus identified a potential pathway by which ROCK1 downregulation triggers apoptosis in NSCLC by inducing LATS2-JNK-dependent mitochondrial damage.
Collapse
|
17
|
Wang L, Lin M, Chu M, Liu Y, Ma J, He Y, Wang ZW. SPOP promotes ubiquitination and degradation of LATS1 to enhance kidney cancer progression. EBioMedicine 2020; 56:102795. [PMID: 32460168 PMCID: PMC7248661 DOI: 10.1016/j.ebiom.2020.102795] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
Background Emerging evidence has demonstrated that SPOP functions as an oncoprotein in kidney cancer to promote tumorigenesis by ubiquitination-mediated degradation of multiple regulators of cellular proliferation and apoptosis. However, the detailed molecular mechanism underlying the oncogenic role of SPOP in kidney tumorigenesis remains elusive. Methods Multiple approaches such as Co-IP, Transfection, RT-PCR, Western blotting, and animal studies were utilized to explore the role of SPOP in kidney cancer. Findings Here we identified LATS1, a critical component of the Hippo tumour suppressor pathway, as a novel ubiquitin substrate of SPOP. We found that LATS1 interacted with Cullin3, and depletion of Cullin 3 upregulated the abundance of LATS1 largely via prolonging LATS1 protein half-life. Mechanistically, SPOP specifically interacted with LATS1, and promoted the poly-ubiquitination and subsequent degradation of LATS1 in a degron-dependent manner. As such, over-expression of SPOP promoted cell proliferation partly through regulating cell cycle distribution in kidney cancer cells. Furthermore, SPOP also promoted kidney cancer cell invasion via degrading LATS1. Interpretation Our study provides evidence for a novel mechanism of SPOP in kidney cancer progression in part through promoting degradation of the LATS1 tumour suppressor.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, and Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China.
| | - Youhua He
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
18
|
Goel H, Singhal S, Mathur R, Syeda S, Gupta RK, Kumar A, Shrivastava A, Jha AK. Promoter Hypermethylation of LATS2 Gene in Oral Squamous Cell Carcinoma (OSCC) Among North Indian Population. Asian Pac J Cancer Prev 2020; 21:1283-1287. [PMID: 32458634 PMCID: PMC7541850 DOI: 10.31557/apjcp.2020.21.5.1283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 11/25/2022] Open
Abstract
Large Tumor Suppressor (LATS2) gene are Tumor Suppressor gene, linked with epigenetic modifications. LATS2 promoter hypermethylation is an important epigenetic silencing mechanism leading to cancer. Cancer is the most common, vicious and dangerously increasing diseases of the world today, associated with high morbidity and mortality. Oral cancers (OC) are the blazing universal dilemma and is the sixth most frequent cancer observed in Indian population. Tobacco consumption is the main cause of the increase in OSCC. The association between LATS2 in the pathogenesis of cancers propose that their combination might be studied as a possible molecular marker for particular subgroups of patients. Therefore, the present study tried to investigate whether LATS2 promoter methylation was associated with oral squamous cell carcinoma (OSCC) in North Indian subjects. DNA methylation quantitative studies of LATS2 Tumor Suppressor genes were performed by methylation-specific polymerase chain reaction (MSP). 38 out of 70 patients (55 %) were found to be methylated for LATS2 gene, a statistically significant result was obtained (p-value < 0.005) for LATS2 genes. The results suggest that epigenetic changes may be related to the down-regulation of LATS2 expression. It can be concluded that LATS2 gene plays a significant role in the diagnosis of cancer and provide a better alternative as a diagnostic biomarker. Our data infer that a low LATS2 expression due to methylation may contribute to the cancer progression and could be useful for the diagnosis of OSCC. Therefore, investigation of promoter methylation in such genes may provide a biomarker which may prove to be useful in early detection of Oral Cancer.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Biotechnology, Institute of Applied Medicines and Research Ghaziabad, Uttar Pradesh, India
| | - Saloni Singhal
- Department of Biotechnology, Institute of Applied Medicines and Research Ghaziabad, Uttar Pradesh, India
| | - Runjhun Mathur
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Saima Syeda
- Department of Zoology, Delhi University, India
| | - Rishi Kumar Gupta
- Sh. Jagannath Charitable Cancer Hospital, Ghaziabad, Uttar Pradesh, India
| | - Anshuman Kumar
- Dharamshila Cancer Hospital and Research Centre, New Delhi, India
| | | | - Abhimanyu Kumar Jha
- Department of Biotechnology, Institute of Applied Medicines and Research Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
19
|
Sahu MR, Mondal AC. The emerging role of Hippo signaling in neurodegeneration. J Neurosci Res 2019; 98:796-814. [PMID: 31705587 DOI: 10.1002/jnr.24551] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/05/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegeneration refers to the complex process of progressive degeneration or neuronal apoptosis leading to a set of incurable and debilitating conditions. Physiologically, apoptosis is important in proper growth and development. However, aberrant and unrestricted apoptosis can lead to a variety of degenerative conditions including neurodegenerative diseases. Although dysregulated apoptosis has been implicated in various neurodegenerative disorders, the triggers and molecular mechanisms underlying such untimely and faulty apoptosis are still unknown. Hippo signaling pathway is one such apoptosis-regulating mechanism that has remained evolutionarily conserved from Drosophila to mammals. This pathway has gained a lot of attention for its tumor-suppressing task, but recent studies have emphasized the soaring role of this pathway in inflaming neurodegeneration. In addition, strategies promoting inactivation of this pathway have aided in the rescue of neurons from anomalous apoptosis. So, a thorough understanding of the relationship between the Hippo pathway and neurodegeneration may serve as a guide for the development of therapy for various degenerative diseases. The current review focuses on the mechanism of the Hippo signaling pathway, its upstream and downstream regulatory molecules, and its role in the genesis of numerous neurodegenerative diseases. The recent efforts employing the Hippo pathway components as targets for checking neurodegeneration have also been highlighted.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Hippo signaling is intrinsically regulated during cell cycle progression by APC/C Cdh1. Proc Natl Acad Sci U S A 2019; 116:9423-9432. [PMID: 31000600 DOI: 10.1073/pnas.1821370116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Hippo-YAP/TAZ signaling pathway plays a pivotal role in growth control during development and regeneration and its dysregulation is widely implicated in various cancers. To further understand the cellular and molecular mechanisms underlying Hippo signaling regulation, we have found that activities of core Hippo signaling components, large tumor suppressor (LATS) kinases and YAP/TAZ transcription factors, oscillate during mitotic cell cycle. We further identified that the anaphase-promoting complex/cyclosome (APC/C)Cdh1 E3 ubiquitin ligase complex, which plays a key role governing eukaryotic cell cycle progression, intrinsically regulates Hippo signaling activities. CDH1 recognizes LATS kinases to promote their degradation and, hence, YAP/TAZ regulation by LATS phosphorylation is under cell cycle control. As a result, YAP/TAZ activities peak in G1 phase. Furthermore, we show in Drosophila eye and wing development that Cdh1 is required in vivo to regulate the LATS homolog Warts with a conserved mechanism. Cdh1 reduction increased Warts levels, which resulted in reduction of the eye and wing sizes in a Yorkie dependent manner. Therefore, LATS degradation by APC/CCdh1 represents a previously unappreciated and evolutionarily conserved layer of Hippo signaling regulation.
Collapse
|
21
|
Wei Q, Ramsey SA, Larson MK, Berlow NE, Ochola D, Shiprack C, Kashyap A, Séguin B, Keller C, Löhr CV. Elucidating the transcriptional program of feline injection-site sarcoma using a cross-species mRNA-sequencing approach. BMC Cancer 2019; 19:311. [PMID: 30947707 PMCID: PMC6449919 DOI: 10.1186/s12885-019-5501-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/20/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Feline injection-site sarcoma (FISS), an aggressive iatrogenic subcutaneous malignancy, is challenging to manage clinically and little is known about the molecular basis of its pathogenesis. Tumor transcriptome profiling has proved valuable for gaining insights into the molecular basis of cancers and for identifying new therapeutic targets. Here, we report the first study of the FISS transcriptome and the first cross-species comparison of the FISS transcriptome with those of anatomically similar soft-tissue sarcomas in dogs and humans. METHODS Using high-throughput short-read paired-end sequencing, we comparatively profiled FISS tumors vs. normal tissue samples as well as cultured FISS-derived cell lines vs. skin-derived fibroblasts. We analyzed the mRNA-seq data to compare cancer/normal gene expression level, identify biological processes and molecular pathways that are associated with the pathogenesis of FISS, and identify multimegabase genomic regions of potential somatic copy number alteration (SCNA) in FISS. We additionally conducted cross-species analyses to compare the transcriptome of FISS to those of soft-tissue sarcomas in dogs and humans, at the level of cancer/normal gene expression ratios. RESULTS We found: (1) substantial differential expression biases in feline orthologs of human oncogenes and tumor suppressor genes suggesting conserved functions in FISS; (2) a genomic region with recurrent SCNA in human sarcomas that is syntenic to a feline genomic region of probable SCNA in FISS; and (3) significant overlap of the pattern of transcriptional alterations in FISS with the patterns of transcriptional alterations in soft-tissue sarcomas in humans and in dogs. We demonstrated that a protein, BarH-like homeobox 1 (BARX1), has increased expression in FISS cells at the protein level. We identified 11 drugs and four target proteins as potential new therapies for FISS, and validated that one of them (GSK-1059615) inhibits growth of FISS-derived cells in vitro. CONCLUSIONS (1) Window-based analysis of mRNA-seq data can uncover SCNAs. (2) The transcriptome of FISS-derived cells is highly consistent with that of FISS tumors. (3) FISS is highly similar to soft-tissue sarcomas in dogs and humans, at the level of gene expression. This work underscores the potential utility of comparative oncology in improving understanding and treatment of FISS.
Collapse
Affiliation(s)
- Qi Wei
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA.
| | - Maureen K Larson
- Department of Clinical Sciences, Oregon State University, Corvallis, OR, USA
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | - Donasian Ochola
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
| | | | - Amita Kashyap
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Bernard Séguin
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | - Christiane V Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
22
|
Immunohistochemical Profile of Tumor Suppressor Proteins RASSF1A and LATS1/2 in Relation to p73 and YAP Expression, of Human Inflammatory Bowel Disease and Normal Intestine. Pathol Oncol Res 2019; 26:567-574. [DOI: 10.1007/s12253-018-00575-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023]
|
23
|
Hypermethylated LATS2 gene with decreased expression in female breast cancer: A case control study from North India. Gene 2018; 676:156-163. [PMID: 30010037 DOI: 10.1016/j.gene.2018.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/25/2018] [Accepted: 07/11/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND LATS2, a presumed tumor suppressor gene located on chromosome 13q11-12 is involved in cell growth related activity like regulation of cell cycle at G1/S. The reduced expression of LATS2 has been reported in many tumors; including tumors of Breast, which is to the best of our knowledge has not been studied in north Indian female breast cancer population. OBJECTIVE Here, we looked upon the expression pattern and methylation status of the LATS2 gene in north Indian female breast cancer cases to further strengthen its role as a tumor suppressor gene and more importantly as a cancer biomarker. METHODS mRNA expression level was determined by real time PCR in 140 Breast cancer patients, Protein expression was studied by Immunohistochemistry and Promoter methylation was studied by Methylation specific PCR. All findings were correlated with clinicopathological features. RESULTS LATS2 mRNA expression was remarkably downregulated in 67.85% (95/140) cases. The expression of Large Associated Tumor Suppressor 2 at protein level was also absent in 67.85% (95/140) cases. The absence of LATS2 protein strongly correlated with promoter hypermethylation where 91 out of a total of 107 hyper methylated cases showed absence of protein (91/107, 85%). The absence of LATS2 protein was strongly significant with HER2 neu status (0.01), TNM staging (0.009) and Molecular subtype (0.024). CONCLUSION The decreased expression in breast cancer seems to be associated with hypermethylation of LATS2 promoter regions. Further LATS2 as a tumor suppressor can be recognized as a promising Biomarker in Breast cancer pathogenesis. Though, further studies, targeting larger sets of breast cancer population are required to establish LATS2 as a promising biomarker.
Collapse
|
24
|
Decreased expression of LATS1 correlates with astrogliosis after spinal cord injury. Biochem Biophys Res Commun 2018; 505:151-156. [PMID: 30241940 DOI: 10.1016/j.bbrc.2018.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
Large tumor suppressor kinase 1 (LATS1) is a serine/threonine kinase of the AGC kinase family in mammals and involved in various biological processes, it is a key regulator of cell cycle progression. However, the role of LATS1 in central nervous system trauma is still unknown. In present study, we performed an acute spinal cord injury (SCI) model in adult rats and investigated the dynamic changes of LATS1 expression in the spinal cord. We found that LATS1 protein levels were significantly decreased at day 1 after injury. Meanwhile, double immunofluorescence staining showed these changes were striking in astrocytes, which were largely proliferated after SCI. In vitro, LATS1 overexpression inhibited astrocyte proliferation. Conversely, LATS1 depletion by siRNA promoted cell proliferation in primary astrocyte. Moreover, LATS1 overexpression reduced cyclin D1 expression and increased the expression of p27kip1. In addition, LATS1 overexpression also promoted yes-associated protein 1 (YAP) phosphorylation. Our data suggested that LATS1 might play an important role in spinal cord injury and suppress astrogliosis through regulating the expression of cyclin D1, p27kip1 and p-YAP.
Collapse
|
25
|
Zhou Y, Mao F, He Z, Li J, Zhang Y, Xiang Z, Xiao S, Ma H, Zhang Y, Yu Z. The Molecular Mechanism Underlying Pro-apoptotic Role of Hemocytes Specific Transcriptional Factor Lhx9 in Crassostrea hongkongensis. Front Physiol 2018; 9:612. [PMID: 29892231 PMCID: PMC5985316 DOI: 10.3389/fphys.2018.00612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Hemocytes are the central organ of immune defense against pathogens by means of inflammation, phagocytosis, and encapsulation in mollusks. The well-functioning of the host immune system relies on the hemocytes’ task exertion and frequent renewal, but the underlying renewal mechanism remains elusive at the gene level. Here, we identified one transcription factor, LIM homeobox 9, in Crassostrea hongkongensis (ChLhx9) that could be involved in hemocyte apoptosis or renewal. ChLhx9 contains a homeodomain and two LIM domains. The expression profile of ChLhx9 showed that it was specific and had high expression in hemocytes, and it significantly increased under the bacterial challenge. RNA interference of ChLhx9 dramatically decreased the apoptosis rate of hemocytes when compared with a control group, which strongly implies its pro-apoptotic role in hemocytes. Furthermore, the genomic responses to the knockdown of ChLhx9 were examined through RNA-seq, which showed that multiple pathways associated with cell apoptosis, including the apoptosis pathway, hippo signal pathway and p53 signaling pathway, were significantly down-regulated. Meanwhile, seven of the key apoptotic genes were confirmed to be upregulated by ChLhx9, among which ChASPP1 (apoptosis stimulating protein of p53) was confirmed to induce hemocyte apoptosis strongly, which demonstrates that ChASPP1 was a downstream target mediated by ChLhx9 that caused apoptosis. In conclusion, tissue-specific transcription factor ChLhx9 induces hemocyte apoptosis through activating apoptotic genes or pathways, which could contribute to hemocyte renewal and immune defense in oysters.
Collapse
Affiliation(s)
- Yingli Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiying He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
26
|
Zheng H, Ke X, Li D, Wang Q, Wang J, Liu X, Deng M, Deng X, Xue Y, Zhu Y, Wang Q. NEDD4 promotes cell growth and motility in hepatocellular carcinoma. Cell Cycle 2018; 17:728-738. [PMID: 29480061 DOI: 10.1080/15384101.2018.1440879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. In China, the situation is even worse as cancer incidence and mortality continue to increase rapidly. Although tremendous progress has been made toward HCC treatments, the benefits for liver cancer patients are still limited. Therefore, it is necessary to identify and develop novel therapeutic methods. Neuronally expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, plays a critical role in the development and progression of various types of human cancers. In our study, NEDD4 acts as an oncoprotein in both QGY7703 and SMMC7721 liver cancer cell lines. We found that depletion of NEDD4 by siRNA transfection led to inhibition of cell growth, invasion and migration, and promotion of apoptosis. In contrast, overexpression of NEDD4 via plasmid transfection resulted in facilitated cell proliferation, invasion and migration, and decreased apoptosis. Importantly, we observed that tumor suppressor LATS1, also a core component of Hippo pathway, was negatively regulated by NEDD4 in liver cancer cells. Our findings suggested that NEDD4 may be involved in the HCC progression via regulating LATS1 associated signaling pathway. Therefore, targeting NEDD4-LATS1 signaling could be a potential therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Hailun Zheng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiquan Ke
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Dapeng Li
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qiangwu Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Jianchao Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaoyang Liu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Min Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaojing Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yongju Xue
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yu Zhu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qizhi Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| |
Collapse
|
27
|
Wang X, Huai G, Wang H, Liu Y, Qi P, Shi W, Peng J, Yang H, Deng S, Wang Y. Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review). Int J Mol Med 2018; 41:1201-1212. [PMID: 29286147 PMCID: PMC5819904 DOI: 10.3892/ijmm.2017.3352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/15/2017] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide and there is no effective treatment thus far. The trabecular meshwork has been identified as the major pathological area involved. Certain signaling pathways in the trabecular meshwork, including the Wnt, lysophosphatidic acid and transforming growth factor‑β pathways, have been identified as novel therapeutic targets in glaucoma treatment. Meanwhile, it has been reported that key proteins in these pathways, particularly the primary transcription regulator Yes‑associated protein (YAP) and transcriptional co‑activator with PDZ‑binding motif (TAZ), exhibit interactions with the Hippo pathway. The Hippo pathway, which was first identified in Drosophila, has drawn great focus with regard to various aspects of studies in recent years. One role of the Hippo pathway in the regulation of organ size was indicated by more recent evidence. Defining the relevant physiological function of the Hippo pathway has proven to be extremely complicated. Studies have ascribed a role for the Hippo pathway in an overwhelming number of processes, including cell proliferation, cell death and cell differentiation. Therefore, the present review aimed to unravel the roles of YAP and TAZ in the Hippo pathway and the pathogenesis of glaucoma. Furthermore, a new and creative study for the treatment of glaucoma is provided.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Guoli Huai
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Hailian Wang
- Personalized Drug Therapy Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072
| | - Yuande Liu
- 91388 Military Hospital, Zhanjiang, Guangdong 524022
| | - Ping Qi
- Department of Pediatrics and
| | - Wei Shi
- Department of Pediatrics and
| | - Jie Peng
- Department of Ophthalmology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Hongji Yang
- Personalized Drug Therapy Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072
| | - Shaoping Deng
- Personalized Drug Therapy Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072
| | - Yi Wang
- Personalized Drug Therapy Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072
| |
Collapse
|
28
|
Zheng H, Ke X, Li D, Wang Q, Wang J, Liu X, Deng M, Deng X, Xue Y, Zhu Y, Wang Q. NEDD4 promotes cell growth and motility in hepatocellular carcinoma. CELL CYCLE (GEORGETOWN, TEX.) 2018. [PMID: 29480061 DOI: 10.1080/15384101.2018.1440879.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. In China, the situation is even worse as cancer incidence and mortality continue to increase rapidly. Although tremendous progress has been made toward HCC treatments, the benefits for liver cancer patients are still limited. Therefore, it is necessary to identify and develop novel therapeutic methods. Neuronally expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, plays a critical role in the development and progression of various types of human cancers. In our study, NEDD4 acts as an oncoprotein in both QGY7703 and SMMC7721 liver cancer cell lines. We found that depletion of NEDD4 by siRNA transfection led to inhibition of cell growth, invasion and migration, and promotion of apoptosis. In contrast, overexpression of NEDD4 via plasmid transfection resulted in facilitated cell proliferation, invasion and migration, and decreased apoptosis. Importantly, we observed that tumor suppressor LATS1, also a core component of Hippo pathway, was negatively regulated by NEDD4 in liver cancer cells. Our findings suggested that NEDD4 may be involved in the HCC progression via regulating LATS1 associated signaling pathway. Therefore, targeting NEDD4-LATS1 signaling could be a potential therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Hailun Zheng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiquan Ke
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Dapeng Li
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qiangwu Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Jianchao Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaoyang Liu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Min Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaojing Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yongju Xue
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yu Zhu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qizhi Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| |
Collapse
|
29
|
Protein phosphatase 2ACα gene knock-out results in cortical atrophy through activating hippo cascade in neuronal progenitor cells. Int J Biochem Cell Biol 2018; 95:53-62. [DOI: 10.1016/j.biocel.2017.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/02/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
30
|
Oliveira VC, Constante SAR, Polloni L, Orsolin PC, Silva-Oliveira RG, Machado NM, de Oliveira-Júnior RJ, Nepomuceno JC. Protective effect of aspirin against mitomycin C-induced carcinogenicity, assessed by the test for detection of epithelial tumor clones (warts) in Drosophila melanogaster. Drug Chem Toxicol 2017; 41:330-337. [PMID: 29281929 DOI: 10.1080/01480545.2017.1415926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study assessed the protective effect of aspirin against carcinogenicity induced by mitomycin C (MMC) by the test for detection of warts/epithelial tumor clones in Drosophila melanogaster. Larvae were treated with different concentrations of aspirin alone (10, 20 or 40 mg/mL) or aspirin in association with MMC. MMC and ultrapure water were employed as the positive and negative control, respectively. Antioxidant activity was determined using the DPPH method. For performing cytotoxicity assay on HeLa cells, the aspirin concentrations used ranged from 200 mmol/L to 3,125 mmol/L. For assessment of apoptosis and necrosis, cells were incubated for 24 h with complete medium in the absence (control group) or presence of aspirin (12.5 mmol/L and 25 mmol/L). The results obtained in the assessment of the possible carcinogenic effects of aspirin at the three concentrations tested indicate no statistically significant increase in tumor frequency compared to the negative control. The anticarcinogenic activity assessment, where the larvae of D. melanogaster were previously induced to tumor formation by MMC and later treated with aspirin, showed a statistically significant reduction in the number of tumors compared to the positive control. Antioxidant activity across the three aspirin concentrations (10, 20 or 40 mg/mL) ranged from 20.81% to 26.5%. It was observed that aspirin reduced growth viability of HeLa cells in a concentration-dependent manner in comparison with the control. These results indicate that aspirin did not induce tumors in Drosophila and reduced MMC-induced carcinogenicity. The antioxidant activity and apoptosis induction appear to be the main mechanisms involved in reducing the frequency of tumors.
Collapse
Affiliation(s)
- Victor Constante Oliveira
- a Genetics and Biochemistry Institute , Federal University of Uberlandia , Uberlandia , Brazil.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | | | - Lorena Polloni
- c Laboratory of Animal Cytogenetics , Genetics and Biochemistry Institute, Federal University of Uberlândia , Uberlandia , Brazil
| | - Priscila Capelari Orsolin
- b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | | | - Nayane Moreira Machado
- b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | - Robson José de Oliveira-Júnior
- c Laboratory of Animal Cytogenetics , Genetics and Biochemistry Institute, Federal University of Uberlândia , Uberlandia , Brazil
| | - Júlio César Nepomuceno
- a Genetics and Biochemistry Institute , Federal University of Uberlandia , Uberlandia , Brazil.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| |
Collapse
|
31
|
Son MW, Song GJ, Jang SH, Hong SA, Oh MH, Lee JH, Baek MJ, Lee MS. Clinicopathological Significance of Large Tumor Suppressor ( LATS) Expression in Gastric Cancer. J Gastric Cancer 2017; 17:363-373. [PMID: 29302376 PMCID: PMC5746657 DOI: 10.5230/jgc.2017.17.e41] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/21/2023] Open
Abstract
Purpose The aims of this study were to evaluate the expression of the large tumor suppressor (LATS) genes LATS1 and LATS2 by immunohistochemical staining of gastric cancer, and to evaluate the clinicopathological significance of LATS expression and its correlation with overall survival (OS). Materials and Methods LATS1 and LATS2 expression in a tissue microarray was detected by immunohistochemistry, using 264 gastric cancer specimens surgically resected between July 2006 and December 2009. Results Low expression of LATS1 was significantly associated with more advanced American Joint Committee on Cancer (AJCC) stage (P=0.001) and T stage (P=0.032), lymph node (LN) metastasis (P=0.040), perineural invasion (P=0.042), poor histologic grade (P=0.007), and diffuse-type histology by the Lauren classification (P=0.033). Low expression of LATS2 was significantly correlated with older age (≥65, P=0.027), more advanced AJCC stage (P=0.001) and T stage (P=0.001), LN metastasis (P=0.004), perineural invasion (P=0.004), poor histologic grade (P<0.001), and diffuse-type histology by the Lauren classification (P<0.001). Kaplan-Meier survival analysis revealed significantly poor OS rates in the groups with low LATS1 (P=0.037) and LATS2 (P=0.037) expression. Conclusions Expression of LATS1 or LATS2 is a significant marker for a good prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Myoung Won Son
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Geum Jong Song
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Si-Hyong Jang
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Soon Auck Hong
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Mee-Hye Oh
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Moo Jun Baek
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Moon Soo Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| |
Collapse
|
32
|
Zhang J, Wang G, Chu SJ, Zhu JS, Zhang R, Lu WW, Xia LQ, Lu YM, Da W, Sun Q. Loss of large tumor suppressor 1 promotes growth and metastasis of gastric cancer cells through upregulation of the YAP signaling. Oncotarget 2017; 7:16180-93. [PMID: 26921249 PMCID: PMC4941306 DOI: 10.18632/oncotarget.7568] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/05/2016] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence shows that large tumor suppressor 1 (LATS1) as a novel resident governor of cellular homeostasis is implicated in multiple tumorigenic properties including cell growth, apoptosis and metastasis. However, the contribution of LATS1 to gastric carcinoma (GC) remains unclear. The correlation of LATS1 expression with clinicopathologic characteristics, GC prognosis and recurrence was analyzed by immunohistochemistry, Univariate and Kaplan-Meier analysis. Functional experiments were performed to investigate biological behaviors of GC cells and underlying molecular mechanisms. Tumor growth and metastasis was assessed in vivo using orthotopic implantation GC models in severe combined immune deficiency (SCID) mice. Consequently, decreased LATS1 expression was significantly associated with the lymph node metastasis, poor prognosis and recurrence. Ectopic expression of LATS1 decreased GC cell proliferation and invasion in vitro and inhibited tumor growth and liver metastasis in vivo, but depletion of LATS1 expression restored the invasive phenotype. Further observation indicated that YAP pathway was required for LATS1-induced inhibition of cell growth and invasion, and LATS1 restrained nuclear transfer of YAP, downregulated YAP, PCNA, CTGF, MMP-2, MMP-9, Bcl-2 and CyclinD1 expression and upregulated p-YAP and Bax expression. Our findings suggest that LATS1 is a potential candidate tumor suppressor and inhibits the growth and metastasis of GC cells via downregulation of the YAP signaling.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Ge Wang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Shao-Jun Chu
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Wen-Wen Lu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Li-Qiong Xia
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Yun-Min Lu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Wei Da
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Qun Sun
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
33
|
Mo Y, Lin R, Liu P, Tan M, Xiong Y, Guan KL, Yuan HX. SIRT7 deacetylates DDB1 and suppresses the activity of the CRL4 E3 ligase complexes. FEBS J 2017; 284:3619-3636. [PMID: 28886238 DOI: 10.1111/febs.14259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/28/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Abstract
Cullin 4 (CUL4) and small ring finger protein ROC1 assemble to form E3 ubiquitin ligase (CRL4) complexes. CUL4 interacts with WD-40 proteins through the adaptor protein DNA damage-binding protein 1 (DDB1) to target substrates for ubiquitylation. Very little is known on how the CUL4 and DDB1 interaction is regulated. Here, we show that DDB1 is acetylated and acetylation promotes DDB1 binding to CUL4. We also identify nucleolar sirtuin 7 (SIRT7) as a major deacetylase that negatively regulates DDB1-CUL4 interaction. Following inhibition of nucleolar function by actinomycin D or 5-fluorouracil treatment or knocking down the gene for the RNA polymerase I component UBF, SIRT7 is mobilized from the nucleolus to the nucleoplasm and promotes DDB1 deacetylation, leading to decreased DDB1-CUL4 association and CRL4 activity. This results in the accumulation or activation of CRL4 substrates including LATS1 and p73, which contribute to cell apoptosis induced by actinomycin D and 5-fluorouracil. Our study uncovers a novel regulation of CRL4 E3 ligase complexes.
Collapse
Affiliation(s)
- Yan Mo
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ran Lin
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng Liu
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yue Xiong
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | - Kun-Liang Guan
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Hai-Xin Yuan
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Khalili A, Potter D, Yan P, Li L, Gray J, Huang T, Lin S. Gamma-Normal-Gamma Mixture Model for Detecting Differentially Methylated Loci in Three Breast Cancer Cell Lines. Cancer Inform 2017. [DOI: 10.1177/117693510700300012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
With state-of-the-art microarray technologies now available for whole genome CpG island (CGI) methylation profiling, there is a need to develop statistical models that are specifically geared toward the analysis of such data. In this article, we propose a Gamma-Normal-Gamma (GNG) mixture model for describing three groups of CGI loci: hypomethylated, undifferentiated, and hypermethylated, from a single methylation microarray. This model was applied to study the methylation signatures of three breast cancer cell lines: MCF7, T47D, and MDAMB361. Biologically interesting and interpretable results are obtained, which highlights the heterogeneity nature of the three cell lines. This underlies the premise for the need of analyzing each of the microarray slides individually as opposed to pooling them together for a single analysis. Our comparisons with the fitted densities from the Normal-Uniform (NU) mixture model in the literature proposed for gene expression analysis show an improved goodness of fit of the GNG model over the NU model. Although the GNG model was proposed in the context of single-slide methylation analysis, it can be readily adapted to analyze multi-slide methylation data as well as other types of microarray data.
Collapse
Affiliation(s)
- Abbas Khalili
- Department of Statistics, The Ohio State University, Columbus, OH 43210
| | - Dustin Potter
- Human Cancer Genetics, The Ohio State University, Columbus, OH 43210
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210
| | - Pearlly Yan
- Human Cancer Genetics, The Ohio State University, Columbus, OH 43210
| | - Lang Li
- Division of Biostatistics, Department of Medicine, Indiana University School of Medicine, One Cyclotron Rd. Indianapolis, IN 47405
| | - Joe Gray
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Tim Huang
- Human Cancer Genetics, The Ohio State University, Columbus, OH 43210
| | - Shili Lin
- Department of Statistics, The Ohio State University, Columbus, OH 43210
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
35
|
An F, Liu Y, Hu Y. miR-21 inhibition of LATS1 promotes proliferation and metastasis of renal cancer cells and tumor stem cell phenotype. Oncol Lett 2017; 14:4684-4688. [PMID: 29085468 PMCID: PMC5649614 DOI: 10.3892/ol.2017.6746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
MicroRNA (miR)-21 has many regulatory functions in the cell, including activities in cancer cells and cancer stem cells. Large tumor suppressor gene 1 (LATS1) is a target of miR-21 that could mediate several of these phenotypes. This study explored the effect of miR-21 silencing in renal cancer cell function and LATS1 expression. Silencing of miR-21 in Caki-2 cells reached an efficiency of 55-60%. This was sufficient to detect decrease in Caki-2 cell proliferation and migration invasion capacity. miR-21 silencing increased LATS1 expression at both mRNA and protein levels. The number of tumor spheres formed by cells expressing si-miR-21 was significantly reduced and the expression of tumor stem cell markers Nanog and CT3/4 were significantly downregulated. miR-21 seems to regulate LATS1 expression in renal cancer Caki-2 cells, resulting in reduced proliferation, invasion, and cancer stem cell phenotype. miR-21 may promote malignant phenotype of tumor cells through LATS1 silencing, which can be regarded as a new target candidate gene for renal cancer treatment.
Collapse
Affiliation(s)
- Feng An
- Department of Urinary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yidong Liu
- Department of Urinary Surgery, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yan Hu
- Department of Urinary Surgery, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
36
|
Abstract
Proper cellular functionality and homeostasis are maintained by the convergent integration of various signaling cascades, which enable cells to respond to internal and external changes. The Dbf2-related kinases LATS1 and LATS2 (LATS) have emerged as central regulators of cell fate, by modulating the functions of numerous oncogenic or tumor suppressive effectors, including the canonical Hippo effectors YAP/TAZ, the Aurora mitotic kinase family, estrogen signaling and the tumor suppressive transcription factor p53. While the basic functions of the LATS kinase module are strongly conserved over evolution, the genomic duplication event leading to the emergence of two closely related kinases in higher organisms has increased the complexity of this signaling network. Here, we review the LATS1 and LATS2 intrinsic features as well as their reported cellular activities, emphasizing unique characteristics of each kinase. While differential activities between the two paralogous kinases have been reported, many converge to similar pathways and outcomes. Interestingly, the regulatory networks controlling the mRNA expression pattern of LATS1 and LATS2 differ strongly, and may contribute to the differences in protein binding partners of each kinase and in the subcellular locations in which each kinase exerts its functions.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| |
Collapse
|
37
|
Molecular Alterations and Expression Dynamics of LATS1 and LATS2 Genes in Non-Small-Cell Lung Carcinoma. Pathol Oncol Res 2017; 24:207-214. [PMID: 28434174 DOI: 10.1007/s12253-017-0225-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Large tumor suppressor (LATS) is an important member of the Hippo pathway which can regulate organ size and cell proliferation. However, very little is known about the expression and clinical significance of LATS in lung cancer especially from this part of the world. We elucidated the frequency of LATS1 &LATS2 promoter hypermethylation (by methylation-specific PCR) and expression (by real-time PCR) in sixty nine (n = 69) Non-Small Cell Lung Cancer (NSCLC) patients and their corresponding normal lung tissue samples. We found promoter hypermethylation frequencies of LATS1 & LATS1to be 66.66% (46/69) and 71% (49/69) in NSCLC tissues. Decreased LATS1 & LATS2 mRNA expression was found in 55% and 66.66% of NSCLC patients. The LATS1 mRNA expression was significantly higher in normal lung tissues. Also, the mRNA levels of LATS1 and LATS2 NSCLC tissues with hypermethylation were significantly lower. Multivariable analysis confirmed that LATS1 under expression increased the hazard of death after adjusting for other clinicopathological factors. Importantly, the loss of LATS1 mRNA expression was associated with overall short survival. LATS1 is an independent prognostic factor and may play an important role in NSCLC progression and may serve as a novel therapeutic target of NSCLC.
Collapse
|
38
|
Ladiz MAR, Najafi M, Kordi-Tamandani DM. Contribution of LATS1 and LATS2 promoter methylation in OSCC development. J Cell Commun Signal 2017; 11:49-55. [PMID: 27761802 PMCID: PMC5362570 DOI: 10.1007/s12079-016-0356-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/24/2016] [Indexed: 01/28/2023] Open
Abstract
The aberrant DNA methylation of the tumor suppressor genes involved in DNA Damage Response (DDR) signaling and cell cycle regulation may lead to the tumorigenesis. Our purpose here is to analyze the promoter methylation and mRNA expression levels of LATS1 and LATS2 (LATS1/2) genes in OSCC. Promoter methylation status of LATS1/2 genes was evaluated in 70 OSCC paraffin-embedded tissues and 70 normal oral samples, using Methylation Specific PCR (MSP). LATS1/2 mRNA expression profiles were also investigated in 14 OSCC patients and 14 normal samples, using real-time PCR. In both candidate genes, promoter methylation assessment revealed significant relationship between cases and controls (OR = 2.24, 95 % CI = 1.40-3.54, P = 0.001; LATS1 and OR = 15.5, 95%CI = 3.64-64.76, P < 0.001; LATS2). As well as, the evaluation of mRNA expression levels showed decreased expression in OSCC tissues in compare to control tissues. (Mean ± SD 1.74 ± 0.14 in OSCC versus 2.10 ± 0.24 in controls, P < 0.001; LATS1 and Mean ± SD 1.36 ± 0.077 in OSCC versus 1.96 ± 0.096 in controls, P < 0.001; LATS2). To the best our knowledge, this is the first report regarding the down-regulation of LATS1/2 through promoter methylation in OSCC. It is suggested to explore the down-stream transcription factors of both genes for finding the molecular mechanism of this deregulation in OSCC.
Collapse
Affiliation(s)
| | - Maryam Najafi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Departement of Biology, University of Sistan and Baluchestan, P.O. Box 98155-987, Zahedan, Iran
| | | |
Collapse
|
39
|
Robertson A, Mohamed TMA, El Maadawi Z, Stafford N, Bui T, Lim DS, Cartwright EJ, Oceandy D. Genetic ablation of the mammalian sterile-20 like kinase 1 (Mst1) improves cell reprogramming efficiency and increases induced pluripotent stem cell proliferation and survival. Stem Cell Res 2017; 20:42-49. [PMID: 28257933 PMCID: PMC5376382 DOI: 10.1016/j.scr.2017.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 11/26/2022] Open
Abstract
Adult fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSC) for use in various applications. However, there are challenges in iPSC generation including low reprogramming efficiency, yield, cell survival and viability. Since the Hippo signalling pathway is a key pathway involved in regulating cell proliferation and survival, we here test whether modification of the Hippo pathway will enhance the efficiency of iPSC generation and improve their survival. The Hippo pathway was modified by genetic ablation of the mammalian sterile-20 like kinase 1 (Mst1), a major component of the pathway. Using adult skin fibroblasts isolated from Mst1 knockout mice (Mst1−/−) as a source of iPSC we found that genetic ablation of Mst1 leads to significantly increased reprogramming efficiency by 43.8%. Moreover, Mst1−/− iPSC displayed increase proliferation by 12% as well as an increase in cell viability by 20% when treated with a chemical hypoxic inducer. Mechanistically, we found higher activity of YAP, the main downstream effector of the Hippo pathway, in iPSC lacking Mst1. In conclusion, our data suggests that Mst1 can be targeted to improve the efficiency of adult somatic cell reprogramming as well as to enhance iPSC proliferation and survival. Genetic deletion of Mst1 increases the efficiency of cell reprogramming. iPSC lacking Mst1 displays higher proliferation rate than WT iPSC. In response to chemical hypoxia Mst1−/− iPSC demonstrates higher survival.
Collapse
Affiliation(s)
- Abigail Robertson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Tamer M A Mohamed
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; J. David Gladstone Research Institutes, San Francisco, CA, USA; Faculty of Pharmacy, Zagazig University, Egypt
| | - Zeinab El Maadawi
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; Department of Histology and Cell Biology, Faculty of Medicine, Cairo University, Egypt
| | - Nicholas Stafford
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Thuy Bui
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Dae-Sik Lim
- Department of Biological Sciences, KAIST, Daejon, Republic of Korea
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| |
Collapse
|
40
|
Deng J, Zhang W, Liu S, An H, Tan L, Ma L. LATS1 suppresses proliferation and invasion of cervical cancer. Mol Med Rep 2017; 15:1654-1660. [PMID: 28259899 PMCID: PMC5364969 DOI: 10.3892/mmr.2017.6180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/03/2016] [Indexed: 01/15/2023] Open
Abstract
Loss of large tumor suppressor kinase 1 (LATS1)Y has been implicated in numerous types of human cancer. However, its involvement in human cervical cancer remains to be elucidated. The present study aimed to investigate the clinical significance and biological characteristics of LATS1 in human cervical cancer. The present study investigated the protein expression levels of LATS1 in tissues from 80 cases of cervical cancer using immunohistochemistry and demonstrated that LATS1 was downregulated in 45% (36/80) of cervical cancers. Transfection of LATS1 was performed in the SiHa cell line and LATS1 siRNA knockdown was performed in the Caski cell line. MTT assay and Matrigel invasion assay indicated that LATS1 overexpression inhibited cell proliferation and invasion. LATS1 overexpression upregulated p27 expression, and downregulated the expression of cyclin E and matrix metalloproteinase 9. In addition, LATS1 overexpression stimulated yes-associated protein 1 (YAP) phosphorylation. Depletion of LATS1 in Caski cells resulted in the opposite effects. The current study demonstrated that LATS1 was downregulated in cervical cancer and may suppress cell growth and invasion through regulating the expression of cyclin E, p27, MMP9 and YAP.
Collapse
Affiliation(s)
- Jihong Deng
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, Yunnan 650000, P.R. China
| | - Wen Zhang
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, Yunnan 650000, P.R. China
| | - Shuangyue Liu
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, Yunnan 650000, P.R. China
| | - Hongmei An
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, Yunnan 650000, P.R. China
| | - Lu Tan
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, Yunnan 650000, P.R. China
| | - Lisha Ma
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
41
|
Teteloshvili N, Smigielska-Czepiel K, Yuan Y, Seitz A, de Jong D, Rutgers B, Jellema P, van der Lei RJ, Slezak-Prochazka I, Brouwer E, Boots AMH, Kroesen BJ, van den Berg A, Kluiver J. Argonaute 2 immunoprecipitation revealed large tumor suppressor kinase 1 as a novel proapoptotic target of miR-21 in T cells. FEBS J 2017; 284:555-567. [PMID: 28075055 DOI: 10.1111/febs.14011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/09/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
MicroRNA (miR)-21 is an important suppressor of T-cell apoptosis that is also overexpressed in many types of cancers. The exact mechanisms underlying the antiapoptotic effects of miR-21 are not well understood. In this study, we used the Jurkat T-cell line as a model to identify apoptosis-associated miR-21 target genes. We showed that expression of miR-21 rapidly increases upon αCD3/αCD28 activation of Jurkat cells. Inhibition of miR-21 reduced cell growth which could be explained by an increase in apoptosis. MicroRNA target gene identification by AGO2 RNA-immunoprecipitation followed by gene expression microarray (RIP-Chip) resulted in the identification of 72 predicted miR-21 target genes that were at least twofold enriched in the AGO2-IP fraction of miR-21 overexpressing cells. Of these, 71 were at least twofold more enriched in the AGO2-IP fraction of miR-21 overexpressing cells as compared to AGO2-IP fraction of control cells. The target gene for which the AGO2-IP enrichment was most prominently increased upon miR-21 overexpression was the proapoptotic protein LATS1. Luciferase reporter assays and western blot analysis confirmed targeting of LATS1 by miR-21. qRT-PCR analysis in primary T cells showed an inverse expression pattern between LATS1 transcript levels and miR-21 upon T-cell stimulation. Finally, LATS1 knockdown partially rescued the miR-21 inhibition-induced impaired cell growth. Collectively, these data identify LATS1 as a miR-21 target important for the antiapoptotic function of miR-21 in T cells and likely also in many types of cancer.
Collapse
Affiliation(s)
- Nato Teteloshvili
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands.,Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Katarzyna Smigielska-Czepiel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands.,Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Ye Yuan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands.,Institute of Clinical Pharmacology of the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Pytrick Jellema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Roelof Jan van der Lei
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Izabella Slezak-Prochazka
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Elisabeth Brouwer
- Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Annemieke M H Boots
- Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands.,Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
42
|
Lorthongpanich C, Jiamvoraphong N, Supraditaporn K, Klaihmon P, U-Pratya Y, Issaragrisil S. The Hippo pathway regulates human megakaryocytic differentiation. Thromb Haemost 2016; 117:116-126. [PMID: 27786336 DOI: 10.1160/th16-07-0564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 11/05/2022]
Abstract
The Hippo pathway is involved in several biological processes in both flies and mammals. Recent studies have shown that the Hippo pathway regulates Drosophila's haematopoiesis; however, understanding of its role in mammalian haematopoiesis is still limited. In flies, deletion of the Hippo component gene, Warts, affects crystal cell differentiation. We explored the role of the Hippo pathway in human haematopoiesis focusing on megakaryopoiesis. To investigate the role of LATS1/2 (a mammalian homolog of Warts) in human megakaryoblastic cell differentiation and platelet formation, megakaryoblastic cell (MEG-01) line was used as a model to gain insight into mechanism of the Hippo pathway in mammalian megakaryopoiesis. Effect of LATS1/2 on megakaryoblastic cell differentiation and platelet production were determined by functional changes. We found that depletion of LATS1/2 resulted in an increase of CD41+ megakaryocytes with impaired platelet biogenesis. Our study shows that the Hippo signalling pathway plays a crucial role in human megakaryoblastic cell differentiation and thrombopoiesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Surapol Issaragrisil
- Prof. Surapol Issaragrisil, Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Tel.: +662 419 4448-50, Fax: +662 411 2012, E-mail:
| |
Collapse
|
43
|
Cacemiro MDC, Berzoti-Coelho MG, Cominal JG, Burin SM, Castro FAD. Hippo pathway deregulation: implications in the pathogenesis of haematological malignancies. J Clin Pathol 2016; 70:9-14. [PMID: 27798082 DOI: 10.1136/jclinpath-2016-204055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/04/2022]
Abstract
The Hippo pathway participates in the regulation of cell proliferation, differentiation and apoptosis. It is composed by a large array of proteins whose deregulation has been associated with pro-oncogenic and antioncogenic processes. The present review focuses on the Hippo pathway signalling network and discusses its dual role in oncogenesis, particularly in haematological malignancies.
Collapse
Affiliation(s)
- Maira da Costa Cacemiro
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | - Maria Gabriela Berzoti-Coelho
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | - Juçara Gastaldi Cominal
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | - Sandra Mara Burin
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
44
|
Fallahi E, O'Driscoll NA, Matallanas D. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair. Genes (Basel) 2016; 7:genes7060028. [PMID: 27322327 PMCID: PMC4929427 DOI: 10.3390/genes7060028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Fallahi
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
| | - Niamh A O'Driscoll
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
45
|
Vrabioiu AM, Struhl G. Fat/Dachsous Signaling Promotes Drosophila Wing Growth by Regulating the Conformational State of the NDR Kinase Warts. Dev Cell 2016; 35:737-49. [PMID: 26702832 DOI: 10.1016/j.devcel.2015.11.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/01/2015] [Accepted: 11/25/2015] [Indexed: 12/23/2022]
Abstract
Nuclear Dbf2-related (NDR) kinases play a central role in limiting growth in most animals. Signals that promote growth do so in part by suppressing the activation of NDR kinases by STE20/Hippo kinases. Here, we identify another mechanism for downregulating NDR kinase activity. Specifically, we show that activity of the Drosophila NDR kinase Warts in the developing wing depends on its transition from an inactive, "closed" conformation to a potentially active, "open" conformation mediated by Mats, a conserved Mps1-binder (Mob) protein. Further, we show that signaling interactions between the protocadherins Fat and Dachsous, organized by the morphogens Wingless and Decapentaplegic, suppress Warts by acting via the atypical myosin Dachs to inhibit or reverse this transition. The regulation of Warts conformation by Mats, Fat/Dachsous signaling, and Dachs appears independent of Warts phosphorylation by Hippo kinase, establishing a precedent for the control of NDR kinases, and hence growth, by distinct allosteric and phosphorylation mechanisms.
Collapse
Affiliation(s)
- Alina M Vrabioiu
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gary Struhl
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
46
|
Zeng QY, Zeng LJ, Huang Y, Huang YQ, Zhu QF, Liao ZH. 8-60hIPP5(m)-induced G2/M cell cycle arrest involves activation of ATM/p53/p21(cip1/waf1) pathways and delayed cyclin B1 nuclear translocation. Asian Pac J Cancer Prev 2016; 15:4101-7. [PMID: 24935604 DOI: 10.7314/apjcp.2014.15.9.4101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Protein phosphatase 1 (PP1) is a major serine/threonine phosphatase that controls gene expression and cell cycle progression. The active mutant IPP5 (8-60hIPP5(m)), the latest member of the inhibitory molecules for PP1, has been shown to inhibit the growth of human cervix carcinoma cells (HeLa). In order to elucidate the underlying mechanisms, the present study assessed overexpression of 8-60hIPP5(m) in HeLa cells. Flow cytometric and biochemical analyses showed that overexpression of 8-60hIPP5(m) induced G2/M-phase arrest, which was accompanied by the upregulation of cyclin B1 and phosphorylation of G2/M-phase proteins ATM, p53, p21(cip1/waf1) and Cdc2, suggesting that 8-60hIPP5(m) induces G2/M arrest through activation of the ATM/p53/p21(cip1/waf1)/Cdc2/ cyclin B1 pathways. We further showed that overexpression of 8-60hIPP5(m) led to delayed nuclear translocation of cyclin B1. 8-60hIPP5(m) also could translocate to the nucleus in G2/M phase and interact with pp1α and Cdc2 as demonstrated by co-precipitation assay. Taken together, our data demonstrate a novel role for 8-60hIPP5(m) in regulation of cell cycle in HeLa cells, possibly contributing to the development of new therapeutic strategies for cervix carcinoma.
Collapse
Affiliation(s)
- Qi-Yan Zeng
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, China E-mail :
| | | | | | | | | | | |
Collapse
|
47
|
Gardiner KL, Downs L, Berta-Antalics AI, Santana E, Aguirre GD, Genini S. Photoreceptor proliferation and dysregulation of cell cycle genes in early onset inherited retinal degenerations. BMC Genomics 2016; 17:221. [PMID: 26969498 PMCID: PMC4788844 DOI: 10.1186/s12864-016-2477-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/16/2016] [Indexed: 01/08/2023] Open
Abstract
Background Mitotic terminally differentiated photoreceptors (PRs) are observed in early retinal degeneration (erd), an inherited canine retinal disease driven by mutations in the NDR kinase STK38L (NDR2). Results We demonstrate that a similar proliferative response, but of lower magnitude, occurs in two other early onset disease models, X-linked progressive retinal atrophy 2 (xlpra2) and rod cone dysplasia 1 (rcd1). Proliferating cells are rod PRs, and not microglia or Müller cells. Expression of the cell cycle related genes RB1 and E2F1 as well as CDK2,4,6 was up-regulated, but changes were mutation-specific. Changes in cyclin expression differed across all genes, diseases and time points analyzed, although CCNA1 and CCNE1 expression increased with age in the three models suggesting that there is a dysregulation of cell cycle gene expression in all three diseases. Unique to erd, however, are mutation-specific changes in the expression of NDR kinases and Hippo signaling members with increased expression of MOB1 and LATS1 in the newly generated hybrid rod/S-cones. Conclusions Our data raise the intriguing possibility that terminally differentiated normal PRs are kept from dividing by NDR2-MOB1 interaction. Furthermore, they provide the framework for the selection of candidate genes for further investigation as potential targets of therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2477-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin L Gardiner
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Louise Downs
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Agnes I Berta-Antalics
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA.,Augenklinik Uniklinik Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Evelyn Santana
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Gustavo D Aguirre
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Sem Genini
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
Evaluation of LATS1 and LATS2 Promoter Methylation with the Risk of Pterygium Formation. J Ophthalmol 2016; 2016:5431021. [PMID: 26942001 PMCID: PMC4749796 DOI: 10.1155/2016/5431021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/26/2015] [Accepted: 12/29/2015] [Indexed: 01/08/2023] Open
Abstract
Purpose. Pterygium is a serious eye problem in countries with high exposure to UV. However, despite numerous studies, the molecular etiology of pterygium is unclear. Recent studies have indicated that LATS1 and LATS2 genes are involved in DDR signaling pathways against continuous UV exposure. Our aim was to evaluate the LATS1 and LATS2 promoter methylation with the risk of pterygium formation. Methods. We evaluated the promoter methylation status of LATS1 and LATS2 using methylation-specific PCR technique. Also, mRNA expression of LATS1 and LATS2 was assessed in 14 cases of pterygium and 14 normal specimens by real-time PCR. Results. Promoter methylation of LATS1 and LATS2 was detected significantly between pterygium tissues and normal tissues [LATS1; OR = 4.9; 95% CI: 1.54 to 15.48, P = 0.003; LATS2; OR = 7.1; 95% CI: 1.53 to 33.19, P = 0.004]. The gene expression analysis showed a statistically significant difference between pterygium tissues and healthy controls for both LATS1 and LATS2 (P < 0.05). Conclusions. The data of this study is the first report regarding the effect of promoter methylation of the LATS1 and LATS2 in the pterygium. To confirm these data, doing further studies in various genetic populations with large sample sizes using advanced molecular techniques is proposed.
Collapse
|
49
|
Ye XY, Luo QQ, Xu YH, Tang NW, Niu XM, Li ZM, Shen SP, Lu S, Chen ZW. 17-AAG suppresses growth and invasion of lung adenocarcinoma cells via regulation of the LATS1/YAP pathway. J Cell Mol Med 2015; 19:651-63. [PMID: 25712415 PMCID: PMC4369821 DOI: 10.1111/jcmm.12469] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022] Open
Abstract
The large tumour suppressor 1 (LATS1) signalling network has been proved to be an essential regulator within the cell, participating in multiple cellular phenotypes. However, it is unclear concerning the clinical significance of LATS1 and the regulatory mechanisms of 17-Allylamino-17- demethoxygeldanamycin (17-AAG) in lung adenocarcinoma (LAC). The aim of the present study was to investigate the correlation of LATS1 and yes-associated protein (YAP) expression with clinicopathological characteristics in LAC patients, and the effects of 17-AAG on biological behaviours of LAC cells. Subcutaneous LAC tumour models were further established to observe the tumour growth in nude mice. The results showed that the positive expression of LATS1 was significantly lowered (26.7% versus 68.0%, P < 0.001), while that of YAP was elevated (76.0% versus 56.0%, P + 0.03) in LAC tissues compared to the adjacent non-cancerous tissues; LAST1 expression was negatively correlated with YAP expression (r + 0.432, P < 0.001) and lymphatic invasion of the tumour (P + 0.015). In addition, 17-AAG inhibited proliferation and invasion, and induced cell apoptosis and cycle arrest in LAC cells together with increased expression of E-cadherin and p-LATS1, and decreased expression of YAP and connective tissue growth factor. Tumour volumes and weight were much smaller in 17-AAG-treated groups than those in untreated group (P < 0.01). Taken together, our findings indicate that decreased expression of LATS1 is associated with lymphatic invasion of LAC, and 17-AAG suppresses growth and invasion of LAC cells via regulation of the LATS1/YAP pathway in vitro and in vivo, suggesting that we may provide a promising therapeutic strategy for the treatment of human LAC.
Collapse
Affiliation(s)
- Xiang-Yun Ye
- Department of Shanghai Lung Tumor Clinical Medical Centre, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mateus R, Lourenço R, Fang Y, Brito G, Farinho A, Valério F, Jacinto A. Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration. Development 2015. [PMID: 26209644 DOI: 10.1242/dev.119701] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Caudal fin regeneration is characterized by a proliferation boost in the mesenchymal blastema that is controlled precisely in time and space. This allows a gradual and robust restoration of original fin size. However, how this is established and regulated is not well understood. Here, we report that Yap, the Hippo pathway effector, is a chief player in this process: functionally manipulating Yap during regeneration dramatically affects cell proliferation and expression of key signaling pathways, impacting regenerative growth. The intracellular location of Yap is tightly associated with different cell densities along the blastema proximal-distal axis, which correlate with alterations in cell morphology, cytoskeleton and cell-cell contacts in a gradient-like manner. Importantly, Yap inactivation occurs in high cell density areas, conditional to F-actin distribution and polymerization. We propose that Yap is essential for fin regeneration and that its function is dependent on mechanical tension, conferred by a balancing act of cell density and cytoskeleton activity.
Collapse
Affiliation(s)
- Rita Mateus
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Yi Fang
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Gonçalo Brito
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Ana Farinho
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Fábio Valério
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal
| | - Antonio Jacinto
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal Instituto Gulbenkian Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| |
Collapse
|