1
|
Moritsubo M, Furuta T, Negoto T, Nakamura H, Uchiyama Y, Morioka M, Oshima K, Sugita Y. A case of a pilocytic astrocytoma with histological features of anaplasia and unprecedent genetic alterations. Neuropathology 2024; 44:161-166. [PMID: 37779355 DOI: 10.1111/neup.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
We report a case of pediatric glioma with uncommon imaging, morphological, and genetic features. A one-year-old boy incidentally presented with a tumor in the fourth ventricle. The tumor was completely resected surgically and investigated pathologically. The mostly circumscribed tumor had piloid features but primitive and anaplastic histology, such as increasing cellularity and mitosis. The Ki-67 staining index was 25% at the hotspot. KIAA1549::BRAF fusion and KIAA1549 partial deletions were detected by direct PCR, supported by Sanger sequencing. To the best of our knowledge, this is the first report of a glioma with both deletion of KIAA1549 p.P1771_P1899 and fusion of KIAA1549::BRAF. The tumor could not be classified using DNA methylome analysis. The present tumor fell into the category of pilocytic astrocytoma with histological features of anaplasia (aPA). Further studies are needed to establish pediatric aPA.
Collapse
Affiliation(s)
- Mayuko Moritsubo
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Tetsuya Negoto
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan
| | - Hideo Nakamura
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan
| | - Yusuke Uchiyama
- Department of Radiology, Kurume University School of Medicine, Kurume, Japan
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan
| | - Koichi Oshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yasuo Sugita
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
- Department of Neuropathology, St. Mary's Hospital, Kurume, Japan
| |
Collapse
|
2
|
Zhang Y, Li G. A tumor suppressor DLC1: The functions and signal pathways. J Cell Physiol 2019; 235:4999-5007. [DOI: 10.1002/jcp.29402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Zhang
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life SciencesShandong Normal UniversityJinan China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life SciencesShandong Normal UniversityJinan China
| |
Collapse
|
3
|
Du N, Bao W, Zhang K, Lu X, Crew R, Wang X, Liu G, Wang F. Cytogenetic characterization of the malignant primitive neuroectodermal SK-PN-DW tumor cell line. BMC Cancer 2019; 19:412. [PMID: 31046733 PMCID: PMC6498632 DOI: 10.1186/s12885-019-5625-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 04/18/2019] [Indexed: 11/10/2022] Open
Abstract
Background The SK-PN-DW cell line was established in 1979 and is commercially available. Despite the use of this cell line as an in vitro model for functional and therapeutic studies of malignant primitive neuroectodermal tumor (PNET), there is a lack of complete information about the genetic alterations that are present at the cytogenetic level. Thus, the current study aimed to characterize the cytogenetic profile of this cell line. Methods Routine G-banded chromosome analysis, fluorescence in situ hybridization, and oligonucleotide array comparative genomic hybridization assays were performed to characterize the chromosomal changes in this cell line. Results The G-banded karyotype analysis showed that the number of chromosomes in this cell line ranged between 36 and 41. Importantly, all cells displayed a loss of chromosomes Y, 11, 13, and 18. However, some cells showed an additional loss of chromosome 10. Additionally, the observed structural changes indicated: a) unbalanced translocation between chromosomes 1 and 7; b) translocation between chromosomes 11 and 22 at breakpoints 11q24 and 22q12, which is a classical translocation that is associated with Ewing sarcoma; c) a derivative chromosome due to a whole arm translocation between chromosomes 16 and 17 at likely breakpoints 16p10 and 17q10; and d) possible rearrangement in the short arm of chromosome 18. Moreover, a variable number of double minutes were also observed in each metaphase cell. Furthermore, the microarray assay results not only demonstrated genomic-wide chromosomal imbalance in this cell line and precisely placed chromosomal breakpoints on unbalanced, rearranged chromosomes, but also revealed information about subtle chromosomal changes and the chromosomal origin of double minutes. Finally, the fluorescence in situ hybridization assay confirmed the findings of the routine cytogenetic analysis and microarrays. Conclusion The accurate determination of the cytogenetic profile of the SK-PN-DW cell line is helpful in enabling the research community to utilize this cell line for future identity and comparability studies, in addition to demonstrating the utility of the complete cytogenetic profile, as a public resource.
Collapse
Affiliation(s)
- Na Du
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Wanguo Bao
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China
| | - Kaiyu Zhang
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China
| | - Xianglan Lu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rebecca Crew
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xianfu Wang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Guangming Liu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Department of Gastroenterology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Feng Wang
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
4
|
Kawamata N, Moreilhon C, Saitoh T, Karasawa M, Bernstein BK, Sato-Otsubo A, Ogawa S, Raynaud S, Koeffler HP. Genetic differences between Asian and Caucasian chronic lymphocytic leukemia. Int J Oncol 2013; 43:561-5. [PMID: 23708256 PMCID: PMC3775563 DOI: 10.3892/ijo.2013.1966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/22/2013] [Indexed: 01/14/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a common hematological malignancy in Western countries. However, this disease is very rare in Asian countries. It is not clear whether the mechanisms of development of CLL in Caucasians and Asians are the same. We compared genetic abnormalities in Asian and Caucasian CLL using 250k GeneChip arrays. Both Asian and Caucasian CLL had four common genetic abnormalities: deletion of 13q14.3, trisomy 12, abnormalities of ATM (11q) and abnormalities of 17p. Interestingly, trisomy 12 and deletion of 13q14.3 were mutually exclusive in both groups. We also found that deletions of miR 34b/34c (11q), caspase 1/4/5 (11q), Rb1 (13q) and DLC1 (8p) are common in both ethnic groups. Asian CLL more frequently had gain of 3q and 18q. These suggest that classic genomic changes in the Asian and Caucasina CLL are same. Further, we found amplification of IRF4 and deletion of the SP140/SP100 genes; these genes have been reported as CLL-associated genes by previous genome-wide-association study. We have found classic genomic abnormalities in Asian CLL as well as novel genomic alteration in CLL.
Collapse
Affiliation(s)
- Norihiko Kawamata
- Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R. Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol 2008; 10:1040-60. [PMID: 18676356 DOI: 10.1215/15228517-2008-059] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Survival rates of pediatric brain tumor patients have significantly improved over the years due to developments in diagnostic techniques, neurosurgery, chemotherapy, radiotherapy, and supportive care. However, brain tumors are still an important cause of cancer-related deaths in children. Prognosis is still highly dependent on clinical characteristics, such as the age of the patient, tumor type, stage, and localization, but increased knowledge about the genetic and biological features of these tumors is being obtained and might be useful to further improve outcome for these patients. It has become clear that the deregulation of signaling pathways essential in brain development, for example, sonic hedgehog (SHH), Wnt, and Notch pathways, plays an important role in pathogenesis and biological behavior, especially for medulloblastomas. More recently, data have become available about the cells of origin of brain tumors and the possible existence of brain tumor stem cells. Newly developed array-based techniques for studying gene expression, protein expression, copy number aberrations, and epigenetic events have led to the identification of other potentially important biological abnormalities in pediatric medulloblastomas and ependymomas.
Collapse
Affiliation(s)
- Judith M de Bont
- Department of Pediatric Oncology and Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Lo KC, Rossi MR, Eberhart CG, Cowell JK. Genome wide copy number abnormalities in pediatric medulloblastomas as assessed by array comparative genome hybridization. Brain Pathol 2007; 17:282-96. [PMID: 17465989 PMCID: PMC8095649 DOI: 10.1111/j.1750-3639.2007.00072.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Array-based comparative genomic hybridization was used to characterize 22 medulloblastomas in order to precisely define genetic alterations in these malignant childhood brain tumors. The 17p(-)/17q(+) copy number abnormality (CNA), consistent with the formation of isochromosome 17q, was the most common event (8/22). Amplifications in this series included MYCL, MYCN and MYC previously implicated in medulloblastoma pathogenesis, as well as novel amplicons on chromosomes 2, 4, 11 and 12. Losses involving chromosomes 1, 2, 8, 10, 11, 16 and 19 and gains of chromosomes 4, 7, 8, 9 and 18 were seen in greater than 20% of tumors in this series. A homozygous deletion in 11p15 defines the minimal region of loss on this chromosome arm. In order to map the minimal regions involved in losses, gains and amplifications, we combined aCGH data from this series with that of two others obtained using the same RPCI BAC arrays. As a result of this combined analysis of 72 samples, we have defined specific regions on chromosomes 1, 8p, 10q, 11p and 16q which are frequently involved in CNAs in medulloblastomas. Using high density oligonucleotide expression arrays, candidate genes were identified within these consistently involved regions in a subset of the tumors.
Collapse
Affiliation(s)
- Ken C. Lo
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, N.Y
| | - Michael R. Rossi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, N.Y
| | | | - John K. Cowell
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, N.Y
| |
Collapse
|
7
|
McCabe MG, Ichimura K, Liu L, Plant K, Bäcklund LM, Pearson DM, Collins VP. High-resolution array-based comparative genomic hybridization of medulloblastomas and supratentorial primitive neuroectodermal tumors. J Neuropathol Exp Neurol 2006; 65:549-61. [PMID: 16783165 PMCID: PMC2816352 DOI: 10.1097/00005072-200606000-00003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Medulloblastomas and supratentorial primitive neuroectodermal tumors are aggressive childhood tumors. We report our findings using array comparative genomic hybridization (CGH) on a whole-genome BAC/PAC/cosmid array with a median clone separation of 0.97 Mb to study 34 medulloblastomas and 7 supratentorial primitive neuroectodermal tumors. Array CGH allowed identification and mapping of numerous novel, small regions of copy number change to genomic sequence in addition to the large regions already known from previous studies. Novel amplifications were identified, some encompassing oncogenes MYCL1, PDGFRA, KIT, and MYB not previously reported to show amplification in these tumors. In addition, one supratentorial primitive neuroectodermal tumor had lost both copies of the tumor-suppressor genes CDKN2A and CDKN2B. Ten medulloblastomas had findings suggestive of isochromosome 17q. In contrast to previous reports using conventional CGH, array CGH identified 3 distinct breakpoints in these cases: Ch 17: 17940393-19251679 (17p11.2, n = 6), Ch 17: 20111990-23308272 (17p11.2-17q11.2, n = 4), and Ch 17: 38425359-39091575 (17q21.31, n = 1). Significant differences were found in the patterns of copy number change between medulloblastomas and supratentorial primitive neuroectodermal tumors, providing further evidence that these tumors are genetically distinct despite their morphologic and behavioral similarities.
Collapse
Affiliation(s)
- Martin Gerard McCabe
- Department of Pathology, University of Cambridge, Division of Molecular Histopathology, UK.
| | | | | | | | | | | | | |
Collapse
|
8
|
Rossi MR, Conroy J, McQuaid D, Nowak NJ, Rutka JT, Cowell JK. Array CGH analysis of pediatric medulloblastomas. Genes Chromosomes Cancer 2006; 45:290-303. [PMID: 16320246 DOI: 10.1002/gcc.20292] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Brain tumors are the second most common childhood cancer. We used high-resolution array comparative genomic hybridization (aCGH) to analyze losses and gains of genetic material from 24 medulloblastomas. The bacterial artificial chromosome clones were ordered on the array, allowing for an average resolution of approximately 420 kilobases. The advantage of this high resolution is that the breakpoints associated with subregional chromosome copy number aberrations can be accurately defined, which in turn allows candidate genes within these regions to be readily defined. In this analysis, we confirmed the frequent involvement of loss of 17p and gain of 17q, although we have now established the position of the breakpoint that consistently lies in the chr17:18318880-19046234 region of the chromosome. Other frequent losses were seen on 8p, 10q, 16q, and 20p, and frequent gains were seen on 2p, 4p, 7, and 19. In addition, the fine-resolution mapping provided by aCGH made it possible to define small chromosome deletions in 1q23.3-q24.2, 2q13.12-q13.2, 6q25-qter, 8p23.1, 10q25.1, and 12q13.12-q13.2. Overall, amplification events were rare, the most common involving MYC (16%), on 8q, although isolated events were seen in 10p11 and 3q.
Collapse
Affiliation(s)
- Michael R Rossi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
9
|
Song YF, Xu R, Zhang XH, Chen BB, Chen Q, Chen YM, Xie Y. High-frequency promoter hypermethylation of the deleted in liver cancer-1 gene in multiple myeloma. J Clin Pathol 2006; 59:947-51. [PMID: 16489177 PMCID: PMC1860476 DOI: 10.1136/jcp.2005.031377] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Deleted in liver cancer-1 (DLC-1) is a tumour suppressor gene that is inactive in liver carcinogenesis. It encodes a rho-guanosine triphosphatase-activating protein (rho-GAP) and maps to one of the deleted regions (8p21.3-22). Little is known, however, about the methylation status of the DLC-1 promoter in myeloma cells. AIM To identify whether methylation of DLC-1 was associated in pathogenesis of multiple myeloma. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect DLC-1 transcripts in RPMI 8226, U266, OPM-2 and XG-2 cell lines. The methylation status was determined by methylation-specific PCR followed by bisulphite DNA sequencing in these four cell lines and in the bone marrow of 14 patients with multiple myeloma and 4 normal patients. DLC-1 mRNA expression in cells with or without treatment with 5-aza-deoxycytidine (5-aza-CdR) or trichostatin A (TSA) was investigated by real-time RT-PCR. RESULTS RPMI 8226 and U266 showed complete methylation and XG-2 showed partial methylation. DLC-1 was expressed only in OPM-2 cell lines that showed no methylation. DLC-1 methylation was shown in 11 of 14 (78%) patients with multiple myeloma and none of the normal controls. The exposure of cell lines to 5-aza-CdR or TSA resulted in the up regulation of DLC-1 gene expression. CONCLUSIONS DLC-1 methylation is often present in multiple myeloma and has a key role in DLC-1 silencing.
Collapse
Affiliation(s)
- Y-F Song
- Department of Hematology, Hua Shan Hospital, Fu Dan University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Hui ABY, Takano H, Lo KW, Kuo WL, Lam CNY, Tong CYK, Chang Q, Gray JW, Ng HK. Identification of a novel homozygous deletion region at 6q23.1 in medulloblastomas using high-resolution array comparative genomic hybridization analysis. Clin Cancer Res 2005; 11:4707-16. [PMID: 16000565 DOI: 10.1158/1078-0432.ccr-05-0128] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study is to comprehensively characterize genome copy number aberrations in medulloblastomas using high-resolution array comparative genomic hybridization. EXPERIMENTAL DESIGN High-density genomic arrays containing 1,803 BAC clones were used to define recurrent chromosomal regions of gains or losses throughout the whole genome of medulloblastoma. A series of 3 medulloblastoma cell lines and 16 primary tumors were investigated. RESULTS The detected consistent chromosomal aberrations included gains of 1q21.3-q23.1 (36.8%), 1q32.1 (47.4%), 2p23.1-p25.3 (52.6%), 7 (57.9%), 9q34.13-q34.3 (47.4%), 17p11.2-q25.3 (89.5%), and 20q13.31-q13.33 (42.1%), as well as losses of 3q26.1 (57.9%), 4q31.23-q32.3 (42.1%), 6q23.1-25.3 (57.9%), 8p22-23.3 (79%), 10q24.32-26.2 (57.9%), and 16q23.2-q24.3 (63.2%). One of the most notable aberrations was a homozygous deletion on chromosome 6q23 in the cell line DAOY, and single copy loss on 30.3% primary tumors. Further analyses defined a 0.887 Mbp minimal region of homozygous deletion at 6q23.1 flanked by markers SHGC-14149 (6q22.33) and SHGC-110551 (6q23.1). Quantitative reverse transcription-PCR analysis showed complete loss of expression of two genes located at 6q23.1, AK091351 (hypothetical protein FLJ34032) and KIAA1913, in the cell line DAOY. mRNA levels of these genes was reduced in cell lines D283 and D384, and in 50% and 70% of primary tumors, respectively. CONCLUSION Current array comparative genomic hybridization analysis generates a comprehensive pattern of chromosomal aberrations in medulloblastomas. This information will lead to a better understanding of medulloblastoma tumorigenesis. The delineated regions of gains or losses will indicate locations of medulloblastoma-associated genes. A 0.887 Mbp homozygous deletion region was newly identified at 6q23.1. Frequent detection of reduced expression of AK091351 and KIAA1913 genes implicates them as suppressors of medulloblastoma tumorigenesis.
Collapse
Affiliation(s)
- Angela B Y Hui
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong SAR, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pang JCS, Chang Q, Chung YF, Teo JGC, Poon WS, Zhou LF, Kong X, Ng HK. Epigenetic inactivation of DLC-1 in supratentorial primitive neuroectodermal tumor. Hum Pathol 2005; 36:36-43. [PMID: 15712180 DOI: 10.1016/j.humpath.2004.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supratentorial primitive neuroectodermal tumors (SPNETs) and medulloblastomas (MBs) are histologically similar intracranial tumors found in different anatomic locations of the brain. Our group has previously demonstrated that loss of chromosome 8p is a frequent event in MBs. The aim of this study was to evaluate whether DLC-1, a newly identified tumor-suppressor gene on chromosome 8p22, is involved in the tumorigenesis of MBs and the histologically similar SPNETs. We first assessed for alterations of gene expression in microdissected tumors and detected lack of DLC-1 transcript in 1 of 9 MBs (case M44) and 1 of 3 SPNETs (case M1). Neither somatic base substitutions nor homozygous deletion were found in tumors without DLC-1 transcript. We then explored the possibility of hypermethylation of the CpG island in DLC-1 as the mechanism of suppressed expression. Methylation-specific polymerase chain reaction revealed promotor hypermethylation of DLC-1 in M1 but not in M44. Bisulfite sequencing further verified a densely methylated pattern of 35 CpG sites studied in M1 that were not found in normal brain, indicating that inactivation of DLC-1 by hypermethylation is involved in SPNET. Based on this finding, we examined an additional 20 MBs, 8 SPNETs, and 4 MB and 2 SPNET cell lines for hypermethylation of the CpG island of DLC-1, finding that none of these samples exhibited DLC-1 methylation. In conclusion, our results demonstrate that transcriptional silencing of DLC-1 through promoter hypermethylation may contribute to tumorigenesis in a subset of SPNETs, and that loss of DLC-1 expression in MBs may be related to mechanisms other than promoter hypermethylation, genomic deletion, and mutation.
Collapse
Affiliation(s)
- Jesse Chung-Sean Pang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bhattacharya N, Singh RK, Mondal S, Roy A, Mondal R, Roychowdhury S, Panda CK. Analysis of molecular alterations in chromosome 8 associated with the development of uterine cervical carcinoma of Indian patients. Gynecol Oncol 2004; 95:352-62. [PMID: 15491757 DOI: 10.1016/j.ygyno.2004.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We have been done the detailed deletion mapping of chromosome (chr.) 8p21.3-23 to localize the candidate tumor suppressor gene(s) (TSGs) loci as well as studied the mechanism of activation of c-myc gene, located at chr.8q24.1, by analyzing the amplification/rearrangement/HPV integration within approximately 580 kb of c-myc locus in uterine cervical carcinoma (CaCx) of Indian patients. The association between the deletions in chr.8p21.3-23 and alterations in the c-myc locus has also been analyzed. METHODS The deletion mapping of chr.8p21.3-23 was done by 15 microsatellite markers and the alterations in the c-myc locus were analyzed by Southern hybridization using the pal-1/c-myc/mlvi-4/HPV 16/18 probes in seven cervical intraepithelial neoplasia (CIN) and 55 primary uterine cervical carcinoma. The alterations in chr.8p/q have been correlated with the different clinicopathological parameters. RESULTS Three discrete minimal deleted regions with high frequencies of loss of heterozygosity (LOH) (37-43%) were identified in the chr.8p23.1-23.2 (D1), 8p23.1 (D2), and 8p 21.3-22 (D3) regions within 0.41-4.62 Mb. The deletion in the D1 region was significantly associated with the deletion in the D2 region (P = 0.03), whereas the deletion in D2 was marginally associated with the deletion in the D3 region (P = 0.07). The alterations in the c-myc locus were seen in 43% of the samples. About 35% of the samples showed coalterations in both arms of chr.8. No significant association was observed with the alterations in chr.8p/q as well as with the different clinicopathological parameters. CONCLUSIONS The deletions in chr.8p21.3-23 and the alterations in the c-myc locus are independently associated with the development of CaCx. The D1-D3 regions in chr.8p21.3-23 could harbor candidate TSGs associated with the development of this tumor. The c-myc gene was activated by amplification/rearrangement at the pal-1/c-myc/mlvi-4 loci as well as HPV integration in the pal-1 locus in this tumor.
Collapse
Affiliation(s)
- N Bhattacharya
- Chittaranjan National Cancer Institute, Kolkata-700 026, India
| | | | | | | | | | | | | |
Collapse
|
13
|
Flanagan JM, Healey S, Young J, Whitehall V, Trott DA, Newbold RF, Chenevix-Trench G. Mapping of a candidate colorectal cancer tumor-suppressor gene to a 900-kilobase region on the short arm of chromosome 8. Genes Chromosomes Cancer 2004; 40:247-60. [PMID: 15139003 DOI: 10.1002/gcc.20039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Loss of heterozygosity (LOH) on 8p occurs at high frequencies in many tumor types, including colorectal carcinoma (CRC). We previously used microcell-mediated chromosome transfer (MMCT) into the CRC cell line SW620 to map a approximately 7.7-Mb colorectal cancer-suppressor region (CRCSR) at 8p22-23.1. In the current study, we transferred small fragments of this CRCSR into SW620 to refine the region further. Two microcell hybrids containing a 321- to 898-kb region around the D8S552 marker at 8p23.1 showed suppression of soft agar clonicity and tumorigenicity in athymic mice when compared to control cell lines. These data suggest that the putative colorectal tumor-suppressor gene is within this small region. We analyzed two candidate genes within this region: FLJ23749 and KIAA1456. Expression of both genes was detected in normal colonic crypt cells and in mucosa. Quantitative reverse transcriptase polymerase chain reaction showed downregulation of KIAA1456 in 9 of 12 primary colorectal tumors compared to matching normal mucosa, but normal or increased expression of FLJ23749. FLJ23749 was expressed in all CRC cell lines tested; however, KIAA1456 was downregulated in three cell lines, including SW620, and was restored in the suppressed microcell hybrids. 5'aza-2'Deoxycytidine treatment of the downregulated cell lines restored expression of KIAA1456, but bisulfite genomic sequencing did not show a correlation between promoter methylation and expression. Forty percent of the primary tumors showed LOH at this CRCSR locus, and mutation analysis revealed somatic mutations in 1 of 88 primary colorectal tumors for both KIAA1456 and FLJ23749. Despite the rarity of somatic mutations, the expression data suggest that KIAA1456 is still a candidate for the putative 8p colorectal cancer tumor-suppressor gene.
Collapse
Affiliation(s)
- James M Flanagan
- The Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Bhattacharya N, Chunder N, Basu D, Roy A, Mandal S, Majumder J, Roychowdhury S, Panda CK. Three discrete areas within the chromosomal 8p21.3-23 region are associated with the development of breast carcinoma of Indian patients. Exp Mol Pathol 2004; 76:264-71. [PMID: 15126110 DOI: 10.1016/j.yexmp.2004.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 12/19/2022]
Abstract
Deletion in the 22.9 -Mb chromosomal (chr.) 8p21.3-23 region has been shown to be necessary for the development of breast carcinoma (CaBr). In this study, we have attempted to detect the minimal deleted region(s) in the chr.8p21.3-23 region in 62 primary breast lesions having 56 CaBr tumors and six other breast lesions of Indian patients using 15 microsatellite markers. The loss of heterozygosity (LOH) was observed for at least one marker in 96.4% (54/56) of the CaBr samples. Three discrete minimal deleted regions with high frequencies of LOH (39-65%) were identified in the chromosomal 8p23.1-23.2 (D1), 8p23.1 (D2) and 8p 21.3-22 (D3) regions within 2.03, 0.41, 2.47 Mb, respectively. No significant correlation was observed with the high deleted regions and the different clinicopathological parameters. Interestingly, 51.8% (29/56) CaBr samples showed either loss of chr.8p or interstitial deletions in this arm, indicating the importance of chr.8p in the development of CaBr. The pattern of allelic loss in the bilateral lesions had indicated that the lesions were clonal in origin and probably the deletion in the D3 region was the early event among the D1-D3 regions. Thus, our data have indicated that the D1-D3 regions could harbor candidate tumor suppressor gene(s) (TSGs) associated with the development of CaBr.
Collapse
Affiliation(s)
- N Bhattacharya
- Chittaranjan National Cancer Institute, Kolkata-700 026, India
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rickert CH, Paulus W. Comparative Genomic Hybridization in Central and Peripheral Nervous System Tumors of Childhood and Adolescence. J Neuropathol Exp Neurol 2004; 63:399-417. [PMID: 15198120 DOI: 10.1093/jnen/63.5.399] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brain tumors amount to less than 2% of all malignant neoplasms. However, they account for approximately 20% of all childhood cancers and are the leading cause of cancer mortality among children. Recently, enormous progress has been achieved in the field of pediatric neuro-oncology regarding the classification of children's brain tumors, as well as the understanding of the genetic events involved in their pathogenesis; thus leading to an emerging role of molecular diagnostic approaches using novel tools. Comparative genomic hybridization (CGH) is a technique that has revolutionized cytogenetic knowledge in the past decade. It permits the detection of chromosomal copy number changes without the need for cell culturing and gives a global overview of chromosomal gains and losses throughout the whole genome of a tumor. A survey of CGH-related publications on central and peripheral nervous system tumors in the pediatric and adolescent population revealed 884 cases. The CNS tumor groups most frequently examined by CGH were embryonal tumors (268 cases/30.3%) and ependymomas (241/27.2%), followed by astrocytic (163/18.4%), peripheral nerve (73/8.2%), choroid plexus tumors (56/6.3%), and craniopharyngiomas (38/4.3%). The most common CNS tumor entities were medulloblastomas (238/26.9%), classic ependymomas (160/18.1%), anaplastic ependymomas (70/7.9%), pleomorphic xanthoastrocytomas (53/6.0%), and pilocytic astrocytomas (50/5.6%). This article provides a short review of the CGH technique and its pitfalls, summarizes the current CGH-related data on pediatric brain tumors and muses on the future of CGH.
Collapse
|
16
|
Chang Q, Pang JCS, Li J, Hu L, Kong X, Ng HK. Molecular analysis of PinX1 in medulloblastomas. Int J Cancer 2004; 109:309-14. [PMID: 14750185 DOI: 10.1002/ijc.11689] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our group has previously demonstrated a high frequency of allelic loss on the short arm of chromosome 8 and identified a region of homozygous deletion of 1.41 Mb, flanked by D8S520 and D8S1130, on 8p23.1 in medulloblastomas, suggesting the presence of a tumor suppressor gene in this critical deletion region. The aim of our study was to investigate whether PinX1, a newly identified gene whose product is a potent inhibitor of telomerase, is the target gene in the homozygous deletion region identified in medulloblastomas. We assessed for alterations in gene sequence and transcript expression of PinX1, as well as the correlation between PinX1 expression and telomerase activity in a series of 52 medulloblastomas, 3 medulloblastoma cell lines (D283, D341 and Daoy) and 4 primitive neuroectodermal tumors (PNETs). Direct sequence analysis of all 7 exons and splice junctions of the PinX1 gene revealed no somatic mutations but 11 genetic polymorphisms. Transcript expression of PinX1, as evaluated by reverse transcription-polymerase chain reaction, in microdissected tumors and normal cerebellum showed 2 transcript variants, corresponding to the full-length form and an alternative spliced variant lacking exon 6, in all samples. This result indicated that PinX1 expression was not suppressed in medulloblastomas. Using the telomeric repeat amplification protocol (TRAP) assay, 13 of 19 (68%) medulloblastomas, 1 of 2 PNETs and all 3 cell lines showed telomerase activity. There is no significant correlation between PinX1 transcript expression and telomerase activity, but our results showed that telomerase activation is involved in medulloblastomas. Taken together, our results suggest that PinX1 does not play a major role in the oncogenesis of medulloblastomas.
Collapse
Affiliation(s)
- Qing Chang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
17
|
Plaumann M, Seitz S, Frege R, Estevez-Schwarz L, Scherneck S. Analysis of DLC-1 expression in human breast cancer. J Cancer Res Clin Oncol 2003; 129:349-54. [PMID: 12759748 DOI: 10.1007/s00432-003-0440-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Accepted: 03/19/2003] [Indexed: 11/29/2022]
Abstract
The chromosome region 8p12-p22 shows frequent allelic loss in many neoplasms, including breast cancer (BC). The DLC-1 gene, located on 8p21-p22, might be a candidate tumor suppressor gene in this region. To evaluate the involvement of DLC-1 in breast carcinogenesis we studied DLC-1 mRNA expression in a panel of 14 primary human BC and the corresponding normal breast cells as well as 8 BC cell lines. Low levels or absence of DLC-1 mRNA were observed in 57% of primary BC and 62.5% of BC cell lines, respectively. We could not find any correlation between DLC-1 mRNA expression and deletions at the DLC-1 locus. Transfection of the gene into DLC-1 deficient T-47D cells raised the DLC-1 mRNA level and resulted in inhibition of cell growth and reduced colony-forming capacity. Our results indicate a role of DLC-1 in BC carcinogenesis.
Collapse
Affiliation(s)
- Marlies Plaumann
- Department of Tumor Genetics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin-Buch, Germany.
| | | | | | | | | |
Collapse
|
18
|
Wharton SB, Wardle C, Ironside JW, Wallace WH, Royds JA, Hammond DW. Comparative genomic hybridization and pathological findings in atypical teratoid/rhabdoid tumour of the central nervous system. Neuropathol Appl Neurobiol 2003; 29:254-61. [PMID: 12787322 DOI: 10.1046/j.1365-2990.2003.00451.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The atypical teratoid/rhabdoid tumour (AT/RT) is an uncommon tumour of the central nervous system in children, characterized by the presence of a rhabdoid cell component associated with variable combinations of primitive neuroectodermal tumour, mesenchymal and epithelial differentiation. Immunohistochemistry reveals a complex pattern of antigen expression and cytogenetic studies have demonstrated losses from chromosome 22. We have performed comparative genomic hybridization (CGH) on paraffin-embedded material from three cases of AT/RT. Two cases showed losses from chromosome 22 associated with other chromosome imbalances including losses from 1p in both cases. The third case demonstrated a loss from 8p as the sole abnormality. While monosomy or deletion from chromosome 22 is a useful diagnostic marker for AT/RT, it is not present in all cases. The variation in cytogenetic patterns reported for this tumour type raises the possibility that different genetic pathways may underlie this tumour phenotype and warrants the further definition of the cytogenetic spectrum for this rare tumour.
Collapse
Affiliation(s)
- S B Wharton
- Academic Unit of Pathology, University of Sheffield, Medical School, Sheffield, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Yuan BZ, Durkin ME, Popescu NC. Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers. CANCER GENETICS AND CYTOGENETICS 2003; 140:113-7. [PMID: 12645648 DOI: 10.1016/s0165-4608(02)00674-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aberrant methylation of CpG islands within the promoter regions of tumor suppressor or cancer-related genes is a common mechanism leading to the silencing of gene expression. To determine whether aberrant methylation is a contributing factor to transcriptional inactivation of DLC-1 (deleted in liver cancer-1), a candidate tumor suppressor gene, we examined its methylation status in twelve hepatocellular carcinoma. breast, colon, and prostate tumor cell lines with low or undetectable expression of DLC-1. By Southern blot analysis of DNA digested with the methylation sensitive enzyme HpaII, we found a different degree of promoter hypermethylation in all cell lines with aberrant DLC-1 expression. The hypermethylation status was reversed by the addition of 5-aza-2'-deoxycytidine, a demethylating agent, in one human hepatocellular carcinoma line. These observations suggest that hypermethylation is responsible for abrogating the function of the DLC-1 gene in a subset of liver, breast, colon, and prostate cancers.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Base Sequence
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Colonic Neoplasms/genetics
- Colonic Neoplasms/pathology
- CpG Islands
- DNA Methylation/drug effects
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- Decitabine
- Female
- GTPase-Activating Proteins
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Tumor Suppressor
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Molecular Sequence Data
- Neoplasm Proteins/deficiency
- Neoplasm Proteins/genetics
- Neoplasms/genetics
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Tumor Cells, Cultured/chemistry
- Tumor Cells, Cultured/pathology
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Bao-Zhu Yuan
- Health Effects Laboratory Division, Toxicology and Molecular Biology Branch, National Institute for Occupational Safely and Health, Morgantown, WV 26505, USA
| | | | | |
Collapse
|
20
|
Arnold JM, Woollatt E, Chenevix-Trench G. Chromosome 8 genetic analysis and phenotypic characterization of 21 ovarian cancer cell lines. CANCER GENETICS AND CYTOGENETICS 2002; 139:109-14. [PMID: 12550770 DOI: 10.1016/s0165-4608(02)00617-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The short arm of chromosome 8 undergoes frequent loss of heterozygosity (LOH) in ovarian adenocarcinomas. Fine mapping has identified several distinct critical regions within 8p which undergo rates of LOH of 50% or greater, suggesting that there may be more than one tumor suppressor gene located on this chromosome arm. In an effort to refine the location of these putative tumor suppressor genes by homozygosity-mapping-of-deletion analysis, we have analyzed 21 ovarian cancer cell lines with 19 polymorphic microsatellite markers from 8p. Eleven of the cell lines (55%) were homozygous at every marker, indicating loss of an entire 8p arm. No smaller extended regions of hemizygosity were identified. Refinement of these 8p target regions was therefore not possible, but this analysis did identify the ovarian cancer cell lines that would be most appropriate for microcell-mediated chromosome transfer to complement the hypothesized mutation in the target tumor suppressor gene(s) on 8p. The 11 cell lines that had undergone 8p LOH were therefore characterized for colony formation in soft agar and tumor formation in nude mice. We identified four cell lines (JAM, OVCA4, OVCA5, and OVCA8) that were hemizygous for 8p and that formed colonies in soft agar and tumors in nude mice, making them ideal cell lines for chromosome 8 or candidate gene transfer.
Collapse
Affiliation(s)
- Jeremy M Arnold
- The Queensland Institute of Medical Research, Queensland 4029, Hernston, Australia.
| | | | | |
Collapse
|