1
|
Iser IC, Bertoni APS, Beckenkamp LR, Consolaro MEL, Maria-Engler SS, Wink MR. Adenosinergic Signalling in Cervical Cancer Microenvironment. Expert Rev Mol Med 2025; 27:e5. [PMID: 39762204 PMCID: PMC11707834 DOI: 10.1017/erm.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 01/11/2025]
Abstract
Despite the emergence of the first human papillomavirus vaccine, the incidence of cervical cancer is still responsible for more than 350,000 deaths yearly. Over the past decade, ecto-5'-nucleotidase (CD73/5'-NT) and extracellular adenosine (ADO) signalling has been the subject of many investigations to target cancer progression. In general, the adenosinergic axis has been linked to tumourigenic effects. However, CD73 can play contradictory effects, probably dependent on the tumour type, tumour microenvironment and tumour stage, thus being in some circumstances, inversely related to tumour progression. We herein reviewed the pathophysiological function of CD73 in cervical cancer and performed in silico analysis of the main components of the adenosinergic signalling in human tissues of cervical cancer compared to non-tumour cervix tissue. Our data showed that the NT5E gene, that encoded CD73, is hypermethylated, leading to a decreased CD73 expression in cervical cancer cells compared to normal cells. Consequently, the high availability of ADO cytoplasmatic/extracellular leads to its conversion to AMP by ADK, culminating in global hypermethylation. Therefore, epigenetic modulation may reveal a new role for CD73 in cervical cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Paula Santin Bertoni
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Department of Clinical Analysis and Biomedicine, Division of Clinical Cytology, State University of Maringá, Maringá, PR, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Fishman P, Stemmer SM, Bareket-Samish A, Silverman MH, Kerns WD. Targeting the A3 adenosine receptor to treat hepatocellular carcinoma: anti-cancer and hepatoprotective effects. Purinergic Signal 2023; 19:513-522. [PMID: 36781824 PMCID: PMC10539266 DOI: 10.1007/s11302-023-09925-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
The A3 adenosine receptor (A3AR) is over-expressed in human hepatocellular carcinoma (HCC) cells. Namodenoson, an A3AR agonist, induces de-regulation of the Wnt and NF-kB signaling pathways resulting in apoptosis of HCC cells. In a phase I healthy volunteer study and in a phase I/II study in patients with advanced HCC, namodenoson was safe and well tolerated. Preliminary evidence of antitumor activity was observed in the phase I/II trial in a subset of patients with advanced disease, namely patients with Child-Pugh B (CPB) hepatic dysfunction, whose median overall survival (OS) on namodenoson was 8.1 months. A phase II blinded, randomized, placebo-controlled trial was subsequently conducted in patients with advanced HCC and CPB cirrhosis. The primary endpoint of OS superiority over placebo was not met. However, subgroup analysis of CPB7 patients (34 namodenoson-treated, 22 placebo-treated) showed nonsignificant differences in OS/progression-free survival and a significant difference in 12-month OS (44% vs 18%, p = 0.028). Partial response was achieved in 9% of namodenoson-treated patients vs 0% in placebo-treated patients. Based on the positive efficacy signal in HCC CPB7 patients and the favorable safety profile of namodenoson, a phase III study is underway.
Collapse
Affiliation(s)
- Pnina Fishman
- Can-Fite BioPharma Ltd., 10 Bareket St., 49170, Petah Tikva, Israel.
| | - Salomon M Stemmer
- Davidoff Cancer Center, Petah Tikva and Sackler Faculty of Medicine, Rabin Medical Center-Beilinson Hospital, Tel Aviv, Israel
| | | | | | - William D Kerns
- Can-Fite BioPharma Ltd., 10 Bareket St., 49170, Petah Tikva, Israel
| |
Collapse
|
3
|
Chen Y, Mei Y, Yang L, Li W, Zhou Y, He S, Liang J. Taxifolin improves inflammatory injury of human bronchial epithelial cells by inhibiting matrix metalloproteinase (MMP) 10 via Wnt/β-catenin pathway. Bioengineered 2022; 13:1198-1208. [PMID: 35000533 PMCID: PMC8805849 DOI: 10.1080/21655979.2021.2018384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Taxifolin (TXL), also known as dihydroquercetin, is one of the most important flavonoids prevalent across the plant kingdom. Increasing evidence has demonstrated its critical role in respiratory diseases. The present study aims to reveal the detailed mechanism in TNF-α-stimulated BEAS-2B cells by which TXL might exert effects on the development of asthma. Cell viability detection of BEAS-2B treated with TXL before and after TNF-α induction employed MMT. The expressions of inflammatory cytokines, MUC5AC and ICAM-1 were determined by quantitative reverse transcription PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA) and Western blot after TXL was exposed to an in vitro asthma model. Then, light transmittance and apoptosis were then measured employing fluorescein transmittance, TUNEL and Western blot. After overexpressing MMP10, the abovementioned assays were performed again. Finally, the association between Wnt/β-catenin pathway and MMP10 was confirmed by detecting the proteins in this pathway. TXL increases the cell viability of TNF-induced BEAS-2B cells. TXL suppressed the inflammation, mucus formation, and apoptosis in TNF-α-induced BEAS-2B cells. Furthermore, after the prediction of binding sites between TXL and MMP10, it was found that overexpression of MMP10 reversed the effects of TXL on suppressing the progression of TNF-α-induced BEAS-2B cells. Finally, TXL blocked Wnt/β-catenin pathway by inhibiting MMP10 expression. TXL can be a promising drug for the treatment of asthma due to its inhibition of MMP10 expression by blocking Wnt/β-catenin pathway. Future experimental in vivo studies of asthma on this commonly used bioactive flavonoid could open new avenues for the therapies of asthma.
Collapse
Affiliation(s)
- Youhua Chen
- Pediatrics Department Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yan Mei
- Pediatrics Department Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Lu Yang
- Pediatrics Department Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Weibin Li
- Pediatrics Department Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yu Zhou
- Pediatrics Department Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Surong He
- Pediatrics Department Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jie Liang
- Pediatrics Department Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
4
|
Bąchor U, Mączyński M. Selected β 2-, β 3- and β 2,3-Amino Acid Heterocyclic Derivatives and Their Biological Perspective. Molecules 2021; 26:438. [PMID: 33467741 PMCID: PMC7829935 DOI: 10.3390/molecules26020438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Abstract
Heterocyclic moieties, especially five and six-membered rings containing nitrogen, oxygen or sulfur atoms, are broadly distributed in nature. Among them, synthetic and natural alike are pharmacologically active compounds and have always been at the forefront of attention due to their pharmacological properties. Heterocycles can be divided into different groups based on the presence of characteristic structural motifs. The presence of β-amino acid and heterocyclic core in one compound is very interesting; additionally, it very often plays a vital role in their biological activity. Usually, such compounds are not considered to be chemicals containing a β-amino acid motif; however, considering them as this class of compounds may open new routes of their preparation and application as new drug precursors or even drugs. The possibility of their application as nonproteinogenic amino acid residues in peptide or peptide derivatives synthesis to prepare a new class of compounds is also promising. This review highlights the actual state of knowledge about β-amino acid moiety-containing heterocycles presenting antiviral, anti-inflammatory, antibacterial compounds, anaplastic lymphoma kinase (ALK) inhibitors, as well as agonist and antagonists of the receptors.
Collapse
Affiliation(s)
- Urszula Bąchor
- Department of Organic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | | |
Collapse
|
5
|
Antonioli L, Fornai M, Pellegrini C, D'Antongiovanni V, Turiello R, Morello S, Haskó G, Blandizzi C. Adenosine Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:145-167. [PMID: 33123998 DOI: 10.1007/978-3-030-47189-7_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenosine, deriving from ATP released by dying cancer cells and then degradated in the tumor environment by CD39/CD73 enzyme axis, is linked to the generation of an immunosuppressed niche favoring the onset of neoplasia. Signals delivered by extracellular adenosine are detected and transduced by G-protein-coupled cell surface receptors, classified into four subtypes: A1, A2A, A2B, and A3. A critical role of this nucleoside is emerging in the modulation of several immune and nonimmune cells defining the tumor microenvironment, providing novel insights about the development of novel therapeutic strategies aimed at undermining the immune-privileged sites where cancer cells grow and proliferate.
Collapse
Affiliation(s)
- Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Roberta Turiello
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,PhD Program in Drug discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Marwein S, Mishra B, De UC, Acharya PC. Recent Progress of Adenosine Receptor Modulators in the Development of Anticancer Chemotherapeutic Agents. Curr Pharm Des 2019; 25:2842-2858. [DOI: 10.2174/1381612825666190716141851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 01/12/2023]
Abstract
Increased risks of peripheral toxicity and undesired adverse effects associated with chemotherapeutic
agents are the major medical hurdles in cancer treatment that worsen the quality of life of cancer patients. Although
several novel and target-specific anticancer agents have been discovered in the recent past, none of them
have proved to be effective in the management of metastatic tumor. Therefore, there is a continuous effort for the
discovery of safer and effective cancer chemotherapeutic agent. Adenosine receptors have been identified as an
important target to combat cancer because of their inherent role in the antitumor process. The antitumor property
of the adenosine receptor is primarily attributed to their inherited immune response against the tumors. These
findings have opened a new chapter in the anticancer drug discovery through adenosine receptor-mediated immunomodulation.
This review broadly outlines the biological mechanism of adenosine receptors in mediating the
selective cytotoxicity as well as the discovery of various classes of adenosine receptor modulators in the effective
management of solid tumors.
Collapse
Affiliation(s)
- Sarapynbiang Marwein
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| | - Bijayashree Mishra
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| | - Utpal C. De
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| | - Pratap C. Acharya
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| |
Collapse
|
7
|
Free-Energy Calculations for Bioisosteric Modifications of A 3 Adenosine Receptor Antagonists. Int J Mol Sci 2019; 20:ijms20143499. [PMID: 31315296 PMCID: PMC6679372 DOI: 10.3390/ijms20143499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 11/16/2022] Open
Abstract
Adenosine receptors are a family of G protein-coupled receptors with increased attention as drug targets on different indications. We investigate the thermodynamics of ligand binding to the A3 adenosine receptor subtype, focusing on a recently reported series of diarylacetamidopyridine inhibitors via molecular dynamics simulations. With a combined approach of thermodynamic integration and one-step perturbation, we characterize the impact of the charge distribution in a central heteroaromatic ring on the binding affinity prediction. Standard charge distributions according to the GROMOS force field yield values in good agreement with the experimental data and previous free energy calculations. Subsequently, we examine the thermodynamics of inhibitor binding in terms of the energetic and entropic contributions. The highest entropy penalties are found for inhibitors with methoxy substituents in meta position of the aryl groups. This bulky group restricts rotation of aromatic rings attached to the pyrimidine core which leads to two distinct poses of the ligand. Our predictions support the previously proposed binding pose for the o-methoxy ligand, yielding in this case a very good correlation with the experimentally measured affinities with deviations below 4 kJ/mol.
Collapse
|
8
|
Merighi S, Battistello E, Giacomelli L, Varani K, Vincenzi F, Borea PA, Gessi S. Targeting A3 and A2A adenosine receptors in the fight against cancer. Expert Opin Ther Targets 2019; 23:669-678. [DOI: 10.1080/14728222.2019.1630380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefania Merighi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Luca Giacomelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Chen C, Breslin MB, Guidry JJ, Lan MS. 5'-Iodotubercidin represses insulinoma-associated-1 expression, decreases cAMP levels, and suppresses human neuroblastoma cell growth. J Biol Chem 2019; 294:5456-5465. [PMID: 30755485 DOI: 10.1074/jbc.ra118.006761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Insulinoma-associated-1 (INSM1) is a key protein functioning as a transcriptional repressor in neuroendocrine differentiation and is activated by N-Myc in human neuroblastoma (NB). INSM1 modulates the phosphoinositide 3-kinase (PI3K)-AKT Ser/Thr kinase (AKT)-glycogen synthase kinase 3β (GSK3β) signaling pathway through a positive-feedback loop, resulting in N-Myc stabilization. Accordingly, INSM1 has emerged as a critical player closely associated with N-Myc in facilitating NB cell growth. Here, an INSM1 promoter-driven luciferase-based screen revealed that the compound 5'-iodotubercidin suppresses adenosine kinase (ADK), an energy pathway enzyme, and also INSM1 expression and NB tumor growth. Next, we sought to dissect how the ADK pathway contributes to NB tumor cell growth in the context of INSM1 expression. We also found that 5'-iodotubercidin inhibits INSM1 expression and induces an intra- and extracellular adenosine imbalance. The adenosine imbalance, which triggers adenosine receptor-3 signaling that decreases cAMP levels and AKT phosphorylation and enhances GSK3β activity. We further observed that GSK3β then phosphorylates β-catenin and promotes the cytoplasmic proteasomal degradation pathway. 5'-Iodotubercidin treatment and INSM1 inhibition suppressed extracellular signal-regulated kinase 1/2 (ERK1/2) activity and the AKT signaling pathways required for NB cell proliferation. The 5'-iodotubercidin treatment also suppressed β-catenin, lymphoid enhancer-binding factor 1 (LEF-1), cyclin D1, N-Myc, and INSM1 levels, ultimately leading to apoptosis via caspase-3 and p53 activation. The identification of the signaling pathways that control the proliferation of aggressive NB reported here suggests new options for combination treatments of NB patients.
Collapse
Affiliation(s)
| | | | - Jessie J Guidry
- Biochemistry and Molecular Biology and the LSUHSC Proteomics Core Facility, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | | |
Collapse
|
10
|
Wagner E, Becan L. Synthesis of New Isoxazolo[4,5-d]pyrimidines as Antitumor Agents. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Edwin Wagner
- Department of Drugs Technology; Wroclaw Medical University; Wroclaw Poland
| | - Lilianna Becan
- Department of Drugs Technology; Wroclaw Medical University; Wroclaw Poland
| |
Collapse
|
11
|
Sarkar B, Maiti S, Jadhav GR, Paira P. Discovery of benzothiazolylquinoline conjugates as novel human A 3 receptor antagonists: biological evaluations and molecular docking studies. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171622. [PMID: 29515874 PMCID: PMC5830763 DOI: 10.1098/rsos.171622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/08/2018] [Indexed: 03/16/2024]
Abstract
Adenosine is known as an endogenous purine nucleoside and it modulates a wide variety of physiological responses by interacting with adenosine receptors. Among the four adenosine receptor subtypes, the A3 receptor is of major interest in this study as it is overexpressed in some cancer cell lines. Herein, we have highlighted the strategy of designing the hA3 receptor targeted novel benzothiazolylquinoline scaffolds. The radioligand binding data of the reported compounds are rationalized with the molecular docking results. Compound 6a showed best potency and selectivity at hA3 among other adenosine receptors.
Collapse
Affiliation(s)
| | | | | | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
12
|
de Andrade Mello P, Coutinho-Silva R, Savio LEB. Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor-Host Interaction and Therapeutic Perspectives. Front Immunol 2017; 8:1526. [PMID: 29184552 PMCID: PMC5694450 DOI: 10.3389/fimmu.2017.01526] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer is still one of the world's most pressing health-care challenges, leading to a high number of deaths worldwide. Immunotherapy is a new developing therapy that boosts patient's immune system to fight cancer by modifying tumor-immune cells interaction in the tumor microenvironment (TME). Extracellular adenosine triphosphate (eATP) and adenosine (Ado) are signaling molecules released in the TME that act as modulators of both immune and tumor cell responses. Extracellular adenosine triphosphate and Ado activate purinergic type 2 (P2) and type 1 (P1) receptors, respectively, triggering the so-called purinergic signaling. The concentration of eATP and Ado within the TME is tightly controlled by several cell-surface ectonucleotidases, such as CD39 and CD73, the major ecto-enzymes expressed in cancer cells, immune cells, stromal cells, and vasculature, being CD73 also expressed on tumor-associated fibroblasts. Once accumulated in the TME, eATP boosts antitumor immune response, while Ado attenuates or suppresses immunity against the tumor. In addition, both molecules can mediate growth stimulation or inhibition of the tumor, depending on the specific receptor activated. Therefore, purinergic signaling is able to modulate both tumor and immune cells behavior and, consequently, the tumor-host interaction and disease progression. In this review, we discuss the role of purinergic signaling in the host-tumor interaction detailing the multifaceted effects of eATP and Ado in the inflammatory TME. Moreover, we present recent findings into the application of purinergic-targeting therapy as a potential novel option to boost antitumor immune responses in cancer.
Collapse
Affiliation(s)
- Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Bahreyni A, Samani SS, Rahmani F, Behnam-Rassouli R, Khazaei M, Ryzhikov M, Parizadeh MR, Avan A, Hassanian SM. Role of adenosine signaling in the pathogenesis of breast cancer. J Cell Physiol 2017; 233:1836-1843. [PMID: 28383816 DOI: 10.1002/jcp.25944] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/30/2017] [Indexed: 01/10/2023]
Abstract
The plasma level of adenosine increases under ischemic and inflamed conditions in tumor microenvironment. Adenosine elicits a range of signaling pathways in tumors, resulting in either inhibition or enhancement of tumor growth depending upon different subtypes of adenosine receptors activation and type of cancer. Metabolism of adenosine-5'-triphosphate (ATP) and its derivatives including adenosine is dysregulated in the breast tumor microenvironment, supporting the role of this metabolite in the pathogenesis of breast cancer. Adenosine regulates inflammation, apoptosis, cell proliferation, and metastasis in breast cancer cells. This review summarizes the role of adenosine in the pathogenesis of breast cancer for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Faculty of Medicine, Department of Medical Biochemistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Sattar Samani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farzad Rahmani
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Faculty of Medicine, Department of Medical Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, School of Medicine, St. Louis University, Saint Louis, Missouri
| | - Mohammad Reza Parizadeh
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Kazemi MH, Raoofi Mohseni S, Hojjat-Farsangi M, Anvari E, Ghalamfarsa G, Mohammadi H, Jadidi-Niaragh F. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J Cell Physiol 2017; 233:2032-2057. [DOI: 10.1002/jcp.25873] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Mohammad H. Kazemi
- Student Research Committee, Department of Immunology, School of Medicine; Iran University of Medical Sciences (IUMS); Tehran Iran
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sahar Raoofi Mohseni
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK); Karolinska University Hospital Solna and Karolinska Institute; Stockholm Sweden
- Department of Immunology, School of Medicine; Bushehr University of Medical Sciences; Bushehr Iran
| | - Enayat Anvari
- Faculty of Medicine, Department of Physiology; Ilam University of Medical Sciences; Ilam Iran
| | - Ghasem Ghalamfarsa
- Medicinal Plants Research Center; Yasuj University of Medical Sciences; Yasuj Iran
| | - Hamed Mohammadi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
15
|
Ohana G, Cohen S, Rath-Wolfson L, Fishman P. A3 adenosine receptor agonist, CF102, protects against hepatic ischemia/reperfusion injury following partial hepatectomy. Mol Med Rep 2016; 14:4335-4341. [PMID: 27666664 DOI: 10.3892/mmr.2016.5746] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Ischemia/reperfusion (IR) injury during clinical hepatic procedures is characterized by inflammatory conditions and the apoptosis of hepatocytes. Nuclear factor‑κB (NF‑κB), nitric oxide and the expression levels of inflammatory cytokines, tumor necrosis factor‑α and interleukin‑1 were observed to increase following IR and mediate the inflammatory response in the liver. CF102 is a highly selective A3 adenosine receptor (A3AR) agonist, and has been identified to induce an anti‑inflammatory and protective effect on the liver via the downregulation of the NF‑κB signaling pathway. The present study aimed to determine the effect of CF102 on protecting the liver against IR injury. The potential protective effect of CF102 (100 µg/kg) was assessed using an IR injury model on 70% of the liver of Wistar rats, which was induced by clamping the hepatic vasculature for 30 min. The regenerative effect of CF102 was assessed by the partial hepatectomy of 70% of the liver during 10 min of IR. CF102 reduced the levels of liver enzymes following IR injury. A higher regeneration rate in the CF102 treatment group was observed compared with the control group, suggesting that CF102 had a positive effect on the proliferation of hepatocytes following hepatectomy. CF102 had a protective effect on the liver of Wistar rats subsequent to IR injury during hepatectomy. This may be due to an anti‑inflammatory and anti‑apoptotic effect mediated by the A3AR.
Collapse
Affiliation(s)
- Gil Ohana
- Department of Surgery A/B, Rabin Medical Center, Campus Golda, Sackler Faculty of Medicine Tel‑Aviv University, Petah Tikva 49100, Israel
| | - Shira Cohen
- Can‑Fite BioPharma, Ltd., Kiryat‑Matalon, Petah Tikva 49170, Israel
| | - Lea Rath-Wolfson
- Department of Pathology, Rabin Medical Center, Campus Golda, Sackler Faculty of Medicine Tel‑Aviv University, Petah Tikva 49100, Israel
| | - Pnina Fishman
- Can‑Fite BioPharma, Ltd., Kiryat‑Matalon, Petah Tikva 49170, Israel
| |
Collapse
|
16
|
Signaling Pathway in Early Brain Injury after Subarachnoid Hemorrhage: News Update. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:123-6. [PMID: 26463934 DOI: 10.1007/978-3-319-18497-5_21] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The annual incidence of subarachnoid hemorrhage (SAH) caused by intracranial aneurysm rupture is approximately 10.5/10 million people in China, making SAH the third most frequently occurring hemorrhage of the intracranial type after cerebral embolism and hypertensive intracerebral hemorrhage. SAH caused by ruptured aneurysm leads to a mortality rate as high as 67 %, and, because of the sudden onset of this disease, approximately 12-15 % of patients die before they can receive effective treatment. Early brain injury (EBI) is the brain damage occurring within the first 72 h after SAH. Two-thirds of mortality caused by SAH occurs within 48 h, mainly as a result of EBI. With the development of molecular biology and medicine microscopy techniques, various signaling pathways involved in EBI after SAH have been revealed. Understanding these signaling pathways may help clinicians treat EBI after SAH and improve long-term prognosis of SAH patients. This chapter summarizes several important signaling pathways implicated in EBI caused by SAH.
Collapse
|
17
|
Kwak HJ, Park DW, Seo JY, Moon JY, Kim TH, Sohn JW, Shin DH, Yoon HJ, Park SS, Kim SH. The Wnt/β-catenin signaling pathway regulates the development of airway remodeling in patients with asthma. Exp Mol Med 2015; 47:e198. [PMID: 26655831 PMCID: PMC4686695 DOI: 10.1038/emm.2015.91] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023] Open
Abstract
Airway remodeling is a key characteristic of chronic asthma, particularly in patients with a fixed airflow limitation. The mechanisms underlying airway remodeling are poorly understood, and no therapeutic option is available. The Wnt/β-catenin signaling pathway is involved in various physiological and pathological processes, including fibrosis and smooth muscle hypertrophy. In this study, we investigated the roles of Wnt/β-catenin signaling in airway remodeling in patients with asthma. Wnt7a mRNA expression was prominent in induced sputum from patients with asthma compared with that from healthy controls. Next, we induced a chronic asthma mouse model with airway remodeling features, including subepithelial fibrosis and airway smooth muscle hyperplasia. Higher expression of Wnt family proteins and β-catenin was detected in the lung tissue of mice with chronic asthma compared to control mice. Blocking β-catenin expression with a specific siRNA attenuated airway inflammation and airway remodeling. Decreased subepithelial fibrosis and collagen accumulation in the β-catenin siRNA-treated mice was accompanied by reduced expression of transforming growth factor-β. We further showed that suppressing β-catenin in the chronic asthma model inhibited smooth muscle hyperplasia by downregulating the tenascin C/platelet-derived growth factor receptor pathway. Taken together, these findings demonstrate that the Wnt/β-catenin signaling pathway is highly expressed and regulates the development of airway remodeling in chronic asthma.
Collapse
Affiliation(s)
- Hyun Jung Kwak
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Dong Won Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Ji-Young Seo
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Ji-Yong Moon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Tae Hyung Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jang Won Sohn
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Dong Ho Shin
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Ho Joo Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sung Soo Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sang-Heon Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2015; 67:74-102. [PMID: 25387804 DOI: 10.1124/pr.113.008540] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Fabrizio Vincenzi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Pier Giovanni Baraldi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Mojgan Aghazadeh Tabrizi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| |
Collapse
|
19
|
Mitochondrial and caspase pathways are involved in the induction of apoptosis by IB-MECA in ovarian cancer cell lines. Tumour Biol 2014; 35:11027-39. [PMID: 25095978 DOI: 10.1007/s13277-014-2396-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/23/2014] [Indexed: 02/03/2023] Open
Abstract
A3 adenosine receptor agonist (IB-MECA) has been shown to play important roles in cell proliferation and apoptosis in a variety of cancer cell lines. The present study was designed to understand the mechanism underlying IB-MECA-induced apoptosis in human ovarian cancer cell lines. The messenger RNA (mRNA) and protein expression levels of A3 adenosine receptor were detected in OVCAR-3 and Caov-4 ovarian cancer cells. IB-MECA was capable of decreasing intracellular cyclic adenosine monophosphate (cAMP) that was the reason for the presence of functional A3 adenosine receptor on the cell lines. IB-MECA significantly reduced cell viability in a dose-dependent manner. Cytotoxicity of IB-MECA was suppressed by MRS1220, an A3 adenosine receptor antagonist. The growth inhibition effect of IB-MECA was related to the induction of cell apoptosis, which was manifested by annexin V-FITC staining, activation of caspase-3 and caspase-9, and loss of mitochondrial membrane potentials (ΔΨm). In addition, downregulation of the regulatory protein Bcl-2 and upregulation of Bax protein by IB-MECA were also observed. These findings demonstrated that IB-MECA induces apoptosis via the mitochondrial signaling pathway. These suggest that A3 adenosine receptor agonists may be a potential agent for induction of apoptosis in human ovarian cancer cells.
Collapse
|
20
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 2013; 13:842-57. [PMID: 24226193 DOI: 10.1038/nrc3613] [Citation(s) in RCA: 570] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is a complex disease that is dictated by both cancer cell-intrinsic and cell-extrinsic processes. Adenosine is an ancient extracellular signalling molecule that can regulate almost all aspects of tissue function. As such, several studies have recently highlighted a crucial role for adenosine signalling in regulating the various aspects of cell-intrinsic and cell-extrinsic processes of cancer development. This Review critically discusses the role of adenosine and its receptors in regulating the complex interplay among immune, inflammatory, endothelial and cancer cells during the course of neoplastic disease.
Collapse
Affiliation(s)
- Luca Antonioli
- 1] Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy. [2] Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
21
|
Kim GD, Oh J, Jeong LS, Lee SK. Thio-Cl-IB-MECA, a novel A3 adenosine receptor agonist, suppresses angiogenesis by regulating PI3K/AKT/mTOR and ERK signaling in endothelial cells. Biochem Biophys Res Commun 2013; 437:79-86. [DOI: 10.1016/j.bbrc.2013.06.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 11/24/2022]
|
22
|
Abstract
Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5'-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically.
Collapse
Affiliation(s)
- Detlev Boison
- Legacy Research Institute, 1225 NE 16th Ave, Portland, OR 97202, USA.
| |
Collapse
|
23
|
Han W, Xiong Y, Li Y, Fang W, Ma Y, Liu L, Li F, Zhu X. Anti-arthritic effects of clematichinenoside (AR-6) on PI3K/Akt signaling pathway and TNF-α associated with collagen-induced arthritis. PHARMACEUTICAL BIOLOGY 2013; 51:13-22. [PMID: 22994412 DOI: 10.3109/13880209.2012.698287] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Clematichinenoside (AR-6) is a triterpene saponin from an anti-arthritic herbal formula Wei-Ling-Xian in Chinese, which is an herbal medicine derived from the dried root and rhizome of Clematis chinensis Osbeck, C. hexapetala Pall., or C. manshurica Rupr. (Ranunculaceae). OBJECTIVE To investigate the modulating effect and explored the potential mechanism of AR-6 in rheumatoid arthritis (RA), using collagen-induced arthritis (CIA) in a rat model. MATERIALS AND METHODS CIA was evaluated by measuring body weight, paw swelling and organ index. Expression of TNF-α, PI3K and p-Akt in synovium tissue was measured by immunohistochemistry. Furthermore, expression of TNF-α mRNA, PI3K mRNA and p-Akt mRNA was measured with RT-PCR. RESULTS The intragastric administration of AR-6 (32, 16 and 8 mg/kg), especially the high dose level of 32 mg/kg, significantly suppressed the swelling of hind paws of CIA rats (p < 0.01) and inhibited their body weight loss (p < 0.01). Based on histopathological observation, all AR-6 groups showed great amelioration compared with model group. Moreover, AR-6 significantly reduced the production of TNF-α, PI3K and p-Akt expression by immunohistochemistry (p < 0.01), and decreased TNF-α mRNA, PI3K mRNA and p-Akt mRNA in CIA rat synovium (p < 0.01). DISCUSSION Our study indicates the mechanism of AR-6 is associated with PI3K/Akt signaling pathway and TNF-α. CONCLUSIONS Such characteristics relating to AR-6 curing chronic inflammation of CIA, may be effectively applied to the therapeutic potential in patients with inactive RA.
Collapse
Affiliation(s)
- Wang Han
- Department of Physiology and Pharmacology, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mlejnek P, Dolezel P, Frydrych I. Effects of synthetic A3 adenosine receptor agonists on cell proliferation and viability are receptor independent at micromolar concentrations. J Physiol Biochem 2012. [PMID: 23184730 DOI: 10.1007/s13105-012-0222-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The question as to whether A3 adenosine receptor (A3AR) agonists, N (6)-(3-iodobenzyl)-adenosine-5'-N- methyluronamide (IB-MECA) and 2-chloro-N (6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), could exert cytotoxic effects at high concentrations with or without the involvement of A3AR has been a controversial issue for a long time. The initial findings suggesting that A3AR plays a crucial role in the induction of cell death upon treatment with micromolar concentrations of IB-MECA or Cl-IB-MECA were revised, however, the direct and unequivocal evidence is still missing. Therefore, the sensitivity of Chinese hamster ovary (CHO) cells transfected with human recombinant A3AR (A3-CHO) and their counter partner wild-type CHO cells, which do not express any of adenosine receptors, to micromolar concentrations of IB-MECA and Cl-IB-MECA was studied. We observed that IB-MECA and Cl-IB-MECA exhibited a strong inhibitory effect on cell proliferation due to the blockage of cell cycle progression at G1/S and G2/M transitions in both A3-CHO and CHO cells. Further analysis revealed that IB-MECA and Cl-IB-MECA attenuated the Erk1/2 signalling irrespectively to A3AR expression. In addition, Cl-IB-MECA induced massive cell death mainly with hallmarks of a necrosis in both cell lines. In contrast, IB-MECA affected cell viability only slightly independently of A3AR expression. IB-MECA induced cell death that exhibited apoptotic hallmarks. In general, the sensitivity of A3-CHO cells to micromolar concentrations of IB-MECA and Cl-IB-MECA was somewhat, but not significantly, higher than that observed in the CHO cells. These results strongly suggest that IB-MECA and Cl-IB-MECA exert cytotoxic effects at micromolar concentrations independently of A3AR expression.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic.
| | | | | |
Collapse
|
25
|
The Antitumor Activity of Antrodia camphorata in Melanoma Cells: Modulation of Wnt/β-Catenin Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:197309. [PMID: 23049605 PMCID: PMC3463817 DOI: 10.1155/2012/197309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/14/2012] [Indexed: 12/16/2022]
Abstract
Antrodia camphorata (AC) is well known in Taiwan as a traditional Chinese medicine. The aim of this study was to investigate whether a fermented culture broth of AC could inhibit melanoma proliferation and progression via suppression of the Wnt/β-catenin signaling pathway. In this study, we observed that AC treatment resulted in decreased cell viability and disturbed Wnt/β-catenin cascade in B16F10 and/or B16F1 melanoma cells. This result was accompanied by a decrease in the expression of Wnt/β-catenin transcriptional targets, including c-Myc and survivin. Furthermore, treatment of melanoma cells with AC resulted in a significant increase in apoptosis, which was associated with DNA fragmentation, cytochrome c release, caspase-9 and -3 activation, PARP degradation, Bcl-2/Bax dysregulation, and p53 expression. We also observed that AC caused G1 phase arrest mediated by a downregulation of cyclin D1 and CDK4 and increased p21 and p27 expression. In addition, we demonstrated that non- and subcytotoxic concentrations of AC markedly inhibited migration and invasion of highly metastatic B16F10 cells. The antimetastatic effect of AC was further confirmed by reductions in the levels of MMP-2, MMP-9, and VEGF expression. These results suggest that Antrodia camphorata may exert antitumor activity by downregulating the Wnt/β-catenin pathways.
Collapse
|
26
|
Kim TH, Kim YK, Woo JS. The adenosine A3 receptor agonist Cl-IB-MECA induces cell death through Ca²⁺/ROS-dependent down regulation of ERK and Akt in A172 human glioma cells. Neurochem Res 2012; 37:2667-77. [PMID: 22878643 DOI: 10.1007/s11064-012-0855-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 02/06/2023]
Abstract
Adenosine A(3) receptor (A3AR) is coupled to G proteins that are involved in a variety of intracellular signaling pathways and physiological functions. 2-Chloro-N(6)-(3-iodobenzyl) adenosine-5'-N-methylcarboxamide (Cl-IB-MECA), an agonist of A3AR, has been reported to induce cell death in various cancer cells. However, the effect of CI-IB-MECA on glioma cell growth is not clear. This study was undertaken to examine the effect of CI-IB-MECA on glioma cell viability and to determine its molecular mechanism. CI-IB-MECA inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Treatment of CI-IB-MECA resulted in an increase in intracellular Ca(2+) followed by enhanced reactive oxygen species (ROS) generation. EGTA and N-acetylcysteine (NAC) blocked the cell death induced by CI-IB-MECA, suggesting that Ca(2+) and ROS are involved in the Cl-IB-MECA-induced cell death. Western blot analysis showed that CI-IB-MECA induced the down-regulation of extracellular signal-regulated kinases (ERK) and Akt, which was prevented by EGTA, NAC, and the A3AR antagonist MRS1191. Transfection of constitutively active forms of MEK, the upstream kinase of ERK, and Akt prevented the cell death. CI-IB-MECA induced caspase-3 activation and the CI-IB-MECA-induced cell death was blocked by the caspase inhibitors DEVD-CHO and z-VAD-FMK. In addition, expression of XIAP and Survivin were decreased in cells treated with Cl-IB-MECA. Collectively, these findings demonstrate that CI-IB-MECA induce a caspase-dependent cell death through suppression of ERK and Akt mediated by an increase in intracellular Ca(2+) and ROS generation in human glioma cells. These suggest that A3AR agonists may be a potential therapeutic agent for induction of apoptosis in human glioma cells.
Collapse
Affiliation(s)
- Thae Hyun Kim
- Department of Physiology, School of Medicine, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan 626-870, Gyungsangnam-do, Republic of Korea
| | | | | |
Collapse
|
27
|
Inhibition of Cell Growth and Induction of Apoptosis by Antrodia camphorata in HER-2/neu-Overexpressing Breast Cancer Cells through the Induction of ROS, Depletion of HER-2/neu, and Disruption of the PI3K/Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:702857. [PMID: 22701509 PMCID: PMC3371823 DOI: 10.1155/2012/702857] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/02/2012] [Indexed: 01/19/2023]
Abstract
Previously, we demonstrated that a submerged fermentation culture of Antrodia camphorata (AC) promotes cell-cycle arrest and apoptosis in human estrogen receptor-positive/negative breast cancer cells. However, whether AC is effective against HER-2/neu-overexpressing breast cancers has not been thoroughly elucidated. In the present study, we showed that AC exhibited a significant cytotoxic effect against HER-2/neu-overexpressing MDA-MB-453 and BT-474 cells. Immunoblot analysis demonstrated that HER-2/neu and their tyrosine phosphorylation were inhibited by AC in a dose-dependent manner. An increase in intracellular reactive oxygen species (ROS) was observed in AC-treated cells, whereas antioxidant N-acetylcysteine (NAC) significantly prevented AC induced HER-2/neu depletion and cell death, which directly indicates that AC-induced HER-2/neu depletion and cell death was mediated by ROS generation. Also, AC significantly downregulated the expression of cyclin D1, cyclin E, and CDK4 followed by the suppression of PI3K/Akt, and their downstream effectors GSK-3β and β-catenin. Notably, AC-treatment induced apoptotic cell death, which was associated with sub-G1 accumulation, DNA fragmentation, mitochondrial dysfunction, cytochrome c release, caspase-3/-9 activation, PARP degradation, and Bcl-2/Bax dysregulation. Assays for colony formation also confirmed the growth-inhibitory effects of AC. This is the first report confirming the anticancer activity of this potentially beneficial mushroom against human HER-2/neu-overexpressing breast cancers.
Collapse
|
28
|
Melanogenesis of murine melanoma cells induced by hesperetin, a Citrus hydrolysate-derived flavonoid. Food Chem Toxicol 2012; 50:653-9. [DOI: 10.1016/j.fct.2012.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/01/2011] [Accepted: 01/09/2012] [Indexed: 11/23/2022]
|
29
|
Jacob F, Ukegjini K, Nixdorf S, Ford CE, Olivier J, Caduff R, Scurry JP, Guertler R, Hornung D, Mueller R, Fink DA, Hacker NF, Heinzelmann-Schwarz VA. Loss of secreted frizzled-related protein 4 correlates with an aggressive phenotype and predicts poor outcome in ovarian cancer patients. PLoS One 2012; 7:e31885. [PMID: 22363760 PMCID: PMC3283709 DOI: 10.1371/journal.pone.0031885] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/14/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Activation of the Wnt signaling pathway is implicated in aberrant cellular proliferation in various cancers. In 40% of endometrioid ovarian cancers, constitutive activation of the pathway is due to oncogenic mutations in β-catenin or other inactivating mutations in key negative regulators. Secreted frizzled-related protein 4 (SFRP4) has been proposed to have inhibitory activity through binding and sequestering Wnt ligands. METHODOLOGY/PRINCIPAL FINDINGS We performed RT-qPCR and Western-blotting in primary cultures and ovarian cell lines for SFRP4 and its key downstream regulators activated β-catenin, β-catenin and GSK3β. SFRP4 was then examined by immunohistochemistry in a cohort of 721 patients and due to its proposed secretory function, in plasma, presenting the first ELISA for SFRP4. SFRP4 was most highly expressed in tubal epithelium and decreased with malignant transformation, both on RNA and on protein level, where it was even more profound in the membrane fraction (p<0.0001). SFRP4 was expressed on the protein level in all histotypes of ovarian cancer but was decreased from borderline tumors to cancers and with loss of cellular differentiation. Loss of membrane expression was an independent predictor of poor survival in ovarian cancer patients (p = 0.02 unadjusted; p = 0.089 adjusted), which increased the risk of a patient to die from this disease by the factor 1.8. CONCLUSIONS/SIGNIFICANCE Our results support a role for SFRP4 as a tumor suppressor gene in ovarian cancers via inhibition of the Wnt signaling pathway. This has not only predictive implications but could also facilitate a therapeutic role using epigenetic targets.
Collapse
Affiliation(s)
- Francis Jacob
- Translational Research Group, University Hospital Zurich, Zurich, Switzerland
- Gynaecological Cancer Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Kristjan Ukegjini
- Translational Research Group, University Hospital Zurich, Zurich, Switzerland
| | - Sheri Nixdorf
- Gynaecological Cancer Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Caroline E. Ford
- Wnt signaling and Metastasis Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Jake Olivier
- Biostatistics Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Rosmarie Caduff
- Institute of Clinical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - James P. Scurry
- Hunter Area Pathology Services, John Hunter Hospital, University of Newcastle, Callaghan, Australia
| | - Rea Guertler
- Gynaecological Cancer Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Daniela Hornung
- Department of Obstetrics and Gynecology, University of Schleswig-Holstein, Lubeck, Germany
| | - Renato Mueller
- Department of Gynecology and Obstetrics, Spital Limmattal, Zurich, Switzerland
| | - Daniel A. Fink
- Department of Gynecology, University Hospital Zurich, Zurich, Switzerland
| | - Neville F. Hacker
- Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, Australia
| | - Viola A. Heinzelmann-Schwarz
- Translational Research Group, University Hospital Zurich, Zurich, Switzerland
- Gynaecological Cancer Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, Australia
| |
Collapse
|
30
|
Mlejnek P, Dolezel P, Kosztyu P. P-glycoprotein mediates resistance to A3 adenosine receptor agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-n-methyluronamide in human leukemia cells. J Cell Physiol 2012; 227:676-85. [PMID: 21520073 DOI: 10.1002/jcp.22775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We studied effects of 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA) on apoptosis induction in the K562/Dox cell line, which overexpressed P-glycoprotein (P-gp, ABCB1, MDR1). We found that the K562/Dox cell line was significantly more resistant to Cl-IB-MECA than the maternal cell line K562, which did not express P-gp. Although both cell lines expressed the A3 adenosine receptor (A3AR), cytotoxic effects of Cl-IB-MECA were not prevented by its selective antagonist MRS1523 (3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2 phenyl-4-propyl-3-pyridine carboxylate). Analysis of cell extracts revealed that the intracellular level of Cl-IB-MECA was significantly lower in the K562/Dox cell line than in the maternal cell line K562. The downregulation of P-gp expression using shRNA targeting ABCB1 gene led to increased intracellular level of Cl-IB-MECA and restored cell sensitivity to this drug. Similarly, valspodar (PSC-833), a specific inhibitor of P-gp, restored sensitivity of the K562/Dox cell line to Cl-IB-MECA with concomitant increase of intracellular level of Cl-IB-MECA in the resistant cell line, while it affected cytotoxicity of Cl-IB-MECA in the sensitive cell line only marginally. An enzyme based assay provided evidence for interaction of P-gp with Cl-IB-MECA. We further observed that cytotoxic effects of Cl-IB-MECA could be augmented by activation of extrinsic cell death pathway by Apo-2L (TRAIL) but not FasL or TNF-α. Our results revealed that Cl-IB-MECA induced an increase in expression of TRAIL receptors in K562 cells, which could sensitize cells to apoptosis induction via an extrinsic cell death pathway. Importantly, these effects were inversely related to P-gp expression. In addition, MRS1523 did not affect Cl-IB-MECA induced expression of TRAIL receptors.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic.
| | | | | |
Collapse
|
31
|
Flanaghan JR, Roome SJ. The impact of commercially available purinergic ligands on purinergic signalling research. Purinergic Signal 2011; 8:81-9. [PMID: 22038574 DOI: 10.1007/s11302-011-9269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 11/26/2022] Open
Abstract
Due to the extremely wide-spread expression of purinergic receptors, purinergic signalling has been implicated in numerous physiological and pathophysiological areas. To better understand the involvement of purinergic receptors in such areas, the researcher's requirement for diverse and varied purinergic receptor ligands has greatly increased. This has generated increased commercial opportunities for life science suppliers, and ultimately, has led to a rapid expansion in the number of commercially available purinergic receptor ligands. The wide-spread availability of ligands to researchers has greatly benefited the scientific community, nurturing the rapid and continued expansion of the purinergic signalling field.
Collapse
Affiliation(s)
- J R Flanaghan
- Ascent Scientific Ltd (UK), Unit 3 Avon Riverside Estate, Victoria Road, Avonmouth Bristol, BS11 9DB, UK,
| | | |
Collapse
|
32
|
Aghaei M, Panjehpour M, Karami-Tehrani F, Salami S. Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: involvement of intrinsic pathway. J Cancer Res Clin Oncol 2011; 137:1511-23. [PMID: 21830157 DOI: 10.1007/s00432-011-1031-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/29/2011] [Indexed: 12/24/2022]
Abstract
PURPOSE A3 adenosine receptor has shown several physiological and pathological activities, including cell proliferation and apoptosis in various cancer cell lines. This study is designed to investigate molecular mechanism and apoptotic pathway of A3 adenosine receptor in DU-145, PC3 and LNcap-FGC10 human prostate cancer cells. METHODS The expression level of A3 adenosine receptor was examined using real-time RT-PCR. cAMP concentration was also measured. MTT viability, cell counting and BrdU incorporation tests were used to study the cell proliferation effect of IB-MECA. Cell cycle analysis, Annexin V-FITC staining, Hoechst 33258 staining, mitochondrial membrane potential (ΔΨM), caspase-3 activity, Bcl-2 and Bax protein expression were used to detect apoptosis. RESULT A3 adenosine receptors mRNAs were detected at different levels. IB-MECA inhibited forskolin-stimulated cAMP. IB-MECA at (1 μM) suppressed cell proliferation and induced G1 cell cycle arrest. Indeed, IB-MECA down-regulated the expression of CDK4, cyclin D1 and up-regulated p53 expression. IB-MECA at (10-100 μM) induced apoptosis. The activity of caspase-3 was also increased. Expression of Bcl-2 was decreased in response to IB-MECA, while the expression of Bax protein was increased. The results showed a significant loss of ΔΨM, in a dose-dependent manner. CONCLUSION This study introduces a possible mechanism through A3 adenosine receptor activation. IB-MECA inhibited prostate cancer cells proliferation and induced G1 cell cycle arrest through p53, Cdk4/cyclinD1 pathway. Apoptosis determined by characteristic morphological changes and increased in sub-G1 population. Loss of MMP, activation of caspase-3 and down-regulation of Bcl-2 expression indicated mitochondrial signaling pathway that involved in the apoptosis.
Collapse
Affiliation(s)
- Mahmoud Aghaei
- Department of Clinical Biochemistry, Cancer Research Laboratory, School of Medical Science, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran
| | | | | | | |
Collapse
|
33
|
COHEN S, STEMMER S, ZOZULYA G, OCHAION A, PATOKA R, BARER F, BAR-YEHUDA S, RATH-WOLFSON L, JACOBSON K, FISHMAN P. CF102 an A3 adenosine receptor agonist mediates anti-tumor and anti-inflammatory effects in the liver. J Cell Physiol 2011; 226:2438-47. [PMID: 21660967 PMCID: PMC3474360 DOI: 10.1002/jcp.22593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Gi protein-associated A(3) adenosine receptor (A(3) AR) is a member of the adenosine receptor family. Selective agonists at the A(3) AR, such as CF101 and CF102 were found to induce anti-inflammatory and anti-cancer effects. In this study, we examined the differential effect of CF102 in pathological conditions of the liver. The anti-inflammatory protective effect of CF101 was tested in a model of liver inflammation induced by Concanavalin A (Con. A) and the anti-cancer effect of CF102 was examined in vitro and in a xenograft animal model utilizing Hep-3B hepatocellular carcinoma (HCC) cells. The mechanism of action was explored by following the expression levels of key signaling proteins in the inflamed and tumor liver tissues, utilizing Western blot (WB) analysis. In the liver inflammation model, CF102 (100 µg/kg) markedly reduced the secretion of serum glutamic oxaloacetic transaminase and serum glutamic pyruvic transaminase in comparison to the vehicle-treated group. Mechanistically, CF102 treatment decreased the expression level of phosphorylated glycogen synthase kinase-3β, NF-κB, and TNF-α and prevented apoptosis in the liver. This was demonstrated by decreased expression levels of Fas receptor (FasR) and of the pro-apoptotic proteins Bax and Bad in liver tissues. In addition, CF102-induced apoptosis of Hep-3B cells both in vitro and in vivo via de-regulation of the PI3K-NF-κB signaling pathway, resulting in up-regulation of pro-apoptotic proteins. Taken together, CF102 acts as a protective agent in liver inflammation and inhibits HCC tumor growth. These results suggest that CF102 through its differential effect is a potential drug candidate to treat various pathological liver conditions.
Collapse
Affiliation(s)
- S. COHEN
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petach-Tikva, Israel
| | - S.M. STEMMER
- Davidoff Center, Rabin Medical Center, Institute of Oncology, Sackler School of Medicine, Tel Aviv University, Petach-Tikva, Israel
| | - G. ZOZULYA
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petach-Tikva, Israel
| | - A. OCHAION
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petach-Tikva, Israel
| | - R. PATOKA
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petach-Tikva, Israel
| | - F. BARER
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petach-Tikva, Israel
| | - S. BAR-YEHUDA
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petach-Tikva, Israel
| | - L. RATH-WOLFSON
- Department of Pathology, Rabin Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Petach-Tikva, Israel
| | - K.A. JACOBSON
- National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - P. FISHMAN
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petach-Tikva, Israel
| |
Collapse
|
34
|
Choi MJ, Chandra G, Lee HW, Hou X, Choi WJ, Phan K, Jacobson KA, Jeong LS. Regio- and stereoselective synthesis of truncated 3'-aminocarbanucleosides and their binding affinity at the A3 adenosine receptor. Org Biomol Chem 2011; 9:6955-62. [PMID: 21860878 DOI: 10.1039/c1ob05853c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereoselective synthesis of truncated 3'-aminocarbanucleosides 4a-d via a stereo- and regioselective conversion of a diol 9 to bromoacetate 11a and their binding affinity towards the human A(3) adenosine receptor are described.
Collapse
Affiliation(s)
- Mun Ju Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee HW, Choi WJ, Jacobson KA, Jeong LS. Synthesis and Binding Affinity of Homologated Adenosine Analogues as A 3Adenosine Receptor Ligands. B KOREAN CHEM SOC 2011; 32:1620-1624. [DOI: 10.5012/bkcs.2011.32.5.1620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA. Adenosine receptors and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1400-12. [DOI: 10.1016/j.bbamem.2010.09.020] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/14/2010] [Accepted: 09/20/2010] [Indexed: 01/25/2023]
|
37
|
Lee JH, Hong SM, Yun JY, Myoung H, Kim MJ. Anti-Cancer Effects of Cordycepin on Oral Squamous Cell Carcinoma Proliferation and Apoptosis in Vitro. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jct.2011.22029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Choi WJ, Lee HW, Kim HO, Chinn M, Gao ZG, Patel A, Jacobson KA, Moon HR, Jung YH, Jeong LS. Design and synthesis of N(6)-substituted-4'-thioadenosine-5'-uronamides as potent and selective human A(3) adenosine receptor agonists. Bioorg Med Chem 2009; 17:8003-11. [PMID: 19879151 DOI: 10.1016/j.bmc.2009.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 11/25/2022]
Abstract
On the basis of a bioisosteric rationale, 4'-thionucleoside analogues of IB-MECA (N(6)-(3-Iodo-benzyl)-9-(5'-methylaminocarbonyl-beta-d-ribofuranosyl)adenine), which is a potent and selective A(3) adenosine receptor (AR) agonist, were synthesized from d-gulonic acid gamma-lactone. The 4'-thio analogue (5h) of IB-MECA showed extremely high binding affinity (K(i)=0.25 nM) at the human A(3)AR and was more potent than IB-MECA (K(i)=1.4 nM). Bulky substituents at the 5'-uronamide position, such as cyclohexyl and 2-methylbenzyl, in this series of 2-H nucleoside derivatives were tolerated in A(3)AR binding, although small alkyl analogues were more potent.
Collapse
Affiliation(s)
- Won Jun Choi
- Department of Bioinspired Science and Division of Life and Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The study of the A(3) adenosine receptor (A(3)AR) represents a rapidly growing and intense area of research in the adenosine field. The present chapter will provide an overview of the expression patterns, molecular pharmacology and functional role of this A(3)AR subtype under pathophysiological conditions. Through studies utilizing selective A(3)AR agonists and antagonists, or A(3)AR knockout mice, it is now clear that this receptor plays a critical role in the modulation of ischemic diseases as well as in inflammatory and autoimmune pathologies. Therefore, the potential therapeutic use of agonists and antagonists will also be described. The discussion will principally address the use of such compounds in the treatment of brain and heart ischemia, asthma, sepsis and glaucoma. The final part concentrates on the molecular basis of A(3)ARs in autoimmune diseases such as rheumatoid arthritis, and includes a description of clinical trials with the selective agonist CF101. Based on this chapter, it is evident that continued research to discover agonists and antagonists for the A(3)AR subtype is warranted.
Collapse
|
40
|
Pal S, Choi WJ, Choe SA, Heller CL, Gao ZG, Chinn M, Jacobson KA, Hou X, Lee SK, Kim HO, Jeong LS. Structure-activity relationships of truncated adenosine derivatives as highly potent and selective human A3 adenosine receptor antagonists. Bioorg Med Chem 2009; 17:3733-8. [PMID: 19375920 DOI: 10.1016/j.bmc.2009.03.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 11/17/2022]
Abstract
On the basis of potent and selective binding affinity of truncated 4'-thioadenosine derivatives at the human A(3) adenosine receptor (AR), their bioisosteric 4'-oxo derivatives were designed and synthesized from commercially available 2,3-O-isopropylidene-D-erythrono lactone. The derivatives tested in AR binding assays were substituted at the C2 and N(6) positions. All synthesized nucleosides exhibited potent and selective binding affinity at the human A(3) AR. They were less potent than the corresponding 4'-thio analogues, but showed still selective to other subtypes. The 2-Cl series generally were better than the 2-H series in view of binding affinity and selectivity. Among compounds tested, compound 5d (X=Cl, R=3-bromobenzyl) showed the highest binding affinity (K(i)=13.0+/-6.9 nM) at the hA(3) AR with high selectivity (at least 88-fold) in comparison to other AR subtypes. Like the corresponding truncated 4'-thio series, compound 5d antagonized the action of an agonist to inhibit forskolin-stimulated adenylate cyclase in hA(3) AR-expressing CHO cells. Although the 4'-oxo series were less potent than the 4'-thio series, this class of human A(3) AR antagonists is also regarded as another good template for the design of A(3) AR antagonists and for further drug development.
Collapse
Affiliation(s)
- Shantanu Pal
- Department of Bioinspired Science and Division of Life and Pharmaceutical Sciences, Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fishman P, Bar-Yehuda S, Synowitz M, Powell JD, Klotz KN, Gessi S, Borea PA. Adenosine receptors and cancer. Handb Exp Pharmacol 2009:399-441. [PMID: 19639290 PMCID: PMC3598010 DOI: 10.1007/978-3-540-89615-9_14] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The A(1), A(2A), A(2B) and A(3) G-protein-coupled cell surface adenosine receptors (ARs) are found to be upregulated in various tumor cells. Activation of the receptors by specific ligands, agonists or antagonists, modulates tumor growth via a range of signaling pathways. The A(1)AR was found to play a role in preventing the development of glioblastomas. This antitumor effect of the A(1)AR is mediated via tumor-associated microglial cells. Activation of the A(2A)AR results in inhibition of the immune response to tumors via suppression of T regulatory cell function and inhibition of natural killer cell cytotoxicity and tumor-specific CD4+/CD8+ activity. Therefore, it is suggested that pharmacological inhibition of A(2A)AR activation by specific antagonists may enhance immunotherapeutics in cancer therapy. Activation of the A(2B)AR plays a role in the development of tumors via upregulation of the expression levels of angiogenic factors in microvascular endothelial cells. In contrast, it was evident that activation of A(2B)AR results in inhibition of ERK1/2 phosphorylation and MAP kinase activity, which are involved in tumor cell growth signals. Finally, A(3)AR was found to be highly expressed in tumor cells and tissues while low expression levels were noted in normal cells or adjacent tissue. Receptor expression in the tumor tissues was directly correlated to disease severity. The high receptor expression in the tumors was attributed to overexpression of NF-kappaB, known to act as an A(3)AR transcription factor. Interestingly, high A(3)AR expression levels were found in peripheral blood mononuclear cells (PBMCs) derived from tumor-bearing animals and cancer patients, reflecting receptor status in the tumors. A(3)AR agonists were found to induce tumor growth inhibition, both in vitro and in vivo, via modulation of the Wnt and the NF-kappaB signaling pathways. Taken together, A(3)ARs that are abundantly expressed in tumor cells may be targeted by specific A(3)AR agonists, leading to tumor growth inhibition. The unique characteristics of these A(3)AR agonists make them attractive as drug candidates.
Collapse
Affiliation(s)
- P Fishman
- Can-Fite BioPharma, Kiryat Matalon, Petach Tikva, 49170, Israel.
| | | | | | | | | | | | | |
Collapse
|
42
|
Miwatashi S, Arikawa Y, Matsumoto T, Uga K, Kanzaki N, Imai YN, Ohkawa S. Synthesis and biological activities of 4-phenyl-5-pyridyl-1,3-thiazole derivatives as selective adenosine A3 antagonists. Chem Pharm Bull (Tokyo) 2008; 56:1126-37. [PMID: 18670113 DOI: 10.1248/cpb.56.1126] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the potency of an adenosine A3 receptor (A3AR) antagonist as an anti-asthmatic drug, a novel series of 4-phenyl-5-pyridyl-1,3-thiazole derivatives was synthesized and evaluated in human adenosine A1, A2A and A3 receptor and rat adenosine A3 receptor binding assays. From investigation of the SAR study, compound 7af was identified as a highly potent human and rat A3AR antagonist. This compound inhibited IB-MECA-induced plasma protein extravasation in the skin of rats and showed good oral absorption. Also, compound 7af significantly inhibited antigen-induced hyper-responsiveness to acetylcholine in actively sensitized Brown Norway rats. These results show that 4-phenyl-5-pyridyl-1,3-thiazole derivatives are potential candidates to enable the evaluation of A3AR antagonists. Further evaluation of this class of compounds may afford a novel anti-inflammatory agent such as an anti-asthmatic drug.
Collapse
Affiliation(s)
- Seiji Miwatashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Jeong LS, Pal S, Choe SA, Choi WJ, Jacobson KA, Gao ZG, Klutz AM, Hou X, Kim HO, Lee HW, Lee SK, Tosh DK, Moon HR. Structure-activity relationships of truncated D- and l-4'-thioadenosine derivatives as species-independent A3 adenosine receptor antagonists. J Med Chem 2008; 51:6609-13. [PMID: 18811138 DOI: 10.1021/jm8008647] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel D- and l-4'-thioadenosine derivatives lacking the 4'-hydroxymethyl moiety were synthesized, starting from d-mannose and d-gulonic gamma-lactone, respectively, as potent and selective species-independent A 3 adenosine receptor (AR) antagonists. Among the novel 4'-truncated 2-H nucleosides tested, a N(6)-(3-chlorobenzyl) derivative 7c was the most potent at the human A 3 AR (K i = 1.5 nM), but a N(6)-(3-bromobenzyl) derivative 7d showed the optimal species-independent binding affinity.
Collapse
Affiliation(s)
- Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bar-Yehuda S, Silverman MH, Kerns WD, Ochaion A, Cohen S, Fishman P. The anti-inflammatory effect of A3 adenosine receptor agonists: a novel targeted therapy for rheumatoid arthritis. Expert Opin Investig Drugs 2007; 16:1601-13. [PMID: 17922624 DOI: 10.1517/13543784.16.10.1601] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Targeting the A(3) adenosine receptor (A(3)AR) to combat inflammation is a new concept based on two findings. First, A(3)AR is highly expressed in inflammatory cells, whereas low expression is found in normal tissues. This receptor was also found to be overexpressed in peripheral blood mononuclear cells, reflecting receptor status in the remote inflammatory process. Second, A(3)AR activation with a specific agonist induces de-regulation of the NF-kappaB signaling pathway in inflammatory cells, as well as initiation of immunomodulatory effects. The A(3)AR agonist CF-101 (known generically as IB-MECA) induces anti-inflammatory effects in experimental animal models of collagen- and adjuvant-induced arthritis. Combined therapy with CF-101 and methotrexate in adjuvant-induced arthritis rats yielded an additive anti-inflammatory effect. Methotrexate induced upregulation of A(3)AR, rendering the inflammatory cells more susceptible to CF-101. In Phase I and in Phase IIa human studies, CF-101 was safe, well tolerated and showed strong evidence of an anti-inflammatory effect in rheumatoid arthritis patients. In peripheral blood mononuclear cells withdrawn from the patients at base line, a statistically significant correlation between A(3)AR expression level and response to the drug was noted. It is suggested that A(3)AR may serve as a biologic marker to predict patient response to the drug. Taken together, this information suggests that A(3)AR agonists may be a new family of orally bioavailable drugs to be developed as potent inhibitors of autoimmune-inflammatory diseases.
Collapse
Affiliation(s)
- Sara Bar-Yehuda
- Can-Fite BioPharma, 10 Bareket Street, PO Box 7537, Petach-Tikva 49170, Israel
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Adenosine receptors (ARs) are a four-member subfamily of G protein-coupled receptors and are major targets of caffeine and theophylline. There are four subtypes of ARs, designated as A1, A2A, A2B and A3. Selective agonists are now available for all four subtypes. Over a dozen of these selective agonists are now in clinical trials for various conditions, although none has received regulatory approval except for the endogenous AR agonist adenosine itself. A1AR agonists are in clinical trials for cardiac arrhythmias and neuropathic pain. A2AAR agonists are now in trials for myocardial perfusion imaging and as anti-inflammatory agents. A2BAR agonists are under preclinical scrutiny for potential treatment of cardiac ischemia. A3AR agonists are in clinical trials for the treatment of rheumatoid arthritis and colorectal cancer. The present review will mainly cover the agonists that are presently in clinical trials for various conditions and only a brief introduction will be given to major chemical classes of AR agonists presently under investigation.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- NIDDK, National Institutes of Health, Molecular Recognition Section, Laboratory of Bioorganic Chemistry, Bldg. 8A, Room B1A-23, 9000 Rockville Pike, Bethesda, Maryland 20892-0810, USA.
| | | |
Collapse
|
46
|
Gunaga P, Kim HO, Lee HW, Tosh DK, Ryu JS, Choi S, Jeong LS. Stereoselective functionalization of the 1'-position of 4'-thionucleosides. Org Lett 2007; 8:4267-70. [PMID: 16956203 DOI: 10.1021/ol061548z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stereoselective synthesis of novel 1'-alpha-substituted-4'-thionucleosides was achieved starting from D-gulonic acid gamma-lactone via stereoselective nucleophilic substitution.
Collapse
Affiliation(s)
- Prashantha Gunaga
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, MacLennan S, Baraldi PG, Borea PA. Modulation of the Akt/Ras/Raf/MEK/ERK pathway by A₃ adenosine receptor. Purinergic Signal 2006; 2:627-32. [PMID: 18404465 PMCID: PMC2096659 DOI: 10.1007/s11302-006-9020-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 05/09/2006] [Accepted: 05/29/2006] [Indexed: 11/09/2022] Open
Abstract
Downstream A₃ receptor signalling plays an important role in the regulation of cell death and proliferation. Therefore, it is important to determine the molecular pathways involved through A₃ receptor stimulation. The phosphatidylinositide-3-OH kinase (PI3K)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. The crosstalk between these two pathways has also been investigated. The focus of this review centres on downstream mediators of A₃ adenosine receptor signalling.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17′9, 44100 Ferrara, Italy
| | - Annalisa Benini
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17′9, 44100 Ferrara, Italy
| | - Prisco Mirandola
- Department of Human Anatomy, Pharmacology and Forensic Medicine, Human Anatomy Section, University of Parma, Parma, Italy
| | - Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17′9, 44100 Ferrara, Italy
| | - Katia Varani
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17′9, 44100 Ferrara, Italy
| | - Edward Leung
- King Pharmaceuticals R&D, Cary, North Carolina USA
| | | | | | - Pier Andrea Borea
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17′9, 44100 Ferrara, Italy
- Interdisciplinary Centre for the Study of Inflammation, Ferrara, Italy
| |
Collapse
|
48
|
Torres VE, Harris PC. Mechanisms of Disease: autosomal dominant and recessive polycystic kidney diseases. ACTA ACUST UNITED AC 2006; 2:40-55; quiz 55. [PMID: 16932388 DOI: 10.1038/ncpneph0070] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 09/27/2005] [Indexed: 12/21/2022]
Abstract
Autosomal dominant polycystic kidney disease and autosomal recessive polycystic kidney disease are the best known of a large family of inherited diseases characterized by the development of renal cysts of tubular epithelial cell origin. Autosomal dominant and recessive polycystic kidney diseases have overlapping but distinct pathogeneses. Identification of the causative mutated genes and elucidation of the function of their encoded proteins is shedding new light on the mechanisms that underlie tubular epithelial cell differentiation. This review summarizes recent literature on the role of primary cilia, intracellular calcium homeostasis, and signaling involving Wnt, cyclic AMP and Ras/MAPK, in the pathogenesis of polycystic kidney disease. Improved understanding of pathogenesis and the availability of animal models orthologous to the human diseases provide an excellent opportunity for the development of pathophysiology-based therapies. Some of these have proven effective in preclinical studies, and clinical trials have begun.
Collapse
Affiliation(s)
- Vicente E Torres
- Mayo Clinic College of Medicine, Eisenberg S33B, Nephrology, 200 First St SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
49
|
Chung H, Jung JY, Cho SD, Hong KA, Kim HJ, Shin DH, Kim H, Kim HO, Shin DH, Lee HW, Jeong LS, Kong G. The antitumor effect of LJ-529, a novel agonist to A3 adenosine receptor, in both estrogen receptor-positive and estrogen receptor-negative human breast cancers. Mol Cancer Ther 2006; 5:685-92. [PMID: 16546983 DOI: 10.1158/1535-7163.mct-05-0245] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agonists to A3 adenosine receptor (A3AR) have been reported to inhibit cell growth and/or induce apoptosis in various tumors. We tested the effect of a novel A3AR agonist generically known as LJ-529 in breast cancer cells. Anchorage-dependent cell growth and in vivo tumor growth were attenuated by LJ-529, independently of its estrogen receptor (ER) alpha status. In addition, apoptosis was induced as evidenced by the activation of caspase-3 and c-poly(ADP)ribose polymerase. Furthermore, the Wnt signaling pathway was down-regulated and p27(kip) was induced by LJ-529. In ER-positive cells, the expression of ER was down-regulated by LJ-529, which might have additionally contributed to attenuated cell proliferation. In ER-negative, c-ErbB2-overexpressing SK-BR-3 cells, the expression of c-ErbB2 and its downstream extracellular signal-regulated kinase pathway were down-regulated by LJ-529. However, such effect of LJ-529 acted independently of its receptor because no A3AR was detected by reverse transcription-PCR in all four cell lines tested. In conclusion, our novel findings open the possibility of LJ-529 as an effective therapeutic agent against both ER-positive and ER-negative breast cancers, particularly against the more aggressive ER-negative, c-ErbB2-overexpressing types.
Collapse
Affiliation(s)
- Heekyoung Chung
- Department of Pathology, College of Medicine, Hanyang University, 133-791 Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Duong HT, Gao ZG, Jacobson KA. Nucleoside modification and concerted mutagenesis of the human A3 adenosine receptor to probe interactions between the 2-position of adenosine analogs and Gln167 in the second extracellular loop. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 24:1507-17. [PMID: 16438031 PMCID: PMC6954878 DOI: 10.1080/15257770500265778] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Residues of the second extracellular loop are believed to be important for ligand recognition in adenosine receptors. Molecular modeling studies have suggested that one such residue, Gln167 of the human A3 receptor, is in proximity to the C2 moiety of some adenosine analogs when bound. Here this putative interaction was systematically explored using a neoceptor strategy, i.e., by site-directed mutagenesis and examination of the affinities of nucleosides modified to have complementary functionality. Gln167 was mutated to Ala, Glu, and Arg, while the 2-position of several adenosine analogs was substituted with amine or carboxylic acid groups. All compounds tested lost affinity to the mutant receptors in comparison to the wild type. However, comparing affinities among the mutant receptors, several compounds bearing charge at the 2-position demonstrated preferential affinity for the mutant receptor bearing a residue of complementary charge. 13, with a positively-charged C2 moiety, displayed an 8.5-fold increase in affinity at the Q167E mutant receptor versus the Q167R mutant receptor Preferential affinity for specific mutant receptors was also observed for 8 and 12. The data suggests that a direct contact is made between the C2 substituent of some charged ligands and the mutant receptor bearing the opposite charge at position 167.
Collapse
Affiliation(s)
- Heng T Duong
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | | | | |
Collapse
|