1
|
Laganà A, Scalzulli E, Bisegna ML, Ielo C, Martelli M, Breccia M. Understanding and overcoming resistance to tyrosine kinase inhibitors (TKIs) in Chronic myeloid leukemia (CML). Expert Rev Hematol 2025; 18:65-79. [PMID: 39647915 DOI: 10.1080/17474086.2024.2440776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Chronic myeloid leukemia (CML) represents one of the first neoplasms whose molecular pathogenesis was successfully unraveled, with tyrosine kinase inhibitors (TKIs) representing one of the first-targeted therapies. TKIs have revolutionized long-term outcomes of CML patients and their life expectancy. Nonetheless, a minority of patients will develop TKI resistance due to a complex and multifactorial process that ultimately leads to the emergence of an unresponsive cancer clone. Overcoming TKI resistance is considered one of the major challenges in CML management. AREAS COVERED In this review, the main findings extrapolated from published research, guidelines, and clinical trials regarding TKI resistance (published before October 2024) are discussed. Data have been obtained through broad research on Medline, Embase, Pubmed, and archives from EHA and ASH congresses. EXPERT OPINION Nowadays, asciminib and ponatinib have expanded the therapeutic arsenal for resistant-CML management and allogenic transplant still represents an important alternative in the context of multiple TKI failures. Off-label use of TKIs combination therapies, although theoretically appealing, lacks robust clinical evidence and regulatory approval. Looking ahead, the introduction of novel technologies such as digital PCR (dPCR) and next generation sequencing (NGS) holds great potential to revolutionize the management of TKI-resistant CML cases.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Tyrosine Kinase Inhibitors
- Imidazoles
- Pyridazines
Collapse
Affiliation(s)
- Alessandro Laganà
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Laura Bisegna
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Ielo
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Wijaya I, Bashari MH, Reniarti L, Rahmawati A, Roesli RMA. JAK2 as Predictor of Therapeutic Response in Patients with Chronic Myeloid Leukemia Treated with Imatinib. DISEASE MARKERS 2024; 2024:2906566. [PMID: 38716474 PMCID: PMC11074917 DOI: 10.1155/2024/2906566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024]
Abstract
Background Chronic myeloid leukemia (CML) or chronic granulocytic leukemia is a myeloproliferative neoplasm indicated by the presence of the Philadelphia (Ph+) chromosome. First-line tyrosine kinase inhibitor, imatinib, is the gold standard for treatment. However, there has been known unresponsiveness to treatment, especially due to the involvement of other genes, such as the Janus kinase 2 (JAK2) gene. This study aimed to evaluate the relationships between JAK2 levels and complete hematological response (CHR), as well as early molecular response (EMR) after 3 months of imatinib treatment in patients with chronic phase CML. Methods Patients with Ph+ CML in the chronic phase (n = 40; mean age, 40 ± 11 years) were recruited to complete assessments consisting of clinical examination and blood test, including evaluation of complete blood counts and the JAK2 levels, at baseline and following 3 months of therapy with imatinib (at an oral dose of 400 mg per day). Subjects were divided into two groups according to the presence of CHR and EMR. Results JAK2 gene levels, phosphorylated, and total JAK2 proteins at baseline were significantly lower in the group with the presence of CHR and EMR. In addition, baseline JAK2 levels, including JAK2 gene expression, phosphorylated, and total JAK2 proteins, were negatively correlated with the presence of CHR and EMR. Conclusions Based on these findings, JAK2 levels may be a potential indicator for evaluating treatment response on imatinib due to its role in the pathophysiology of CML.
Collapse
Affiliation(s)
- Indra Wijaya
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Muhammad H. Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Lelani Reniarti
- Department of Child Health, Faculty of Medicine, Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Anita Rahmawati
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Rully M. A. Roesli
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine, Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
3
|
Zehtabcheh S, Yousefi AM, Momeny M, Bashash D. C-Myc inhibition intensified the anti-leukemic properties of Imatinib in chronic myeloid leukemia cells. Mol Biol Rep 2023; 50:10157-10167. [PMID: 37924446 DOI: 10.1007/s11033-023-08832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Due to its remarkable efficacy in producing hematologic, cytogenetic, and molecular remissions, the FDA approved Imatinib as the first-line treatment for newly diagnosed Chronic Myeloid Leukemia (CML) patients. However, in some patients, failure to completely eradicate leukemic cells and the escape of these cells from death will lead to the development of resistance to Imatinib, and many are concerned about the prospects of this Tyrosine Kinase Inhibitor (TKI). It has been documented that the compensatory overexpression of c-Myc is among the most critical mechanisms that promote drug efflux and resistance in CML stem cells. METHODS In order to examine the potential of c-Myc inhibition through the use of 10058-F4 to enhance the anti-leukemic properties of Imatinib, we conducted trypan blue and MTT assays. Additionally, we employed flow cytometric analysis and qRT-PCR to assess the effects of this combination on cell cycle progression and apoptosis. RESULTS The findings of our study indicate that the combination of 10058-F4 and Imatinib exhibited significantly stronger anti-survival and anti-proliferative effects on CML-derived-K562 cells in comparison to either agent administered alone. It is noteworthy that these results were also validated in the CML-derived NALM-1 cell line. Molecular analysis of this synergistic effect revealed that the inhibition of c-Myc augmented the efficacy of Imatinib by modulating the expression of genes related to cell cycle, apoptosis, autophagy, and proteasome. CONCLUSIONS Taken together, the findings of this investigation have demonstrated that the suppression of the c-Myc oncoprotein through the use of 10058-F4 has augmented the effectiveness of Imatinib, suggesting that this amalgamation could offer a fresh perspective on an adjunctive treatment for individuals with CML. Nevertheless, additional scrutiny, encompassing in-vivo examinations and clinical trials, is requisite.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Apoptosis
Collapse
Affiliation(s)
- Sara Zehtabcheh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sigvardsson M. Transcription factor networks link B-lymphocyte development and malignant transformation in leukemia. Genes Dev 2023; 37:703-723. [PMID: 37673459 PMCID: PMC10546977 DOI: 10.1101/gad.349879.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| |
Collapse
|
5
|
De Santis S, Monaldi C, Mancini M, Bruno S, Cavo M, Soverini S. Overcoming Resistance to Kinase Inhibitors: The Paradigm of Chronic Myeloid Leukemia. Onco Targets Ther 2022; 15:103-116. [PMID: 35115784 PMCID: PMC8800859 DOI: 10.2147/ott.s289306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Protein kinases (PKs) play crucial roles in cellular proliferation and survival, hence their deregulation is a common event in the pathogenesis of solid and hematologic malignancies. Targeting PKs has been a promising strategy in cancer treatment, and there are now a variety of approved anticancer drugs targeting PKs. However, the phenomenon of resistance remains an obstacle to be addressed and overcoming resistance is a goal to be achieved. Chronic myeloid leukemia (CML) is the first as well as one of the best examples of a cancer that can be targeted by molecular therapy; hence, it can be used as a model disease for other cancers. This review aims to summarize up-to-date knowledge on the main mechanisms implicated in resistance to PK inhibitory therapies and to outline the main strategies that are being explored to overcome resistance. The importance of molecular diagnostics and disease monitoring in counteracting resistance will also be discussed.
Collapse
Affiliation(s)
- Sara De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- Correspondence: Sara De Santis Insitute of Hematology “Lorenzo e Ariosto Seràgnoli”, Via Massarenti 9, Bologna, 40138, ItalyTel +39 051 2143791Fax +39 051 2144037 Email
| | - Cecilia Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Manuela Mancini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Samantha Bruno
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Michele Cavo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Simona Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| |
Collapse
|
6
|
Buks R, Dagher T, Rotordam MG, Monedero Alonso D, Cochet S, Gautier EF, Chafey P, Cassinat B, Kiladjian JJ, Becker N, Plo I, Egée S, El Nemer W. Altered Ca 2+ Homeostasis in Red Blood Cells of Polycythemia Vera Patients Following Disturbed Organelle Sorting during Terminal Erythropoiesis. Cells 2021; 11:49. [PMID: 35011611 PMCID: PMC8750512 DOI: 10.3390/cells11010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Over 95% of Polycythemia Vera (PV) patients carry the V617F mutation in the tyrosine kinase Janus kinase 2 (JAK2), resulting in uncontrolled erythroid proliferation and a high risk of thrombosis. Using mass spectrometry, we analyzed the RBC membrane proteome and showed elevated levels of multiple Ca2+ binding proteins as well as endoplasmic-reticulum-residing proteins in PV RBC membranes compared with RBC membranes from healthy individuals. In this study, we investigated the impact of JAK2V617F on (1) calcium homeostasis and RBC ion channel activity and (2) protein expression and sorting during terminal erythroid differentiation. Our data from automated patch-clamp show modified calcium homeostasis in PV RBCs and cell lines expressing JAK2V617F, with a functional impact on the activity of the Gárdos channel that could contribute to cellular dehydration. We show that JAK2V617F could play a role in organelle retention during the enucleation step of erythroid differentiation, resulting in modified whole cell proteome in reticulocytes and RBCs in PV patients. Given the central role that calcium plays in the regulation of signaling pathways, our study opens new perspectives to exploring the relationship between JAK2V617F, calcium homeostasis, and cellular abnormalities in myeloproliferative neoplasms, including cellular interactions in the bloodstream in relation to thrombotic events.
Collapse
Affiliation(s)
- Ralfs Buks
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
| | - Tracy Dagher
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- U1287, Inserm, Université Paris-Saclay, Gustave Roussy, F-94800 Villejuif, France
| | - Maria Giustina Rotordam
- Nanion Technologies GmbH, 80339 Munich, Germany; (M.G.R.); (N.B.)
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Kirrbergerstr. 100, DE-66424 Homburg, Germany
| | - David Monedero Alonso
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, F-29680 Roscoff, France
| | - Sylvie Cochet
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
| | - Emilie-Fleur Gautier
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Institut Imagine-INSERM U1163, Necker Hospital, Université de Paris, F-75015 Paris, France
- Proteomics Platform 3P5, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104 Paris, France;
| | - Philippe Chafey
- Proteomics Platform 3P5, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104 Paris, France;
| | - Bruno Cassinat
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- IRSL, U1131, INSERM, Université de Paris, F-75010 Paris, France
- Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, AP-HP, F-75010 Paris, France
| | - Jean-Jacques Kiladjian
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- IRSL, U1131, INSERM, Université de Paris, F-75010 Paris, France
- Centre d’Investigations Cliniques, Hôpital Saint-Louis, Université de Paris, F-75010 Paris, France
| | - Nadine Becker
- Nanion Technologies GmbH, 80339 Munich, Germany; (M.G.R.); (N.B.)
| | - Isabelle Plo
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- U1287, Inserm, Université Paris-Saclay, Gustave Roussy, F-94800 Villejuif, France
| | - Stéphane Egée
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, F-29680 Roscoff, France
| | - Wassim El Nemer
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Etablissement Français du Sang PACA-Corse, F-13005Marseille, France
- Aix Marseille Univ, EFS, CNRS, ADES, “Biologie des Groupes Sanguins”, F-13005 Marseille, France
| |
Collapse
|
7
|
Sumi K, Tago K, Nakazawa Y, Takahashi K, Ohe T, Mashino T, Funakoshi-Tago M. A bis-pyridinium fullerene derivative induces apoptosis through the generation of ROS in BCR-ABL-positive leukemia cells. Eur J Pharmacol 2021; 916:174714. [PMID: 34953803 DOI: 10.1016/j.ejphar.2021.174714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
A fusion protein, Breakpoint cluster region-Abelson (BCR-ABL) is responsible for the development of chronic myeloid leukemia (CML) and acute lymphocytic leukemia (ALL). Inhibitors against BCR-ABL are effective for the treatment of leukemia; however, a gatekeeper mutation (T315I) in BCR-ABL results in resistance to these inhibitors, which markedly impedes their efficacy. We herein demonstrated that a bis-pyridinium fullerene derivative (BPF) significantly induced apoptosis in human CML-derived K562 cells and ALL-derived SUP-B15 cells via the generation of reactive oxygen species (ROS). BPF reduced the expression of Bcr-Abl mRNA by inhibiting expression of c-Myc through ROS production. BPF also accelerated protein degradation of BCR-ABL through ROS production. Furthermore, BPF down-regulated the expression of not only BCR-ABL but also T315I-mutated BCR-ABL in ROS-dependent manner. As a result, BPF effectively induced apoptosis in transformed Ba/F3 cells expressing both BCR-ABL and T315I-mutated BCR-ABL. Collectively, these results indicate the potential of BPF as an effective leukemia drug that overcomes resistance to BCR-ABL inhibitors.
Collapse
Affiliation(s)
- Kazuya Sumi
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, 329-0498, Japan.
| | - Yosuke Nakazawa
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kyoko Takahashi
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Tomoyuki Ohe
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Tadahiko Mashino
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
8
|
Gajzer D, Logothetis CN, Sallman DA, Calon G, Babu A, Chan O, Vincelette ND, Volpe VO, Al Ali NH, Basra P, Talati C, Kuykendall AT, Mo Q, Padron E, Sweet K, Komrokji RS, Lancet JE, Yun S, Zhang L. MYC overexpression is associated with an early disease progression from MDS to AML. Leuk Res 2021; 111:106733. [PMID: 34749168 DOI: 10.1016/j.leukres.2021.106733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Recent studies demonstrated that MYC epigenetically regulates AML cell survival and differentiation by suppressing IDH1/2-TET2-5hmC signaling and that MYC overexpression is associated with poor survival outcomes in multiple AML patient cohorts. However, the oncogenic roles of MYC in MDS remain to be explored. A total of 41 patients with de novo MDS were retrospectively identified using the Total Cancer Care database at the Moffitt Cancer Center. A total of 61 % of patients had low MYC expression and 39 % of patients had high MYC expression defined as MYC reactivity by immunohistochemical staining in ≥5% of bone marrow (BM) cells at the time of MDS diagnosis. The median MDS-to-AML progression free survival (PFS) was significantly shorter in the high MYC group (median PFS 9.3 vs. 17.7 months, HR = 2.328, p = 0.013). Further, overall survival (OS) was also shorter in the high MYC patients (median OS 19.7 vs. 51.7 months, HR = 2.299, p = 0.053). Multivariate analyses demonstrated that high MYC expression is an independent poor prognostic factor for the MDS-to-AML progression (HR = 2.275, p = 0.046). Our observations indicate that MYC may play a crucial role in MDS transformation to AML and the underlying mechanisms of MYC-driven MDS clonal expansion and leukemic transformation require further investigation.
Collapse
Affiliation(s)
- David Gajzer
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Abida Babu
- University of South Florida, Internal Medicine, Tampa, FL, USA
| | - Onyee Chan
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nicole D Vincelette
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Virginia O Volpe
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Najla H Al Ali
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Pukhraz Basra
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chetasi Talati
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Andrew T Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Kendra Sweet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rami S Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jeffrey E Lancet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Seongseok Yun
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
9
|
Porazzi P, De Dominici M, Salvino J, Calabretta B. Targeting the CDK6 Dependence of Ph+ Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12091355. [PMID: 34573335 PMCID: PMC8467343 DOI: 10.3390/genes12091355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Ph+ ALL is a poor-prognosis leukemia subtype driven by the BCR-ABL1 oncogene, either the p190- or the p210-BCR/ABL isoform in a 70:30 ratio. Tyrosine Kinase inhibitors (TKIs) are the drugs of choice in the therapy of Ph+ ALL. In combination with standard chemotherapy, TKIs have markedly improved the outcome of Ph+ ALL, in particular if this treatment is followed by bone marrow transplantation. However, resistance to TKIs develops with high frequency, causing leukemia relapse that results in <5-year overall survival. Thus, new therapies are needed to address relapsed/TKI-resistant Ph+ ALL. We have shown that expression of cell cycle regulatory kinase CDK6, but not of the highly related CDK4 kinase, is required for the proliferation and survival of Ph+ ALL cells. Comparison of leukemia suppression induced by treatment with the clinically-approved dual CDK4/6 inhibitor palbociclib versus CDK6 silencing revealed that the latter treatment was markedly more effective, probably reflecting inhibition of CDK6 kinase-independent effects. Thus, we developed CDK4/6-targeted proteolysis-targeting chimeras (PROTACs) that preferentially degrade CDK6 over CDK4. One compound termed PROTAC YX-2-107, which degrades CDK6 by recruiting the Cereblon ubiquitin ligase, markedly suppressed leukemia burden in mice injected with de novo or TKI-resistant Ph+ ALL. The effect of PROTAC YX-2-107 was comparable or superior to that of palbociclib. The development of CDK6-selective PROTACs represents an effective strategy to exploit the “CDK6 dependence” of Ph+ ALL cells while sparing a high proportion of normal hematopoietic progenitors that depend on both CDK6 and CDK6 for their survival. In combination with other agents, CDK6-selective PROTACs may be valuable components of chemotherapy-free protocols for the therapy of Ph+ ALL and other CDK6-dependent hematological malignancies.
Collapse
Affiliation(s)
- Patrizia Porazzi
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Correspondence:
| | - Marco De Dominici
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
10
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Burchett JB, Knudsen-Clark AM, Altman BJ. MYC Ran Up the Clock: The Complex Interplay between MYC and the Molecular Circadian Clock in Cancer. Int J Mol Sci 2021; 22:7761. [PMID: 34299381 PMCID: PMC8305799 DOI: 10.3390/ijms22147761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The MYC oncoprotein and its family members N-MYC and L-MYC are known to drive a wide variety of human cancers. Emerging evidence suggests that MYC has a bi-directional relationship with the molecular clock in cancer. The molecular clock is responsible for circadian (~24 h) rhythms in most eukaryotic cells and organisms, as a mechanism to adapt to light/dark cycles. Disruption of human circadian rhythms, such as through shift work, may serve as a risk factor for cancer, but connections with oncogenic drivers such as MYC were previously not well understood. In this review, we examine recent evidence that MYC in cancer cells can disrupt the molecular clock; and conversely, that molecular clock disruption in cancer can deregulate and elevate MYC. Since MYC and the molecular clock control many of the same processes, we then consider competition between MYC and the molecular clock in several select aspects of tumor biology, including chromatin state, global transcriptional profile, metabolic rewiring, and immune infiltrate in the tumor. Finally, we discuss how the molecular clock can be monitored or diagnosed in human tumors, and how MYC inhibition could potentially restore molecular clock function. Further study of the relationship between the molecular clock and MYC in cancer may reveal previously unsuspected vulnerabilities which could lead to new treatment strategies.
Collapse
Affiliation(s)
- Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Amelia M. Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
12
|
Mu H, Zhu X, Jia H, Zhou L, Liu H. Combination Therapies in Chronic Myeloid Leukemia for Potential Treatment-Free Remission: Focus on Leukemia Stem Cells and Immune Modulation. Front Oncol 2021; 11:643382. [PMID: 34055612 PMCID: PMC8155539 DOI: 10.3389/fonc.2021.643382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Although tyrosine Kinase Inhibitors (TKI) has revolutionized the treatment of chronic myeloid leukemia (CML), patients are not cured with the current therapy modalities. Also, the more recent goal of CML treatment is to induce successful treatment-free remission (TFR) among patients achieving durable deep molecular response (DMR). Together, it is necessary to develop novel, curative treatment strategies. With advancements in understanding the biology of CML, such as dormant Leukemic Stem Cells (LSCs) and impaired immune modulation, a number of agents are now under investigation. This review updates such agents that target LSCs, and together with TKIs, have the potential to eradicate CML. Moreover, we describe the developing immunotherapy for controlling CML.
Collapse
Affiliation(s)
- Hui Mu
- Medical School, Nantong University, Nantong, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Jia
- Medical School, Nantong University, Nantong, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
13
|
Potential functions of hsa-miR-155-5p and core genes in chronic myeloid leukemia and emerging role in human cancer: A joint bioinformatics analysis. Genomics 2021; 113:1647-1658. [PMID: 33862181 DOI: 10.1016/j.ygeno.2021.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/07/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Considering the critical roles of hsa-miR-155-5p participated in hematopoietic system, this study aims to clarify the possible pathogenesis of chronic myeloid leukemia (CML) induced by hsa-miR-155-5p.Three different strategies were employed, namely a network-based pipeline, a survival analysis and genetic screening method, and a simulation modeling approach, to assess the oncogenic role of hsa-miR-155-5p in CML. We identified new potential roles of hsa-miR-155-5p in CML, involving the BCR/ABL-mediated leukemogenesis through MAPK signaling. Several promising targets including E2F2, KRAS and FLI1 were screened as candidate diagnostic marker genes. The survival analysis revealed that mRNA expression of E2F2, KRAS and FLI1 was negatively correlated with hsa-miR-155-5p and these targets were significantly associated with poor overall survival. Furthermore, an overlap between CML-related genes and hsa-miR-155-5p target genes was revealed using competing endogenous RNA (ceRNA) networks analysis. Taken together, our results reveal the dynamic regulatory aspect of hsa-miR-155-5p as potential player in CML pathogenesis.
Collapse
|
14
|
Gene Transactivation and Transrepression in MYC-Driven Cancers. Int J Mol Sci 2021; 22:ijms22073458. [PMID: 33801599 PMCID: PMC8037706 DOI: 10.3390/ijms22073458] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
MYC is a proto-oncogene regulating a large number of genes involved in a plethora of cellular functions. Its deregulation results in activation of MYC gene expression and/or an increase in MYC protein stability. MYC overexpression is a hallmark of malignant growth, inducing self-renewal of stem cells and blocking senescence and cell differentiation. This review summarizes the latest advances in our understanding of MYC-mediated molecular mechanisms responsible for its oncogenic activity. Several recent findings indicate that MYC is a regulator of cancer genome and epigenome: MYC modulates expression of target genes in a site-specific manner, by recruiting chromatin remodeling co-factors at promoter regions, and at genome-wide level, by regulating the expression of several epigenetic modifiers that alter the entire chromatin structure. We also discuss novel emerging therapeutic strategies based on both direct modulation of MYC and its epigenetic cofactors.
Collapse
|
15
|
Yun S, Vincelette ND, Yu X, Watson GW, Fernandez MR, Yang C, Hitosugi T, Cheng CH, Freischel AR, Zhang L, Li W, Hou H, Schaub FX, Vedder AR, Cen L, McGraw KL, Moon J, Murphy DJ, Ballabio A, Kaufmann SH, Berglund AE, Cleveland JL. TFEB links MYC signaling to epigenetic control of myeloid differentiation and acute myeloid leukemia. Blood Cancer Discov 2021; 2:162-185. [PMID: 33860275 PMCID: PMC8043621 DOI: 10.1158/2643-3230.bcd-20-0029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
MYC oncoproteins regulate transcription of genes directing cell proliferation, metabolism and tumorigenesis. A variety of alterations drive MYC expression in acute myeloid leukemia (AML) and enforced MYC expression in hematopoietic progenitors is sufficient to induce AML. Here we report that AML and myeloid progenitor cell growth and survival rely on MYC-directed suppression of Transcription Factor EB (TFEB), a master regulator of the autophagy-lysosome pathway. Notably, although originally identified as an oncogene, TFEB functions as a tumor suppressor in AML, where it provokes AML cell differentiation and death. These responses reflect TFEB control of myeloid epigenetic programs, by inducing expression of isocitrate dehydrogenase-1 (IDH1) and IDH2, resulting in global hydroxylation of 5-methycytosine. Finally, activating the TFEB-IDH1/IDH2-TET2 axis is revealed as a targetable vulnerability in AML. Thus, epigenetic control by a MYC-TFEB circuit dictates myeloid cell fate and is essential for maintenance of AML.
Collapse
Affiliation(s)
- Seongseok Yun
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nicole D Vincelette
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xiaoqing Yu
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gregory W Watson
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mario R Fernandez
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Chunying Yang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Taro Hitosugi
- Department of Molecular Pharmacology and Experimental Therapeutics, and Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Chia-Ho Cheng
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Audrey R Freischel
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ling Zhang
- Department of Pathology and Laboratory Medicine, Tampa, Florida
| | - Weimin Li
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hsinan Hou
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan
| | - Franz X Schaub
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Alexis R Vedder
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ling Cen
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kathy L McGraw
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jungwon Moon
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Daniel J Murphy
- University of Glasgow, Institute of Cancer Sciences, Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, and Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Anders E Berglund
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John L Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
16
|
Zehtabcheh S, Yousefi AM, Salari S, Safa M, Momeny M, Ghaffari SH, Bashash D. Abrogation of histone deacetylases (HDACs) decreases survival of chronic myeloid leukemia cells: New insight into attenuating effects of the PI3K/c-Myc axis on panobinostat cytotoxicity. Cell Biol Int 2021; 45:1111-1121. [PMID: 33501756 DOI: 10.1002/cbin.11557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Although the identification of tyrosine kinase inhibitors (TKIs) has changed the treatment paradigm of many cancer types including chronic myeloid leukemia (CML), still adjustment of neoplastic cells to cytotoxic effects of anticancer drugs is a serious challenge. In the area of drug resistance, epigenetic alterations are at the center of attention and the present study aimed to evaluate whether blockage of epigenetics mechanisms using a pan-histone deacetylase (HDAC) inhibitor induces cell death in CML-derived K562 cells. We found that the abrogation of HDACs using panobinostat resulted in a reduction in survival of the K562 cell line through p27-mediated cell cycle arrest. Noteworthy, the results of the synergistic experiments revealed that HDAC suppression could be recruited as a way to potentiate cytotoxicity of Imatinib and to enhance the therapeutic efficacy of CML. Here, we proposed for the first time that the inhibitory effect of panobinostat was overshadowed, at least partially, through the aberrant activation of the phosphoinositide 3-kinase (PI3K)/c-Myc axis. Meanwhile, we found that upon blockage of autophagy and the proteasome pathway, as the main axis involved in the activation of autophagy, the anti-leukemic property of the HDAC inhibitor was potentiated. Taken together, our study suggests the beneficial application of HDAC inhibition in the treatment strategies of CML; however, further in vivo studies are needed to determine the efficacy of this inhibitor, either as a single agent or in combination with small molecule inhibitors of PI3K and/or c-Myc in this malignancy.
Collapse
Affiliation(s)
- Sara Zehtabcheh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology, Hematology and Bone Marrow Transplantation, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
de Barrios O, Meler A, Parra M. MYC's Fine Line Between B Cell Development and Malignancy. Cells 2020; 9:E523. [PMID: 32102485 PMCID: PMC7072781 DOI: 10.3390/cells9020523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor MYC is transiently expressed during B lymphocyte development, and its correct modulation is essential in defined developmental transitions. Although temporary downregulation of MYC is essential at specific points, basal levels of expression are maintained, and its protein levels are not completely silenced until the B cell becomes fully differentiated into a plasma cell or a memory B cell. MYC has been described as a proto-oncogene that is closely involved in many cancers, including leukemia and lymphoma. Aberrant expression of MYC protein in these hematological malignancies results in an uncontrolled rate of proliferation and, thereby, a blockade of the differentiation process. MYC is not activated by mutations in the coding sequence, and, as reviewed here, its overexpression in leukemia and lymphoma is mainly caused by gene amplification, chromosomal translocations, and aberrant regulation of its transcription. This review provides a thorough overview of the role of MYC in the developmental steps of B cells, and of how it performs its essential function in an oncogenic context, highlighting the importance of appropriate MYC regulation circuitry.
Collapse
Affiliation(s)
| | | | - Maribel Parra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, 08916 Barcelona, Spain (A.M.)
| |
Collapse
|
18
|
Zhang Z, Chen Z, Jiang M, Liu S, Guo Y, Wan L, Li F. Heterogeneous BCR-ABL1 signal patterns identified by fluorescence in situ hybridization are associated with leukemic clonal evolution and poorer prognosis in BCR-ABL1 positive leukemia. BMC Cancer 2019; 19:935. [PMID: 31594548 PMCID: PMC6781398 DOI: 10.1186/s12885-019-6137-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/04/2019] [Indexed: 01/29/2023] Open
Abstract
Background Although extensive use of tyrosine kinase inhibitors has resulted in high and durable response rate and prolonged survival time in patients with BCR-ABL1 positive chronic myeloid leukemia (CML) and acute leukemia, relapse and drug resistance still remain big challenges for clinicians. Monitoring the expression of BCR-ABL1 fusion gene and identifying ABL kinase mutations are effective means to predict disease relapse and resistance. However, the prognostic impact of BCR-ABL1 signal patterns detected by fluorescence in situ hybridization (FISH) remains largely unaddressed. Methods BCR-ABL1 signal patterns were analyzed using FISH in 243 CML-chronic phase (CML-CP), 17 CML-blast phase (CML-BP) and 52 BCR-ABL1 positive acute lymphoblastic leukemia (ALL) patients. Results The patterns of BCR-ABL1 signals presented complexity and diversity. A total of 12 BCR-ABL1 signals were observed in this cohort, including 1R1G2F, 1R1G1F, 2R1G1F, 1R2G1F, 2R2G1F, 1R2G2F, 1R1G3F, 1G3F, 2G3F, 1G4F, 1R1G4F and 1R4F. Complex BCR-ABL1 signal patterns (≥ two types of signal patterns) were observed in 52.9% (n = 9) of the CML-BP patients, followed by 30.8% (n = 16) of the ALL patients and only 2.1% (n = 5) of the CML-CP patients. More importantly, five clonal evolution patterns related to disease progression and relapse were observed, and patients with complex BCR-ABL1 signal patterns had a poorer overall survival (OS) time compared with those with single patterns (5.0 vs.15.0 months, p = 0.006). Conclusions Our data showed that complex BCR-ABL1 signal patterns were associated with leukemic clonal evolution and poorer prognosis in BCR-ABL1 positive leukemia. Monitoring BCR-ABL1 signal patterns might be an effective means to provide prognostic guidance and treatment choices for these patients.
Collapse
Affiliation(s)
- Zhanglin Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, 330006, China
| | - Zhiwei Chen
- Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, 330006, China.,Department of Hematology, the First Affiliated Hospital of Nanchang University, No. 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Mei Jiang
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shuyuan Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yang Guo
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lagen Wan
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fei Li
- Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, 330006, China. .,Department of Hematology, the First Affiliated Hospital of Nanchang University, No. 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China. .,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nanchang, 330006, China.
| |
Collapse
|
19
|
Yun S, Sharma R, Chan O, Vincelette ND, Sallman DA, Sweet K, Padron E, Komrokji R, Lancet JE, Abraham I, Moscinski LC, Cleveland JL, List AF, Zhang L. Prognostic significance of MYC oncoprotein expression on survival outcome in patients with acute myeloid leukemia with myelodysplasia related changes (AML-MRC). Leuk Res 2019; 84:106194. [PMID: 31357093 DOI: 10.1016/j.leukres.2019.106194] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
MYC is an oncoprotein that coordinates the expression of genes involved in metabolism, cell differentiation and survival in various types of malignancies. However, the underlying oncogenic mechanisms and the clinical significance of MYC expression in the acute myeloid leukemia with myelodysplasia related changes (AML-MRC) remain to be answered. A total of 135 patients were retrospectively identified using Total Cancer Care (TCC) Moffitt Cancer Center (MCC) databases. Diagnosis of AML-MRC was based on the 2016 WHO classification utilizing bone marrow (BM) evaluation. MYC protein expression level was assessed by immunohistochemistry (IHC) staining using paraffin-embedded BM trephine biopsy samples obtained at the time of diagnosis or relapse. Concurrent somatic mutations were assessed using targeted next generation sequencing that include 54 genes. A total of 38% (n = 51) and 62% (n = 84) patients had high and low MYC expression, respectively. The most common somatic mutation in our cohort was TP53 followed by DNMT3A, and ASXL1. The median OS was significantly longer in low MYC patients (median OS 42.3 vs. 17.05 months, p = 0.0109). Multivariate analysis including MYC expression level, transplantation status, gender and age demonstrated high MYC expression (HR 1.77, 95% CI 1.004-3.104, p = 0.045) to be an independent poor prognostic factor. Further studies are needed to identify the underlying mechanism of MYC driven oncogenesis in AML-MRC. Additionally, the prognostic impact of MYC on the AML survival in a larger cohort that include diverse somatic mutations and chromosomal abnormalities requires further investigation.
Collapse
Affiliation(s)
- Seongseok Yun
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States; Department of Medicine, Division of Hematology & Medical Oncology, University of South Florida, Tampa, FL, United States
| | - Rohit Sharma
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Onyee Chan
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Nicole D Vincelette
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Kendra Sweet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Jeffrey E Lancet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Ivo Abraham
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, Arizona, United States
| | - Lynn C Moscinski
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - John L Cleveland
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States; Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Alan F List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Ling Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.
| |
Collapse
|
20
|
Tyrosine Kinase Inhibitor Imatinib Mesylate Alters DMBA-Induced Early Onco/Suppressor Gene Expression with Tissue-Specificity in Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8670398. [PMID: 30882001 PMCID: PMC6383434 DOI: 10.1155/2019/8670398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/28/2018] [Accepted: 01/13/2019] [Indexed: 12/30/2022]
Abstract
Tyrosine kinases play crucial roles in cellular development and tumorigenesis. Tyrosine kinase inhibitors (TKIs) are effective and widely used drug molecules in targeted cancer therapies. Altered expressions of protooncogenes and tumor suppressor genes after DMBA (7,12-dimethylbenz[a]anthracene) treatment have been described as early markers of tumor induction; however their tissue-specific effects remain still unclear. Our study was aimed at examining the short-term possible antineoplastic and chemopreventive effects of a TKI compound (imatinib mesylate) on a DMBA-induced mouse tumor model. In addition, we also investigated the tissue-specific expressions of Hras, Kras, Myc, and Trp53 genes in the brain, bone marrow, spleen, liver, abdominal lymph nodes, thymus, lungs, and kidneys, respectively. 24 hours after the imatinib mesylate injection, we observed significant Kras downregulation in the bone marrow and lung of the DMBA-treated mice. Moreover, the mRNA expression of Myc was also found to be decreased significantly in the spleen. Interestingly, while Trp53 expression was significantly increased in the lung, it was decreased in the other tissues. However, there was also a tendency in the decreased Myc level in the bone marrow, brain, kidneys, lungs, and lymph nodes and in the decreased Hras level in the bone marrow, kidneys, and lungs, although no significant differences were observed. Our findings indicate rapid tissue-specific impact of imatinib mesylate on DMBA-induced gene expression in vivo, supporting the chemopreventive potential of imatinib mesylate in cancer.
Collapse
|
21
|
Martín-Rodríguez P, Guerra B, Hueso-Falcón I, Aranda-Tavío H, Díaz-Chico J, Quintana J, Estévez F, Díaz-Chico B, Amesty A, Estévez-Braun A, Fernández-Pérez L. A Novel Naphthoquinone-Coumarin Hybrid That Inhibits BCR-ABL1-STAT5 Oncogenic Pathway and Reduces Survival in Imatinib-Resistant Chronic Myelogenous Leukemia Cells. Front Pharmacol 2019; 9:1546. [PMID: 30687103 PMCID: PMC6334626 DOI: 10.3389/fphar.2018.01546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
BCR-ABL1-STAT5 is an oncogenic signaling pathway in human chronic myelogenous leukemia (CML) and it represents a valid target for anti-CML drug design. Resistance to direct BCR-ABL1 inhibitors is a common clinical issue, so STAT5 inhibition has become an interesting alternative target. In this study, the effects of NPQ-C6, a novel naphtoquinone-coumarin conjugate, were evaluated on human CML-derived K562 cells. Live-Cell Imaging analysis revealed that NPQ-C6 inhibited 2D (IC50AUC = 1.4 ± 0.6 μM) growth of CML cells. NPQ-C6 increased sub-G1 and reduced G0/G1 cell cycle phases in a dose- and time-dependent manner. This effect on cell cycle was related to increased levels of apoptotic nuclei, cleavage of caspase-3, -9, and PARP and annexin V-positive cells. NPQ-C6 increased γH2AX, a double-strand DNA break marker. NPQ-C6 showed a wide range of modulatory effects on cell signaling through an early increased phosphorylation of JNK, P38-MAPK and AKT, and decreased phosphorylation of ERK1/2, BCR-ABL1, and STAT5. NPQ-C6 inhibited expression of c-MYC and PYM-1, two target gene products of BCR-ABL1/STAT5 signaling pathway. Cytokine-induced activation of STAT5/STAT3-dependent transcriptional and DNA binding activities were also inhibited by NPQ-C6. Notably, NPQ-C6 maintained its activity on BCR-ABL1/STAT5/c-MYC/PIM-1 oncogenic pathway in imatinib-resistant cells. Molecular modeling suggested BCR-ABL1 and JAK2 proteins as NPQ-C6 targets. In summary, our data show a novel multikinase modulator that might be therapeutically effective in BCR-ABL1-STAT5-related malignancies.
Collapse
Affiliation(s)
- Patricia Martín-Rodríguez
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Borja Guerra
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Idaira Hueso-Falcón
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Haidee Aranda-Tavío
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Juan Díaz-Chico
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - José Quintana
- Laboratorio de Bioquímica, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Francisco Estévez
- Laboratorio de Bioquímica, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Bonifacio Díaz-Chico
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Angel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Leandro Fernández-Pérez
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
22
|
Wahiduzzaman M, Ota A, Karnan S, Hanamura I, Mizuno S, Kanasugi J, Rahman ML, Hyodo T, Konishi H, Tsuzuki S, Takami A, Hosokawa Y. Novel combined Ato-C treatment synergistically suppresses proliferation of Bcr-Abl-positive leukemic cells in vitro and in vivo. Cancer Lett 2018; 433:117-130. [PMID: 29944906 DOI: 10.1016/j.canlet.2018.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022]
Abstract
Chronic myelogenous leukemia (CML) accounts for 15-20% of all leukemias affecting adults. Despite recent advances in the development of specific Bcr-Abl tyrosine kinase inhibitors (TKIs), some CML patients suffer from relapse due to TKI resistance. Here, we assessed the efficacy of a novel combinatorial arsenic trioxide (ATO) and cisplatin (CDDP) treatment (Ato-C) in human Bcr-Abl-positive leukemic cells. Combination index analyses revealed that a synergistic interaction of ATO and CDDP elicits a wide range of effects in K562, KU-812, MEG-A2, and KCL-22 cells. Notably, Ato-C synergistically enhanced apoptosis and decreased the survival of both acquired TKI-resistant CML cells and the cells expressing mutant Bcr-AblT315I. In addition, Ato-C dramatically decreased the phosphorylation level of forkhead transcription factor FOXO1/3a and STAT5 as well as c-Myc protein level. Interestingly, results of gene set enrichment analysis showed that Ato-C significantly downregulates the expression of MYC- and/or E2F1-target genes. Furthermore, Ato-C significantly suppressed the proliferation of MEG-A2-derived tumor when compared with that following monotherapy in vivo. Collectively, these results suggest that combined Ato-C treatment could be a promising alternative to the current therapeutic regime in CML.
Collapse
Affiliation(s)
- Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan.
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Jo Kanasugi
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
23
|
Cheng L, Tang Y, Chen X, Zhao L, Liu S, Ma Y, Wang N, Zhou K, Zhou J, Zhou M. Deletion of MBD2 inhibits proliferation of chronic myeloid leukaemia blast phase cells. Cancer Biol Ther 2018; 19:676-686. [PMID: 29565710 DOI: 10.1080/15384047.2018.1450113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant methylation of tumour suppressor genes is associated with the progression to a blast crisis in chronic myeloid leukaemia (CML). Methyl-CpG-binding domain protein 2 (MBD2) has been studied as a "reader" of DNA methylation in many cancers, but its role in CML is unclear. We constructed cell models of a homozygous deletion mutation of MBD2 using gene-editing technology in K562 cells and BV173 cells. Here, we demonstrated that the deletion of MBD2 inhibited cell proliferation capacity in vitro. MBD2 deletion also significantly inhibited K562 cell proliferation in a xenograft tumour model in vivo. Additionally, the JAK2/STAT3 signalling pathway, which is abnormally active in CML, was inhibited by MBD2 deletion, and MBD2 deletion could up-regulate the expression of SHP1. In conclusion, our findings suggest that MBD2 is a candidate therapeutic strategy for the CML blast phase.
Collapse
Affiliation(s)
- Ling Cheng
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Ying Tang
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Xing Chen
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Lei Zhao
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Songya Liu
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Yanna Ma
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Na Wang
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Kuangguo Zhou
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Jianfeng Zhou
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Mi Zhou
- a Department of Hematology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| |
Collapse
|
24
|
Role of ZNF224 in c-Myc repression and imatinib responsiveness in chronic myeloid leukemia. Oncotarget 2017; 9:3417-3431. [PMID: 29423056 PMCID: PMC5790473 DOI: 10.18632/oncotarget.23283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022] Open
Abstract
The transcription factor ZNF224 plays a key proapoptotic role in chronic myelogenous leukemia (CML), by modulating Wilms Tumor protein 1 (WT1) dependent apoptotic genes transcription. Recently, we demonstrated that Bcr-Abl signaling represses ZNF224 expression in Bcr-Abl positive CML cell lines and in CML patients. Interestingly, Imatinib and second-generation tyrosine kinase inhibitors specifically increase ZNF224 expression. On the other hand, Bcr-Abl positively modulates, via JAK2 activation, the expression of the c-Myc oncogene, which is required for Bcr-Abl oncogenic transformation in CML. Consequently, JAK2 inhibitors represent promising molecular therapeutic tools in CML. In this work, we demonstrate that ZNF224 is a novel transcriptional repressor of c-Myc in CML. We also show that ZNF224 induction by Imatinib and AG490, a specific JAK2 inhibitor, is responsible for the transcriptional repression of c-MYC, thus highlighting the crucial role of the ZNF224/c-Myc axis in Imatinib responsiveness. Interestingly, we also report that ZNF224 is induced by AG490 in Imatinib-resistant CML cells, leading to c-Myc repression and apoptosis induction. These findings suggest that the development of molecular tools able to induce ZNF224 expression could provide promising means to bypass Imatinib resistance in CML.
Collapse
|
25
|
CML cells actively evade host immune surveillance through cytokine-mediated downregulation of MHC-II expression. Blood 2016; 129:199-208. [PMID: 27793879 DOI: 10.1182/blood-2016-09-742049] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022] Open
Abstract
Targeting the fusion oncoprotein BCR-ABL with tyrosine kinase inhibitors has significantly affected chronic myeloid leukemia (CML) treatment, transforming the life expectancy of patients; however the risk for relapse remains, due to persistence of leukemic stem cells (LSCs). Therefore it is imperative to explore the mechanisms that result in LSC survival and develop new therapeutic approaches. We now show that major histocompatibility complex (MHC)-II and its master regulator class II transactivator (CIITA) are downregulated in CML compared with non-CML stem/progenitor cells in a BCR-ABL kinase-independent manner. Interferon γ (IFN-γ) stimulation resulted in an upregulation of CIITA and MHC-II in CML stem/progenitor cells; however, the extent of IFN-γ-induced MHC-II upregulation was significantly lower than when compared with non-CML CD34+ cells. Interestingly, the expression levels of CIITA and MHC-II significantly increased when CML stem/progenitor cells were treated with the JAK1/2 inhibitor ruxolitinib (RUX). Moreover, mixed lymphocyte reactions revealed that exposure of CD34+ CML cells to IFN-γ or RUX significantly enhanced proliferation of the responder CD4+CD69+ T cells. Taken together, these data suggest that cytokine-driven JAK-mediated signals, provided by CML cells and/or the microenvironment, antagonize MHC-II expression, highlighting the potential for developing novel immunomodulatory-based therapies to enable host-mediated immunity to assist in the detection and eradication of CML stem/progenitor cells.
Collapse
|
26
|
Li H, Huang Z, Gao M, Huang N, Luo Z, Shen H, Wang X, Wang T, Hu J, Feng W. Inhibition of YAP suppresses CML cell proliferation and enhances efficacy of imatinib in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:134. [PMID: 27599610 PMCID: PMC5012077 DOI: 10.1186/s13046-016-0414-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/29/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Yes-associated protein (YAP), an essential component of Hippo pathway, was identified as an oncoprotein which participated in the progression of various malignancies. However, its role in chronic myeloid leukemia (CML) remains to be further clarified. METHODS The expression of YAP in CML cells was determined by western blotting. Next, the effects of YAP knockdown and YAP inhibitor on CML cells were evaluated by MTT assay, flow cytometry (FCM) and Wright's staining. Moreover, K562 induced mice model was employed to further investigate the role of YAP in vivo. RESULTS YAP was overexpressed in CML cells. Knockdown of YAP by si-RNA or inhibition the function of YAP using verteporfin (VP) not only inhibited the proliferation, induced the apoptosis of CML cells but also reduced the expression of YAP target genes c-myc and survivin. Additionally, VP enhanced the efficacy of imatinib (IM) in vitro and suppressed leukemogenesis in vivo. CONCLUSION Our results indicate that YAP may play an important role in the proliferation and leukemogenesis of CML cells. Genetic or pharmacological inhibition of YAP provides a novel treatment strategy for CML.
Collapse
Affiliation(s)
- Hui Li
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Miao Gao
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Ningshu Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Zhenhong Luo
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Huawei Shen
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Teng Wang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Jing Hu
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|
27
|
Chakraborty SN, Leng X, Perazzona B, Sun X, Lin YH, Arlinghaus RB. Combination of JAK2 and HSP90 inhibitors: an effective therapeutic option in drug-resistant chronic myelogenous leukemia. Genes Cancer 2016; 7:201-208. [PMID: 27551334 PMCID: PMC4979592 DOI: 10.18632/genesandcancer.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent studies suggest that JAK2 serves as a novel therapeutic target in Bcr-Abl+ chronic myelogenous leukemia (CML). We have reported the existence of an HSP90- associated high molecular weight network complex (HMWNC) that is composed of HSP90 client proteins BCR-ABL, JAK2, and STAT3 in wild type Bcr-Abl+ leukemic cells. Here we showed that the HSP90-HMWNC is present in leukemia cells from CML patients in blast stage, and in Imatinib (IM)-resistant 32Dp210 (T315I) leukemia cells. We found that the HSP90-HMWNC could be disassembled by depleting JAK2 with either Jak2-specific shRNA or treatment with JAK2 inhibitors (TG101209 or Ruxolitinib) and HSP90 inhibitor (AUY922). Combinational treatment with JAK2 and HSP90 inhibitors diminished the activation of BCR-ABL, JAK2 and its downstream targets. As a result, the IM-resistant 32Dp210 T315I cells underwent apoptosis. When administered in mice bearing 32Dp210 T315I leukemia, combinational therapy using Ruxolitinib and AUY922 prolonged the survival significantly. Thus, a combination of JAK2 and HSP90 inhibitors could be a powerful strategy for the treatment of CML, especially in IM-resistant patients.
Collapse
Affiliation(s)
- Sandip N Chakraborty
- Department of Translational Molecular Pathology, M.D. Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Xiaohong Leng
- Department of Translational Molecular Pathology, M.D. Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Bastianella Perazzona
- Department of Translational Molecular Pathology, M.D. Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Xiaoping Sun
- Department of Laboratory Medicine, M.D. Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Yu-Hsi Lin
- Department of Translational Molecular Pathology, M.D. Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Ralph B Arlinghaus
- Department of Translational Molecular Pathology, M.D. Anderson Cancer Center, University of Texas, Houston, TX, USA
| |
Collapse
|
28
|
miR-101 sensitizes K562 cell line to imatinib through Jak2 downregulation and inhibition of NF-κB target genes. Tumour Biol 2016; 37:14117-14128. [DOI: 10.1007/s13277-016-5205-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
|
29
|
The Philadelphia chromosome in leukemogenesis. CHINESE JOURNAL OF CANCER 2016; 35:48. [PMID: 27233483 PMCID: PMC4896164 DOI: 10.1186/s40880-016-0108-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
The truncated chromosome 22 that results from the reciprocal translocation t(9;22)(q34;q11) is known as the Philadelphia chromosome (Ph) and is a hallmark of chronic myeloid leukemia (CML). In leukemia cells, Ph not only impairs the physiological signaling pathways but also disrupts genomic stability. This aberrant fusion gene encodes the breakpoint cluster region-proto-oncogene tyrosine-protein kinase (BCR-ABL1) oncogenic protein with persistently enhanced tyrosine kinase activity. The kinase activity is responsible for maintaining proliferation, inhibiting differentiation, and conferring resistance to cell death. During the progression of CML from the chronic phase to the accelerated phase and then to the blast phase, the expression patterns of different BCR-ABL1 transcripts vary. Each BCR-ABL1 transcript is present in a distinct leukemia phenotype, which predicts both response to therapy and clinical outcome. Besides CML, the Ph is found in acute lymphoblastic leukemia, acute myeloid leukemia, and mixed-phenotype acute leukemia. Here, we provide an overview of the clinical presentation and cellular biology of different phenotypes of Ph-positive leukemia and highlight key findings regarding leukemogenesis.
Collapse
|
30
|
Inhibition of Ras-mediated signaling pathways in CML stem cells. Cell Oncol (Dordr) 2015; 38:407-18. [PMID: 26458816 DOI: 10.1007/s13402-015-0248-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the presence of the BCR-ABL1 oncoprotein in cells with a hematopoietic stem cell (HSC) origin. BCR-ABL1 tyrosine kinase activity leads to constitutive activation of Ras, which in turn acts as a branch point to initiate multiple downstream signaling pathways governing proliferation, self-renewal, differentiation and apoptosis. As aberrant regulation of these cellular processes causes transformation and disease progression particularly in advanced stages of CML, investigation of these signaling pathways may uncover new therapeutic targets for the selective eradication of CML stem cells. Transcription factors play a crucial role in unbalancing the Ras signaling network and have recently been investigated as potential modulators in this regard. In this review, we first briefly summarize the Ras-associated molecular pathways that are involved in the regulation of CML stem cell properties. Next we discuss the relevance of Ras-associated transcription factors as nuclear targets in combination treatment strategies for CML. CONCLUSIONS A closer investigation of the influence of Ras-mediated signaling pathways on CML progression to blast crisis is warranted to uncover new directions for targeted therapies, particularly in cases that are resistant to current tyrosine kinase inhibitors.
Collapse
|
31
|
Sharma N, Magistroni V, Piazza R, Citterio S, Mezzatesta C, Khandelwal P, Pirola A, Gambacorti-Passerini C. BCR/ABL1 and BCR are under the transcriptional control of the MYC oncogene. Mol Cancer 2015; 14:132. [PMID: 26179066 PMCID: PMC4504180 DOI: 10.1186/s12943-015-0407-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/02/2015] [Indexed: 11/29/2022] Open
Abstract
Background Chronic Myeloid Leukaemia (CML) is caused by the BCR/ABL1 fusion gene. Both the presence and the levels of BCR/ABL1 expression seem to be critical for CML progression from chronic phase (CP) to blast crisis (BC). After the oncogenic translocation, the BCR/ABL1 gene is under the transcriptional control of BCR promoter but the molecular mechanisms involved in the regulation of oncogene expression are mostly unknown. Methods A region of 1443bp of the functional BCR promoter was studied for transcription factor binding sites through in-silico analysis and Chromatin Immunoprecipitation experiments. BCR and BCR/ABL1 expression levels were analysed in CML cell lines after over-expression or silencing of MYC transcription factor. A luciferase reporter assay was used to confirm its activity on BCR promoter. Results In the present study we demonstrate that MYC and its partner MAX bind to the BCR promoter, leading to up-regulation of BCR and BCR/ABL1 at both transcriptional and protein levels. Accordingly, silencing of MYC expression in various BCR/ABL1 positive cell lines causes significant downregulation of BCR and BCR/ABL1, which consequently leads to decreased proliferation and induction of cell death. Conclusions Here we describe a regulatory pathway modulating BCR and BCR/ABL1 expression, showing that the BCR promoter is under the transcriptional control of the MYC/MAX heterodimer. Since MYC is frequently over-expressed in BC, this phenomenon could play a critical role in BCR/ABL1 up-regulation and blast aggressiveness acquired during CML evolution.
Collapse
Affiliation(s)
- Nitesh Sharma
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy.
| | - Vera Magistroni
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy.
| | - Rocco Piazza
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy. .,Division of Haematology, San Gerardo Hospital, Monza, Italy.
| | - Stefania Citterio
- Department of Bioscience and Biotechnology, University of Milano Bicocca, Milano, Italy.
| | | | - Praveen Khandelwal
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy.
| | - Alessandra Pirola
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy.
| | - Carlo Gambacorti-Passerini
- Department of Health Sciences, University of Milano Bicocca, Monza, Italy. .,Division of Haematology, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
32
|
Lin H, Chen M, Rothe K, Lorenzi MV, Woolfson A, Jiang X. Selective JAK2/ABL dual inhibition therapy effectively eliminates TKI-insensitive CML stem/progenitor cells. Oncotarget 2015; 5:8637-50. [PMID: 25226617 PMCID: PMC4226710 DOI: 10.18632/oncotarget.2353] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Imatinib Mesylate (IM) and other tyrosine kinase inhibitor (TKI) therapies have had a major impact on the treatment of chronic myeloid leukemia (CML). However, TKI monotherapy is not curative, with relapse and persistence of leukemic stem cells (LSCs) remaining a challenge. We have recently identified an AHI-1-BCR-ABL-JAK2 protein complex that contributes to the transforming activity of BCR-ABL and IM-resistance in CML stem/progenitor cells. JAK2 thus emerges as an attractive target for improved therapies, but off-target effects of newly developed JAK2 inhibitors on normal hematopoietic cells remain a concern. We have examined the biological effects of a highly selective, orally bioavailable JAK2 inhibitor, BMS-911543, in combination with TKIs on CD34+ treatment-naïve IM-nonresponder cells. Combination therapy reduces JAK2/STAT5 and CRKL activities, induces apoptosis, inhibits proliferation and colony growth, and eliminates CML LSCs in vitro. Importantly, BMS-911543 selectively targets CML stem/progenitor cells while sparing healthy stem/progenitor cells. Oral BMS-911543 combined with the potent TKI dasatinib more effectively eliminates infiltrated leukemic cells in hematopoietic tissues than TKI monotherapy and enhances survival of leukemic mice. Dual targeting BCR-ABL and JAK2 activities in CML stem/progenitor cells may consequently lead to more effective disease eradication, especially in patients at high risk of TKI resistance and disease progression.
Collapse
Affiliation(s)
- Hanyang Lin
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada. Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Min Chen
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Katharina Rothe
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada. Department of Medical Genetics, University of British Columbia; Vancouver, BC, Canada
| | - Matthew V Lorenzi
- Discovery Medicine Oncology, Bristol-Myers Squibb, Princeton, NJ, United States
| | - Adrian Woolfson
- Discovery Medicine Oncology, Bristol-Myers Squibb, Princeton, NJ, United States
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada. Department of Medicine, University of British Columbia, Vancouver, BC, Canada. Department of Medical Genetics, University of British Columbia; Vancouver, BC, Canada
| |
Collapse
|
33
|
|
34
|
Muvarak N, Kelley S, Robert C, Baer MR, Perrotti D, Gambacorti-Passerini C, Civin C, Scheibner K, Rassool FV. c-MYC Generates Repair Errors via Increased Transcription of Alternative-NHEJ Factors, LIG3 and PARP1, in Tyrosine Kinase-Activated Leukemias. Mol Cancer Res 2015; 13:699-712. [PMID: 25828893 DOI: 10.1158/1541-7786.mcr-14-0422] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/07/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Leukemias expressing the constitutively activated tyrosine kinases (TK) BCR-ABL1 and FLT3/ITD activate signaling pathways that increase genomic instability through generation of reactive oxygen species (ROS), DNA double-strand breaks (DSB), and error-prone repair. The nonhomologous end-joining (NHEJ) pathway is a major pathway for DSB repair and is highly aberrant in TK-activated leukemias; an alternative form of NHEJ (ALT-NHEJ) predominates, evidenced by increased expression of DNA ligase IIIα (LIG3) and PARP1, increased frequency of large genomic deletions, and repair using DNA sequence microhomologies. This study, for the first time, demonstrates that the TK target c-MYC plays a role in transcriptional activation and subsequent expression of LIG3 and PARP1 and contributes to the increased error-prone repair observed in TK-activated leukemias. c-MYC negatively regulates microRNAs miR-150 and miR-22, which demonstrate an inverse correlation with LIG3 and PARP1 expression in primary and cultured leukemia cells and chronic myelogenous leukemia human patient samples. Notably, inhibition of c-MYC and overexpression of miR-150 and -22 decreases ALT-NHEJ activity. Thus, BCR-ABL1 or FLT3/ITD induces c-MYC expression, leading to genomic instability via augmented expression of ALT-NHEJ repair factors that generate repair errors. IMPLICATIONS In the context of TK-activated leukemias, c-MYC contributes to aberrant DNA repair through downstream targets LIG3 and PARP1, which represent viable and attractive therapeutic targets.
Collapse
Affiliation(s)
- Nidal Muvarak
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shannon Kelley
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Carine Robert
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R Baer
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Danilo Perrotti
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland. Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | | | - Curt Civin
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kara Scheibner
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
35
|
Tao W, Chakraborty SN, Leng X, Ma H, Arlinghaus RB. HSP90 inhibitor AUY922 induces cell death by disruption of the Bcr-Abl, Jak2 and HSP90 signaling network complex in leukemia cells. Genes Cancer 2015; 6:19-29. [PMID: 25821558 PMCID: PMC4362481 DOI: 10.18632/genesandcancer.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/28/2015] [Indexed: 11/25/2022] Open
Abstract
The Bcr-Abl protein is an important client protein of heat shock protein 90 (HSP90). We evaluated the inhibitory effects of the HSP90 ATPase inhibitor AUY922 on 32D mouse hematopoietic cells expressing wild-type Bcr-Abl (b3a2, 32Dp210) and mutant Bcr-Abl imatinib (IM)-resistant cell lines. Western blotting results of fractions from gel filtration column chromatography of 32Dp210 cells showed that HSP90 together with Bcr-Abl, Jak2 Stat3 and several other proteins co-eluted in peak column fractions of a high molecular weight network complex (HMWNC). Co-IP results showed that HSP90 directly bound to Bcr-Abl, Jak2, Stat 3 and Akt. The associations between HSP90 and Bcr-Abl or Bcr-Abl kinase domain mutants (T315I and E255K) were interrupted by AUY922 treatment. Tyrosine phosphorylation of Bcr-Abl showed a dose-dependent decrease in 32Dp210T315I following AUY922 treatment for 16h. AUY922 also markedly inhibited cell proliferation of both IM-sensitive 32Dp210 (IC50 =6 nM) and IM-resistant 32Dp210T315I cells (IC50 ≈6 nM) and human KBM-5R/KBM-7R cell lines (IC50 =50 nM). AUY922 caused significant G1 arrest in 32Dp210 cells but not in T315I or E255K cells. AUY922 efficiently induced apoptosis in 32Dp210 (IC50 =10 nM) and T315I or E255K lines with IC50 around 20 to 50 nM. Our results showed that Bcr-Abl and Jak2 form HMWNC with HSP90 in CML cells. Inhibition of HSP90 by AUY922 disrupted the structure of HMWNC, leading to Bcr-Abl degradation, nhibiting cell proliferation and inducing apoptosis. Thus, inhibition of HSP90 is a powerful way to inhibit not only IM-sensitive CML cells but also IM-resistant CML cells.
Collapse
Affiliation(s)
- Wenjing Tao
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sandip N Chakraborty
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Xiaohong Leng
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Helen Ma
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ralph B Arlinghaus
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol 2015; 94 Suppl 2:S107-21. [PMID: 25814077 DOI: 10.1007/s00277-015-2325-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Chronic myeloid leukaemia (CML) is a myeloproliferative disorder arising in the haemopoietic stem cell (HSC) compartment. This disease is characterised by a reciprocal t(9;22) chromosomal translocation, resulting in the formation of the Philadelphia (Ph) chromosome containing the BCR-ABL1 gene. As such, diagnosis and monitoring of disease involves detection of BCR-ABL1. It is the BCR-ABL1 protein, in particular its constitutively active tyrosine kinase activity, that forges the pathogenesis of CML. This aberrant kinase signalling activates downstream targets that reprogram the cell to cause uncontrolled proliferation and results in myeloid hyperplasia and 'indolent' symptoms of chronic phase (CP) CML. Without successful intervention, the disease will progress into blast crisis (BC), resembling an acute leukaemia. This advanced disease stage takes on an aggressive phenotype and is almost always fatal. The cell biology of CML is also centred on BCR-ABL1. The presence of BCR-ABL1 can explain virtually all the cellular features of the leukaemia (enhanced cell growth, inhibition of apoptosis, altered cell adhesion, growth factor independence, impaired genomic surveillance and differentiation). This article provides an overview of the clinical and cell biology of CML, and highlights key findings and unanswered questions essential for understanding this disease.
Collapse
MESH Headings
- Animals
- Disease Progression
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Mutation
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Prognosis
Collapse
Affiliation(s)
- Bradley Chereda
- Departments of Genetics and Molecular Pathology, and Haematology, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, 5000, Australia,
| | | |
Collapse
|
37
|
Liu N, Li P, Zang S, Liu Q, Ma D, Sun X, Ji C. Novel agent nitidine chloride induces erythroid differentiation and apoptosis in CML cells through c-Myc-miRNAs axis. PLoS One 2015; 10:e0116880. [PMID: 25647305 PMCID: PMC4315404 DOI: 10.1371/journal.pone.0116880] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/16/2014] [Indexed: 12/19/2022] Open
Abstract
The proto-oncogene c-Myc plays critical roles in human malignancies including chronic myeloid leukemia (CML), suggesting that the discovery of specific agents targeting c-Myc would be extremely valuable for CML treatment. Nitidine Chloride (NC), a natural bioactive alkaloid, is suggested to possess anti-tumor effects. However, the function of NC in leukemia and the underlying molecular mechanisms have not been established. In this study, we found that NC induced erythroid differentiation, accompanied by increased expression of erythroid differentiation markers, e. g. α-, ε-, γ-globin, CD235a, CD71 and α-hemoglobin stabilizing protein (AHSP) in CML cells. We also observed that NC induced apoptosis and upregulated cleaved caspase-3 and Parp-1 in K562 cells. These effects were associated with concomitant attenuation of c-Myc. Our study showed that NC treatment in CML cells enhanced phosphorylation of Thr58 residue and subsequently accelerated degradation of c-Myc. A specific group of miRNAs, which had been reported to be activated by c-Myc, mediated biological functions of c-Myc. We found that most of these miRNAs, especially miR-17 and miR-20a showed strong decrement after NC treatment or c-Myc interference. Furthermore, overexpression of c-Myc or miR-17/20a alleviated NC induced differentiation and apoptosis in K562 cells. More importantly, NC enhanced the effects of imatinib in K562 and primary CML cells. We further found that even imatinib resistant CML cell line (K562/G01) and CML primary cells exhibited high sensitivity to NC, which showed potential possibility to overcome imatinib resistance. Taken together, our results clearly suggested that NC promoted erythroid differentiation and apoptosis through c-Myc-miRNAs regulatory axis, providing potential possibility to overcome imatinib resistance.
Collapse
Affiliation(s)
- Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Shaolei Zang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Qiang Liu
- Key Lab of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- Key Lab of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
38
|
Allegra A, Alonci A, Penna G, Innao V, Gerace D, Rotondo F, Musolino C. The cancer stem cell hypothesis: a guide to potential molecular targets. Cancer Invest 2014; 32:470-95. [PMID: 25254602 DOI: 10.3109/07357907.2014.958231] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Common cancer theories hold that tumor is an uncontrolled somatic cell proliferation caused by the progressive addition of random mutations in critical genes that control cell growth. Nevertheless, various contradictions related to the mutation theory have been reported previously. These events may be elucidated by the persistence of residual tumor cells, called Cancer Stem Cells (CSCs) responsible for tumorigenesis, tumor maintenance, tumor spread, and tumor relapse. Herein, we summarize the current understanding of CSCs, with a focus on the possibility to identify specific markers of CSCs, and discuss the clinical application of targeting CSCs for cancer treatment.
Collapse
|
39
|
JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood 2014; 124:1492-501. [PMID: 24957147 DOI: 10.1182/blood-2013-12-545640] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic myeloid leukemia (CML) stem cell survival is not dependent on BCR-ABL protein kinase and treatment with ABL tyrosine kinase inhibitors cures only a minority of CML patients, thus highlighting the need for novel therapeutic targets. The Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)5 pathway has recently been explored for providing putative survival signals to CML stem/progenitor cells (SPCs) with contradictory results. We investigated the role of this pathway using the JAK2 inhibitor, ruxolitinib (RUX). We demonstrated that the combination of RUX, at clinically achievable concentrations, with the specific and potent tyrosine kinase inhibitor nilotinib, reduced the activity of the JAK2/STAT5 pathway in vitro relative to either single agent alone. These effects correlated with increased apoptosis of CML SPCs in vitro and a reduction in primitive quiescent CML stem cells, including NOD.Cg-Prkdc(scid) IL2rg(tm1Wjl) /SzJ mice repopulating cells, induced by combination treatment. A degree of toxicity toward normal SPCs was observed with the combination treatment, although this related to mature B-cell engraftment in NOD.Cg-Prkdc(scid) IL2rg(tm1Wjl) /SzJ mice with minimal effects on primitive CD34(+) cells. These results support the JAK2/STAT5 pathway as a relevant therapeutic target in CML SPCs and endorse the current use of nilotinib in combination with RUX in clinical trials to eradicate persistent disease in CML patients.
Collapse
|
40
|
Tao W, Leng X, Chakraborty SN, Ma H, Arlinghaus RB. c-Abl activates janus kinase 2 in normal hematopoietic cells. J Biol Chem 2014; 289:21463-72. [PMID: 24923444 DOI: 10.1074/jbc.m114.554501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Jak2 is involved in cytokine growth factor-stimulated signal transduction, but the mechanism of its activation is largely unknown. Here, we investigated Jak2 activation in a normal hematopoietic cell line, 32D mouse myeloid cells. The bimolecular fluorescence complementation studies showed that c-Abl formed a stable complex with Jak2 in live cells. Co-immunoprecipitation results showed that c-Abl bound to the βc chain of IL-3/IL-5/GM-CSF receptors. The kinase activities of both c-Abl and Jak2 were stimulated by IL-3 in 32D cells. Decreasing c-Abl protein expression in 32D cells by inducible shRNA decreased Jak2 activity and resulted in the failure of Jak2 activation in response to IL-3. Treatment of IL-3 and serum-starved 32D cells with 1 μM imatinib mysylate inhibited IL-3 stimulated kinase activities of both c-Abl and Jak2. In addition, the kinase-deficient Bcr-Abl mutant (p210K1172R) was defective for activation of Jak2 in 32D cells and impaired IL-3 independent growth, which was rescued by overexpression of c-Abl (+Abl). IL-3 efficiently inhibited apoptosis of 32Dp210K/R+Abl cells induced by imatinib mysylate but not Jak2 kinase inhibitor TG101209. In summary, our findings provide evidence that the kinase function of c-Abl and its C-terminal CT4 region is crucial for its interaction with Jak2 and its activation. c-Abl kinase activity induced by IL-3 is required for IL-3-stimulated Jak2 and Jak1 activation. Our findings reveal a novel regulatory role of c-Abl in Jak2 activation induced by IL-3 cytokine growth factor in 32D hematopoietic cells.
Collapse
Affiliation(s)
- Wenjing Tao
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xiaohong Leng
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Sandip N Chakraborty
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Helen Ma
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Ralph B Arlinghaus
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
41
|
Guo G, Kang Q, Zhu X, Chen Q, Wang X, Chen Y, Ouyang J, Zhang L, Tan H, Chen R, Huang S, Chen JL. A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA. Oncogene 2014; 34:1768-79. [DOI: 10.1038/onc.2014.131] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/15/2022]
|
42
|
Bretones G, Delgado MD, León J. Myc and cell cycle control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:506-16. [PMID: 24704206 DOI: 10.1016/j.bbagrm.2014.03.013] [Citation(s) in RCA: 531] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 12/12/2022]
Abstract
Soon after the discovery of the Myc gene (c-Myc), it became clear that Myc expression levels tightly correlate to cell proliferation. The entry in cell cycle of quiescent cells upon Myc enforced expression has been described in many models. Also, the downregulation or inactivation of Myc results in the impairment of cell cycle progression. Given the frequent deregulation of Myc oncogene in human cancer it is important to dissect out the mechanisms underlying the role of Myc on cell cycle control. Several parallel mechanisms account for Myc-mediated stimulation of the cell cycle. First, most of the critical positive cell cycle regulators are encoded by genes induced by Myc. These Myc target genes include Cdks, cyclins and E2F transcription factors. Apart from its direct effects on the transcription, Myc is able to hyperactivate cyclin/Cdk complexes through the induction of Cdk activating kinase (CAK) and Cdc25 phosphatases. Moreover, Myc antagonizes the activity of cell cycle inhibitors as p21 and p27 through different mechanisms. Thus, Myc is able to block p21 transcription or to induce Skp2, a protein involved in p27 degradation. Finally, Myc induces DNA replication by binding to replication origins and by upregulating genes encoding proteins required for replication initiation. Myc also regulates genes involved in the mitotic control. A promising approach to treat tumors with deregulated Myc is the synthetic lethality based on the inhibition of Cdks. Thus, the knowledge of the Myc-dependent cell cycle regulatory mechanisms will help to discover new therapeutic approaches directed against malignancies with deregulated Myc. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Gabriel Bretones
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
43
|
Guo G, Kang Q, Chen Q, Chen Z, Wang J, Tan L, Chen JL. High expression of long non-coding RNA H19 is required for efficient tumorigenesis induced by Bcr-Abl oncogene. FEBS Lett 2014; 588:1780-6. [PMID: 24685695 DOI: 10.1016/j.febslet.2014.03.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/16/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
Abstract
Dysregulation of non-coding RNA H19 has been observed in various tumors. However, it remains unknown whether H19 is involved in Bcr-Abl-induced leukemia. Here, we demonstrate a critical requirement for H19 in Bcr-Abl-mediated tumorigenesis. H19 was highly expressed in Bcr-Abl-transformed cell lines and primary cells derived from patients in a Bcr-Abl kinase-dependent manner. Silencing H19 expression sensitized leukemic cells to undergo imatinib-induced apoptosis and inhibited Bcr-Abl-induced tumor growth. Furthermore, H19 was shown to be regulated by c-Myc in Bcr-Abl-expressing cells. These results reveal an important role H19 plays in Bcr-Abl-mediated transformation and provide novel insights into complex mechanisms underlying Bcr-Abl-induced cancers.
Collapse
Affiliation(s)
- Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qingzheng Kang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qinghuang Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhilong Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Li Tan
- Center of Oncology and Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
44
|
Sinclair A, Latif AL, Holyoake TL. Targeting survival pathways in chronic myeloid leukaemia stem cells. Br J Pharmacol 2014; 169:1693-707. [PMID: 23517124 DOI: 10.1111/bph.12183] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/11/2013] [Accepted: 02/19/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disorder characterized by the presence of a fusion oncogene BCR-ABL, which encodes a protein with constitutive TK activity. The implementation of tyrosine kinase inhibitors (TKIs) marked a major advance in CML therapy; however, there are problems with current treatment. For example, relapse occurs when these drugs are discontinued in the majority of patients who have achieved a complete molecular response on TKI and these agents are less effective in patients with mutations in the BCR-ABL kinase domain. Importantly, TKI can effectively target proliferating mature cells, but do not eradicate quiescent leukaemic stem cells (LSCs), therefore allowing disease persistence despite treatment. It is essential that alternative strategies are used to target the LSC population. BCR-ABL activation is responsible for the modulation of different signalling pathways, which allows the LSC fraction to evade cell death. Several pathways have been shown to be modulated by BCR-ABL, including PI3K/AKT/mTOR, JAK-STAT and autophagy signalling pathways. Targeting components of these survival pathways, alone or in combination with TKI, therefore represents an attractive potential therapeutic approach for targeting the LSC. However, many pathways are also active in normal stem cells. Therefore, potential targets must be validated to effectively eradicate CML stem cells while sparing normal counterparts. This review summarizes the main pathways modulated in CML stem cells, the recent developments and the use of novel drugs to target components in these pathways which may be used to target the LSC population. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- A Sinclair
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | | | | |
Collapse
|
45
|
JAK of all trades: JAK2-STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia. Blood 2013; 122:2167-75. [PMID: 23926299 DOI: 10.1182/blood-2013-02-485573] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transcription factor signal transducers and activators of transcription 5 (STAT5) has an important and unique role in Breakpoint Cluster Region - Abelson 1 (BCR-ABL1)-driven neoplasias. STAT5 is an essential component in the signaling network that maintains the survival and growth of chronic myeloid leukemia (CML) cells. In contrast, the function of the prototypical upstream kinase of STAT5, the Janus kinase JAK2, in CML is still under debate. Although there is widespread agreement that JAK2 is part of the signaling network downstream of BCR-ABL1, it is unclear whether and under what circumstances JAK2 inhibitors may be beneficial for CML patients. Recent studies in murine models have cast doubt on the importance of JAK2 in CML maintenance. Nevertheless, JAK2 has been proposed to have a central role in the cytokine signaling machinery that allows the survival of CML stem cells in the presence of BCR-ABL1 tyrosine kinase inhibitors. In this review, we summarize the current debate and provide an overview of the arguments on both sides of the fence. We present recent evidence showing that CML stem cells do not depend on BCR-ABL1 kinase activity but require the continuous support of the hematopoietic niche and its distinct cytokine environment and suggest that it has the potential to resolve the dispute.
Collapse
|
46
|
Reavie L, Buckley SM, Loizou E, Takeishi S, Aranda-Orgilles B, Ndiaye-Lobry D, Abdel-Wahab O, Ibrahim S, Nakayama KI, Aifantis I. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 2013; 23:362-75. [PMID: 23518350 PMCID: PMC3609428 DOI: 10.1016/j.ccr.2013.01.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 04/25/2012] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
The molecular mechanisms regulating leukemia-initiating cell (LIC) function are of important clinical significance. We use chronic myelogenous leukemia (CML) as a model of LIC-dependent malignancy and identify the interaction between the ubiquitin ligase Fbw7 and its substrate c-Myc as a regulator of LIC homeostasis. Deletion of Fbw7 leads to c-Myc overexpression, p53-dependent LIC-specific apoptosis, and the eventual inhibition of tumor progression. A decrease of either c-Myc protein levels or attenuation of the p53 response rescues LIC activity and disease progression. Further experiments showed that Fbw7 expression is required for survival and maintenance of human CML LIC. These studies identify a ubiquitin ligase:substrate pair regulating LIC activity, suggesting that targeting of the Fbw7:c-Myc axis is an attractive therapy target in refractory CML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Disease Progression
- F-Box Proteins/genetics
- F-Box Proteins/metabolism
- F-Box-WD Repeat-Containing Protein 7
- Gene Expression Regulation, Neoplastic
- Hematopoietic Stem Cells
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-myc/metabolism
- RNA Interference
- RNA, Small Interfering
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Linsey Reavie
- Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Shannon M. Buckley
- Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Evangelia Loizou
- Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Shoichiro Takeishi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1–1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Beatriz Aranda-Orgilles
- Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Delphine Ndiaye-Lobry
- Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York 10016, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer, New York 10016, NY, USA
| | - Sherif Ibrahim
- Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1–1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
- Address Correspondence To: Iannis Aifantis, Ph.D., Howard Hughes Medical Institute, and Department of Pathology, NYU School of Medicine, 550 First Avenue, SRB 1304, New York, NY, 10016, USA,
| |
Collapse
|
47
|
O'Leary EE, Mazurkiewicz-Muñoz AM, Argetsinger LS, Maures TJ, Huynh HT, Carter-Su C. Identification of steroid-sensitive gene-1/Ccdc80 as a JAK2-binding protein. Mol Endocrinol 2013; 27:619-34. [PMID: 23449887 DOI: 10.1210/me.2011-1275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tyrosine kinase Janus kinase 2 (JAK2) is activated by many cytokine receptors, including receptors for GH, leptin, and erythropoietin. However, very few proteins have been identified as binding partners for JAK2. Using a yeast 2-hybrid screen, we identified steroid-sensitive gene-1 (SSG1)/coiled-coil domain-containing protein 80 (Ccdc80) as a JAK2-binding partner. We demonstrate that Ccdc80 preferentially binds activated, tyrosyl-phosphorylated JAK2 but not kinase-inactive JAK2 (K882E) in both yeast and mammalian systems. Ccdc80 is tyrosyl phosphorylated in the presence of JAK2. The binding of Ccdc80 to JAK2 occurs via 1 or more of the 3 DUDES/SRPX (DRO1-URB-DRS-Equarin-SRPUL/sushi repeat containing protein, x-linked) domain 5 domains of Ccdc80. Mutagenesis of the second DUDES domain suggests that the N-terminal third of the DUDES domain is sufficient for JAK2 binding. Ccdc80 does not alter the kinase activity of JAK2. However, Ccdc80 increases GH-dependent phosphorylation of Stat (signal transducer and activator of transcription) 5b on Tyr699 and substantially enhances both basal and GH-dependent phosphorylation/activation of Stat3 on Tyr705. Furthermore, Ccdc80 belongs to the group of proteins that function both in the intracellular compartment and are secreted. Secreted Ccdc80 associates with the extracellular matrix and is also found in the medium. A substantial portion of the Ccdc80 detected in the medium is cleaved. Finally, consistent with the DUDES domain serving as a JAK2-binding domain, we also demonstrate that another protein that contains a DUDES domain, SRPX2, binds preferentially to the activated tyrosyl-phosphorylated form of JAK2.
Collapse
Affiliation(s)
- Erin E O'Leary
- Graduate Program in Cellular and Molecular Biology, The University of Michigan Medical School, Ann Arbor, Michigan 48109-5622, USA
| | | | | | | | | | | |
Collapse
|
48
|
Delgado MD, Albajar M, Gomez-Casares MT, Batlle A, León J. MYC oncogene in myeloid neoplasias. Clin Transl Oncol 2012; 15:87-94. [PMID: 22911553 DOI: 10.1007/s12094-012-0926-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/24/2012] [Indexed: 01/13/2023]
Abstract
MYC is a transcription factor that regulates many critical genes for cell proliferation, differentiation, and biomass accumulation. MYC is one of the most prevalent oncogenes found to be altered in human cancer, being deregulated in about 50 % of tumors. Although MYC deregulation has been more frequently associated to lymphoma and lymphoblastic leukemia than to myeloid malignancies, a body of evidence has been gathered showing that MYC plays a relevant role in malignancies derived from the myeloid compartment. The myeloid leukemogenic activity of MYC has been demonstrated in different murine models. Not surprisingly, MYC has been found to be amplified or/and deregulated in the three major types of myeloid neoplasms: acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms, including chronic myeloid leukemia. Here, we review the recent literature describing the involvement of MYC in myeloid tumors.
Collapse
Affiliation(s)
- M Dolores Delgado
- Group of Transcriptional Control and Cancer, Departamento de Biología Molecular, Facultad de Medicina, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria, CSIC, SODERCAN, Avda Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | | | | | | | | |
Collapse
|
49
|
Liu L, Wang S, Chen R, Wu Y, Zhang B, Huang S, Zhang J, Xiao F, Wang M, Liang Y. Myc induced miR-144/451 contributes to the acquired imatinib resistance in chronic myelogenous leukemia cell K562. Biochem Biophys Res Commun 2012; 425:368-73. [DOI: 10.1016/j.bbrc.2012.07.098] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 07/19/2012] [Indexed: 01/29/2023]
|
50
|
Harada D, Takigawa N, Ochi N, Ninomiya T, Yasugi M, Kubo T, Takeda H, Ichihara E, Ohashi K, Takata S, Tanimoto M, Kiura K. JAK2-related pathway induces acquired erlotinib resistance in lung cancer cells harboring an epidermal growth factor receptor-activating mutation. Cancer Sci 2012; 103:1795-802. [PMID: 22712764 DOI: 10.1111/j.1349-7006.2012.02363.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/09/2012] [Accepted: 06/17/2012] [Indexed: 01/15/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, such as gefitinib and erlotinib, are effective for non-small cell lung cancer with activating EGFR mutations. However, even in patients with an initial dramatic response to such a drug, acquired resistance develops after 6-12 months. A secondary mutation of T790M in EGFR and amplification of the MET gene account for this resistance; however, the mechanism(s) of approximately 30% of acquired resistance cases remain unknown. We established an erlotinib-resistant lung cancer cell line named PC-9/ER3 that harbors an EGFR mutation after continuously exposing PC-9 cells to erlotinib. PC-9/ER3 cells were 136-fold more resistant to erlotinib than the parental cells. Although the PC-9/ER3 cells did not carry the T790M mutation or MET amplification and had similar levels of phosphorylated (p) STAT3, pJAK2 increased in the resistant cells. It was found in the present study that 3-12 h of exposure to erlotinib in both cell lines did not affect pJAK2 expression, but did result in increased pSTAT3 expression. pAkt in PC-9/ER3 cells was less suppressed than in PC-9 cells, although pEGFR and pMAPK were markedly suppressed in both cell lines. The combined treatment of erlotinib plus a JAK2 inhibitor (JSI-124) suppressed pAkt in PC-9/ER3 cells. Similarly, the combination of erlotinib plus JSI-124 or siRNA against JAK2 restored sensitivity to erlotinib in PC-9/ER3 cells. The combination of erlotinib plus JSI-124 was also effective for reducing PC-9/ER3 tumors in a murine xenograft model. Our results suggest that the activation of JAK2 partially accounts for acquired erlotinib resistance.
Collapse
Affiliation(s)
- Daijiro Harada
- Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|