1
|
Bahabry R, Jago SS, Hauser RM, Harmon J, Sheppard LD, Oyassan B, Lubin FD. Hippocampal gene expression changes associated with sequential behavioral training in a temporal lobe epilepsy rat model. Epilepsy Behav Rep 2025; 29:100735. [PMID: 39898299 PMCID: PMC11786087 DOI: 10.1016/j.ebr.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 02/04/2025] Open
Abstract
The transcriptional mechanisms underlying impaired hippocampal-dependent memory seen in temporal lobe epilepsy (TLE) have been extensively studied in rodent models. While cognitive testing in these models often involves multiple behavioral tasks, the impact of sequential behavioral testing (SBT) on gene transcription changes in epilepsy remains poorly understood. This study utilized the Kainic Acid (KA) TLE rodent model to examine hippocampal gene expression changes influenced by SBT. Our findings indicate reduced anxiety-related behavior, along with impaired spatial and recognition memory and fear memory in epileptic animals. Quantitative PCR (qPCR) analysis revealed an increase in BDNF, dFosB, Tet2, and Tet3 expression in the epilepsy-SBT group compared to control-SBT, while there was a reduction in Npas4 and Egr4 expression. Immunohistochemistry (IHC) showed that in epileptic animals, performing SBT reversed the loss of 5-hydroxymethylcytosine (5-hmC) in the dorsal hippocampus compared to that seen in home-caged (HC) epileptic animals, and this reversal was neuron-driven. These findings highlight the complex interplay between gene transcription and epigenetic regulation during SBT enrichment in the context of epilepsy.
Collapse
Affiliation(s)
- Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Silvienne Sint Jago
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca M. Hauser
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan Harmon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah Dinah Sheppard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bellafaith Oyassan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Farah D. Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Ram A, Murphy D, DeCuzzi N, Patankar M, Hu J, Pargett M, Albeck JG. A guide to ERK dynamics, part 2: downstream decoding. Biochem J 2023; 480:1909-1928. [PMID: 38038975 PMCID: PMC10754290 DOI: 10.1042/bcj20230277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Signaling by the extracellular signal-regulated kinase (ERK) pathway controls many cellular processes, including cell division, death, and differentiation. In this second installment of a two-part review, we address the question of how the ERK pathway exerts distinct and context-specific effects on multiple processes. We discuss how the dynamics of ERK activity induce selective changes in gene expression programs, with insights from both experiments and computational models. With a focus on single-cell biosensor-based studies, we summarize four major functional modes for ERK signaling in tissues: adjusting the size of cell populations, gradient-based patterning, wave propagation of morphological changes, and diversification of cellular gene expression states. These modes of operation are disrupted in cancer and other related diseases and represent potential targets for therapeutic intervention. By understanding the dynamic mechanisms involved in ERK signaling, there is potential for pharmacological strategies that not only simply inhibit ERK, but also restore functional activity patterns and improve disease outcomes.
Collapse
Affiliation(s)
- Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Devan Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Nicholaus DeCuzzi
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Madhura Patankar
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Jason Hu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| |
Collapse
|
3
|
Carmona-Barrón VG, Fernández del Campo IS, Delgado-García JM, De la Fuente AJ, Lopez IP, Merchán MA. Comparing the effects of transcranial alternating current and temporal interference (tTIS) electric stimulation through whole-brain mapping of c-Fos immunoreactivity. Front Neuroanat 2023; 17:1128193. [PMID: 36992795 PMCID: PMC10040600 DOI: 10.3389/fnana.2023.1128193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
The analysis of the topography of brain neuromodulation following transcranial alternating current (AC) stimulation is relevant for defining strategies directed to specific nuclei stimulation in patients. Among the different procedures of AC stimulation, temporal interference (tTIS) is a novel method for non-invasive neuromodulation of specific deep brain targets. However, little information is currently available about its tissue effects and its activation topography in in vivo animal models. After a single session (30 min, 0.12 mA) of transcranial alternate current (2,000 Hz; ES/AC group) or tTIS (2,000/2,010 Hz; Es/tTIS group) stimulation, rat brains were explored by whole-brain mapping analysis of c-Fos immunostained serial sections. For this analysis, we used two mapping methods, namely density-to-color processed channels (independent component analysis (ICA) and graphical representation (MATLAB) of morphometrical and densitometrical values obtained by density threshold segmentation. In addition, to assess tissue effects, alternate serial sections were stained for glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba1), and Nissl. AC stimulation induced a mild superficial increase in c-Fos immunoreactivity. However, tTIS stimulation globally decreased the number of c-Fos-positive neurons and increased blood brain barrier cell immunoreactivity. tTIS also had a stronger effect around the electrode placement area and preserved neuronal activation better in restricted areas of the deep brain (directional stimulation). The enhanced activation of intramural blood vessels’ cells and perivascular astrocytes suggests that low-frequency interference (10 Hz) may also have a trophic effect.
Collapse
Affiliation(s)
| | | | | | - Antonio J. De la Fuente
- Institute of Neuroscience of Castilla y Leon (INCYL), University of Salamanca, Salamanca, Spain
| | - Ignacio Plaza Lopez
- Institute of Neuroscience of Castilla y Leon (INCYL), University of Salamanca, Salamanca, Spain
| | - Miguel A. Merchán
- Institute of Neuroscience of Castilla y Leon (INCYL), University of Salamanca, Salamanca, Spain
- *Correspondence: Miguel A. Merchán
| |
Collapse
|
4
|
PANAGOPOULOS IOANNIS, HEIM SVERRE. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation. Cancer Genomics Proteomics 2022; 19:647-672. [PMID: 36316036 PMCID: PMC9620447 DOI: 10.21873/cgp.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal translocations in cancer as well as benign neoplasias typically lead to the formation of fusion genes. Such genes may encode chimeric proteins when two protein-coding regions fuse in-frame, or they may result in deregulation of genes via promoter swapping or translocation of the gene into the vicinity of a highly active regulatory element. A less studied consequence of chromosomal translocations is the fusion of two breakpoint genes resulting in an out-of-frame chimera. The breaks then occur in one or both protein-coding regions forming a stop codon in the chimeric transcript shortly after the fusion point. Though the latter genetic events and mechanisms at first awoke little research interest, careful investigations have established them as neither rare nor inconsequential. In the present work, we review and discuss the truncation of genes in neoplastic cells resulting from chromosomal rearrangements, especially from seemingly balanced translocations.
Collapse
Affiliation(s)
- IOANNIS PANAGOPOULOS
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - SVERRE HEIM
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Robison AJ, Nestler EJ. ΔFOSB: A Potentially Druggable Master Orchestrator of Activity-Dependent Gene Expression. ACS Chem Neurosci 2022; 13:296-307. [PMID: 35020364 PMCID: PMC8879420 DOI: 10.1021/acschemneuro.1c00723] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ΔFOSB is a uniquely stable member of the FOS family of immediate early gene AP1 transcription factors. Its accumulation in specific cell types and tissues in response to a range of chronic stimuli is associated with biological phenomena as diverse as memory formation, drug addiction, stress resilience, and immune cell activity. Causal connections between ΔFOSB expression and the physiological and behavioral sequelae of chronic stimuli have been established in rodent and, in some cases, primate models for numerous healthy and pathological states with such preclinical observations often supported by human data demonstrating tissue-specific ΔFOSB expression associated with several specific syndromes. However, the viability of ΔFOSB as a target for therapeutic intervention might be questioned over presumptive concerns of side effects given its expression in such a wide range of cell types and circumstances. Here, we summarize numerous insights from the past three decades of research into ΔFOSB structure, function, mechanisms of induction, and regulation of target genes that support its potential as a druggable target. We pay particular attention to the potential for targeting distinct ΔFOSB isoforms or distinct ΔFOSB-containing multiprotein complexes to achieve cell type or tissue specificity to overcome off-target concerns. We also cover critical gaps in knowledge that currently limit the exploitation of ΔFOSB's therapeutic possibilities and how they may be addressed. Finally, we summarize both current and potential future strategies for generating small molecules or genetic tools for the manipulation of ΔFOSB in the clinic.
Collapse
Affiliation(s)
- Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
6
|
Very N, Hardivillé S, Decourcelle A, Thévenet J, Djouina M, Page A, Vergoten G, Schulz C, Kerr-Conte J, Lefebvre T, Dehennaut V, El Yazidi-Belkoura I. Thymidylate synthase O-GlcNAcylation: a molecular mechanism of 5-FU sensitization in colorectal cancer. Oncogene 2022; 41:745-756. [PMID: 34845374 DOI: 10.1038/s41388-021-02121-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Alteration of O-GlcNAcylation, a dynamic posttranslational modification, is associated with tumorigenesis and tumor progression. Its role in chemotherapy response is poorly investigated. Standard treatment for colorectal cancer (CRC), 5-fluorouracil (5-FU), mainly targets Thymidylate Synthase (TS). TS O-GlcNAcylation was reported but not investigated yet. We hypothesize that O-GlcNAcylation interferes with 5-FU CRC sensitivity by regulating TS. In vivo, we observed that combined 5-FU with Thiamet-G (O-GlcNAcase (OGA) inhibitor) treatment had a synergistic inhibitory effect on grade and tumor progression. 5-FU decreased O-GlcNAcylation and, reciprocally, elevation of O-GlcNAcylation was associated with TS increase. In vitro in non-cancerous and cancerous colon cells, we showed that 5-FU impacts O-GlcNAcylation by decreasing O-GlcNAc Transferase (OGT) expression both at mRNA and protein levels. Reciprocally, OGT knockdown decreased 5-FU-induced cancer cell apoptosis by reducing TS protein level and activity. Mass spectrometry, mutagenesis and structural studies mapped O-GlcNAcylated sites on T251 and T306 residues and deciphered their role in TS proteasomal degradation. We reveal a crosstalk between O-GlcNAcylation and 5-FU metabolism in vitro and in vivo that converges to 5-FU CRC sensitization by stabilizing TS. Overall, our data propose that combining 5-FU-based chemotherapy with Thiamet-G could be a new way to enhance CRC response to 5-FU.
Collapse
Affiliation(s)
- Ninon Very
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Stéphan Hardivillé
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Amélie Decourcelle
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Julien Thévenet
- Universté de Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1190-EGID, F-59000, Lille, France
| | - Madjid Djouina
- Université de Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research In Inflammation, F-59000, Lille, France
| | - Adeline Page
- Protein Science Facility, CNRS UMS3444, INSERM US8, UCBL, ENS de Lyon, SFR BioSciences, Lyon, France
| | - Gérard Vergoten
- Université de Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research In Inflammation, F-59000, Lille, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Julie Kerr-Conte
- Universté de Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1190-EGID, F-59000, Lille, France
| | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Vanessa Dehennaut
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Ikram El Yazidi-Belkoura
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
7
|
Lang J, Yang C, Liu L, Li L, Wu L, Liu Y, Luo H, Yan L, Chen S, Ning J, Yang C. High glucose activates ERK1/2 to stabilize AP1 and increase MMP9 expression in diabetic foot ulcers. Exp Cell Res 2021; 403:112550. [PMID: 33675806 DOI: 10.1016/j.yexcr.2021.112550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Increased matrix metalloproteinase 9 (MMP9) expression is involved in delayed wound healing in diabetic foot ulcers. We created skin wounds in normal SD rats and STZ-induced diabetic SD rats, then we found protein levels of activator protein-1 (AP1), a crucial transcription factor to increase MMP9 transcription, as well as MMP9 was up-regulated in epithelium of diabetic skin tissues. Then, we evaluated the mRNA and protein stability of AP1 subunits C-FOS/C-Jun in HaCaT cells after high glucose treatment. Results showed that high glucose could increase protein stability of C-FOS and C-Jun. Additionally, high glucose also activated extracellular signaling-related kinase 1/2 (ERK1/2). ERK1/2 inhibitor could rescue phosphorylation of C-FOS and C-Jun, increased protein stability of C-Jun, and increased MMP9 expressions. Thus, our study demonstrated that high glucose could activate ERK1/2 to stabilize AP1 and increase MMP9 expression in diabetic skin and HaCaT cells.
Collapse
Affiliation(s)
- Jiangli Lang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chen Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lixuan Liu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Li
- Department of Emergency, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Liangyan Wu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanyan Liu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hengli Luo
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Sifan Chen
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua Central Hospital, Shenzhen, People's Republic of China
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
8
|
Tsuda Y, Suurmeijer AJH, Sung YS, Zhang L, Healey JH, Antonescu CR. Epithelioid hemangioma of bone harboring FOS and FOSB gene rearrangements: A clinicopathologic and molecular study. Genes Chromosomes Cancer 2020; 60:17-25. [PMID: 33034932 DOI: 10.1002/gcc.22898] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023] Open
Abstract
The diagnosis of epithelioid hemangioma (EH) remains challenging due to its rarity, worrisome histologic features, and locally aggressive clinical and radiographic presentation. Especially in the bone, EH can be misdiagnosed as a malignant vascular neoplasm due its lytic, often destructive or multifocal growth, as well as atypical morphology. The discovery of recurrent FOS and FOSB gene fusions in the pathogenesis of most EH has strengthened its stand-alone classification, distinct from other malignant epithelioid vascular lesions, such as epithelioid hemangioendothelioma or angiosarcoma. In this study we investigate a group of molecularly confirmed skeletal EH by the presence of FOS or FOSB gene rearrangements to better define its clinical and pathologic characteristics within a homogenous molecular subset. The cohort included 38 patients (25 males, 13 females), with a mean age at diagnosis of 38 years (range, 4-75). Regional, multifocal presentation was noted in 10 cases. Only six cases were correctly recognized as EH by the referring institutions, while most were misdiagnosed as other vascular tumors. Of the 17 patients with follow-up data available, five patients (29%) developed local recurrence after marginal en bloc excision (n = 3) or curettage (n = 2). Local recurrence-free survival rates were 84% at 3 years and 38% at 5 years. No metastasis or disease-related death was identified. Imaging studies exhibited no specific features, showing cortical bone destruction and soft-tissue extension in 14 (38%) cases. FOS gene rearrangements were detected in 28 (74%) of cases, while FOSB rearrangements in 10 (26%) cases. Our results highlight the significant challenges encountered in establishing a correct diagnosis exclusive of the molecular testing, mainly due to its overlap to other malignant epithelioid vascular tumors. Skeletal EH emerges as a genetically defined locally aggressive vascular neoplasm, with a high rate of local recurrence, but lacking the propensity for distant spread.
Collapse
Affiliation(s)
- Yusuke Tsuda
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Albert J H Suurmeijer
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yun-Shao Sung
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lei Zhang
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John H Healey
- Department of Surgery, Orthopedic Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cristina R Antonescu
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
9
|
Panagopoulos I, Gorunova L, Lobmaier I, Andersen K, Kostolomov I, Lund-Iversen M, Bjerkehagen B, Heim S. FOS-ANKH and FOS-RUNX2 Fusion Genes in Osteoblastoma. Cancer Genomics Proteomics 2020; 17:161-168. [PMID: 32108038 DOI: 10.21873/cgp.20176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIM Osteoblastoma is a rare benign tumor of the bones in which recurrent rearrangements of FOS have been found. Our aim was to investigate two osteoblastomas for possible genetic aberrations. MATERIALS AND METHODS Cytogenetic, RNA sequencing, and molecular analyses were performed. RESULTS A FOS-ANKH transcript was found in the first tumor, whereas a FOS-RUNX2 was detected in the second. Exon 4 of FOS fused with sequences either from intron 1 of ANKH or intron 5 of RUNX2. The fusion events introduced a stop codon and removed sequences involved in the regulation of FOS. CONCLUSION Rearrangements and fusions of FOS show similarities with those of HMGA2 (a feature of leiomyomas and lipomas) and CSF1 (tenosynovial giant cell tumors). The replacement of a 3'-untranslated region, controlling the gene's expression, by a new sequence is thus a common pathogenetic theme shared by FOS, HMGA2, and CSF1 in many benign connective tissue tumors.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ilyá Kostolomov
- Section for Applied Informatics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Bodil Bjerkehagen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Fan P, Siwak DR, Abderrahman B, Agboke FA, Yerrum S, Jordan VC. Suppression of Nuclear Factor-κB by Glucocorticoid Receptor Blocks Estrogen-Induced Apoptosis in Estrogen-Deprived Breast Cancer Cells. Mol Cancer Ther 2019; 18:1684-1695. [PMID: 31511352 DOI: 10.1158/1535-7163.mct-18-1363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 01/26/2023]
Abstract
Our clinically relevant finding is that glucocorticoids block estrogen (E2)-induced apoptosis in long-term E2-deprived (LTED) breast cancer cells. However, the mechanism remains unclear. Here, we demonstrated that E2 widely activated adipose inflammatory factors such as fatty acid desaturase 1 (FADS1), IL6, and TNFα in LTED breast cancer cells. Activation of glucocorticoid receptor (GR) by the synthetic glucocorticoid dexamethasone upregulated FADS1 and IL6, but downregulated TNFα expression. Furthermore, dexamethasone was synergistic or additive with E2 in upregulating FADS1 and IL6 expression, whereas it selectively and constantly suppressed TNFα expression induced by E2 in LTED breast cancer cells. Regarding regulation of endoplasmic reticulum stress, dexamethasone effectively blocked activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) by E2, but it had no inhibitory effects on inositol-requiring protein 1 alpha (IRE1α) expression increased by E2 Consistently, results from reverse-phase protein array (RPPA) analysis demonstrated that dexamethasone could not reverse IRE1α-mediated degradation of PI3K/Akt-associated signal pathways activated by E2 Unexpectedly, activated GR preferentially repressed nuclear factor-κB (NF-κB) DNA-binding activity and expression of NF-κB-dependent gene TNFα induced by E2, leading to the blockade of E2-induced apoptosis. Together, these data suggest that trans-suppression of NF-κB by GR in the nucleus is a fundamental mechanism thereby blocking E2-induced apoptosis in LTED breast cancer cells. This study provided an important rationale for restricting the clinical use of glucocorticoids, which will undermine the beneficial effects of E2-induced apoptosis in patients with aromatase inhibitor-resistant breast cancer.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Doris R Siwak
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Balkees Abderrahman
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fadeke A Agboke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C
| | - Smitha Yerrum
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - V Craig Jordan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
Fan P, Jordan VC. New insights into acquired endocrine resistance of breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:198-209. [PMID: 31815253 PMCID: PMC6897388 DOI: 10.20517/cdr.2019.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The translational research strategy of targeting estrogen receptor α (ERα) positive breast cancer and then using long term anti-hormone adjuvant therapy (5-10 years) has reduced recurrences and mortality. However, resistance continues to occur and improvements are required to build on the success of tamoxifen and aromatase inhibitors (AIs) established over the past 40 years. Further translational research has described the evolution of acquired resistance of breast cancer cell lines to long term estrogen deprivation that parallels clinical experience over years. Additionally, recent reports have identified mutations in the ERα obtained from the recurrences of AI treated patients. These mutations allow the ERα to activate without ligands and auto stimulate metastatic tumor growth. Furthermore, the new biology of estrogen-induced apoptosis in acquired resistant models in vitro and in vivo has been interrogated and applied to clinical trials. Inflammation and stress are emerging concepts occurring in the process of acquired resistance and estrogen-induced apoptosis with different mechanisms. In this review, we will present progress in the understanding of acquired resistance, focus on stress and inflammatory responses in the development of acquired resistance, and consider approaches to create new treatments to improve the treatment of breast cancer with endocrine resistance.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - V Craig Jordan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Sabin KZ, Jiang P, Gearhart MD, Stewart R, Echeverri K. AP-1 cFos/JunB/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Commun Biol 2019; 2:91. [PMID: 30854483 PMCID: PMC6403268 DOI: 10.1038/s42003-019-0335-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
Salamanders have the remarkable ability to functionally regenerate after spinal cord transection. In response to injury, GFAP+ glial cells in the axolotl spinal cord proliferate and migrate to replace the missing neural tube and create a permissive environment for axon regeneration. Molecular pathways that regulate the pro-regenerative axolotl glial cell response are poorly understood. Here we show axolotl glial cells up-regulate AP-1cFos/JunB after injury, which promotes a pro-regenerative glial cell response. Injury induced upregulation of miR-200a in glial cells supresses c-Jun expression in these cells. Inhibition of miR-200a during regeneration causes defects in axonal regrowth and transcriptomic analysis revealed that miR-200a inhibition leads to differential regulation of genes involved with reactive gliosis, the glial scar, extracellular matrix remodeling and axon guidance. This work identifies a unique role for miR-200a in inhibiting reactive gliosis in axolotl glial cells during spinal cord regeneration. Keith Sabin et al. showed that upregulation of the AP-1 complex, composed of c-Fos and JunB, in the axolotl spinal cord promotes a pro-regenerative glial cell response. This response is impaired by inhibition of miR-200a; suggesting an important role for this microRNA in axolotl spinal cord regeneration.
Collapse
Affiliation(s)
- Keith Z Sabin
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.,Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, 02543, MA, USA
| | - Peng Jiang
- Morgridge Institute for Research, Madison, 53715, WI, USA
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, 53715, WI, USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA. .,Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, 02543, MA, USA.
| |
Collapse
|
13
|
Choi H, Kim C, Song H, Cha MY, Cho HJ, Son SM, Kim HJ, Mook-Jung I. Amyloid β-induced elevation of O-GlcNAcylated c-Fos promotes neuronal cell death. Aging Cell 2019; 18:e12872. [PMID: 30515991 PMCID: PMC6351842 DOI: 10.1111/acel.12872] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/22/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive memory loss resulting from cumulative neuronal cell death. O-linked β-N-acetyl glucosamine (O-GlcNAc) modification of the proteins reflecting glucose metabolism is altered in the brains of patients with AD. However, the link between altered O-GlcNAc modification and neuronal cell death in AD is poorly understood. Here, we examined the regulation of O-GlcNAcylation of c-Fos and the effects of O-GlcNAcylated c-Fos on neuronal cell death during AD pathogenesis. We found that amyloid beta (Aβ)-induced O-GlcNAcylation on serine-56 and 57 of c-Fos was resulted from decreased interaction between c-Fos and O-GlcNAcase and promoted neuronal cell death. O-GlcNAcylated c-Fos increased its stability and potentiated the transcriptional activity through higher interaction with c-Jun, resulting in induction of Bim expression leading to neuronal cell death. Taken together, Aβ-induced O-GlcNAcylation of c-Fos plays an important role in neuronal cell death during the pathogenesis of AD.
Collapse
Affiliation(s)
- Heesun Choi
- Department of Biochemistry and Biomedical Sciences; Seoul National University, College of Medicine; Seoul Korea
| | - Chaeyoung Kim
- Department of Biochemistry and Biomedical Sciences; Seoul National University, College of Medicine; Seoul Korea
| | - Hyundong Song
- Department of Biochemistry and Biomedical Sciences; Seoul National University, College of Medicine; Seoul Korea
| | - Moon-Yong Cha
- Department of Biochemistry and Biomedical Sciences; Seoul National University, College of Medicine; Seoul Korea
| | - Hyun Jin Cho
- Department of Biochemistry and Biomedical Sciences; Seoul National University, College of Medicine; Seoul Korea
| | - Sung Min Son
- Department of Biochemistry and Biomedical Sciences; Seoul National University, College of Medicine; Seoul Korea
| | - Haeng Jun Kim
- Department of Biochemistry and Biomedical Sciences; Seoul National University, College of Medicine; Seoul Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences; Seoul National University, College of Medicine; Seoul Korea
| |
Collapse
|
14
|
Xu C, Miao Y, Pi Q, Zhu S, Li F. Fra-2 is a novel candidate drug target expressed in the podocytes of lupus nephritis. Clin Immunol 2018; 197:179-185. [PMID: 30296590 DOI: 10.1016/j.clim.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/01/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022]
Abstract
Lupus nephritis (LN) is a common and devastating complication caused by systemic lupus erythematosus. In this study, we evaluated the expression and mechanism of Fos-related antigen 2 (Fra-2) in LN. The results showed that Fra-2 was significantly increased in kidney biopsies of LN patients compared with healthy controls and other kidney disease in glomerular podocytes. The MRL/lpr mouse strain is a murine model of lupus, and it was used to study the mechanisms of Fra-2 in LN. The results showed that Fra-2 was expressed in the glomerular podocytes. We investigated the effects of inflammatory stimuli on Fra-2 protein expression in the glomerular podocytes, and found that interferon gamma was most effective at increasing Fra-2 protein expression. Knockdown of Fra-2 using siRNA enhanced the protein expression of nephrin. Therefore, Fra-2 may be a specific drug target for podocyte injury in LN.
Collapse
Affiliation(s)
- Changliang Xu
- Department of Nephrology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Yunjie Miao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Qingmeng Pi
- Department of Plastic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200129, China
| | - Shouchao Zhu
- Nanjing Arsmo Plastic and Aesthestic Hospital, Nanjing 210009, PR China
| | - Furong Li
- Department of Nephrology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, PR China.
| |
Collapse
|
15
|
Fittall MW, Mifsud W, Pillay N, Ye H, Strobl AC, Verfaillie A, Demeulemeester J, Zhang L, Berisha F, Tarabichi M, Young MD, Miranda E, Tarpey PS, Tirabosco R, Amary F, Grigoriadis AE, Stratton MR, Van Loo P, Antonescu CR, Campbell PJ, Flanagan AM, Behjati S. Recurrent rearrangements of FOS and FOSB define osteoblastoma. Nat Commun 2018; 9:2150. [PMID: 29858576 PMCID: PMC5984627 DOI: 10.1038/s41467-018-04530-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
The transcription factor FOS has long been implicated in the pathogenesis of bone tumours, following the discovery that the viral homologue, v-fos, caused osteosarcoma in laboratory mice. However, mutations of FOS have not been found in human bone-forming tumours. Here, we report recurrent rearrangement of FOS and its paralogue, FOSB, in the most common benign tumours of bone, osteoblastoma and osteoid osteoma. Combining whole-genome DNA and RNA sequences, we find rearrangement of FOS in five tumours and of FOSB in one tumour. Extending our findings into a cohort of 55 cases, using FISH and immunohistochemistry, provide evidence of ubiquitous mutation of FOS or FOSB in osteoblastoma and osteoid osteoma. Overall, our findings reveal a human bone tumour defined by mutations of FOS and FOSB.
Collapse
Affiliation(s)
- Matthew W Fittall
- The Francis Crick Institute, London, NW1 1AT, UK
- University College London Cancer Institute, London, WC1E 6DD, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - William Mifsud
- University College London Cancer Institute, London, WC1E 6DD, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Nischalan Pillay
- University College London Cancer Institute, London, WC1E 6DD, UK
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Hongtao Ye
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Anna-Christina Strobl
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Human Genetics, University of Leuven, Leuven, 3000, Belgium
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Fitim Berisha
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, NW1 1AT, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Matthew D Young
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Elena Miranda
- University College London Cancer Institute, London, WC1E 6DD, UK
| | - Patrick S Tarpey
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Agamemnon E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | | | - Peter Van Loo
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Human Genetics, University of Leuven, Leuven, 3000, Belgium
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter J Campbell
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Adrienne M Flanagan
- University College London Cancer Institute, London, WC1E 6DD, UK.
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK.
| | - Sam Behjati
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
16
|
The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive Lymphomas. Cancers (Basel) 2018; 10:cancers10040093. [PMID: 29597249 PMCID: PMC5923348 DOI: 10.3390/cancers10040093] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The Activator Protein-1 (AP-1) transcription factor (TF) family, composed of a variety of members including c-JUN, c-FOS and ATF, is involved in mediating many biological processes such as proliferation, differentiation and cell death. Since their discovery, the role of AP-1 TFs in cancer development has been extensively analysed. Multiple in vitro and in vivo studies have highlighted the complexity of these TFs, mainly due to their cell-type specific homo- or hetero-dimerization resulting in diverse transcriptional response profiles. However, as a result of the increasing knowledge of the role of AP-1 TFs in disease, these TFs are being recognized as promising therapeutic targets for various malignancies. In this review, we focus on the impact of deregulated expression of AP-1 TFs in CD30-positive lymphomas including Classical Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma.
Collapse
|
17
|
Eagle AL, Gajewski PA, Robison AJ. Role of hippocampal activity-induced transcription in memory consolidation. Rev Neurosci 2018; 27:559-73. [PMID: 27180338 DOI: 10.1515/revneuro-2016-0010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/26/2016] [Indexed: 01/15/2023]
Abstract
Experience-dependent changes in the strength of connections between neurons in the hippocampus (HPC) are critical for normal learning and memory consolidation, and disruption of this process drives a variety of neurological and psychiatric diseases. Proper HPC function relies upon discrete changes in gene expression driven by transcription factors (TFs) induced by neuronal activity. Here, we describe the induction and function of many of the most well-studied HPC TFs, including cyclic-AMP response element binding protein, serum-response factor, AP-1, and others, and describe their role in the learning process. We also discuss the known target genes of many of these TFs and the purported mechanisms by which they regulate long-term changes in HPC synaptic strength. Moreover, we propose that future research in this field will depend upon unbiased identification of additional gene targets for these activity-dependent TFs and subsequent meta-analyses that identify common genes or pathways regulated by multiple TFs in the HPC during learning or disease.
Collapse
|
18
|
van IJzendoorn DGP, Forghany Z, Liebelt F, Vertegaal AC, Jochemsen AG, Bovée JVMG, Szuhai K, Baker DA. Functional analyses of a human vascular tumor FOS variant identify a novel degradation mechanism and a link to tumorigenesis. J Biol Chem 2017; 292:21282-21290. [PMID: 29150442 DOI: 10.1074/jbc.c117.815845] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/03/2017] [Indexed: 11/06/2022] Open
Abstract
Epithelioid hemangioma is a locally aggressive vascular neoplasm, found in bones and soft tissue, whose cause is currently unknown, but may involve oncogene activation. FOS is one of the earliest viral oncogenes to be characterized, and normal cellular FOS forms part of the activator protein 1 (AP-1) transcription factor complex, which plays a pivotal role in cell growth, differentiation, and survival as well as the DNA damage response. Despite this, a causal link between aberrant FOS function and naturally occurring tumors has not yet been established. Here, we describe a thorough molecular and biochemical analysis of a mutant FOS protein we identified in these vascular tumors. The mutant protein lacks a highly conserved helix consisting of the C-terminal four amino acids of FOS, which we show is indispensable for fast, ubiquitin-independent FOS degradation via the 20S proteasome. Our work reveals that FOS stimulates endothelial sprouting and that perturbation of normal FOS degradation could account for the abnormal vessel growth typical of epithelioid hemangioma. To the best of our knowledge, this is the first functional characterization of mutant FOS proteins found in tumors.
Collapse
Affiliation(s)
| | - Zary Forghany
- Molecular Cell Biology, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands
| | - Frauke Liebelt
- Molecular Cell Biology, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands
| | - Alfred C Vertegaal
- Molecular Cell Biology, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands
| | - Aart G Jochemsen
- Molecular Cell Biology, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands
| | | | - Karoly Szuhai
- Molecular Cell Biology, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands
| | - David A Baker
- Molecular Cell Biology, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands
| |
Collapse
|
19
|
Manning CE, Williams ES, Robison AJ. Reward Network Immediate Early Gene Expression in Mood Disorders. Front Behav Neurosci 2017; 11:77. [PMID: 28503137 PMCID: PMC5408019 DOI: 10.3389/fnbeh.2017.00077] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/11/2017] [Indexed: 12/30/2022] Open
Abstract
Over the past three decades, it has become clear that aberrant function of the network of interconnected brain regions responsible for reward processing and motivated behavior underlies a variety of mood disorders, including depression and anxiety. It is also clear that stress-induced changes in reward network activity underlying both normal and pathological behavior also cause changes in gene expression. Here, we attempt to define the reward circuitry and explore the known and potential contributions of activity-dependent changes in gene expression within this circuitry to stress-induced changes in behavior related to mood disorders, and contrast some of these effects with those induced by exposure to drugs of abuse. We focus on a series of immediate early genes regulated by stress within this circuitry and their connections, both well-explored and relatively novel, to circuit function and subsequent reward-related behaviors. We conclude that IEGs play a crucial role in stress-dependent remodeling of reward circuitry, and that they may serve as inroads to the molecular, cellular, and circuit-level mechanisms of mood disorder etiology and treatment.
Collapse
Affiliation(s)
- Claire E Manning
- Department of Physiology, Michigan State UniversityEast Lansing, MI, USA
| | | | - Alfred J Robison
- Department of Physiology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
20
|
Atef RM, Agha AM, Abdel-Rhaman ARA, Nassar NN. The Ying and Yang of Adenosine A 1 and A 2A Receptors on ERK1/2 Activation in a Rat Model of Global Cerebral Ischemia Reperfusion Injury. Mol Neurobiol 2017; 55:1284-1298. [PMID: 28120151 DOI: 10.1007/s12035-017-0401-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Adenosine impacts cerebral ischemia reperfusion (IR) through the inhibitory A1 and the excitatory A2 receptors. The present study aimed at investigating the contrasting role of pERK1/2 in mediating adenosine A1R (protective) versus A2AR (deleterious) effects in IR. Male Wistar rats subjected to bilateral carotid occlusion (45 min) followed by reperfusion (24 h) exhibited increased pERK1/2 activity, downstream from DAG pathway, along with increases in hippocampal glutamate, c-Fos, NF-κB, TNF-α, iNOS, TBARS, cytochrome c, caspase-3, BDNF, Nrf2, and IL-10 contents. Further, hippocampal microglial reactivity, glial TNF-α, and BDNF expression were observed. Although unilateral intrahippocampal injection of either the A1R agonist CHA or the A2AR agonist CGS21680 increased pERK1/2, only CHA mitigated histopathological and behavioral deficits along with reducing glutamate, microglial activation, c-Fos, TNF-α, iNOS, TBARS, cytochrome c and caspase-3 and elevating Nrf2 and IL-10 levels in IR rats. These results yield insight into the double-faceted nature of pERK1/2 in mediating protective and deleterious effects of A1R and A2AR signaling, respectively, against IR injury.
Collapse
Affiliation(s)
- Reham M Atef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Azza M Agha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Abdel-Rahman A Abdel-Rhaman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
21
|
Schneider NY, Piccin C, Datiche F, Coureaud G. Spontaneous brain processing of the mammary pheromone in rabbit neonates prior to milk intake. Behav Brain Res 2016; 313:191-200. [PMID: 27418440 DOI: 10.1016/j.bbr.2016.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 11/17/2022]
Abstract
Chemical signals play a critical role in interindividual communication, including mother-young relationships. Detecting odor cues released by the mammary area is vital to the newborn's survival. European rabbit females secret a mammary pheromone (MP) in their milk, which releases sucking-related orocephalic movements in newborns. Pups spontaneously display these typical movements at birth, independently of any perinatal learning. Our previous Fos mapping study (Charra et al., 2012) performed in 4-day-old rabbits showed that the MP activated a network of brain regions involved in osmoregulation, odor processing and arousal in comparison with a control odor. However, at this age, the predisposed appetitive value of the MP might be reinforced by previous milk intake. Here, the brain activation induced by the MP was examined by using Fos immunocytochemistry and compared to a neutral control odor in just born pups (day 0) that did not experienced milk intake. Compared to the control odor, the MP induced an increased Fos expression in the posterior piriform cortex. In the lateral hypothalamus, Fos immunostaining was combined with orexin detection since this peptide is involved in arousal/food-seeking behavior. The number of double-labeled cells was not different between MP and control odor stimulations but the total number of Fos stained cells was increased after MP exposure. Our results indicate that the MP does not activate the same regions in 0- vs. 4-day-old pups. This difference between the two ages may reflect a changing biological value of the MP in addition to its constant predisposed releasing value.
Collapse
Affiliation(s)
- Nanette Y Schneider
- Centre des Sciences du Goût et de l'Alimentation (Research Center for Taste and Feeding Behavior), UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, Dijon, France
| | - Coralie Piccin
- Centre des Sciences du Goût et de l'Alimentation (Research Center for Taste and Feeding Behavior), UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, Dijon, France
| | - Frédérique Datiche
- Centre des Sciences du Goût et de l'Alimentation (Research Center for Taste and Feeding Behavior), UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, Dijon, France.
| | - Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon (Lyon Neuroscience Research Center) INSERM U1028/CNRS UMR 5292/Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
22
|
Tellez CS, Juri DE, Do K, Picchi MA, Wang T, Liu G, Spira A, Belinsky SA. miR-196b Is Epigenetically Silenced during the Premalignant Stage of Lung Carcinogenesis. Cancer Res 2016; 76:4741-51. [PMID: 27302168 DOI: 10.1158/0008-5472.can-15-3367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/16/2016] [Indexed: 02/06/2023]
Abstract
miRNA silencing by promoter hypermethylation may represent a mechanism by which lung cancer develops and progresses, but the miRNAs involved during malignant transformation are unknown. We previously established a model of premalignant lung cancer wherein we treated human bronchial epithelial cells (HBEC) with low doses of tobacco carcinogens. Here, we demonstrate that next-generation sequencing of carcinogen-transformed HBECs treated with the demethylating agent 5-aza-2'deoxycytidine revealed miR-196b and miR-34c-5p to be epigenetic targets. Bisulfite sequencing confirmed dense promoter hypermethylation indicative of silencing in multiple malignant cell lines and primary tumors. Chromatin immunoprecipitation studies further demonstrated an enrichment in repressive histone marks on the miR-196b promoter during HBEC transformation. Restoration of miR-196b expression by transfecting transformed HBECs with specific mimics led to cell-cycle arrest mediated in part through transcriptional regulation of the FOS oncogene, and miR-196b reexpression also significantly reduced the growth of tumor xenografts. Luciferase assays demonstrated that forced expression of miR-196b inhibited the FOS promoter and AP-1 reporter activity. Finally, a case-control study revealed that methylation of miR-196b in sputum was strongly associated with lung cancer (OR = 4.7, P < 0.001). Collectively, these studies highlight miR-196b as a tumor suppressor whose silencing early in lung carcinogenesis may provide a selective growth advantage to premalignant cells. Targeted delivery of miR-196b could therefore serve as a preventive or therapeutic strategy for the management of lung cancer. Cancer Res; 76(16); 4741-51. ©2016 AACR.
Collapse
Affiliation(s)
- Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
| | - Daniel E Juri
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Kieu Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Maria A Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Teresa Wang
- Department of Medicine, Boston University, Boston, Massachusetts
| | - Gang Liu
- Department of Medicine, Boston University, Boston, Massachusetts
| | - Avrum Spira
- Department of Medicine, Boston University, Boston, Massachusetts
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
| |
Collapse
|
23
|
Iwatsuki M, Matsuoka M. Fluoride-induced c-Fos expression in MC3T3-E1 osteoblastic cells. Toxicol Mech Methods 2016; 26:132-8. [DOI: 10.3109/15376516.2015.1129570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mamiko Iwatsuki
- Department of Hygiene and Public Health I, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masato Matsuoka
- Department of Hygiene and Public Health I, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Park SH, Kim JY, Cheon YH, Baek JM, Ahn SJ, Yoon KH, Lee MS, Oh J. Protocatechuic Acid Attenuates Osteoclastogenesis by Downregulating JNK/c-Fos/NFATc1 Signaling and Prevents Inflammatory Bone Loss in Mice. Phytother Res 2016; 30:604-12. [DOI: 10.1002/ptr.5565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Sun-Hyang Park
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Ju-Young Kim
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Yoon-Hee Cheon
- Center for Metabolic Function Regulation; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Jong Min Baek
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Sung-Jun Ahn
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Kwon-Ha Yoon
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Department of Radiology, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Myeung Su Lee
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Division of Rheumatology, Department of Internal Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Institute for Skeletal Disease; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Jaemin Oh
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Institute for Skeletal Disease; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| |
Collapse
|
25
|
Activation of AHR mediates the ubiquitination and proteasome degradation of c-Fos through the induction of Ubcm4 gene expression. Toxicology 2015; 337:47-57. [PMID: 26318284 DOI: 10.1016/j.tox.2015.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a specific, non-lysosomal pathway responsible for the controlled degradation of abnormal and short-half-life proteins. Despite its relevance in cell homeostasis, information regarding control of the UPS component gene expression is lacking. Data from a recent study suggest that the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor, might control the expression of several genes encoding for UPS proteins. Here, we showed that activation of AHR by TCDD and β-naphthoflavone (β-NF) results in Ubcm4 gene induction accompanied by an increase in protein levels. UbcM4 is an ubiquitin-conjugating enzyme or E2 protein that in association with ubiquitin ligase enzymes or E3 ligases promotes the ubiquitination and 26S proteasome-mediated degradation of different proteins, including p53, c-Myc, and c-Fos. We also present data demonstrating increased c-Fos ubiquitination and proteasomal degradation through the AHR-mediated induction of UbcM4 expression. The present study shows that AHR modulates the degradation of proteins involved in cell cycle control, consistent with previous reports demonstrating an essential role of the AHR in cell cycle regulation.
Collapse
|
26
|
Rawat V, Goux W, Piechaczyk M, D Mello SR. c-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity. Mol Neurobiol 2015; 53:1165-1180. [PMID: 25592718 DOI: 10.1007/s12035-014-9058-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022]
Abstract
Proteins belonging to the AP-1 family of transcription factors are known to be involved in the regulation of neuronal viability. While strides have been made to elucidate the mechanisms of how individual members regulate cell death, much remains unknown. We find that the expression of one AP-1 member, c-Fos, is reduced in cerebellar granule neurons (CGNs) induced to die by low potassium (LK) treatment. Restoration and increase of this expression protect CGNs against LK-induced death, whereas knockdown induces death of otherwise healthy neurons. Furthermore, forced expression can protect cortical neurons against homocysteic acid (HCA)-induced toxicity. Taken together, this suggests that c-Fos is necessary for neuronal survival and that elevating c-Fos expression has a neuroprotective effect. Consistent with this idea is the finding that c-Fos expression is reduced selectively in the striatum in two separate mouse models of Huntington's disease and forced expression protects against neuronal death resulting from mutant huntingtin (mut-Htt) expression. Interestingly, neuroprotection by c-Fos does not require its DNA-binding, transcriptional, or heteromerization domains. However, this protective activity can be inhibited by pharmacological inhibition of c-Abl, CK-I, and MEK-ERK signaling. Additionally, expression of point mutant forms of this protein has identified that mutation of a tyrosine residue, Tyr345, can convert c-Fos from neuroprotective to neurotoxic. We show that c-Fos interacts with histone deacetylase-3 (HDAC3), a protein that contributes to mut-Htt neurotoxicity and whose overexpression is sufficient to promote neuronal death. When co-expressed, c-Fos can protect against HDAC3 neurotoxicity. Finally, our study identifies a 21-amino acid region at the C-terminus of c-Fos that is sufficient to protect neurons against death induced by LK, HCA treatment, or mut-Htt expression when expressed via a plasmid transfection or as a cell-permeable peptide. This cell-permeable peptide, designated as Fos-CTF, could have potential as a therapeutic agent for neurodegenerative diseases.
Collapse
Affiliation(s)
- Varun Rawat
- Department of Biological Sciences, Southern Methodist University, Dedman Life Sciences Building, 6501 Airline Road, Dallas, TX, 75275, USA
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Warren Goux
- Department of Chemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Santosh R D Mello
- Department of Biological Sciences, Southern Methodist University, Dedman Life Sciences Building, 6501 Airline Road, Dallas, TX, 75275, USA.
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
27
|
Melesse M, Choi E, Hall H, Walsh MJ, Geer MA, Hall MC. Timely activation of budding yeast APCCdh1 involves degradation of its inhibitor, Acm1, by an unconventional proteolytic mechanism. PLoS One 2014; 9:e103517. [PMID: 25072887 PMCID: PMC4114781 DOI: 10.1371/journal.pone.0103517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/02/2014] [Indexed: 11/29/2022] Open
Abstract
Regulated proteolysis mediated by the ubiquitin proteasome system is a fundamental and essential feature of the eukaryotic cell division cycle. Most proteins with cell cycle-regulated stability are targeted for degradation by one of two related ubiquitin ligases, the Skp1-cullin-F box protein (SCF) complex or the anaphase-promoting complex (APC). Here we describe an unconventional cell cycle-regulated proteolytic mechanism that acts on the Acm1 protein, an inhibitor of the APC activator Cdh1 in budding yeast. Although Acm1 can be recognized as a substrate by the Cdc20-activated APC (APCCdc20) in anaphase, APCCdc20 is neither necessary nor sufficient for complete Acm1 degradation at the end of mitosis. An APC-independent, but 26S proteasome-dependent, mechanism is sufficient for complete Acm1 clearance from late mitotic and G1 cells. Surprisingly, this mechanism appears distinct from the canonical ubiquitin targeting pathway, exhibiting several features of ubiquitin-independent proteasomal degradation. For example, Acm1 degradation in G1 requires neither lysine residues in Acm1 nor assembly of polyubiquitin chains. Acm1 was stabilized though by conditional inactivation of the ubiquitin activating enzyme Uba1, implying some requirement for the ubiquitin pathway, either direct or indirect. We identified an amino terminal predicted disordered region in Acm1 that contributes to its proteolysis in G1. Although ubiquitin-independent proteasome substrates have been described, Acm1 appears unique in that its sensitivity to this mechanism is strictly cell cycle-regulated via cyclin-dependent kinase (Cdk) phosphorylation. As a result, Acm1 expression is limited to the cell cycle window in which Cdk is active. We provide evidence that failure to eliminate Acm1 impairs activation of APCCdh1 at mitotic exit, justifying its strict regulation by cell cycle-dependent transcription and proteolytic mechanisms. Importantly, our results reveal that strict cell-cycle expression profiles can be established independent of proteolysis mediated by the APC and SCF enzymes.
Collapse
Affiliation(s)
- Michael Melesse
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Eunyoung Choi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Hana Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Michael J. Walsh
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - M. Ariel Geer
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
28
|
Shimamoto N. [A pathophysiological role of cytochrome p450 involved in production of reactive oxygen species]. YAKUGAKU ZASSHI 2014; 133:435-50. [PMID: 23546588 DOI: 10.1248/yakushi.12-00263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dysregulation of the production of reactive oxygen species (ROS) determines cellular function. Cytochrome P450s (CYPs) regulates ROS production and contributes to the process of cell death. This review summarizes our recent findings, focusing on the involvement of CYPs in pathophysiology induced by ROS. 1. Quinone toxicity in hepatocytes: CYPs require electrons supplied from NADPH-cytochrome P450 reductase (NPR) during the process of metabolism. NPR also provides electrons to quinone compounds, which compete with CYPs over electrons. Inhibition of CYPs shifts NPR's electron flow more to quinones, which accelerates the redox cycle to enhance ROS production and quinone toxicity. 2. Myocardial ischemia-reperfusion injury: Reperfusion of blood flow after coronary artery occlusion induces cell damage, as evident by the extension of myocardial infarct size and caspase-independent cell apoptosis. CYP2C6 appears to be a source for ROS production, since sulfaphenazole, a selective inhibitor of CYP2C6, reduces this damage. ROS produced by CYP2C6 during the reperfusion causes translational activation of Noxa and BimEL, as well as the suppression of caspase activation, resulting in caspase-independent apoptosis. 3. Primary hepatocyte apoptosis: Inhibition of catalase and glutathione peroxidase increases intracellular ROS and elicits caspase-independent hepatocyte apoptosis. SKF-525A, a pan-CYP inhibitor, suppresses these ROS increases and hepatocyte apoptosis. Increased ROS activates ERK and AP-1 by inhibition of tyrosine phosphatase, and inhibits BimEL degradation by proteasome. These results in the accumulation of mitochondrial BimEL, which then induces the release of cytochrome c and endonuclease G (EndoG). Increased ROS also keeps caspases inactivated. As a result, EndoG executes nucleosomal DNA fragmentation.
Collapse
Affiliation(s)
- Norio Shimamoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa 769-2193, Japan
| |
Collapse
|
29
|
Errico MC, Felicetti F, Bottero L, Mattia G, Boe A, Felli N, Petrini M, Bellenghi M, Pandha HS, Calvaruso M, Tripodo C, Colombo MP, Morgan R, Carè A. The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway. Int J Cancer 2013; 133:879-92. [PMID: 23400877 PMCID: PMC3812682 DOI: 10.1002/ijc.28097] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/23/2013] [Indexed: 12/25/2022]
Abstract
Cutaneous melanoma is the fastest increasing cancer worldwide. Although several molecular abnormalities have been associated with melanoma progression, the underlying mechanisms are still largely unknown and few targeted therapies are under evaluation. Here we show that the HOXB7/PBX2 dimer acts as a positive transcriptional regulator of the oncogenic microRNA-221 and -222. In addition, demonstrating c-FOS as a direct target of miR-221&222, we identify a HOXB7/PBX2→miR-221&222 →c-FOS regulatory link, whereby the abrogation of functional HOXB7/PBX2 dimers leads to reduced miR-221&222 transcription and elevated c-FOS expression with consequent cell death. Taking advantage of the treatment with the peptide HXR9, an antagonist of HOX/PBX dimerization, we recognize miR-221&222 as effectors of its action, in turn confirming the HXR9 efficacy in the treatment of human melanoma malignancy, whilst sparing normal human melanocytes. Our findings, besides suggesting the potential therapeutic of HXR9 or its derivatives in malignant melanoma, suggest the disruption of the HOXB7/PBX2 complexes, miR-221&222 inhibition or even better their combination, as innovative therapeutic approaches.
Collapse
Affiliation(s)
- M Cristina Errico
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brain activity mapping in Mecp2 mutant mice reveals functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment. J Neurosci 2013; 32:13860-72. [PMID: 23035095 DOI: 10.1523/jneurosci.2159-12.2012] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excitatory-inhibitory imbalance has been identified within specific brain microcircuits in models of Rett syndrome (RTT) and other autism spectrum disorders (ASDs). However, macrocircuit dysfunction across the RTT brain as a whole has not been defined. To approach this issue, we mapped expression of the activity-dependent, immediate-early gene product Fos in the brains of wild-type (Wt) and methyl-CpG-binding protein 2 (Mecp2)-null (Null) mice, a model of RTT, before and after the appearance of overt symptoms (3 and 6 weeks of age, respectively). At 6 weeks, Null mice exhibit significantly less Fos labeling than Wt in limbic cortices and subcortical structures, including key nodes in the default mode network. In contrast, Null mice exhibit significantly more Fos labeling than Wt in the hindbrain, most notably in cardiorespiratory regions of the nucleus tractus solitarius (nTS). Using nTS as a model, whole-cell recordings demonstrated that increased Fos expression in Nulls at 6 weeks of age is associated with synaptic hyperexcitability, including increased frequency of spontaneous and miniature EPSCs and increased amplitude of evoked EPSCs in Nulls. No such effect of genotype on Fos or synaptic function was seen at 3 weeks. In the mutant forebrain, reduced Fos expression, as well as abnormal sensorimotor function, were reversed by the NMDA receptor antagonist ketamine. In light of recent findings that the default mode network is hypoactive in autism, our data raise the possibility that hypofunction within this meta-circuit is a shared feature of RTT and other ASDs and is reversible.
Collapse
|
31
|
Rao V, Guan B, Mutton LN, Bieberich CJ. Proline-mediated proteasomal degradation of the prostate-specific tumor suppressor NKX3.1. J Biol Chem 2012; 287:36331-40. [PMID: 22910912 DOI: 10.1074/jbc.m112.352823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reduced expression of the homeodomain transcription factor NKX3.1 is associated with prostate cancer initiation and progression. NKX3.1 turnover requires post-translational modifications including phosphorylation and ubiquitination. Here, we demonstrate the existence of a non-canonical mechanism for NKX3.1 turnover that does not require ubiquitination. Using a structure-function approach, we have determined that the conserved, C-terminal 21-amino acid domain of NKX3.1 (C21) is required for this novel ubiquitin-independent degradation mechanism. Addition of C21 decreased half-life of enhanced green fluorescence protein (EGFP) by 5-fold, demonstrating that C21 constitutes a portable degron. Point mutational analyses of C21 revealed that a conserved proline residue (Pro-221) is central to degron activity, and mutation to alanine (P221A) increased NKX3.1 half-life >2-fold. Proteasome inhibition and in vivo ubiquitination analyses indicated that degron activity is ubiquitin-independent. Evaluating degron activity in the context of a ubiquitination-resistant, lysine-null NKX3.1 mutant (NKX3.1(KO)) confirmed that P221A mutation conferred additional stability to NKX3.1. Treatment of prostate cancer cell lines with a C21-based peptide specifically increased the level of NKX3.1, suggesting that treatment with degron mimetics may be a viable approach for NKX3.1 restoration.
Collapse
Affiliation(s)
- Varsha Rao
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
32
|
Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008151. [PMID: 22570373 DOI: 10.1101/cshperspect.a008151] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
All the information to make a complete, fully functional living organism is encoded within the genome of the fertilized oocyte. How is this genetic code translated into the vast array of cellular behaviors that unfold during the course of embryonic development, as the zygote slowly morphs into a new organism? Studies over the last 30 years or so have shown that many of these cellular processes are driven by secreted or membrane-bound signaling molecules. Elucidating how the genetic code is translated into instructions or signals during embryogenesis, how signals are generated at the correct time and place and at the appropriate level, and finally, how these instructions are interpreted and put into action, are some of the central questions of developmental biology. Our understanding of the causes of congenital malformations and disease has improved substantially with the rapid advances in our knowledge of signaling pathways and their regulation during development. In this article, I review some of the signaling pathways that play essential roles during embryonic development. These examples show some of the mechanisms used by cells to receive and interpret developmental signals. I also discuss how signaling pathways downstream from these signals are regulated and how they induce specific cellular responses that ultimately affect cell fate and morphogenesis.
Collapse
Affiliation(s)
- M Albert Basson
- Department of Craniofacial Development, King's College London, United Kingdom.
| |
Collapse
|
33
|
Dong W, Li Y, Gao M, Hu M, Li X, Mai S, Guo N, Yuan S, Song L. IKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation. Nucleic Acids Res 2011; 40:2940-55. [PMID: 22169952 PMCID: PMC3326327 DOI: 10.1093/nar/gkr1216] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to ultraviolet B (UVB) irradiation from sunlight induces the upregulation of VEGF, a potent angiogenic factor that is critical for mediating angiogenesis-associated photodamage. However, the molecular mechanisms related to UVB-induced VEGF expression have not been fully defined. Here, we demonstrate that one of the catalytic subunits of the IκB kinase complex (IKK), IKKα, plays a critical role in mediating UVB-induced VEGF expression in mouse embryonic fibroblasts (MEFs), which requires IKKα kinase activity but is independent of IKKβ, IKKγ and the transactivation of NF-κB. We further show that the transcriptional factor AP-1 functions as the downstream target of IKKα that is responsible for VEGF induction under UVB exposure. Both the accumulation of AP-1 component, c-Fos and the transactivation of AP-1 by UVB require the activated IKKα located within the nucleus. Moreover, nuclear IKKα can associate with c-Fos and recruit to the vegf promoter regions containing AP-1-responsive element and then trigger phosphorylation of the promoter-bound histone H3. Thus, our results have revealed a novel independent role for IKKα in controlling VEGF expression during the cellular UVB response by regulating the induction of the AP-1 component and phosphorylating histone H3 to facilitate AP-1 transactivation. Targeting IKKα shows promise for the prevention of UVB-induced angiogenesis and the associated photodamage.
Collapse
Affiliation(s)
- Wen Dong
- Department of Pathophysiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Possible linkage of SP6 transcriptional activity with amelogenesis by protein stabilization. J Biomed Biotechnol 2011; 2011:320987. [PMID: 22046099 PMCID: PMC3199210 DOI: 10.1155/2011/320987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/09/2011] [Indexed: 11/17/2022] Open
Abstract
Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis) are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis.
Collapse
|
35
|
Ishihara Y, Ito F, Shimamoto N. Increased expression of c-Fos by extracellular signal-regulated kinase activation under sustained oxidative stress elicits BimEL upregulation and hepatocyte apoptosis. FEBS J 2011; 278:1873-81. [PMID: 21439021 DOI: 10.1111/j.1742-4658.2011.08105.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We previously reported that the inhibition of catalase and glutathione peroxidase activities by treatment with 3-amino-1,2,4-triazole (ATZ) and mercaptosuccinic acid evoked sustained increases in the levels of reactive oxygen species and apoptosis in rat primary hepatocytes. Apoptosis was accompanied by increased expression of BimEL, following activation of extracellular signal-regulated kinase. The aim of this study was to characterize the mechanism underlying hepatocyte apoptosis by identifying the transcription factor that induces BimEL expression. The bim promoter region was cloned into a promoterless-luc vector, and promoter activity was monitored by a luciferase assay. The luciferase activity increased in the presence of ATZ + mercaptosuccinic acid. Pretreatment with a MEK inhibitor, U0126, or an antioxidant, vitamin C, suppressed the promoter activity. Furthermore, ATZ + mercaptosuccinic acid-induced luciferase activity was attenuated by mutation of the activator protein-1 binding site in the bim promoter region. The amounts of total and phosphorylated c-Fos increased over time in the presence of ATZ + mercaptosuccinic acid, whereas the amounts of total and phosphorylated c-Jun remained unchanged. Chromatin immunoprecipitation revealed that both c-Fos and c-Jun localized to the activator protein-1-binding site in the bim promoter region. BimEL expression and hepatocyte apoptosis were suppressed by knockdown of c-Fos and c-Jun, respectively. These results indicate that increases in c-Fos following extracellular signal-regulated kinase activation are critical for BimEL upregulation and apoptosis.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Japan
| | | | | |
Collapse
|
36
|
Bakiri L, Reschke MO, Gefroh HA, Idarraga MH, Polzer K, Zenz R, Schett G, Wagner EF. Functions of Fos phosphorylation in bone homeostasis, cytokine response and tumourigenesis. Oncogene 2011; 30:1506-17. [PMID: 21119595 PMCID: PMC3838948 DOI: 10.1038/onc.2010.542] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/20/2010] [Accepted: 10/10/2010] [Indexed: 12/25/2022]
Abstract
Mice lacking c-fos develop osteopetrosis due to a block in osteoclast differentiation. Carboxy-terminal phosphorylation of Fos on serine 374 by ERK1/2 and serine 362 by RSK1/2 regulates Fos stability and transactivation potential in vitro. To assess the physiological relevance of Fos phosphorylation in vivo, serine 362 and/or serine 374 was replaced by alanine (Fos362A, Fos374A and FosAA) or by phospho-mimetic aspartic acid (FosDD). Homozygous mutants were healthy and skeletogenesis was largely unaffected. Fos C-terminal phosphorylation, predominantly on serine 374, was found important for osteoclast differentiation in vitro and affected lipopolysaccharide (LPS)-induced cytokine response in vitro and in vivo. Importantly, skin papilloma development was delayed in FosAA, Fos362A and Rsk2-deficient mice, accelerated in FosDD mice and unaffected in Fos374A mutants. Furthermore, the related Fos protein and putative RSK2 target Fra1 failed to substitute for Fos in papilloma development. This indicates that phosphorylation of serines 362 and 374 exerts context-dependent roles in modulating Fos activity in vivo. Inhibition of Fos C-terminal phosphorylation on serine 362 by targeting RSK2 might be of therapeutic relevance for skin tumours.
Collapse
Affiliation(s)
- Latifa Bakiri
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Holly A. Gefroh
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | - Erwin F. Wagner
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology programme, National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
37
|
Iwatsuki M, Inageda K, Matsuoka M. Cadmium induces phosphorylation and stabilization of c-Fos in HK-2 renal proximal tubular cells. Toxicol Appl Pharmacol 2011; 251:209-16. [PMID: 21219922 DOI: 10.1016/j.taap.2010.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 12/30/2010] [Indexed: 01/04/2023]
Abstract
We examined the effects of cadmium chloride (CdCl₂) exposure on the expression and phosphorylation status of members of the Fos family, components of the activator protein-1 transcription factor, in HK-2 human renal proximal tubular cells. Following the exposure to CdCl₂, the expression of c-fos, fosB, fra-1, and fra-2 increased markedly, with different magnitudes and time courses. The levels of Fos family proteins (c-Fos, FosB, Fra-1, and Fra-2) also increased in response to CdCl₂ exposure. Although the elevation of c-fos transcripts was transient, c-Fos protein levels increased progressively with lower electrophoretic mobility, suggesting stabilization of c-Fos through post-translational modifications. Consistently, we observed phosphorylation of c-Fos at Ser362 and Ser374 in HK-2 cells treated with CdCl₂. Phosphorylated forms of mitogen-activated protein kinases (MAPKs)-including extracellular signal-regulated protein kinase (ERK), c-Jun NH₂-terminal kinase, and p38-increased after CdCl₂ exposure, whereas treatment with the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 suppressed the accumulation and phosphorylation of c-Fos. We mutated Ser362 to alanine (S362A), Ser374 to alanine (S374A), and both residues to alanines (S362A/S374A) to inhibit potential phosphorylation of c-Fos at these sites. S374A or double S362A/S374A mutations reduced c-Fos level markedly, but S362A mutation did not. On the other hand, S362A/S374A mutations induced a more pronounced reduction in c-Fos DNA-binding activity than S374A mutation. These results suggest that while Ser374 phosphorylation seems to play a role in c-Fos stabilization, phosphorylation at two C-terminal serine residues is required for the transcriptional activation of c-Fos in HK-2 cells treated with CdCl₂.
Collapse
Affiliation(s)
- Mamiko Iwatsuki
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | |
Collapse
|
38
|
Hu TT, Luo SZ. Phosphorylation-Induced Structural Changes in the C-Terminus of c-Fos Detected by CD and NMR. Int J Pept Res Ther 2011. [DOI: 10.1007/s10989-010-9236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Abstract
Human thymidylate synthase (hTS; EC 2.1.1.45) is one of a small group of proteasomal substrates whose intracellular degradation occurs in a ubiquitin-independent manner. Previous studies have shown that proteolytic breakdown of the hTS polypeptide is directed by an intrinsically disordered 27-residue domain at the N-terminal end of the molecule. This domain, in co-operation with an α-helix spanning amino acids 31–45, functions as a degron, in that it has the ability to destabilize a heterologous polypeptide to which it is attached. In the present study, we provide evidence indicating that it is the 26S isoform of the proteasome that is responsible for intracellular degradation of the hTS polypeptide. In addition, we have used targeted in vitro mutagenesis to show that an Arg–Arg motif at residues 10–11 is required for proteolysis, an observation that was confirmed by functional analysis of the TS N-terminus from other mammalian species. The effects of stabilizing mutations on hTS degradation are maintained when the enzyme is provided with an alternative means of proteasome association; thus such mutations perturb one or more post-docking steps in the degradation pathway. Surprisingly, deletion mutants missing large segments of the disordered domain still function as proteasomal substrates; however, degradation of such mutants occurs by a mechanism that is distinct from that for the wild-type protein. Taken together, our results provide information on the roles of specific subregions within the intrinsically disordered N-terminal domain of hTS in regulation of degradation, leading to a deeper understanding of mechanisms underlying the ubiquitin-independent proteasomal degradation pathway.
Collapse
|
40
|
Talotta F, Mega T, Bossis G, Casalino L, Basbous J, Jariel-Encontre I, Piechaczyk M, Verde P. Heterodimerization with Fra-1 cooperates with the ERK pathway to stabilize c-Jun in response to the RAS oncoprotein. Oncogene 2010; 29:4732-40. [PMID: 20543861 DOI: 10.1038/onc.2010.211] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/25/2010] [Accepted: 05/02/2010] [Indexed: 02/07/2023]
Abstract
Multiple tumorigenic pathways converge on the activating protein-1 (AP-1) family of dimeric transcription complexes by affecting transcription, mRNA decay, posttranslational modifications, as well as stability of its JUN and FOS components. Several mechanisms have been implicated in the phosphorylation- and ubiquitylation-dependent control of c-Jun protein stability. Although its dimer composition has a major role in the regulation of AP-1, little is known about the influence of heterodimerization partners on the half-life of c-Jun. The FOS family member Fra-1 is overexpressed in various tumors and cancer cell lines wherein it controls motility, invasiveness, cell survival and cell division. Oncogene-induced accumulation of Fra-1 results from both increased transcription and phosphorylation-dependent stabilization of the protein. In this report, we describe a novel role of Fra-1 as a posttranslational regulator of c-Jun. By using both constitutively and inducible transformed rat thyroid cell lines, we found that c-Jun is stabilized in response to RAS oncoprotein expression. This stabilization requires the activity of the extracellular signal-related kinase (ERK) pathway, along with c-Jun heterodimerization with Fra-1. In particular, heterodimerization with Fra-1 inhibits c-Jun breakdown by a mechanism dependent on the phosphorylation of the Fra-1 C-terminal domain that positively controls the stability of the protein in response to ERK signaling. Therefore, Fra-1 modulates AP-1 dimer composition by promoting the accumulation of c-Jun in response to oncogenic RAS signaling.
Collapse
Affiliation(s)
- F Talotta
- Institute of Genetics and Biophysics 'A. Buzzati Traverso,' CNR, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
c-Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD(P)H:quinone oxidoreductase 1 determines c-Fos serum response kinetics. Mol Cell Biol 2010; 30:3767-78. [PMID: 20498278 DOI: 10.1128/mcb.00899-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The short-lived proto-oncoprotein c-Fos is a component of the activator protein 1 (AP-1) transcription factor. A large region of c-Fos is intrinsically unstructured and susceptible to a recently characterized proteasomal ubiquitin-independent degradation (UID) pathway. UID is active by a default mechanism that is inhibited by NAD(P)H:quinone oxidoreductase 1 (NQO1), a 20S proteasome gatekeeper. Here, we show that NQO1 binds and induces robust c-Fos accumulation by blocking the UID pathway. c-Jun, a partner of c-Fos, also protects c-Fos from proteasomal degradation by default. Our findings suggest that NQO1 protects monomeric c-Fos from proteasomal UID, a function that is fulfilled later by c-Jun. We show that this process regulates c-Fos homeostasis (proteostasis) in response to serum stimulation, phosphorylation, nuclear translocation, and transcription activity. In addition, we show that NQO1 is important to ensure immediate c-Fos accumulation in response to serum, since a delayed response was observed under low NQO1 expression. These data suggest that in vivo, protein unstructured regions determine the kinetics and the homeostasis of regulatory proteins. Our data provide evidence for another layer of regulation of key regulatory proteins that functions at the level of protein degradation and is designed to ensure optimal formation of functional complexes such as AP-1.
Collapse
|
42
|
Malnou CE, Brockly F, Favard C, Moquet-Torcy G, Piechaczyk M, Jariel-Encontre I. Heterodimerization with different Jun proteins controls c-Fos intranuclear dynamics and distribution. J Biol Chem 2010; 285:6552-62. [PMID: 20053986 DOI: 10.1074/jbc.m109.032680] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The c-Fos proto-oncogenic transcription factor defines a multigene family controlling many processes both at the cell and the whole organism level. To bind to its target AP-1/12-O-tetradecanoylphorbol-13-acetate-responsive element or cAMP-responsive element DNA sequences in gene promoters and exert its transcriptional part, c-Fos must heterodimerize with other bZip proteins, its best studied partners being the Jun proteins (c-Jun, JunB, and JunD). c-Fos expression is regulated at many transcriptional and post-transcriptional levels, yet little is known on how its localization is dynamically regulated in the cell. Here we have investigated its intranuclear mobility using fluorescence recovery after photobleaching, genetic, and biochemical approaches. Whereas monomeric c-Fos is highly mobile and distributed evenly with nucleolar exclusion in the nucleus, heterodimerization with c-Jun entails intranuclear redistribution and dramatic reduction in mobility of c-Fos caused by predominant association with the nuclear matrix independently of any binding to AP-1/12-O-tetradecanoylphorbol-13-acetate-responsive element or cAMP-responsive element sequences. In contrast to c-Jun, dimerization with JunB does not detectably affect c-Fos mobility. However, dimerization with JunB affects intranuclear distribution with significant differences in the localization of c-Fos.c-Jun and c-Fos.JunB dimers. Moreover, c-Jun and JunB exert comparable effects on another Fos family member, Fra-1. Thus, we report a novel regulation, i.e. differentially regulated intranuclear mobility and distribution of Fos proteins by their Jun partners, and suggest the existence of intranuclear storage sites for latent c-Fos.c-Jun AP-1 complexes. This may affect the numerous physiopathological functions these transcription factors control.
Collapse
Affiliation(s)
- Cécile E Malnou
- Institut de Génétique Moléculaire de Montpellier, UMR5535, CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
c-Fos proto-oncoprotein defines a family of closely related transcription factors (Fos proteins) also comprising Fra-1, Fra-2, FosB and ΔFosB, the latter two proteins being generated by alternative splicing. Through the regulation of many genes, most of them still unidentified, they regulate major functions from the cell level up to the whole organism. Thus they are involved in the control of proliferation, differentiation and apoptosis, as well as in the control of responses to stresses, and they play important roles in organogenesis, immune responses and control of cognitive functions, among others. Fos proteins are intrinsically unstable. We have studied how two of them, c-Fos and Fra-1, are degraded. Departing from the classical scenario where unstable key cell regulators are hydrolysed by the proteasome after polyubiquitination, we showed that the bulk of c-Fos and Fra-1 can be broken down independently of any prior ubiquitination. Certain conserved structural domains suggest that similar mechanisms may also apply to Fra-2 and FosB. Computer search indicates that certain motifs shared by the Fos proteins and putatively responsible for instability are found in no other protein, suggesting the existence of degradation mechanisms specific for this protein family. Under particular signalling conditions, others have shown that a part of cytoplasmic c-Fos requires ubiquitination for fast turnover. This poses the question of the multiplicity of degradation pathways that apply to proteins depending on their intracellular localization.
Collapse
|
44
|
Jariel-Encontre I, Bossis G, Piechaczyk M. Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta Rev Cancer 2008; 1786:153-77. [PMID: 18558098 DOI: 10.1016/j.bbcan.2008.05.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 02/08/2023]
Abstract
The proteasome is the main proteolytic machinery of the cell and constitutes a recognized drugable target, in particular for treating cancer. It is involved in the elimination of misfolded, altered or aged proteins as well as in the generation of antigenic peptides presented by MHC class I molecules. It is also responsible for the proteolytic maturation of diverse polypeptide precursors and for the spatial and temporal regulation of the degradation of many key cell regulators whose destruction is necessary for progression through essential processes, such as cell division, differentiation and, more generally, adaptation to environmental signals. It is generally believed that proteins must undergo prior modification by polyubiquitin chains to be addressed to, and recognized by, the proteasome. In reality, however, there is accumulating evidence that ubiquitin-independent proteasomal degradation may have been largely underestimated. In particular, a number of proto-oncoproteins and oncosuppressive proteins are privileged ubiquitin-independent proteasomal substrates, the altered degradation of which may have tumorigenic consequences. The identification of ubiquitin-independent mechanisms for proteasomal degradation also poses the paramount question of the multiplicity of catabolic pathways targeting each protein substrate. As this may help design novel therapeutic strategies, the underlying mechanisms are critically reviewed here.
Collapse
Affiliation(s)
- Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, IFR122, 1919 Route de Mende, Montpellier, F-34293, France
| | | | | |
Collapse
|
45
|
Abstract
Susceptibility to type 1 diabetes (T1D) is determined by interactions of multiple genes with unknown environmental factors. Despite the characterization of over 20 susceptibility regions for T1D, identification of specific genes in these regions is still a formidable challenge. In 2004, we first reported the cloning of a novel, small ubiquitin-like modifier (SUMO) gene, SUMO4, in the IDDM5 interval on chromosome 6q25, and presented strong genetic and functional evidence suggesting that SUMO4 is a T1D susceptibility gene. Subsequent studies have consistently confirmed this association in multiple Asian populations despite controversial observations in Caucasians. In this review, we will update the genetic evidence supporting SUMO4 as a T1D susceptibility gene and discuss the possible explanations for the discrepant associations observed in Caucasians. We will then discuss the mechanisms through which SUMO4 contributes to the pathogenesis of T1D.
Collapse
Affiliation(s)
- Cong-Yi Wang
- Center for Biotechnology and Genomic Medicine, Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | |
Collapse
|
46
|
Malnou CE, Salem T, Brockly F, Wodrich H, Piechaczyk M, Jariel-Encontre I. Heterodimerization with Jun family members regulates c-Fos nucleocytoplasmic traffic. J Biol Chem 2007; 282:31046-59. [PMID: 17681951 DOI: 10.1074/jbc.m702833200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
c-Fos proto-oncoprotein forms AP-1 transcription complexes with heterodimerization partners such as c-Jun, JunB, and JunD. Thereby, it controls essential cell functions and exerts tumorigenic actions. The dynamics of c-Fos intracellular distribution is poorly understood. Hence, we have combined genetic, cell biology, and microscopic approaches to investigate this issue. In addition to a previously characterized basic nuclear localization signal (NLS) located within the central DNA-binding domain, we identified a second NLS within the c-Fos N-terminal region. This NLS is non-classic and its activity depends on transportin 1 in vivo. Under conditions of prominent nuclear localization, c-Fos can undergo nucleocytoplasmic shuttling through an active Crm-1 exportin-independent mechanism. Dimerization with the Jun proteins inhibits c-Fos nuclear exit. The strongest effect is observed with c-Jun probably in accordance with the relative stabilities of the different c-Fos:Jun dimers. Retrotransport inhibition is not caused by binding of dimers to DNA and, therefore, is not induced by indirect effects linked to activation of c-Fos target genes. Monomeric, but not dimeric, Jun proteins also shuttle actively. Thus, our work unveils a novel regulation operating on AP-1 by demonstrating that dimerization is crucial, not only for active transcription complex formation, but also for keeping them in the compartment where they exert their transcriptional function.
Collapse
Affiliation(s)
- Cécile E Malnou
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 1919 Route de Mende, Montpellier F-34293, France
| | | | | | | | | | | |
Collapse
|
47
|
Jurado J, Fuentes-Almagro CA, Prieto-Álamo MJ, Pueyo C. Alternative splicing of c-fos pre-mRNA: contribution of the rates of synthesis and degradation to the copy number of each transcript isoform and detection of a truncated c-Fos immunoreactive species. BMC Mol Biol 2007; 8:83. [PMID: 17888145 PMCID: PMC2098773 DOI: 10.1186/1471-2199-8-83] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 09/21/2007] [Indexed: 12/30/2022] Open
Abstract
Background Alternative splicing is a widespread mechanism of gene expression regulation. Previous analyses based on conventional RT-PCR reported the presence of an unspliced c-fos transcript in several mammalian systems. Compared to the well-defined knowledge on the alternative splicing of fosB, the physiological relevance of the unspliced c-fos transcript in regulating c-fos expression remains largely unknown. This work aimed to investigate the functional significance of the alternative splicing c-fos pre-mRNA. Results A set of primers was designed to demonstrate that, whereas introns 1 and 2 are regularly spliced from primary c-fos transcript, intron 3 remains unspliced in part of total transcript molecules. Here, the two species are referred to as c-fos-2 (+ intron 3) and spliced c-fos (- intron 3) transcripts. Then, we used a quantitatively rigorous approach based on real-time PCR to provide, for the first time, the actual steady-state copy numbers of the two c-fos transcripts. We tested how the mouse-organ context and mouse-gestational age, the synthesis and turnover rates of the investigated transcripts, and the serum stimulation of quiescent cells modulate their absolute-expression profiles. Intron 3 generates an in-frame premature termination codon that predicts the synthesis of a truncated c-Fos protein. This prediction was evaluated by immunoaffinity chromatography purification of c-Fos proteins. Conclusion We demonstrate that: (i) The c-fos-2 transcript is ubiquitously synthesized either in vivo or in vitro, in amounts that are higher or similar to those of mRNAs coding for other Fos family members, like FosB, ΔFosB, Fra-1 or Fra-2. (ii) Intron 3 confers to c-fos-2 an outstanding destabilizing effect of about 6-fold. (iii) Major determinant of c-fos-2 steady-state levels in cultured cells is its remarkably high rate of synthesis. (iv) Rapid changes in the synthesis and/or degradation rates of both c-fos transcripts in serum-stimulated cells give rise to rapid and transient changes in their relative proportions. Taken as a whole, these findings suggest a co-ordinated fine-tune of the two c-fos transcript species, supporting the notion that the alternative processing of the precursor mRNA might be physiologically relevant. Moreover, we detected a c-Fos immunoreactive species corresponding in mobility to the predicted truncated variant.
Collapse
Affiliation(s)
- Juan Jurado
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus Rabanales, Edificio Severo Ochoa, planta-2, 14071-Córdoba, Spain
| | - Carlos A Fuentes-Almagro
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus Rabanales, Edificio Severo Ochoa, planta-2, 14071-Córdoba, Spain
| | - María J Prieto-Álamo
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus Rabanales, Edificio Severo Ochoa, planta-2, 14071-Córdoba, Spain
| | - Carmen Pueyo
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus Rabanales, Edificio Severo Ochoa, planta-2, 14071-Córdoba, Spain
| |
Collapse
|
48
|
Basbous J, Jariel-Encontre I, Gomard T, Bossis G, Piechaczyk M. Ubiquitin-independent- versus ubiquitin-dependent proteasomal degradation of the c-Fos and Fra-1 transcription factors: is there a unique answer? Biochimie 2007; 90:296-305. [PMID: 17825471 DOI: 10.1016/j.biochi.2007.07.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/20/2007] [Indexed: 02/03/2023]
Abstract
The Fos family of transcription factors comprises c-Fos, Fra-1, Fra-2 and FosB, which are all intrinsically unstable proteins. Fos proteins heterodimerize with a variety of other transcription factors to control genes encoding key cell regulators. Their best known partners are the Jun family proteins (c-Jun, JunB, and JunD). At the cellular level, Fos-involving dimers control proliferation, differentiation, apoptosis and responses to environmental cues. At the organism level, they play paramount parts in organogenesis, immune responses and cognitive functions, among others. fos family genes are subjected to exquisite, complex and intermingled transcriptional and post-transcriptional regulations, which are necessary to avoid pathological effects. In particular, the Fos proteins undergo to numerous post-translational modifications, such as phosphorylations and sumoylation, regulating their transcriptional activity, their subcellular localization and their turnover. The mechanisms whereby c-Fos and Fra-1 are degraded have been studied in detail. Contrasting with the classical scenario, according to which most unstable key cell regulators are hydrolyzed by the proteasome after conjugation of polyubiquitin chains, the bulk of c-Fos and Fra-1 can be hydrolyzed independently of any prior ubiquitylation in different situations. c-Fos and Fra-1 share a common destabilizing domain whose primary sequence is conserved in Fra-2 and FosB, suggesting that similar breakdown mechanisms might be at play in the latter two proteins. However, a database search indicates that this domain is not found in any other protein, suggesting that the mechanisms underlying Fos protein destruction may be specific to this family. Interestingly, under particular conditions, a fraction of cytoplasmic c-Fos is ubiquitylated, leading to faster turnover. This poses the question of the multiplicity of degradation pathways that can target the same substrate depending on its activation state, its protein partnership and/or its intracellular localization. This issue is discussed here together with the, thus far, overlooked roles of the various proteasomal complexes found in all cells.
Collapse
Affiliation(s)
- Jihane Basbous
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, IFR122, 1919 Route de Mende, Montpellier F-34293, France
| | | | | | | | | |
Collapse
|
49
|
Basbous J, Chalbos D, Hipskind R, Jariel-Encontre I, Piechaczyk M. Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. Mol Cell Biol 2007; 27:3936-50. [PMID: 17371847 PMCID: PMC1900028 DOI: 10.1128/mcb.01776-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fra-1, a transcription factor that is phylogenetically and functionally related to the proto-oncoprotein c-Fos, controls many essential cell functions. It is expressed in many cell types, albeit with differing kinetics and abundances. In cells reentering the cell cycle, Fra-1 expression is transiently stimulated albeit later than that of c-Fos and for a longer time. Moreover, Fra-1 overexpression is found in cancer cells displaying high Erk1/2 activity and has been linked to tumorigenesis. One crucial point of regulation of Fra-1 levels is controlled protein degradation, the mechanism of which remains poorly characterized. Here, we have combined genetic, pharmacological, and signaling studies to investigate this process in nontransformed cells and to elucidate how it is altered in cancer cells. We report that the intrinsic instability of Fra-1 depends on a single destabilizer contained within the C-terminal 30 to 40 amino acids. Two serines therein, S252 and S265, are phosphorylated by kinases of the Erk1/2 pathway, which compromises protein destruction upon both normal physiological induction and tumorigenic constitutive activation of this cascade. Our data also indicate that Fra-1, like c-Fos, belongs to a small group of proteins that may, under certain circumstances, undergo ubiquitin-independent degradation by the proteasome. Our work reveals both similitudes and differences between Fra-1 and c-Fos degradation mechanisms. In particular, the presence of a single destabilizer within Fra-1, instead of two that are differentially regulated in c-Fos, explains the much faster turnover of the latter when cells traverse the G(0)/G(1)-to-S-phase transition. Finally, our study offers further insights into the signaling-regulated expression of the other Fos family proteins.
Collapse
Affiliation(s)
- Jihane Basbous
- Institut de Génétique Moléculaire de Montpellier, CNRS, 1919 Route de Mende, Montpellier F-34293, France
| | | | | | | | | |
Collapse
|
50
|
Pellegrino MJ, Stork PJS. Sustained activation of extracellular signal-regulated kinase by nerve growth factor regulates c-fos protein stabilization and transactivation in PC12 cells. J Neurochem 2007; 99:1480-93. [PMID: 17223854 DOI: 10.1111/j.1471-4159.2006.04250.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The duration of intracellular signaling is thought to be a critical component in effecting specific biological responses. This paradigm is demonstrated by growth factor activation of the extracellular signal-regulated kinase (ERK) signaling cascade in the rat pheochromocytoma cell line (PC12 cells). In this model, sustained ERK activation induced by nerve growth factor (NGF) results in differentiation, whereas transient ERK activation induced by epidermal growth factor (EGF) results in proliferation in these cells. Recently, the immediate early gene product c-fos has been proposed to be a sensor for ERK signaling duration in fibroblasts. In this study, we ask whether this is true for NGF and EGF stimulation of PC12 cells. We show that NGF, but not EGF, can regulate both c-fos stability and activation in an ERK-dependent manner in PC12 cells. This is achieved through ERK-dependent phosphorylation of c-fos. Interestingly, distinct sites regulate enhanced stability and transactivation of c-fos. Phosphorylation of Thr325 and Thr331 are required for maximal NGF-dependent transactivation of c-fos. In addition, a consensus ERK binding site (DEF domain) is also required for c-fos transactivation. However, stability is controlled by ERK-dependent phosphorylation of Ser374, while phosphorylation of Ser362 can induce conformational changes in protein structure. We also provide evidence that sustained ERK activation is required for proper post-translational regulation of c-fos following NGF treatment of PC12 cells. Because these ERK-dependent phosphorylations are required for proper c-fos function, and occur sequentially, we propose that c-fos is a sensor for ERK signaling duration in the neuronal-like cell line PC12.
Collapse
Affiliation(s)
- Michael J Pellegrino
- Neuroscience Graduate Program, Oregon Health Sciences University, Portland, Oregon, USA
| | | |
Collapse
|