1
|
Boisen IM, Krarup Knudsen N, Nielsen JE, Kooij I, Bagger ML, Kaludjerovic J, O'Shaughnessy P, Andrews PW, Ide N, Toft BG, Juul A, Mehmedbasic A, Jørgensen A, Smith LB, Norman R, Meyts ERD, Lanske B, Blomberg Jensen M. Changes in local mineral homeostasis facilitate the formation of benign and malignant testicular microcalcifications. eLife 2025; 13:RP95545. [PMID: 40279260 DOI: 10.7554/elife.95545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025] Open
Abstract
Testicular microcalcifications consist of hydroxyapatite and have been associated with an increased risk of testicular germ cell tumors (TGCTs) but are also found in benign cases such as loss-of-function variants in the phosphate transporter SLC34A2. Here, we show that fibroblast growth factor 23 (FGF23), a regulator of phosphate homeostasis, is expressed in testicular germ cell neoplasia in situ (GCNIS), embryonal carcinoma (EC), and human embryonic stem cells. FGF23 is not glycosylated in TGCTs and therefore cleaved into a C-terminal fragment which competitively antagonizes full-length FGF23. Here, Fgf23 knockout mice presented with marked calcifications in the epididymis, spermatogenic arrest, and focally germ cells expressing the osteoblast marker Osteocalcin (gene name: Bglap, protein name). Moreover, the frequent testicular microcalcifications in mice with no functional androgen receptor and lack of circulating gonadotropins are associated with lower Slc34a2 and higher Bglap/Slc34a1 (protein name: NPT2a) expression compared with wild-type mice. In accordance, human testicular specimens with microcalcifications also have lower SLC34A2 and a subpopulation of germ cells express phosphate transporter NPT2a, Osteocalcin, and RUNX2 highlighting aberrant local phosphate handling and expression of bone-specific proteins. Mineral disturbance in vitro using calcium or phosphate treatment induced deposition of calcium phosphate in a spermatogonial cell line and this effect was fully rescued by the mineralization inhibitor pyrophosphate. In conclusion, testicular microcalcifications arise secondary to local alterations in mineral homeostasis, which in combination with impaired Sertoli cell function and reduced levels of mineralization inhibitors due to high alkaline phosphatase activity in GCNIS and TGCTs facilitate osteogenic-like differentiation of testicular cells and deposition of hydroxyapatite.
Collapse
Affiliation(s)
- Ida Marie Boisen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, University Hospital Copenhagen, Herlev-Gentofte, Herlev, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N, Denmark
| | - Nadia Krarup Knudsen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, University Hospital Copenhagen, Herlev-Gentofte, Herlev, Denmark
| | - John E Nielsen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ireen Kooij
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, University Hospital Copenhagen, Herlev-Gentofte, Herlev, Denmark
| | - Mathilde Louise Bagger
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, University Hospital Copenhagen, Herlev-Gentofte, Herlev, Denmark
| | - Jovanna Kaludjerovic
- Division of Bone and Mineral Research, Harvard School of Dental Medicine/Harvard Medical School, Harvard University, Boston, United States
| | - Peter O'Shaughnessy
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Noriko Ide
- Division of Bone and Mineral Research, Harvard School of Dental Medicine/Harvard Medical School, Harvard University, Boston, United States
| | - Birgitte G Toft
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Arnela Mehmedbasic
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, University Hospital Copenhagen, Herlev-Gentofte, Herlev, Denmark
| | - Anne Jørgensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, University Hospital Copenhagen, Herlev-Gentofte, Herlev, Denmark
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Richard Norman
- Department of Urology, Dalhousie University, Halifax, Canada
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Beate Lanske
- Division of Bone and Mineral Research, Harvard School of Dental Medicine/Harvard Medical School, Harvard University, Boston, United States
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, University Hospital Copenhagen, Herlev-Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
2
|
Chen G, Wang W, Wei X, Chen Y, Peng L, Qu R, Luo Y, He S, Liu Y, Du J, Lu R, Li S, Fan C, Chen S, Dai Y, Yang L. Single-cell transcriptomic analysis reveals that the APP-CD74 axis promotes immunosuppression and progression of testicular tumors. J Pathol 2024; 264:250-269. [PMID: 39161125 DOI: 10.1002/path.6343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/09/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Testicular tumors represent the most common malignancy among young men. Nevertheless, the pathogenesis and molecular underpinning of testicular tumors remain largely elusive. We aimed to delineate the intricate intra-tumoral heterogeneity and the network of intercellular communication within the tumor microenvironment. A total of 40,760 single-cell transcriptomes were analyzed, encompassing samples from six individuals with seminomas, two patients with mixed germ cell tumors, one patient with a Leydig cell tumor, and three healthy donors. Five distinct malignant subclusters were identified in the constructed landscape. Among them, malignant 1 and 3 subclusters were associated with a more immunosuppressive state and displayed worse disease-free survival. Further analysis identified that APP-CD74 interactions were significantly strengthened between malignant 1 and 3 subclusters and 14 types of immune subpopulations. In addition, we established an aberrant spermatogenesis trajectory and delineated the global gene alterations of somatic cells in seminoma testes. Sertoli cells were identified as the somatic cell type that differed the most from healthy donors to seminoma testes. Cellular communication between spermatogonial stem cells and Sertoli cells is disturbed in seminoma testes. Our study delineates the intra-tumoral heterogeneity and the tumor immune microenvironment in testicular tumors, offering novel insights for targeted therapy. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Wei Wang
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Wei
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yulin Chen
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Liao Peng
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Rui Qu
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Yi Luo
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Shengyin He
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Yugao Liu
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Jie Du
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Ran Lu
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Siying Li
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Chuangwen Fan
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, PR China
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sujun Chen
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Yi Dai
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| | - Luo Yang
- Department of Urology/Pelvic Floor and Andrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
3
|
Tian B, Pang Y, Gao Y, Meng Q, Xin L, Sun C, Tang X, Wang Y, Li Z, Lin H, Wang L. A pan-cancer analysis of the oncogenic role of Golgi transport 1B in human tumors. J Transl Int Med 2023; 11:433-448. [PMID: 38130634 PMCID: PMC10732491 DOI: 10.2478/jtim-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Owing to the aggressiveness and treatment-refractory nature of cancer, ideal candidates for early diagnosis and treatment are needed. Golgi transport 1B (GOLT1B) has been associated with cellular malignant behaviors and immune responses in colorectal and lung cancer, but a systematic pan-cancer analysis on GOLT1B has not been conducted. Methods The expression status and clinical association of GOLT1B in The Cancer Genome Atlas (TCGA) were analyzed. Genetic and methylation alterations in GOLT1B were explored. The relationship between GOLT1B and immune cell infiltration was also investigated. Genes related to GOLT1B expression were selected and analyzed. Results GOLT1B was highly expressed in most tumors, and there was a positive correlation between GOLT1B expression and clinical pathological parameters. High expression levels of GOLT1B have been associated with poor prognosis of most cancers. Copy number amplification was the primary type of GOLT1B genetic alterations, which was related to the prognosis of pan-cancer cases. There were different levels of GOLT1B promoter methylation across cancer types. The methylation level of the probe cg07371838 and cg25816357 was closely associated with prognosis in diverse cancers. There was also a positive correlation between GOLT1B genetic alterations and CD4+ T lymphocytes, especially the Th2 subset, as well as between GOLT1B expression and the estimated infiltration value of cancer-associated fibroblasts. Serine/threonine kinase receptor-associated protein (STRAP), integrator complex subunit 13 (INTS13), and ethanolamine kinase 1 (ETNK1) were the most relevant genes for GOLT1B expression, and their interactions with GOLT1B were involved in regulating the transforming growth factor (TGF)-β receptor signaling pathway and epithelial-mesenchymal transition (EMT). Conclusions This pan-cancer analysis provided a comprehensive understanding of the oncogenic role of GOLT1B, highlighting a potential mechanism whereby GOLT1B influences the tumor microenvironment, as well as cancer immunotherapy.
Collapse
Affiliation(s)
- Bo Tian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Yanan Pang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai200433, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Qianqian Meng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Lei Xin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Chang Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Xin Tang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Yilin Wang
- Georgetown Preparatory School, North Bethesda20852, MD, USA
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Han Lin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Luowei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| |
Collapse
|
4
|
Gayer FA, Henkel M, Luft J, Reichardt SD, Fichtner A, Legler TJ, Reichardt HM. The Subtype Identity of Testicular Cancer Cells Determines Their Immunostimulatory Activity in a Coculture Model. Cancers (Basel) 2023; 15:cancers15092619. [PMID: 37174085 PMCID: PMC10177190 DOI: 10.3390/cancers15092619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Testicular germ cell cancer (TGCC) is subdivided into several subtypes. While seminomatous germ cell tumors (SGCT) are characterized by an intensive infiltration of immune cells which constitute a pro-inflammatory tumor micromilieu (TME), immune cells in non-seminomatous germ cell tumors (NSGCT) are differently composed and less abundant. Previously, we have shown that the seminomatous cell line TCam-2 promotes T cell and monocyte activation in a coculture model, resulting in mutual interactions between both cell types. Here we set out to compare this feature of TCam-2 cells with the non-seminomatous cell line NTERA-2. Peripheral blood T cells or monocytes cocultured with NTERA-2 cells failed to secrete relevant amounts of pro-inflammatory cytokines, and significantly downregulated the expression of genes encoding activation markers and effector molecules. In contrast, immune cells cocultured with TCam-2 cells produced IL-2, IL-6 and TNFα, and strongly upregulated the expression of multiple pro-inflammatory genes. Furthermore, the expression of genes involved in proliferation, stemness and subtype specification remained unaltered in NTERA-2 cells during coculture with T cells or monocytes, indicating the absence of mutual interactions. Collectively, our findings uncover fundamental differences between SGCT and NSGCT in their capability to generate a pro-inflammatory TME, which possibly impacts the clinical features and prognosis of both TGCC subtypes.
Collapse
Affiliation(s)
- Fabian A Gayer
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Clinic of Urology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Miriam Henkel
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Juliane Luft
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Sybille D Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Alexander Fichtner
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Tobias J Legler
- Department of Transfusion Medicine, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
5
|
Cabral ERM, Pacanhella MF, Lengert AVH, dos Reis MB, Leal LF, de Lima MA, da Silva ALV, Pinto IA, Reis RM, Pinto MT, Cárcano FM. Somatic mutation detection and KRAS amplification in testicular germ cell tumors. Front Oncol 2023; 13:1133363. [PMID: 37007070 PMCID: PMC10060882 DOI: 10.3389/fonc.2023.1133363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Testicular Germ Cell Tumors (TGCT) are the most common cancer among young adult men. The TGCT histopathology is diverse, and the frequency of genomic alterations, along with their prognostic role, remains largely unexplored. Herein, we evaluate the mutation profile of a 15-driver gene panel and copy number variation of KRAS in a large series of TGCT from a single reference cancer center. MATERIALS AND METHODS A cohort of 97 patients with TGCT, diagnosed at the Barretos Cancer Hospital, was evaluated. Real-time PCR was used to assess copy number variation (CNV) of the KRAS gene in 51 cases, and the mutation analysis was performed using the TruSight Tumor 15 (Illumina) panel (TST15) in 65 patients. Univariate analysis was used to compare sample categories in relation to mutational frequencies. Survival analysis was conducted by the Kaplan-Meier method and log-rank test. RESULTS KRAS copy number gain was a very frequent event (80.4%) in TGCT and presented a worse prognosis compared with the group with no KRAS copy gain (10y-OS, 90% vs. 81.5%, p = 0.048). Among the 65 TGCT cases, different variants were identified in 11 of 15 genes of the panel, and the TP53 gene was the most recurrently mutated driver gene (27.7%). Variants were also detected in genes such as KIT, KRAS, PDGFRA, EGFR, BRAF, RET, NRAS, PIK3CA, MET, and ERBB2, with some of them potentially targetable. CONCLUSION Although larger studies incorporating collaborative networks may shed the light on the molecular landscape of TGCT, our findings unveal the potential of actionable variants in clinical management for applying targeted therapies.
Collapse
Affiliation(s)
| | | | - Andre V. H. Lengert
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Mariana B. dos Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Leticia F. Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata – FACISB, Barretos, Brazil
| | - Marcos A. de Lima
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Icaro A. Pinto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui M. Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- 3ICVS/3B’s-PT Government Associate Laboratory, Braga, Portugal
| | - Mariana T. Pinto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Flavio M. Cárcano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Division of Genitourinary Medical Oncology, Oncoclínicas, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Miholjcic TBS, Halse H, Bonvalet M, Bigorgne A, Rouanne M, Dercle L, Shankar V, Marabelle A. Rationale for LDH-targeted cancer immunotherapy. Eur J Cancer 2023; 181:166-178. [PMID: 36657325 DOI: 10.1016/j.ejca.2022.11.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Immunotherapies have significantly improved the survival of patients in many cancers over the last decade. However, primary and secondary resistances are encountered in most patients. Unravelling resistance mechanisms to cancer immunotherapies is an area of active investigation. Elevated levels of circulating enzyme lactate dehydrogenase (LDH) have been historically considered in oncology as a marker of bad prognosis, usually attributed to elevated tumour burden and cancer metabolism. Recent evidence suggests that elevated LDH levels could be independent from tumour burden and contain a negative predictive value, which could help in guiding treatment strategies in immuno-oncology. In this review, we decipher the rationale supporting the potential of LDH-targeted therapeutic strategies to tackle the direct immunosuppressive effects of LDH on a wide range of immune cells, and enhance the survival of patients treated with cancer immunotherapies.
Collapse
Affiliation(s)
- Tina B S Miholjcic
- Faculté de Médecine, Université de Genève, Genève, Switzerland; Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France
| | - Heloise Halse
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; INSERM UMR 1163, Imagine Institute, Université de Paris, F-75015 Paris, France
| | - Mélodie Bonvalet
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France
| | - Amélie Bigorgne
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; INSERM UMR 1163, Imagine Institute, Université de Paris, F-75015 Paris, France
| | - Mathieu Rouanne
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Département d'Urologie, Hôpital Foch, UVSQ, Université Paris-Saclay, 92150 Suresnes, France
| | - Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY, USA
| | - Vishnu Shankar
- Immunology Program, School of Medicine, Stanford University, CA, USA
| | - Aurélien Marabelle
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, 94805 Villejuif, France; Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France; Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| |
Collapse
|
7
|
Jhuang YL, Yang CW, Tseng YF, Hsu CL, Li HY, Yuan RH, Jeng YM. SIN3-HDAC complex-associated factor, a chromatin remodelling gene located in the 12p amplicon, is a potential germ cell tumour-specific oncogene. J Pathol 2022; 258:353-365. [PMID: 36056608 DOI: 10.1002/path.6007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023]
Abstract
A genetic hallmark of malignant germ cell tumours (GCTs) is isochromosome 12p, but oncogenes located in 12p that are specifically expressed in GCT have not yet been identified. SIN3-HDAC complex-associated factor (SINHCAF) is a subunit of the Sin3/histone deacetylase (HDAC) complex, and it defines a Sin3a-Hdac complex variant that is required for the self-renewal of mouse embryonic stem cells. This study demonstrated that SINHCAF is expressed in a vast majority of malignant GCTs and is rarely expressed in somatic malignancy. Fluorescence in situ hybridisation revealed SINHCAF amplification in malignant GCTs. SINHCAF silencing using shRNA reduced anchorage-dependent cell proliferation and tumoursphere formation and inhibited tumour cell migration and invasion in GCT cell lines. Moreover, in the GCT cell line NTERA2/D1, SINHCAF silencing inhibited the expression of genes associated with embryonic stem cells and induced the expression of genes associated with neuronal and white fat cell differentiation. Compared with somatic cell lines, GCT cell lines were more susceptible to HDAC inhibitor treatment. Thus, we identified SINHCAF to be a potential oncogene located in the amplicon of chromosome 12p and showed that SINHCAF was specifically expressed in malignant GCTs. HDAC inhibitor treatment may counteract the oncogenic activity of SINHCAF and is a promising therapeutic approach for GCTs. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yu-Ling Jhuang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Wei Yang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Yu-Fen Tseng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Ying Li
- Medical Microbiota Center of the First Core Laboratory, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Cao Y, Chen Z, Qin Z, Qian K, Liu T, Zhang Y. CDKN2AIP-induced cell senescence and apoptosis of testicular seminoma are associated with CARM1 and eIF4β. Acta Biochim Biophys Sin (Shanghai) 2022; 54:604-614. [PMID: 35593475 PMCID: PMC9909323 DOI: 10.3724/abbs.2022040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Testicular seminoma is a relatively rare tumor which is mostly detected in male population aged from 15 to 35 years old. Although several molecular biomarkers have been identified to be associated with testicular seminoma pathogenesis, the exact mechanism for testicular seminoma progression remains largely unknown. CDKN2A interacting protein (CDKN2AIP) has previously been identified as a tumor suppressor in multiple malignant diseases. In this study, we aimed to further explore its role in testicular seminoma as well as the underlying molecular mechanisms. Retrospective testicular seminoma clinical samples, normal tissues, NTERA-2 cell line, and mouse xenograft models were used in this study. RT-qPCR, western blot analysis, immunofluorescence microscopy, Co-IP and IP-MS experiments were performed to detect the expression of CDKN2AIP and its interaction with CARM1 and eIF4β. SA-β-gal staining assay and H3K9me3 activity experiments were used to subsequently evaluate the cell senescence and apoptosis. Mouse xenograft animal model was used for in vivo study. The results showed that CDKN2AIP is highly expressed in normal testis samples, and is significantly suppressed in testicular seminoma clinical samples and cell line model. Up-regulation of CDKN2AIP is significantly associated with the inhibition of testicular seminoma tumor growth and the increase of cell senescence and apoptosis. CDKN2AIP exhibits anti-tumor activity by interacting with CARM1 and eIF4β. CDKN2AIP induces testicular seminoma cell senescence by suppressing CARM1 expression and eIF4β phosphorylation. The CDKN2AIP-CARM1 and CDKN2AIP-eIF4β interactions, which induce tumor cell senescence and apoptosis, may be the potential druggable molecular pathways in testicular seminoma tumor pathogenesis and progression.
Collapse
Affiliation(s)
- Yuming Cao
- Department of Gynaecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhan430071China,Clinical Medicine Research Center for Prenatal Diagnosis and Birth HealthWuhan430071China
| | - Zhenlie Chen
- Department of Gynaecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhan430071China,Clinical Medicine Research Center for Prenatal Diagnosis and Birth HealthWuhan430071China
| | - Zihan Qin
- Department of Gynaecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Kaiyu Qian
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Tongzu Liu
- Urology SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yuanzhen Zhang
- Department of Gynaecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhan430071China,Clinical Medicine Research Center for Prenatal Diagnosis and Birth HealthWuhan430071China,Correspondence address. Tel: +86-27-67813040; E-mail:
| |
Collapse
|
9
|
Khajah MA, Khushaish S, Luqmani YA. Lactate Dehydrogenase A or B Knockdown Reduces Lactate Production and Inhibits Breast Cancer Cell Motility in vitro. Front Pharmacol 2021; 12:747001. [PMID: 34744727 PMCID: PMC8564068 DOI: 10.3389/fphar.2021.747001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Lactate dehydrogenase (LDH) plays an important role in cancer pathogenesis and enhanced expression/activity of this enzyme has been correlated with poor prognosis. In this study we determined the expression profile of LDH-A and B in normal as well as in endocrine-resistant and -responsive breast cancer cells and the effect of their knockdown on LDH activity, lactate production, proliferation and cell motility. Methods: Knockdown experiments were performed using siRNA and shRNA. The expression profile of LDH and signaling molecules was determined using PCR and western blotting. Intracellular LDH activity and extracellular lactate levels were measured by a biochemical assay. Cell motility was determined using wound healing, while proliferation was determined using MTT assay. Results: LDH-A was expressed in all of the tested cell lines, while LDH-B was specifically expressed only in normal and endocrine-resistant breast cancer cells. This was correlated with significantly enhanced LDH activity and lactate production in endocrine resistant breast cancer cells when compared to normal or endocrine responsive cancer cells. LDH-A or -B knockdown significantly reduced LDH activity and lactate production, which led to reduced cell motility. Exogenous lactate supplementation enhanced cell motility co-incident with enhanced phosphorylation of ERK1/2 and reduced E-cadherin expression. Also, LDH-A or -B knockdown reduced ERK 1/2 phosphorylation. Conclusion: Enhanced cell motility in endocrine resistant breast cancer cells is at least in part mediated by enhanced extracellular lactate levels, and LDH inhibition might be a promising therapeutic target to inhibit cancer cell motility.
Collapse
|
10
|
Jia L, Deng FM, Kong MX, Wu CL, Yang XJ. Common Diagnostic Challenges and Pitfalls in Genitourinary Organs, With Emphasis on Immunohistochemical and Molecular Updates. Arch Pathol Lab Med 2021; 145:1387-1404. [PMID: 34673910 DOI: 10.5858/arpa.2021-0107-ra] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Lesions in the genitourinary (GU) organs, both benign and malignant, can demonstrate overlapping morphology, and practicing surgical pathologists should be aware of these potential pitfalls and consider a broad differential diagnosis for each specific type of lesion involving the GU organs. The following summary of the contents presented at the 6th Annual Chinese American Pathologists Association (CAPA) Diagnostic Course (October 10-11, 2020), supplemented with relevant literature review, exemplifies the common diagnostic challenges and pitfalls for mass lesions of the GU system of adults, including adrenal gland, with emphasis on immunohistochemical and molecular updates when relevant. OBJECTIVE.— To describe the common mass lesions in the GU system of adults, including adrenal gland, with emphasis on the diagnostic challenges and pitfalls that may arise in the pathologic assessment, and to highlight immunohistochemical workups and emerging molecular findings when relevant. DATA SOURCES.— The contents presented at the course and literature search comprise our data sources. CONCLUSIONS.— The diagnostic challenges and pitfalls that arise in the pathologic assessment of the mass lesions in the GU system of adults, including adrenal gland, are common. We summarize the contents presented at the course, supplemented with relevant literature review, and hope to provide a diagnostic framework to evaluate these lesions in routine clinical practice.
Collapse
Affiliation(s)
- Liwei Jia
- From the Department of Pathology, University of Texas Southwestern Medical Center, Dallas (Jia)
| | - Fang-Ming Deng
- the Department of Pathology, New York University Grossman School of Medicine, New York City (Deng)
| | - Max X Kong
- Northern California Kaiser, Kaiser Sacramento Medical Center, Sacramento (Kong)
| | - Chin-Lee Wu
- the Department of Pathology and Urology, Massachusetts General Hospital, Boston (Wu)
| | - Ximing J Yang
- the Department of Pathology, Northwestern University, Chicago, Illinois (Yang)
| |
Collapse
|
11
|
Affiliation(s)
- Seungbok Yang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Yoonjae Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
12
|
Primary Mediastinal and Testicular Germ Cell Tumors in Adolescents and Adults: A Comparison of Genomic Alterations and Clinical Implications. Cancers (Basel) 2021; 13:cancers13205223. [PMID: 34680371 PMCID: PMC8533956 DOI: 10.3390/cancers13205223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary The germ cell tumors (GCTs) family is a heterogeneous group of neoplasms that includes tumors affecting testis (TGCTs) and rarer cases occurring in extragonadal sites. Mediastinal germ cell tumors (MGCTs) are more aggressive and have poorer prognosis. Due to their rarity of MGCTs, few molecular and clinical studies are reported. MGCTs share biological similarities with TGCT, and international guidelines recommend use of the same therapies validated for TGCT. However, while high response rate is achieved in TGCT, MGCT tend to be resistant to therapy. This review resumes all molecular findings reported in MGCTs, summarizing molecular characteristics common with TGCT and highlighting the different molecular alterations that characterize mediastinal tumors. A deeper understanding of the MGCT biology will help in clinical management of these patients. Abstract Mediastinal germ cell tumors (MGCTs) share histologic, molecular and biomarkers features with testicular GCTs; however, nonseminomatous MGCTs are usually more aggressive and have poorer prognosis than nonseminomatous TGCTs. Most nonseminomatous MGCT cases show early resistance to platinum-based therapies and seldom have been associated with the onset of one or more concomitant somatic malignancies, in particular myeloid neoplasms with recent findings supporting a common, shared genetic precursor with the primary MGCT. Genomic, transcriptomic and epigenetic features of testicular GCTs have been extensively studied, allowing for the understanding of GCT development and transformation of seminomatous and nonseminomatous histologies. However, MGCTs are still lacking proper multi-omics analysis and only few data are reported in the literature. Understanding of the mechanism involved in the development, in the progression and in their higher resistance to common therapies is still poorly understood. With this review, we aim to collect all molecular findings reported in this rare disease, resuming the similarities and disparities with the gonadal counterparts.
Collapse
|
13
|
Pantaleo MA, Mandruzzato M, Indio V, Urbini M, Nannini M, Gatto L, Schipani A, Fiorentino M, Franceschini T, Ambrosini V, Di Scioscio V, Saponara M, Ianni M, Concetti S, Altimari A, Ardizzoni A, Astolfi A. Case Report: The Complete Remission of a Mixed Germ Cell Tumor With Somatic Type Malignancy of Sarcoma Type With a GCT-Oriented Therapy: Clinical Findings and Genomic Profiling. Front Oncol 2021; 11:633543. [PMID: 33796464 PMCID: PMC8008106 DOI: 10.3389/fonc.2021.633543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/16/2021] [Indexed: 11/28/2022] Open
Abstract
Somatic malignant transformation in a germ cell tumor (GCT) is the development of non-germ malignancies; much of available literature refers to teratoma with malignant transformation (TMT). There are various transformation histologies such as sarcoma, adenocarcinoma, primitive neuroectodermal tumors, and more rarely carcinoid tumors, hemangioendothelioma, lymphoma, or nephroblastoma. The treatments of these entities include surgery and/or chemotherapy. A standard approach in choosing chemotherapy in TMT cases has not yet been established. Many authors suggest using chemotherapeutic agents based on the transformed histology, while others recommend GCT-oriented therapy combined with surgery as the primary treatment, reserving histology-driven chemotherapies for metastatic relapse. We report the clinical findings and the genomic profile of a mixed GCT case with somatic-type malignancy of sarcoma type. We achieved a complete radiological response with GCT-oriented chemotherapy performed as salvage therapy after sarcoma-histology therapy. In addition, molecular profiles with RNA-sequencing and exome sequencing analyses of the primary tumor and the tumor with somatic-type malignancy of sarcoma type were explored.
Collapse
Affiliation(s)
- Maria A Pantaleo
- Division of Oncology, IRCSS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy.,"Giorgio Prodi Cancer Research Center" and Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, Bologna, Italy
| | - Marcella Mandruzzato
- Division of Oncology, IRCSS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi Cancer Research Center" and Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, Bologna, Italy
| | - Milena Urbini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Margherita Nannini
- Division of Oncology, IRCSS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Lidia Gatto
- Division of Oncology, IRCSS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Angela Schipani
- "Giorgio Prodi Cancer Research Center" and Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, Bologna, Italy
| | | | - Tania Franceschini
- Metropolitan Department of Pathology, University of Bologna, Bologna, Italy
| | - Valentina Ambrosini
- Division of Nuclear Medicine Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Valerio Di Scioscio
- Division of Radiology Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Maristella Saponara
- Division of Oncology, IRCSS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Manuela Ianni
- "Giorgio Prodi Cancer Research Center" and Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, Bologna, Italy
| | - Sergio Concetti
- UOC Urologia, Azienda Unità Sanitaria Locale (AUSL), Bologna, Italy
| | - Annalisa Altimari
- Division of Laboratory of Oncologic Molecular Pathology, Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Division of Oncology, IRCSS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy.,"Giorgio Prodi Cancer Research Center" and Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Qing Y, Dong L, Gao L, Li C, Li Y, Han L, Prince E, Tan B, Deng X, Wetzel C, Shen C, Gao M, Chen Z, Li W, Zhang B, Braas D, Ten Hoeve J, Sanchez GJ, Chen H, Chan LN, Chen CW, Ann D, Jiang L, Müschen M, Marcucci G, Plas DR, Li Z, Su R, Chen J. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m 6A/PFKP/LDHB axis. Mol Cell 2021; 81:922-939.e9. [PMID: 33434505 PMCID: PMC7935770 DOI: 10.1016/j.molcel.2020.12.026] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/09/2020] [Accepted: 12/12/2020] [Indexed: 01/13/2023]
Abstract
R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.
Collapse
MESH Headings
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Female
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic
- Glutarates/pharmacology
- Glycolysis/drug effects
- Glycolysis/genetics
- HEK293 Cells
- Humans
- K562 Cells
- Lactate Dehydrogenases/antagonists & inhibitors
- Lactate Dehydrogenases/genetics
- Lactate Dehydrogenases/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oxidative Phosphorylation/drug effects
- Phosphofructokinase-1, Type C/antagonists & inhibitors
- Phosphofructokinase-1, Type C/genetics
- Phosphofructokinase-1, Type C/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Survival Analysis
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pathology and Genomic Medicine, Houston Methodist, Houston, TX 77030, USA
| | - Chenying Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Key Laboratory of Hematopoietic Malignancies, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 31003, China
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, China
| | - Emily Prince
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Collin Wetzel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Min Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineer (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - Daniel Braas
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerardo Javier Sanchez
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Huiying Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lai N Chan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Internal Medicine (Hematology) and Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - David Ann
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Lei Jiang
- Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Department of Internal Medicine (Hematology) and Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist, Houston, TX 77030, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
15
|
von Eyben FE, Parraga-Alava J, Tu SM. Testicular germ cell tumors type 2 have high RNA expression of LDHB, the gene for lactate dehydrogenase subunit B. Asian J Androl 2021; 23:357-362. [PMID: 33565425 PMCID: PMC8269830 DOI: 10.4103/aja.aja_4_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This study analyzed RNA expression of genes for three serum tumor markers, alpha fetoprotein (AFP), human chorionic gonadotropin (hCG), and lactate dehydrogenase (LDH), in patients with testicular germ cell tumors (TGCT) type 2. The gene AFP encodes AFP, the gene for chorionic gonadotropin beta polypeptide 5 (CGB5) encodes a major part of the specific beta subunit of hCG, and the genes for LDH subunit A (LDHA), LDH subunit B (LDHB), and LDH subunit C (LDHC) encode three different subunits of LDH. LDHB encodes the LDHB subunit present as a tetramer in LDH isoenzyme 1 (LDH-1). We examined three datasets with 203 samples of normal testis tissue (NT) and TGCT type 2. Yolk sac tumor (YST) expressed RNA of AFP fourteen thousand times higher than seminoma (SE), embryonal carcinoma (EC), and teratoma (TER) combined (P = 0.00015). In the second microarray, choriocarcinoma (CC) expressed RNA of CGB5 ten times higher than other histologic types of TGCT combined. EC expressed RNA of LDHB twice higher than SE, YST and TER combined (P = 0.000041). EC expressed RNA of LDHB higher than that YST expressed RNA of AFP and that CC expressed RNA of CGB5. In conclusion, TGCT type 2 expressed RNA of LDHB markedly higher than the RNA of 23 other candidate genes for TGCT type 2.
Collapse
Affiliation(s)
| | - Jorge Parraga-Alava
- Facultad de Ciencias Informáticas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.,Department of Informatics Engineering, Santiago University, Santiago 917020, Chile
| | - Shi-Ming Tu
- Department of Urology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
16
|
Halliwell J, Barbaric I, Andrews PW. Acquired genetic changes in human pluripotent stem cells: origins and consequences. Nat Rev Mol Cell Biol 2020; 21:715-728. [DOI: 10.1038/s41580-020-00292-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
|
17
|
Ni H, Wang X, Qu H, Gao X, Yu X. MiR-95-5p involves in the migration and invasion of trophoblast cells by targeting low density lipoprotein receptor-related protein 6. J Obstet Gynaecol Res 2020; 47:184-197. [PMID: 32924237 DOI: 10.1111/jog.14451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 07/14/2020] [Accepted: 08/08/2020] [Indexed: 12/30/2022]
Abstract
AIMS Low density lipoprotein receptor-related protein 6 (LRP6) has been demonstrated to control trophoblast cell invasion, but its regulatory gene remains undefined. In this study, microRNA (miR) regulating LRP6 were explored to elucidate the potential mechanism of preeclampsia (PE). METHODS Firstly, the expression of LRP6 in PE tissues was detected by immunohistochemical staining and quantitative real-time polymerase chain reaction (qRT-PCR) assay. Prediction software predicted that LRP6 might be the target gene of miR-95-5p, and verified by double-luciferase reporter analysis. qRT-PCR assay measured the expression of miR-95-5p in PE tissues and trophoblast cell lines. Then, we transfected miR-95-5p mimic, inhibitor, LRP6, or mimic plus LRP6 into trophoblast cell lines, and analyzed their influences on cell migration and invasion by wound healing and Transwell experiments. The expressions of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors of metalloproteinase (TIMP)-1 in transfected cells were examined by western blot (WB) analysis. RESULTS LRP6 was low-expressed in PE tissues, while miR-95-5p expression was high-expressed. MiR-95-5p negatively regulated the LRP6 expression in trophoblast cells. Both up-regulated LRP6 and down-regulated miR-95-5p can not only promote the migration and invasion of trophoblast cells, but also raised the expressions of MMP-2 and MMP-9 and inhibited the expression of TIMP-1. The over-expression of miR-95-5p suppressed the metastasis of trophoblast cells and rescued LRP6-induced increase of MMP-2 and MMP-9 and reduction of TIMP-1. CONCLUSION MiR-95-5p involved in the migration and invasion of trophoblast cells by targeting LRP6, which might be a potential therapeutic target for PE.
Collapse
Affiliation(s)
- Huijie Ni
- Department of Obstetrics, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiao Wang
- Department of Obstetrics, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hongmei Qu
- Department of Obstetrics, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xueli Gao
- Department of Obstetrics, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiaoyan Yu
- Department of Obstetrics, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
18
|
Hoff AM, Kraggerud SM, Alagaratnam S, Berg KCG, Johannessen B, Høland M, Nilsen G, Lingjærde OC, Andrews PW, Lothe RA, Skotheim RI. Frequent copy number gains of SLC2A3 and ETV1 in testicular embryonal carcinomas. Endocr Relat Cancer 2020; 27:457-468. [PMID: 32580154 PMCID: PMC7424350 DOI: 10.1530/erc-20-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 01/03/2023]
Abstract
Testicular germ cell tumours (TGCTs) appear as different histological subtypes or mixtures of these. They show similar, multiple DNA copy number changes, where gain of 12p is pathognomonic. However, few high-resolution analyses have been performed and focal DNA copy number changes with corresponding candidate target genes remain poorly described for individual subtypes. We present the first high-resolution DNA copy number aberration (CNA) analysis on the subtype embryonal carcinomas (ECs), including 13 primary ECs and 5 EC cell lines. We identified recurrent gains and losses and allele-specific CNAs. Within these regions, we nominate 30 genes that may be of interest to the EC subtype. By in silico analysis of data from 150 TGCTs from The Cancer Genome Atlas (TCGA), we further investigated CNAs, RNA expression, somatic mutations and fusion transcripts of these genes. Among primary ECs, ploidy ranged between 2.3 and 5.0, and the most common aberrations were DNA copy number gains at chromosome (arm) 7, 8, 12p, and 17, losses at 4, 10, 11, and 18, replicating known TGCT genome characteristics. Gain of whole or parts of 12p was found in all samples, including a highly amplified 100 kbp segment at 12p13.31, containing SLC2A3. Gain at 7p21, encompassing ETV1, was the second most frequent aberration. In conclusion, we present novel CNAs and the genes located within these regions, where the copy number gain of SLC2A3 and ETV1 are of interest, and which copy number levels also correlate with expression in TGCTs.
Collapse
Affiliation(s)
- Andreas M Hoff
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sigrid M Kraggerud
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sharmini Alagaratnam
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kaja C G Berg
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Maren Høland
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gro Nilsen
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Ole C Lingjærde
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Peter W Andrews
- The Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Correspondence should be addressed to R A Lothe or R I Skotheim: or
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Correspondence should be addressed to R A Lothe or R I Skotheim: or
| |
Collapse
|
19
|
Mendes C, Serpa J. Revisiting lactate dynamics in cancer—a metabolic expertise or an alternative attempt to survive? J Mol Med (Berl) 2020; 98:1397-1414. [DOI: 10.1007/s00109-020-01965-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
|
20
|
Looijenga LH, Van der Kwast TH, Grignon D, Egevad L, Kristiansen G, Kao CS, Idrees MT. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: IV: Current and Future Utilization of Molecular-Genetic Tests for Testicular Germ Cell Tumors. Am J Surg Pathol 2020; 44:e66-e79. [PMID: 32205480 PMCID: PMC7289140 DOI: 10.1097/pas.0000000000001465] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The International Society of Urological Pathology (ISUP) organized a Consultation Conference in March 2019 dealing with applications of molecular pathology in Urogenital Pathology, including testicular tumors (with a focus on germ cell tumors [GCTs]), preceded by a survey among its members to get insight into current practices in testicular germ cell tumor (TGCT) diagnostics and adoption of the ISUP immunohistochemical guidelines published in 2014. On the basis of the premeeting survey, the most commonly used immunomarker panel includes OCT3/4, placental alkaline phosphate, D2-40, SALL4, CD117, and CD30 for GCTs and the documentation of germ cell neoplasia in situ (GCNIS). Molecular testing, specifically 12p copy gain, is informative to distinguish non-GCNIS versus GCNIS related GCTs, and establishing germ cell origin of tumors both in the context of primary and metastatic lesions. Other molecular methodologies currently available but not widely utilized for TGCTs include genome-wide and targeted approaches for specific genetic anomalies, P53 mutations, genomic MDM2 amplification, and detection of the p53 inactivating miR-371a-3p. The latter also holds promise as a serum marker for malignant TGCTs. This manuscript provides an update on the classification of TGCTs, and describes the current and future role of molecular-genetic testing. The following recommendations are made: (1) Presence of GCNIS should be documented in all cases along with extent of spermatogenesis; (2) Immunohistochemical staining is optional in the following scenarios: identification of GCNIS, distinguishing embryonal carcinoma from seminoma, confirming presence of yolk sac tumor and/or choriocarcinoma, and differentiating spermatocytic tumor from potential mimics; (3) Detection of gain of the short arm of chromosome 12 is diagnostic to differentiate between non-GCNIS versus GCNIS related GCTs and supportive to the germ cell origin of both primary and metastatic tumors.
Collapse
Affiliation(s)
| | | | | | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet Sweden, Solna, Sweden
| | - Glen Kristiansen
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Chia-Sui Kao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
21
|
Predicting Gonadal Germ Cell Cancer in People with Disorders of Sex Development; Insights from Developmental Biology. Int J Mol Sci 2019; 20:ijms20205017. [PMID: 31658757 PMCID: PMC6834166 DOI: 10.3390/ijms20205017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 01/03/2023] Open
Abstract
The risk of gonadal germ cell cancer (GGCC) is increased in selective subgroups, amongst others, defined patients with disorders of sex development (DSD). The increased risk is due to the presence of part of the Y chromosome, i.e., GonadoBlastoma on Y chromosome GBY region, as well as anatomical localization and degree of testicularization and maturation of the gonad. The latter specifically relates to the germ cells present being at risk when blocked in an embryonic stage of development. GGCC originates from either germ cell neoplasia in situ (testicular environment) or gonadoblastoma (ovarian-like environment). These precursors are characterized by presence of the markers OCT3/4 (POU5F1), SOX17, NANOG, as well as TSPY, and cKIT and its ligand KITLG. One of the aims is to stratify individuals with an increased risk based on other parameters than histological investigation of a gonadal biopsy. These might include evaluation of defined susceptibility alleles, as identified by Genome Wide Association Studies, and detailed evaluation of the molecular mechanism underlying the DSD in the individual patient, combined with DNA, mRNA, and microRNA profiling of liquid biopsies. This review will discuss the current opportunities as well as limitations of available knowledge in the context of predicting the risk of GGCC in individual patients.
Collapse
|
22
|
Lian B, Zhang W, Wang T, Yang Q, Jia Z, Chen H, Wang L, Xu J, Wang W, Cao K, Gao X, Sun Y, Shao C, Liu Z, Li J. Clinical Benefit of Sorafenib Combined with Paclitaxel and Carboplatin to a Patient with Metastatic Chemotherapy-Refractory Testicular Tumors. Oncologist 2019; 24:e1437-e1442. [PMID: 31492770 PMCID: PMC6975956 DOI: 10.1634/theoncologist.2019-0295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/17/2019] [Indexed: 12/25/2022] Open
Abstract
Testicular cancer is one of the few tumor types that have not yet benefited from targeted therapy. Still no new active agents for treating this cancer have been identified over the past 15 years. Once patients are refractory to cisplatin-based chemotherapy, they will be expected to die from testicular cancer. This report describes a 21-year-old man who was refractory to chemotherapy and immunotherapy. Whole exome sequencing and low-depth whole genome sequencing confirmed the KRAS gene amplification, which may lead to the tumor cells' progression and proliferation. After discussion at the molecular tumor board, the patient was offered paclitaxel, carboplatin, and sorafenib (CPS) based on a phase III clinical trial of melanoma with KRAS gene copy gains. After treatment with CPS, the patient achieved excellent curative effects. Because of a nearly 50% frequency of KRAS amplification in chemotherapy-refractory testicular germ cells, CPS regimen may provide a new therapy, but it still warrants further validation in clinical studies. KEY POINTS: Chemotherapy-refractory testicular cancer has a very poor prognosis resulting in a lack of effective targeted therapies. KRAS gene amplification occurs in nearly 20% of testicular cancer and 50% of chemotherapy-refractory testicular cancer. KRAS amplification may activate the MAPK signaling pathway, and inhibition of MAPK by sorafenib combined with paclitaxel and carboplatin could be a viable option based on a phase III clinical trial of melanoma.To the authors' knowledge, this is the first report of response to sorafenib-based combination targeted therapy in a patient with chemotherapy-refractory testicular cancer.Clinical genomic profiling can confirm copy number variation of testicular cancer and provide insights on therapeutic options.
Collapse
Affiliation(s)
- Bijun Lian
- Department of Urology, Second Military Medical University, Shanghai, People's Republic of China
| | - Wenhui Zhang
- Department of Urology, Second Military Medical University, Shanghai, People's Republic of China
| | - Tiegong Wang
- Department of Radiology, Second Military Medical University, Shanghai, People's Republic of China
| | - Qingsong Yang
- Department of Radiology, Second Military Medical University, Shanghai, People's Republic of China
| | - Zepeng Jia
- Department of Urology, Second Military Medical University, Shanghai, People's Republic of China
| | - Huan Chen
- Department of Urology, Second Military Medical University, Shanghai, People's Republic of China
| | - Lei Wang
- Department of Urology, Second Military Medical University, Shanghai, People's Republic of China
| | - Jing Xu
- Department of Oncology, Second Military Medical University, Shanghai, People's Republic of China
| | - Wei Wang
- Department of Oncology, Second Military Medical University, Shanghai, People's Republic of China
| | - Kai Cao
- Department of Radiology, Second Military Medical University, Shanghai, People's Republic of China
| | - Xu Gao
- Department of Urology, Second Military Medical University, Shanghai, People's Republic of China
| | - Yinghao Sun
- Department of Urology, Second Military Medical University, Shanghai, People's Republic of China
| | - Chengwei Shao
- Department of Radiology, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhiyong Liu
- Department of Urology, Second Military Medical University, Shanghai, People's Republic of China
| | - Jing Li
- Department of Urology, Second Military Medical University, Shanghai, People's Republic of China
- Center for Translational Medicine, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Proteomic Comparison of Malignant Human Germ Cell Tumor Cell Lines. DISEASE MARKERS 2019; 2019:8298524. [PMID: 31565104 PMCID: PMC6745167 DOI: 10.1155/2019/8298524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022]
Abstract
Malignant germ cell tumors (GCT) are the most common malignant tumors in young men between 18 and 40 years. The correct identification of histological subtypes, in difficult cases supported by immunohistochemistry, is essential for therapeutic management. Furthermore, biomarkers may help to understand pathophysiological processes in these tumor types. Two GCT cell lines, TCam-2 with seminoma-like characteristics, and NTERA-2, an embryonal carcinoma-like cell line, were compared by a quantitative proteomic approach using high-resolution mass spectrometry (MS) in combination with stable isotope labelling by amino acid in cell culture (SILAC). We were able to identify 4856 proteins and quantify the expression of 3936. 347 were significantly differentially expressed between the two cell lines. For further validation, CD81, CBX-3, PHF6, and ENSA were analyzed by western blot analysis. The results confirmed the MS results. Immunohistochemical analysis on 59 formalin-fixed and paraffin-embedded (FFPE) normal and GCT tissue samples (normal testis, GCNIS, seminomas, and embryonal carcinomas) of these proteins demonstrated the ability to distinguish different GCT subtypes, especially seminomas and embryonal carcinomas. In addition, siRNA-mediated knockdown of these proteins resulted in an antiproliferative effect in TCam-2, NTERA-2, and an additional embryonal carcinoma-like cell line, NCCIT. In summary, this study represents a proteomic resource for the discrimination of malignant germ cell tumor subtypes and the observed antiproliferative effect after knockdown of selected proteins paves the way for the identification of new potential drug targets.
Collapse
|
24
|
Han X, Tan Q, Yang S, Li J, Xu J, Hao X, Hu X, Xing P, Liu Y, Lin L, Gui L, Qin Y, Yang J, Liu P, Wang X, Dai W, Lin D, Lin H, Shi Y. Comprehensive Profiling of Gene Copy Number Alterations Predicts Patient Prognosis in Resected Stages I-III Lung Adenocarcinoma. Front Oncol 2019; 9:556. [PMID: 31448219 PMCID: PMC6691340 DOI: 10.3389/fonc.2019.00556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) possesses a poor prognosis with a low 5-year survival rate even for stages I-III resected patients, it is thus critical to understand the determinants that affect the survival and discover new potentially prognostic biomarkers. Somatic copy number alterations (CNAs) are major source of genomic variations driving tumor evolution, CNAs screening may identify prognostic biomarkers. Methods: Oncoscan MIP array was used to analyze the patterns of CNAs on formalin fixed paraffin embedded(FFPE) tumor specimens from 163 consecutive stage I-III resected LUAD patients, 145 out of which received platinum-based adjuvant chemotherapy. Results: Of the 163 patients, 91(55.8%) were recurred within 3 years after surgery. The most common aberrations in our cohort were 1q, 5p, 5q, 7p, 8q, 14p, 16p, 17q, 20q for copy number gains and 8p, 9p, 13p, 16q, 18q for losses. The GISTIC2 analysis produced 45 amplification peaks and 40 deletion peaks, involving some reported genes TERT, EGFR, MYC, CCND1, CDK4, MDM2, ERBB2, NKX2-1, CCNE1, and CDKN2A, most of which were consistent with TCGA database. The amplifications of 12p12.1 (CMAS, GOLT1B, YS2, LDHB, RECQL, ETNK1, IAPP, PYROXD1, KRAS) and KDM5A were correlated with worse prognosis in our cohort, this result was further validated in 506 LUAD patients from TCGA. In addition, 163 patients could be well-classified into five groups, and the clinical outcomes were significantly different based on threshold copy number at reoccurring alteration peaks. Among the 145 patients who received adjuvant chemotherapy, focal amplification of ERBB2 and deletion of 4q34.3 were found to be specific in relapsed patients, this result was validated in an independent group of Imielinski et al., demonstrating these two CNAs may contribute to resected LUAD recurrence after adjuvant chemotherapy. Conclusion: This study suggests that CNAs profiling may be a potential prognostic classifier in resected LAUD patients. Amplifications of 12p12.1 and KDM5A might be prognostic biomarkers for LUAD, and amplification of ERBB2 and deletion of 4q34.3 predicted early relapse after adjuvant chemotherapy. These novel findings may provide implication for better implementation of precision therapy for lung cancer patients.
Collapse
Affiliation(s)
- Xiaohong Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiaoyun Tan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Sheng Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jianping Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Lin Lin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Lin Gui
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Peng Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xingyuan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Wumin Dai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Dongmei Lin
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Lin
- Department of Medical Record, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| |
Collapse
|
25
|
Mylonas KS, Kao CS, Levy D, Lordello L, Dal Cin P, Masiakos PT, Oliva E. Clinicopathologic Features and Chromosome 12p Status of Pediatric Sacrococcygeal Teratomas: A Multi-institutional Analysis. Pediatr Dev Pathol 2019; 22:214-220. [PMID: 30176765 DOI: 10.1177/1093526618798771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chromosome 12p gains are typically present in postpubertal male patients with testicular malignant germ cell tumors, including most teratomas, and absent in pure ovarian teratomas, both mature and immature. We sought to evaluate the clinicopathologic features and chromosome 12p status of pediatric patients with sacrococcygeal teratomas (SCTs) using the institutional databases of 2 tertiary medical centers. Seven mature teratomas (3 pure, 2 with yolk sac tumor, 1 with medulloepithelioma, and 1 with ependymoma) and 3 immature teratomas (2 pure: grade 2 and grade 3 and 1 mixed: grade 3 with yolk sac tumor) were identified. All patients underwent surgery and 2 received adjuvant chemotherapy. Fluorescence in situ hybridization analysis was performed to elucidate chromosome 12p gains, including isochromosome 12p. All 10 tumors analyzed lacked 12p gains regardless of the components. No patient had evidence of disease at their most recent interval follow-up (mean: 30, range: 7-91 months), irrespective of margin status or of receiving chemotherapy. Overall, our study suggests an absence of chromosome 12p abnormalities in clinically nonaggressive SCTs. Additional data are required to confirm these findings before definitive patient care recommendations can be made.
Collapse
Affiliation(s)
- Konstantinos S Mylonas
- 1 Department of Pediatric Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Chia-Sui Kao
- 2 Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - David Levy
- 2 Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Leonardo Lordello
- 3 Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Paola Dal Cin
- 4 Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Peter T Masiakos
- 1 Department of Pediatric Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Esther Oliva
- 3 Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
26
|
Batool A, Karimi N, Wu XN, Chen SR, Liu YX. Testicular germ cell tumor: a comprehensive review. Cell Mol Life Sci 2019; 76:1713-1727. [PMID: 30671589 PMCID: PMC11105513 DOI: 10.1007/s00018-019-03022-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biological and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk factors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underlying the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.
Collapse
Affiliation(s)
- Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Najmeh Karimi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Nan Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
27
|
Clinicopathologic Characterization of Bilateral Testicular Germ Cell Tumors With Immunohistochemical Evaluation of Mismatch Repair and BRAF (V600E) Genes Mutations. Int J Surg Pathol 2019; 27:619-623. [DOI: 10.1177/1066896919842939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The incidence of bilateral testicular germ cell tumor (TGCT) is 1% to 5%. Despite the high rate of treatment success, resistance to chemotherapy has a detrimental effect. Some studies found MMR and BRAF gene mutations to be associated with chemotherapy resistance, which has not been found by others. However, the role of microsatellite instability (MSI) and BRAF mutations in bilateral disease has not been investigated. In this article, we studied the clinicopathologic characteristics and immunohistochemical expressions of MMR and BRAF in 13 patients with bilateral TGCT. Bilateral tumors were found in 4% of patients in our data. The mean ages at the first and subsequent diagnoses were 26.9 and 28.3 years, respectively. Eleven patients had metachronous disease; and the mean period between both tumors was 4.9 years. Six had mixed GCTs (MGCT) initially and later developed contralateral seminoma, 3 had bilateral MGCTs; 1 initially had pure embryonal carcinoma and subsequently MGCT and finally, 1 patient had initial seminoma and contralateral germ cell neoplasia in situ only. Of the patients with synchronous GCT, 1 had a MGCT and contralateral non-seminoma and 1 had seminoma and contralateral MGCT. In metachronous cases, 40% and 78% had an initial and subsequent stage of pT1, respectively. Hormonal and/or metastatic recurrence was observed in 30% of metachronous tumors. Six patients received chemotherapy, including patients with metastasis. No progression occurred after therapy. MLH1, PMS2, MSH2, and MSH6 staining was retained in all tumors. No BRAF staining was found. In conclusion, we found no association between bilateral TGCT and the MMR/MSI pathway and that subsequent metachronous tumors behaved much more indolently.
Collapse
|
28
|
Lafin JT, Bagrodia A, Woldu S, Amatruda JF. New insights into germ cell tumor genomics. Andrology 2019; 7:507-515. [PMID: 30896089 DOI: 10.1111/andr.12616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Testicular germ cell tumors (GCTs) represent the most common malignancy in young men. While GCTs represent a model for curable solid tumors due to exquisite chemosensitivity, mortality for patients with GCT comprises the most life years lost for non-pediatric malignancies. Given limited options for patients with platinum-resistant disease, improved insight into GCT biology could identify novel therapeutic options for patients with platinum-resistant disease. Recent studies into molecular characteristics of both early stage and advanced germ cell tumors suggest a role for rationally targeted agents and potentially immunotherapy. RECENT DEVELOPMENTS Recent GWAS meta-analyses have uncovered additional susceptibility loci for GCT and provide further evidence that GCT risk is polygenic. Chromosome arm level amplifications and reciprocal loss of heterozygosity have been described as significantly enriched in GCT compared to other cancer types. Contemporary analyses confirm ubiquitous gain of isochromosome 12 and mutations in addition to previously described GCT-associated genes such as KIT and KRAS. Alterations within the TP53-MDM2 signal transduction pathway appear to be enriched among patients with platinum-resistant disease. Potentially actionable targets, including alterations in TP53-MDM2, Wnt/β-catenin, PI3K, and MAPK signaling, are present in significant proportions of patients with platinum-resistant disease and may be exploited as therapeutic options. Pre-clinical and early clinical data also suggest a potential role for immunotherapy among patients with GCTs. CONCLUSION Molecular characterization of GCT patients may provide biologic rationale for novel treatment options in patients with platinum-resistant disease.
Collapse
Affiliation(s)
- J T Lafin
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - A Bagrodia
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - S Woldu
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - J F Amatruda
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
29
|
c-Src Recruitment is Involved in c-MET-Mediated Malignant Behaviour of NT2D1 Non-Seminoma Cells. Int J Mol Sci 2019; 20:ijms20020320. [PMID: 30646583 PMCID: PMC6358843 DOI: 10.3390/ijms20020320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
c-MET pathway over-activation is the signature of malignancy acquisition or chemotherapy resistance of many cancers. We recently demonstrated that type II Testicular Germ Cell Tumours (TGCTs) express c-MET receptor. In particular, we elucidated that the non-seminoma lesions express c-MET protein at higher level, compared with the seminoma ones. In line with this observation, NTERA-2 clone D1 (NT2D1) non-seminoma cells increase their proliferation, migration and invasion in response to Hepatocyte Growth Factor (HGF). One of the well-known adaptor-proteins belonging to c-MET signaling cascade is c-Src. Activation of c-Src is related to the increase of aggressiveness of many cancers. For this reason, we focused on the role of c-Src in c-MET-triggered and HGF-dependent NT2D1 cell activities. In the present paper, we have elucidated that this adaptor-protein is involved in HGF-dependent NT2D1 cell proliferation, migration and invasion, since Src inhibitor-1 administration abrogates these responses. Despite these biological evidences western blot analyses have not revealed the increase of c-Src activation because of HGF administration. However, notably, immunofluorescence analyses revealed that cytoplasmic and membrane-associated localization of c-Src shifted to the nuclear compartment after HGF stimulation. These results shed new light in the modality of HGF-dependent c-Src recruitment, and put the basis for novel investigations on the relationship between c-Src, and TGCT aggressiveness.
Collapse
|
30
|
Molecular Basics on Genitourinary Malignancies. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42623-5_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Scheri KC, Leonetti E, Laino L, Gigantino V, Gesualdi L, Grammatico P, Bizzari M, Franco R, Oosterhuis JW, Stoop H, Looijenga LHJ, Ricci G, Catizone A. c-MET receptor as potential biomarker and target molecule for malignant testicular germ cell tumors. Oncotarget 2018; 9:31842-31860. [PMID: 30159127 PMCID: PMC6112764 DOI: 10.18632/oncotarget.25867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/18/2018] [Indexed: 11/25/2022] Open
Abstract
Type II testicular germ cell tumors (TGCTs) represent the most frequent malignancy in Caucasian males (20–40 years). Even if diagnosed with disseminated disease, >80% of patients are cured; however, a small percentage of cases progress and result in death. It is commonly accepted that these cancers arise from a disturbed testicular embryonic niche that leads to the block of gonocyte differentiation. The subsequent development of the invasive seminomas and non-seminomas is due to a combination of genetic, epigenetic and microenvironment-based alterations (genvironment). Hepatocyte growth factor (HGF) is present in the testicular microenvironment, together with its receptor c-MET, from early embryonic development to an adult stage. In addition, c-MET is a well-known proto-oncogene involved in the onset and progression of various human cancers. Herein, we have investigated the expression and availability of HGF and c-MET in TCam-2, NCCIT and NT2D1 cells, which are type II (T)GCT representative cell lines, and the effect of c-MET activation/repression on the regulation of cancerous biological processes. We found that NT2D1 cells increase their proliferation, polarized migration, and invasion in response to HGF administration. NCCIT cells respond to HGF stimulation only partially, whereas TCam-2 cells do not respond to HGF, at least according to the investigated parameters. Interestingly, the immunohistochemical study of c-MET distribution in TGCTs confirm its presence in both seminoma and non-seminoma lesions with different patterns. Notably, we found the highest c-MET immunoreactivity in the epithelial elements of the various components of TGCTs: teratoma, yolk sac tumor and choriocarcinoma.
Collapse
Affiliation(s)
- Katia Corano Scheri
- Department of Anatomy, Histology, Forensic-Medicine and Orthopaedics, "Sapienza" University of Rome, Italy
| | - Erica Leonetti
- Department of Anatomy, Histology, Forensic-Medicine and Orthopaedics, "Sapienza" University of Rome, Italy
| | - Luigi Laino
- Department of Molecular Medicine, Laboratory of Medical Genetics, "Sapienza" University of Rome, San Camillo-Forlanini Hospital, Rome, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori I.R.C.C.S. "Fondazione Pascale", Naples, Italy
| | - Luisa Gesualdi
- Department of Anatomy, Histology, Forensic-Medicine and Orthopaedics, "Sapienza" University of Rome, Italy
| | - Paola Grammatico
- Department of Molecular Medicine, Laboratory of Medical Genetics, "Sapienza" University of Rome, San Camillo-Forlanini Hospital, Rome, Italy
| | - Mariano Bizzari
- Department of Experimental Medicine, Systems Biology Group Lab, "Sapienza" University of Rome, Italy
| | - Renato Franco
- Pathological Anatomy Unit, Department of Psychic and Physic health and preventive medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - J Wolter Oosterhuis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC University Medical Center, Cancer Institute, Rotterdam, The Netherlands
| | - Hans Stoop
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC University Medical Center, Cancer Institute, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC University Medical Center, Cancer Institute, Rotterdam, The Netherlands
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopaedics, "Sapienza" University of Rome, Italy
| |
Collapse
|
32
|
Genomic Characterization of Testicular Germ Cell Tumors Relapsing After Chemotherapy. Eur Urol Focus 2018; 6:122-130. [PMID: 30025711 DOI: 10.1016/j.euf.2018.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/15/2018] [Accepted: 07/11/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although both seminomatous and nonseminomatous testicular germ cell tumors (TGCTs) have favorable outcomes with chemotherapy, a subset is chemorefractory, and novel therapeutic options are needed. OBJECTIVE To molecularly characterize chemotherapy-refractory TGCTs. DESIGN, SETTING, AND PARTICIPANTS Archival tissues from 107 chemotherapy-treated and relapsed TGCT patients (23 seminomas; 84 nonseminomas) underwent hybrid-capture-based genomic profiling to evaluate four classes of genomic alterations (GAs). Tumor mutational burden (TMB) and microsatellite instability (MSI) were also measured. INTERVENTION Genomic profiling on tumor samples from chemotherapy-refractory TGCTs. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Descriptive analyses and differences between seminoma and nonseminoma subgroups were reported. RESULTS AND LIMITATIONS The mean GA/tumor was 2.9 for seminomas and 4.0 for nonseminomas (p=0.04). KRAS alterations (mainly amplifications) were the most common GAs at the single-gene level (47.8% of seminomas and 51.2% of nonseminomas). RAS-RAF pathway (56.5% vs 52.3%) and cell-cycle pathway (52.2% vs 56.0%) were the most common GA classes in seminomas and nonseminomas, respectively. Receptor tyrosine kinase pathway and PI3K pathway GAs were more frequent in seminomas (p=0.02). Median TMB was 1.8 mutations/Mb for seminomas and 2.7 mutations/Mb for nonseminomas (p=0.098), and MSI-high status was found in one nonseminoma only (1.2%). A lack of clinical outcome correlation is a limitation of the present analyses. CONCLUSIONS In chemotherapy-refractory TGCTs, trials with agents targeting the KRAS pathway may be pursued due to the high frequency of KRAS GAs. Overall, the GAs found in refractory seminomas and nonseminomas differ significantly. Considering the frequency of high TMB or MSI-high status, immunotherapy may benefit a small subset of nonseminomas. PATIENT SUMMARY Testicular cancers that are resistant to or relapse after standard chemotherapy may harbor genomic alterations that are potentially druggable, particularly in the clinical trial setting, and genomic profiling can guide clinical research and disclose therapeutic opportunities for these patients.
Collapse
|
33
|
Jedi M, Young GP, Pedersen SK, Symonds EL. Methylation and Gene Expression of BCAT1 and IKZF1 in Colorectal Cancer Tissues. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2018; 12:1179554918775064. [PMID: 29780264 PMCID: PMC5952276 DOI: 10.1177/1179554918775064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
The genes BCAT1 and IKZF1 are hypermethylated in colorectal cancer (CRC), but little is known about how this relates to gene expression. This study assessed the relationship between methylation and gene expression of BCAT1 and IKZF1 in CRC and adjacent non-neoplastic tissues. The tissues were obtained at surgery from 36 patients diagnosed with different stages of CRC (stage I n = 8, stage II n = 13, stage III n = 10, stage IV n = 5). Methylated BCAT1 and IKZF1 were detected in 92% and 72% CRC tissues, respectively, with levels independent of stage (P > .05). In contrast, only 31% and 3% of non-neoplastic tissues were methylated for BCAT1 and IKZF1, respectively (P < .001). The IKZF1 messenger RNA (mRNA) expression was significantly lower in the cancer tissues compared with that of non-neoplastic tissues, whereas the BCAT1 mRNA levels were similar. The latter may be due to the BCAT1 polymerase chain reaction assay detecting more than 1 mRNA transcript. Further studies are warranted to establish the role of the epigenetic silencing of IKZF1 in colorectal oncogenesis.
Collapse
Affiliation(s)
- Maher Jedi
- Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, Australia
| | | | - Erin L Symonds
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, Australia.,Bowel Health Service, Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
34
|
Poyyakkara A, Raji GR, Kunhiraman H, Edatt L, Kumar SVB. ER stress mediated regulation of miR23a confer Hela cells better adaptability to utilize glycolytic pathway. J Cell Biochem 2018; 119:4907-4917. [PMID: 29377281 DOI: 10.1002/jcb.26718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/24/2018] [Indexed: 02/04/2023]
Abstract
Cancer cells exhibit increased dependency on aerobic glycolysis, a phenomenon referred as the "Warburg effect" and therefore, blocking glycolysis by using non-metabolizable analogues of glucose, like 2-Deoxy glucose (2-DG), has been proposed to be of huge therapeutic importance. One of the major drawbacks of using 2-DG as a chemotherapeutic agent is that it can induce ER stress. ER stress is a hall mark in many solid tumors and the unfolded protein response (UPR) associated with it initiates many survival mechanisms in cancer cells. In the present study, we report a novel survival mechanism associated with ER stress, by which the cancer cells become more adapted to aerobic glycolysis. When ER stress was induced in Hela cells by treating them with 2-DG or Thapsigargin (TG) the expression and activity of LDH was significantly up regulated, conferring the cells a greater glycolytic potential. A simultaneous decrease was observed in the expression of miR-23a, which was predicted in silico to have target site on the 3'UTR of LDH A and B mRNAs. miRNA over expression studies and mRNA degradation assays suggest that miR-23a could target LDH A and LDH B mRNAs. Further on the basis of our results and previous scientific reports, we propose that "c-Myc," which is over expressed during ER stress, repress the expression of miR-23a, which in turn regulates the expression of its target genes viz., LDH A and LDH B, thereby making the cells more competent to survive in tumor microenvironment, which requires efficient use of aerobic glycolysis.
Collapse
Affiliation(s)
- Aswini Poyyakkara
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Grace R Raji
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Haritha Kunhiraman
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Lincy Edatt
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Sameer V B Kumar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| |
Collapse
|
35
|
Schulte SL, Waha A, Steiger B, Denkhaus D, Dörner E, Calaminus G, Leuschner I, Pietsch T. CNS germinomas are characterized by global demethylation, chromosomal instability and mutational activation of the Kit-, Ras/Raf/Erk- and Akt-pathways. Oncotarget 2018; 7:55026-55042. [PMID: 27391150 PMCID: PMC5342399 DOI: 10.18632/oncotarget.10392] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022] Open
Abstract
CNS germinomas represent a unique germ cell tumor entity characterized by undifferentiated tumor cells and a high response rate to current treatment protocols. Limited information is available on their underlying genomic, epigenetic and biological alterations. We performed a genome-wide analysis of genomic copy number alterations in 49 CNS germinomas by molecular inversion profiling. In addition, CpG dinucleotide methylation was studied by immunohistochemistry for methylated cytosine residues. Mutational analysis was performed by resequencing of candidate genes including KIT and RAS family members. Ras/Erk and Akt pathway activation was analyzed by immunostaining with antibodies against phospho-Erk, phosho-Akt, phospho-mTOR and phospho-S6. All germinomas coexpressed Oct4 and Kit but showed an extensive global DNA demethylation compared to other tumors and normal tissues. Molecular inversion profiling showed predominant genomic instability in all tumors with a high frequency of regional gains and losses including high level gene amplifications. Activating mutations of KIT exons 11, 13, and 17 as well as a case with genomic KIT amplification and activating mutations or amplifications of RAS gene family members including KRAS, NRAS and RRAS2 indicated mutational activation of crucial signaling pathways. Co-activation of Ras/Erk and Akt pathways was present in 83% of germinomas. These data suggest that CNS germinoma cells display a demethylated nuclear DNA similar to primordial germ cells in early development. This finding has a striking coincidence with extensive genomic instability. In addition, mutational activation of Kit-, Ras/Raf/Erk- and Akt- pathways indicate the biological importance of these pathways and their components as potential targets for therapy.
Collapse
Affiliation(s)
| | - Andreas Waha
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Barbara Steiger
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Dorota Denkhaus
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Evelyn Dörner
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Gabriele Calaminus
- Department of Pediatric Hematology/Oncology, University of Bonn Medical Center, Bonn, Germany
| | - Ivo Leuschner
- Kiel Paediatric Tumor Registry, Department of Paediatric Pathology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
36
|
Cheng THT, Lam W, Teoh JYC. Molecular Basics on Genitourinary Malignancies. Urol Oncol 2018. [DOI: 10.1007/978-3-319-42603-7_45-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
STK38L kinase ablation promotes loss of cell viability in a subset of KRAS-dependent pancreatic cancer cell lines. Oncotarget 2017; 8:78556-78572. [PMID: 29108249 PMCID: PMC5667982 DOI: 10.18632/oncotarget.20833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/27/2017] [Indexed: 01/07/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDACs) are highly aggressive malignancies, associated with poor clinical prognosis and limited therapeutic options. Oncogenic KRAS mutations are found in over 90% of PDACs, playing a central role in tumor progression. Global gene expression profiling of PDAC reveals 3-4 major molecular subtypes with distinct phenotypic traits and pharmacological vulnerabilities, including variations in oncogenic KRAS pathway dependencies. PDAC cell lines of the aberrantly differentiated endocrine exocrine (ADEX) subtype are robustly KRAS-dependent for survival. The KRAS gene is located on chromosome 12p11-12p12, a region amplified in 5-10% of primary PDACs. Within this amplicon, we identified co-amplification of KRAS with the STK38L gene in a subset of primary human PDACs and PDAC cell lines. Therefore, we determined whether PDAC cell lines are dependent on STK38L expression for proliferation and viability. STK38L encodes a serine/threonine kinase, which shares homology with Hippo pathway kinases LATS1/2. We show that STK38L expression is elevated in a subset of primary PDACs and PDAC cell lines displaying ADEX subtype characteristics, including overexpression of mutant KRAS. RNAi-mediated depletion of STK38L in a subset of ADEX subtype cell lines inhibits cellular proliferation and induces apoptosis. Concomitant with these effects, STK38L depletion causes increased expression of the LATS2 kinase and the cell cycle regulator p21. LATS2 depletion partially rescues the cytostatic and cytotoxic effects of STK38L depletion. Lastly, high STK38L mRNA expression is associated with decreased overall patient survival in PDACs. Collectively, our findings implicate STK38L as a candidate targetable vulnerability in a subset of molecularly-defined PDACs.
Collapse
|
38
|
Al-Maleki AR, Loke MF, Lui SY, Ramli NSK, Khosravi Y, Ng CG, Venkatraman G, Goh KL, Ho B, Vadivelu J. Helicobacter pylori outer inflammatory protein A (OipA) suppresses apoptosis of AGS gastric cells in vitro. Cell Microbiol 2017; 19. [PMID: 28776327 DOI: 10.1111/cmi.12771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/02/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022]
Abstract
Outer inflammatory protein A (OipA) is an important virulence factor associated with gastric cancer and ulcer development; however, the results have not been well established and turned out to be controversial. This study aims to elucidate the role of OipA in Helicobacter pylori infection using clinical strains harbouring oipA "on" and "off" motifs. Proteomics analysis was performed on AGS cell pre-infection and postinfection with H. pylori oipA "on" and "off" strains, using liquid chromatography/mass spectrometry. AGS apoptosis and cell cycle assays were performed. Moreover, expression of vacuolating cytotoxin A (VacA) was screened using Western blotting. AGS proteins that have been suggested previously to play a role or associated with gastric disease were down-regulated postinfection with oipA "off" strains comparing to oipA "on" strains. Furthermore, oipA "off" and ΔoipA cause higher level of AGS cells apoptosis and G0/G1 cell-cycle arrest than oipA "on" strains. Interestingly, deletion of oipA increased bacterial VacA production. The capability of H. pylori to induce apoptosis and suppress expression of proteins having roles in human disease in the absence of oipA suggests that strains not expressing OipA may be less virulent or may even be protective against carcinogenesis compared those expressing OipA. This potentially explains the higher incidence of gastric cancer in East Asia where oipA "on" strains predominates.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sook Yin Lui
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nur Siti Khadijah Ramli
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yalda Khosravi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chow Goon Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gopinath Venkatraman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Bow Ho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Precision Medicine Centre Pte Ltd, Singapore, Singapore
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Abstract
CONTEXT - Precursor lesions of urologic malignancies are established histopathologic entities, which are important not only to recognize for clinical purposes, but also to further investigate at the molecular level in order to gain a better understanding of the pathogenesis of these malignancies. OBJECTIVE - To provide a brief overview of precursor lesions to the most common malignancies that develop within the genitourinary tract with a focus on their clinical implications, histologic features, and molecular characteristics. DATA SOURCES - Literature review from PubMed, urologic pathology textbooks, and the 4th edition of the World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs. All photomicrographs were taken from cases seen at Weill Cornell Medicine or from the authors' personal slide collections. CONCLUSIONS - The clinical importance and histologic criteria are well established for the known precursor lesions of the most common malignancies throughout the genitourinary tract, but further investigation is warranted at the molecular level to better understand the pathogenesis of these lesions. Such investigation may lead to better risk stratification of patients and potentially novel treatments.
Collapse
|
40
|
赖 爱, 谢 斌. BCAT1促进肿瘤发生发展的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1536-1542. [DOI: 10.11569/wcjd.v25.i17.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
支链氨基酸转移酶1(branched-chain amino acid transaminase 1, BCAT1)是催化支链氨基酸代谢的关键酶. 国内外研究已证实BCAT1在多种恶性肿瘤中呈现高表达, 并提示与肿瘤细胞增殖、转移及侵袭密切相关. 本文拟就BCAT1的理化性质、生物学功能及其与肿瘤发生、发展的相关研究进行简要综述, 为进一步研究BCAT1与恶性肿瘤的关系提供线索.
Collapse
|
41
|
Thewes V, Simon R, Hlevnjak M, Schlotter M, Schroeter P, Schmidt K, Wu Y, Anzeneder T, Wang W, Windisch P, Kirchgäßner M, Melling N, Kneisel N, Büttner R, Deuschle U, Sinn HP, Schneeweiss A, Heck S, Kaulfuss S, Hess-Stumpp H, Okun JG, Sauter G, Lykkesfeldt AE, Zapatka M, Radlwimmer B, Lichter P, Tönjes M. The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer. Oncogene 2017; 36:4124-4134. [PMID: 28319069 DOI: 10.1038/onc.2017.32] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 12/24/2022]
Abstract
Antiestrogen-resistant and triple-negative breast tumors pose a serious clinical challenge because of limited treatment options. We assessed global gene expression changes in antiestrogen-sensitive compared with antiestrogen-resistant (two tamoxifen resistant and two fulvestrant resistant) MCF-7 breast cancer cell lines. The branched-chain amino acid transaminase 1 (BCAT1), which catalyzes the first step in the breakdown of branched-chain amino acids, was among the most upregulated transcripts in antiestrogen-resistant cells. Elevated BCAT1 expression was confirmed in relapsed tamoxifen-resistant breast tumor specimens. High intratumoral BCAT1 levels were associated with a reduced relapse-free survival in adjuvant tamoxifen-treated patients and overall survival in unselected patients. On a tissue microarray (n=1421), BCAT1 expression was detectable in 58% of unselected primary breast carcinomas and linked to a higher Ki-67 proliferation index, as well as histological grade. Interestingly, BCAT1 was predominantly expressed in estrogen receptor-α-negative/human epidermal growth factor receptor-2-positive (ERα-negative/HER-2-positive) and triple-negative breast cancers in independent patient cohorts. The inverse relationship between BCAT1 and ERα was corroborated in various breast cancer cell lines and pharmacological long-term depletion of ERα induced BCAT1 expression in vitro. Mechanistically, BCAT1 indirectly controlled expression of the cell cycle inhibitor p27Kip1 thereby affecting pRB. Correspondingly, phenotypic analyses using a lentiviral-mediated BCAT1 short hairpin RNA knockdown revealed that BCAT1 sustains proliferation in addition to migration and invasion and that its overexpression enhanced the capacity of antiestrogen-sensitive cells to grow in the presence of antiestrogens. Importantly, silencing of BCAT1 in an orthotopic triple-negative xenograft model resulted in a massive reduction of tumor volume in vivo, supporting our findings that BCAT1 is necessary for the growth of hormone-independent breast tumors.
Collapse
Affiliation(s)
- V Thewes
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Hlevnjak
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Schlotter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Schroeter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Schmidt
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Y Wu
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T Anzeneder
- PATH Foundation Biobank-Patients' Tumor Bank of Hope, Munich, Germany
| | - W Wang
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Windisch
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Kirchgäßner
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - N Melling
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - N Kneisel
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Büttner
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - U Deuschle
- Phenex Pharmaceuticals AG, Heidelberg, Germany
| | - H P Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - A Schneeweiss
- Gynecologic Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - S Heck
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - J G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - G Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A E Lykkesfeldt
- Breast Cancer Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - M Zapatka
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - B Radlwimmer
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Lichter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Tönjes
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
42
|
Nettersheim D, Schorle H. The plasticity of germ cell cancers and its dependence on the cellular microenvironment. J Cell Mol Med 2017; 21:1463-1467. [PMID: 28244655 PMCID: PMC5543455 DOI: 10.1111/jcmm.13082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
So far, the understanding of germ cell cancer (GCC) pathogenesis is based on a model, where seminomas and non‐seminomas represent distinct entities although originating from a common precursor termed germ cell neoplasia in situ (GCNIS). Embryonal carcinomas (ECs), the stem cell population of the non‐seminomas, is pluri‐ to totipotent and able to differentiate into cells of all three germ layers, giving rise to teratomas or tumours mimicking extraembryonic tissues (yolk sac tumours, choriocarcinomas). With regard to gene expression, (epi)genetics and histology, seminomas are highly similar to GCNIS and primordial germ cells, but limited in development. It remains elusive, whether this block in differentiation is controlled by cell intrinsic mechanisms or by signals from the surrounding microenvironment. Here, we reviewed the recent literature emphasizing the plasticity of GCCs, especially of seminomas. We propose that this plasticity is controlled by the microenvironment, allowing seminomas to transit into an EC or mixed non‐seminoma and vice versa. We discuss several mechanisms and routes of reprogramming that might be responsible for this change in the cell fate. We finally integrate this plasticity into a new model of GCC pathogenesis, allowing for an alternative view on the dynamics of GCC development and progression.
Collapse
Affiliation(s)
- Daniel Nettersheim
- Department of Developmental Pathology, Institute of Pathology, University Medical School, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Medical School, Bonn, Germany
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Testicular germ cell tumors (TGCTs) are a model for curable cancer because of exquisite chemosensitivity and incorporation of multimodal therapy. Nevertheless, our ability to predict metastases in early-stage disease and responders to chemotherapy in advanced disease is limited. Treatment options for cisplatin-resistant disease are sparse. A further understanding of TGCT biology may allow for more precise patient counseling and identify novel therapies in patients with cisplatin-resistant disease. RECENT FINDINGS Adult TGCTs are characterized by frequent chromosomal anomalies and low rates of somatic mutations. Large-scale integrated molecular analysis of early-stage TGCT patients is actively underway. In addition to ubiquitous gain of isochromosome 12p, current molecular studies have confirmed mutations of previously described genes (i.e., KIT and KRAS) and described novel mutations. Analysis of cisplatin-resistant cases has identified high rates of alterations within the TP53-MDM2 axis and a high proportion of patients with potentially actionable targets, including TP53-MDM2, PI3 kinase, and MAPK signaling pathway alterations. The role of epigenetics in TGCT development and prognosis is also being further characterized. SUMMARY Further molecular characterization of TGCT may allow for avoidance of unnecessary treatment in patients with early-stage disease and also provide new treatment options in patients with cisplatin-resistant disease.
Collapse
Affiliation(s)
- Solomon L Woldu
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | | |
Collapse
|
44
|
TM7SF3, a novel p53-regulated homeostatic factor, attenuates cellular stress and the subsequent induction of the unfolded protein response. Cell Death Differ 2016; 24:132-143. [PMID: 27740623 DOI: 10.1038/cdd.2016.108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
Earlier reported small interfering RNA (siRNA) high-throughput screens, identified seven-transmembrane superfamily member 3 (TM7SF3) as a novel inhibitor of pancreatic β-cell death. Here we show that TM7SF3 maintains protein homeostasis and promotes cell survival through attenuation of ER stress. Overexpression of TM7SF3 inhibits caspase 3/7 activation. In contrast, siRNA-mediated silencing of TM7SF3 accelerates ER stress and activation of the unfolded protein response (UPR). This involves inhibitory phosphorylation of eukaryotic translation initiation factor 2α activity and increased expression of activating transcription factor-3 (ATF3), ATF4 and C/EBP homologous protein, followed by induction of apoptosis. This process is observed both in human pancreatic islets and in a number of cell lines. Some of the effects of TM7SF3 silencing are evident both under basal conditions, in otherwise untreated cells, as well as under different stress conditions induced by thapsigargin, tunicamycin or a mixture of pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-1 beta and interferon gamma). Notably, TM7SF3 is a downstream target of p53: activation of p53 by Nutlin increases TM7SF3 expression in a time-dependent manner, although silencing of p53 abrogates this effect. Furthermore, p53 is found in physical association with the TM7SF3 promoter. Interestingly, silencing of TM7SF3 promotes p53 activity, suggesting the existence of a negative-feedback loop, whereby p53 promotes expression of TM7SF3 that acts to restrict p53 activity. Our findings implicate TM7SF3 as a novel p53-regulated pro-survival homeostatic factor that attenuates the development of cellular stress and the subsequent induction of the UPR.
Collapse
|
45
|
Wang ZQ, Faddaoui A, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Guillemette C, Gobeil S, Macdonald E, Vanderhyden B, Bachvarov D. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism. Oncotarget 2016; 6:31522-43. [PMID: 26372729 PMCID: PMC4741622 DOI: 10.18632/oncotarget.5159] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/28/2015] [Indexed: 12/17/2022] Open
Abstract
Previously, we have identified the branched chain amino-acid transaminase 1 (BCAT1) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that BCAT1 is strongly overexpressed in both LMP and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Knockdown of the BCAT1 expression in epithelial ovarian cancer (EOC) cells led to sharp decrease of cell proliferation, migration and invasion and inhibited cell cycle progression. BCAT1 silencing was associated with the suppression of numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, and the induction of some tumor suppressor genes (TSGs). Moreover, BCAT1 suppression resulted in downregulation of numerous genes implicated in lipid production and protein synthesis, suggesting its important role in controlling EOC metabolism. Further metabolomic analyses were indicative for significant depletion of most amino acids and different phospho- and sphingolipids following BCAT1 knockdown. Finally, BCAT1 suppression led to significantly prolonged survival time in xenograft model of advanced peritoneal EOC. Taken together, our findings provide new insights about the functional role of BCAT1 in ovarian carcinogenesis and identify this transaminase as a novel EOC biomarker and putative EOC therapeutic target.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| | - Adnen Faddaoui
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| | | | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Chantal Guillemette
- Centre de recherche du CHU de Québec, CHUL, Québec PQ, Canada.,Faculty of Pharmacy, Laval University, Québec PQ, Canada
| | - Stéphane Gobeil
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, CHUL, Québec PQ, Canada
| | - Elizabeth Macdonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| |
Collapse
|
46
|
The genomic landscape of testicular germ cell tumours: from susceptibility to treatment. Nat Rev Urol 2016; 13:409-19. [PMID: 27296647 DOI: 10.1038/nrurol.2016.107] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genomic landscape of testicular germ cell tumour (TGCT) can be summarized using four overarching hypotheses. Firstly, TGCT risk is dominated by inherited genetic factors, which determine nearly half of all disease risk and are highly polygenic in nature. Secondly KIT-KITLG signalling is currently the major pathway that is implicated in TGCT formation, both as a predisposition risk factor and a somatic driver event. Results from genome-wide association studies have also consistently suggested that other closely related pathways involved in male germ cell development and sex determination are associated with TGCT risk. Thirdly, the method of disease formation is unique, with tumours universally stemming from a noninvasive precursor lesion, probably of fetal origin, which lies dormant through childhood into adolescence and then eventually begins malignant growth in early adulthood. Formation of a 12p isochromosome, a hallmark of TGCT observed in nearly all tumours, is likely to be a key triggering event for malignant transformation. Finally, TGCT have been shown to have a distinctive somatic mutational profile, with a low rate of point mutations contrasted with frequent large-scale chromosomal gains. These four hypotheses by no means constitute a complete model that explains TGCT tumorigenesis, but advances in genomic technologies have enabled considerable progress in describing and understanding the disease. Further advancing our understanding of the genomic basis of TGCT offers a clear opportunity for clinical benefit in terms of preventing invasive cancer arising in young men, decreasing the burden of chemotherapy-related survivorship issues and reducing mortality in the minority of patients who have treatment-refractory disease.
Collapse
|
47
|
Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S. Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell 2016; 165:1698-1707. [PMID: 27238019 DOI: 10.1016/j.cell.2016.05.040] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 11/17/2022]
Abstract
Recent advances in single-particle cryoelecton microscopy (cryo-EM) are enabling generation of numerous near-atomic resolution structures for well-ordered protein complexes with sizes ≥ ∼200 kDa. Whether cryo-EM methods are equally useful for high-resolution structural analysis of smaller, dynamic protein complexes such as those involved in cellular metabolism remains an important question. Here, we present 3.8 Å resolution cryo-EM structures of the cancer target isocitrate dehydrogenase (93 kDa) and identify the nature of conformational changes induced by binding of the allosteric small-molecule inhibitor ML309. We also report 2.8-Å- and 1.8-Å-resolution structures of lactate dehydrogenase (145 kDa) and glutamate dehydrogenase (334 kDa), respectively. With these results, two perceived barriers in single-particle cryo-EM are overcome: (1) crossing 2 Å resolution and (2) obtaining structures of proteins with sizes < 100 kDa, demonstrating that cryo-EM can be used to investigate a broad spectrum of drug-target interactions and dynamic conformational states.
Collapse
Affiliation(s)
- Alan Merk
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Soojay Banerjee
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Veronica Falconieri
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mindy I Davis
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Rajan Pragani
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jacqueline L S Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Sedaghat N, Fathy M, Modarressi MH, Shojaie A. Identifying functional cancer-specific miRNA-mRNA interactions in testicular germ cell tumor. J Theor Biol 2016; 404:82-96. [PMID: 27235586 DOI: 10.1016/j.jtbi.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 04/26/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022]
Abstract
Testicular cancer is the most common cancer in men aged between 15 and 35 and more than 90% of testicular neoplasms are originated at germ cells. Recent research has shown the impact of microRNAs (miRNAs) in different types of cancer, including testicular germ cell tumor (TGCT). MicroRNAs are small non-coding RNAs which affect the development and progression of cancer cells by binding to mRNAs and regulating their expressions. The identification of functional miRNA-mRNA interactions in cancers, i.e. those that alter the expression of genes in cancer cells, can help delineate post-regulatory mechanisms and may lead to new treatments to control the progression of cancer. A number of sequence-based methods have been developed to predict miRNA-mRNA interactions based on the complementarity of sequences. While necessary, sequence complementarity is, however, not sufficient for presence of functional interactions. Alternative methods have thus been developed to refine the sequence-based interactions using concurrent expression profiles of miRNAs and mRNAs. This study aims to find functional cancer-specific miRNA-mRNA interactions in TGCT. To this end, the sequence-based predicted interactions are first refined using an ensemble learning method, based on two well-known methods of learning miRNA-mRNA interactions, namely, TaLasso and GenMiR++. Additional functional analyses were then used to identify a subset of interactions to be most likely functional and specific to TGCT. The final list of 13 miRNA-mRNA interactions can be potential targets for identifying TGCT-specific interactions and future laboratory experiments to develop new therapies.
Collapse
Affiliation(s)
- Nafiseh Sedaghat
- Computer Engineering School, Iran University of Science and Technology, Iran
| | - Mahmood Fathy
- Computer Engineering School, Iran University of Science and Technology, Iran
| | | | - Ali Shojaie
- Department of Biostatistics, University of Washington, United States
| |
Collapse
|
49
|
Gopisetty G, Thangarajan R. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease. Gene 2016; 589:27-35. [PMID: 27170550 DOI: 10.1016/j.gene.2016.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
Abstract
Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology.
Collapse
Affiliation(s)
- Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India
| | | |
Collapse
|
50
|
Johnson K, Brunet B. Brain Metastases as Presenting Feature in 'Burned Out' Testicular Germ Cell Tumor. Cureus 2016; 8:e551. [PMID: 27182465 PMCID: PMC4854635 DOI: 10.7759/cureus.551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/31/2016] [Indexed: 12/24/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common malignancy in males aged 20 to 39, and the incidence is increasing. TGCTs have a tendency to grow rapidly with a high risk of metastatic spread. TGCTs generally present with a palpable testicular mass, yet may present less commonly with symptoms arising from metastatic disease. A 24-year-old otherwise healthy male presented with progressive headaches. Initial imaging reported a single mass in the right frontal lobe. Complete surgical resection revealed suspicion for metastatic poorly differentiated carcinoma with an inconclusive immunohistochemical profile. Further staging scans revealed pulmonary and pelvic tumor deposits. Tumor markers with alpha-fetoprotein, beta-human chorionic gonadotropin, and lactate dehydrogenase were not elevated. Follow-up cranial magnetic resonance imaging revealed intracranial disease progression and he underwent whole brain radiation therapy. Additional outside pathology consultation for chromosomal analysis revealed features consistent with a TGCT. A scrotal ultrasound revealed a minimally atrophic right testicle. With evidence supporting the potential for response to chemotherapeutic treatment in TGCT, the patient was started on cisplatin and etoposide. Bleomycin was planned for the second cycle of chemotherapy if his pulmonary function improved. A salient feature of all invasive TGCTs is a gain in material in the short arm of chromosome 12, and is diagnostic if present. Although the initial pathology revealed a non-diagnostic metastatic tumor, further testing revealed amplification of chromosome 12p. The examination of poorly differentiated carcinomas of an unknown primary site using light microscopy and immunohistochemical profiling alone may be inadequate, and should undergo molecular chromosomal analysis. This case is presented for its unconventional presentation and rarity of occurrence. It brings forward the discussion of both the commonality of TGCT in young male adults, as well as the anomaly of a 'burned out' phenomenon. With unreliable tumor markers, nonspecific symptoms, and pathological findings, 'burned out' TGCTs may account for a challenging diagnosis in a variety of cases, especially with the presenting symptom arising from a less common metastatic site. This case adds to the increasing literature on a rare entity of the 'burned out' TGCT, and upon literature review, presents itself as the first reported case presenting with brain metastasis.
Collapse
Affiliation(s)
- Kate Johnson
- Radiation Oncology, Cancer Care Manitoba, University of Manitoba, Canada
| | | |
Collapse
|