1
|
Faa G, Messana I, Coni P, Piras M, Pichiri G, Piludu M, Iavarone F, Desiderio C, Vento G, Tirone C, Manconi B, Olianas A, Contini C, Cabras T, Castagnola M. Thymosin β 4 and β 10 Expression in Human Organs during Development: A Review. Cells 2024; 13:1115. [PMID: 38994967 PMCID: PMC11240739 DOI: 10.3390/cells13131115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024] Open
Abstract
This review summarizes the results of a series of studies performed by our group with the aim to define the expression levels of thymosin β4 and thymosin β10 over time, starting from fetal development to different ages after birth, in different human organs and tissues. The first section describes the proteomics investigations performed on whole saliva from preterm newborns and gingival crevicular fluid, which revealed to us the importance of these acidic peptides and their multiple functions. These findings inspired us to start an in-depth investigation mainly based on immunochemistry to establish the distribution of thymosin β4 and thymosin β10 in different organs from adults and fetuses at different ages (after autopsy), and therefore to obtain suggestions on the functions of β-thymosins in health and disease. The functions of β-thymosins emerging from these studies, for instance, those performed during carcinogenesis, add significant details that could help to resolve the nowadays so-called "β-thymosin enigma", i.e., the potential molecular role played by these two pleiotropic peptides during human development.
Collapse
Affiliation(s)
- Gavino Faa
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Monserrato, Italy; (G.F.); (P.C.); (M.P.); (G.P.); (C.C.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Roma, Italy; (I.M.); (C.D.)
| | - Pierpaolo Coni
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Monserrato, Italy; (G.F.); (P.C.); (M.P.); (G.P.); (C.C.)
| | - Monica Piras
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Monserrato, Italy; (G.F.); (P.C.); (M.P.); (G.P.); (C.C.)
| | - Giuseppina Pichiri
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Monserrato, Italy; (G.F.); (P.C.); (M.P.); (G.P.); (C.C.)
| | - Marco Piludu
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09042 Cagliari, Italy;
| | - Federica Iavarone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy;
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Facoltà di Medicina e Chirurgia, Università Cattolica Sacro Cuore, 00168 Roma, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Roma, Italy; (I.M.); (C.D.)
| | - Giovanni Vento
- Unità Operativa Complessa di Neonatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.V.); (C.T.)
- Divisione di Neonatologia, Dipartimento per la Salute della Donna e del Bambino, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Chiara Tirone
- Unità Operativa Complessa di Neonatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.V.); (C.T.)
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione Biomedica, Università di Cagliari, 09042 Monserrato, Italy; (B.M.); (A.O.); (T.C.)
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione Biomedica, Università di Cagliari, 09042 Monserrato, Italy; (B.M.); (A.O.); (T.C.)
| | - Cristina Contini
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Monserrato, Italy; (G.F.); (P.C.); (M.P.); (G.P.); (C.C.)
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione Biomedica, Università di Cagliari, 09042 Monserrato, Italy; (B.M.); (A.O.); (T.C.)
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, Fondazione Santa Lucia IRCCS, 00179 Roma, Italy
| |
Collapse
|
2
|
Wu Y, Yao M, Wu Z, Ma L, Liu C. A new prognostic model based on gamma-delta T cells for predicting the risk and aiding in the treatment of clear cell renal cell carcinoma. Discov Oncol 2024; 15:185. [PMID: 38795225 PMCID: PMC11127908 DOI: 10.1007/s12672-024-01057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/23/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND ccRCC is the prevailing form of RCC, accounting for the majority of cases. The formation of cancer and the body's ability to fight against tumors are strongly connected to Gamma delta (γδ) T cells. METHODS We examined and analyzed the gene expression patterns of 535 individuals diagnosed with ccRCC and 72 individuals serving as controls, all sourced from the TCGA-KIRC dataset, which were subsequently validated through molecular biology experiments. RESULTS In ccRCC, we discovered 304 module genes (DEGRGs) that were ex-pressed differentially and linked to γδ T cells. A risk model for ccRCC was constructed using 13 differentially DEGRGs identified through univariate Cox and LASSO regression analyses, which were found to be associated with prognosis. The risk model exhibited outstanding performance in both the training and validation datasets. The comparison of immune checkpoint inhibitors and the tumor immune microenvironment between the high- and low-risk groups indicates that immunotherapy could lead to positive results for low-risk patients. Moreover, the inhibition of ccRCC cell proliferation, migration, and invasion was observed in cell culture upon knocking down TMSB10, a gene associated with different types of cancers. CONCLUSIONS In summary, we have created a precise predictive biomarker using a risk model centered on γδ T cells, which can anticipate clinical results and provide direction for the advancement of innovative targeted therapies.
Collapse
Affiliation(s)
- Yaqian Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Mengfei Yao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zonglong Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| | - Cheng Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
3
|
Wang WC, Zhang XF, Tang EJ, Li AJ, Chen L, Wang JQ, Ma JY, Zhang XF, Sun B. Thymosin β4, a potential marker of malignancy and prognosis in hepatocellular carcinoma. Scand J Gastroenterol 2023; 58:380-391. [PMID: 36269095 DOI: 10.1080/00365521.2022.2136012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The lack of effective early diagnostic markers is an obstacle in clinical diagnosis and treatment of hepatocellular carcinoma (HCC). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an increasing popular approach for identification of clinically relevant parameters including biomarkers. PATIENTS AND METHODS 540 subjects, including 274 HCC, 119 liver cirrhosis, 89 hepatitis, and 58 healthy volunteers were enrolled. MALDI-TOF MS was used to select potential novel biomarkers from serum of HCC patients. Its clinical application was evaluated by experiments and clinical data analysis. RESULTS We identified Thymosin β4 (Tβ4) in serum by MALDI-TOF MS. The expression of Tβ4 was detected up-regulating in HCC cells and tissues which enhanced motility of HCC cells. More important, the level of serum Tβ4 was significantly elevated in HCC patients. The AUROC showed the optimum diagnostic cut-off was 1063.6 ng/mL, ROC and 95% CI of Tβ4 (0.908; 0.880-0.935) were larger than that of serum AFP (0.712; 0.662-0.762; p < 0.001). The sensitivity (91.3% vs 83.1%) and specificity (81.2% vs 20.3%) of serum Tβ4 were higher than alpha-fetoprotein (AFP). In AFP-negative HCC, the sensitivity could reach to 80.5%. ROC analysis showed serum Tβ4 had a better performance compared with AFP in distinguishing early-stage and small HCC. Tβ4 is correlated with TNM stage (p = 0.016) and vascular invasion (p = 0.005). Survival analysis indicated the survival time of Tβ4 positive patients was shorter (p < 0.001). Cox analysis suggested Tβ4 could be an independent factor for HCC prognosis. CONCLUSION Tβ4 may serve as a novel biomarker for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Wen-Chao Wang
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Xiao-Feng Zhang
- School of Medicine, Shanghai University, Shanghai, P. R. China
| | - Er-Jiang Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - A-Jian Li
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Lei Chen
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Jia-Qi Wang
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Jun-Yong Ma
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, P. R. China
| | - Xiao-Feng Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, P. R. China
| | - Bin Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| |
Collapse
|
4
|
Yan Z, Yan Q, Song Y, Wang L. TMSB10, a potential prognosis prediction biomarker, promotes the invasion and angiogenesis of gastric cancer. J Gastroenterol Hepatol 2021; 36:3102-3112. [PMID: 34114679 DOI: 10.1111/jgh.15576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM The thymosin beta 10 (TMSB10) was originally identified from the thymus, which plays a key role in the development of many cancers. However, the underlying molecular mechanisms of TMSB10 involved in GC have not been understood. METHODS We sought to determine the expression of TMSB10 in human GC tissues and illustrate whether it is correlated with the clinical pathologic characteristics and prognosis in GC patients. Its roles and potential mechanisms in regulating tumor growth, invasion, and angiogenesis were evaluated by TMSB10 knockdown/overexpression of GC cells in vitro and ex vivo. RESULTS Marked overexpression of TMSB10 protein expression was observed in GC cells and tissues, which was associated with the advanced tumor stage and lymph nodes (LN) metastasis of GC patients. Furthermore, prognostic analysis showed that GC patients with high TMSB10 expression had a remarkably shorter survival and acted as an important factor for predicting poor overall survival in GC patients. Moreover, TMSB10 overexpression promoted, while TMSB10 knockdown the proliferation, EMT process, and angiogenesis of GC cells. CONCLUSION The study highlights that TMSB10 may hold promise as potential prognosis prediction biomarker for the diagnosis of GC and a potential therapeutic target, which will facilitate the development of a novel therapeutic strategy against GC.
Collapse
Affiliation(s)
- ZhenKun Yan
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiaomei Yan
- Department of Neurology, Qianwei Hospital of Jilin Province, Changchun, China
| | - Yumei Song
- Department of Thoracic Oncology, Tumor Hospital of Jilin Province, Changchun, China
| | - Liqiang Wang
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Li J, Zhou S, Li H, Xu Y, Zhou N, Liu R. PTEN/AKT upregulation of TMSB10 contributes to lung cancer cell growth and predicts poor survival of the patients. Biosci Biotechnol Biochem 2021; 85:805-813. [PMID: 33686397 DOI: 10.1093/bbb/zbaa113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023]
Abstract
PTEN/AKT signaling cascade is frequently activated in various cancers, including lung cancer. The downstream effector of this signaling cascade is poorly understood. β-Thymosin 10 (TMSB10) functions as an oncogene or tumor suppressors in cancers, whereas its significance in lung cancer remains unknown. In this study, we showed that the activation of PTEN/AKT signaling promoted the expression of TMSB10. Based on the TCGA database, TMSB10 was upregulated in lung cancer tissues and its overexpression was correlated with poor prognosis of lung cancer patients. Functional experiments demonstrated that TMSB10 knockdown suppressed, while its overexpression promoted the proliferation, growth, and migration of lung cancer cells. Apoptosis and epithelial-mesenchymal transition were also regulated by TMSB10. We therefore suggest that TMSB10 is a novel oncogene for lung cancer. Targeting TMSB10 may benefit lung cancer patients with activated PTEN/AKT signaling.
Collapse
Affiliation(s)
- Jie Li
- Department of Lymphadenopathy
| | - Shaohui Zhou
- Department of Thoracic Surgery, Hebei General Hospital
| | - Hongchen Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yanzhao Xu
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Hebei, P. R. China
| | - Ning Zhou
- Department of Laboratory, Baotou Cancer Hospital, Baotou, Inner Mongolia, P.R. China
| | - Rongfeng Liu
- Department of Oncology, Fourth Hospital of Hebei Medical University, Hebei, P. R. China
| |
Collapse
|
6
|
Acupuncture Regulates Serum Differentially Expressed Proteins in Patients with Chronic Atrophic Gastritis: A Quantitative iTRAQ Proteomics Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9962224. [PMID: 34234838 PMCID: PMC8219412 DOI: 10.1155/2021/9962224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Objective To identify differentially expressed proteins (DEPs) in sera of patients with chronic atrophic gastritis (CAG) using isobaric tags for relative and absolute quantitation (iTRAQ) and to explore acupuncture's mechanism in CAG. Methods Peripheral sera from 8 healthy volunteers (HC), 8 chronic nonatrophic gastritis (NAG) patients, 8 CAG patients, and 8 CAG patients who underwent acupuncture treatment (CAG + ACU) were collected followed by labeling with iTRAQ reagent for protein identification and quantification using two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS). Representative DEPs were selected through bioinformatics, and proteins were verified by enzyme-linked immunosorbent assay (ELISA). Results A total of 4,448 unique peptides were identified, corresponding to 816 nonredundant proteins. A 1.4-fold difference was used as the threshold. Compared with the HC group, 75 and 106 DEPs were identified from CAG and NAG groups, respectively. Compared with the CAG group, 110 and 66 DEPs were identified from the NAG and CAG + ACU groups, respectively. The DEPs were mainly involved in protein binding and the Notch signaling pathway-related proteins, and the upregulated proteins included actin-binding proteins (thymosin beta-4, tropomyosin-4, profilin-1, transgelin-2), while the downregulated proteins included Notch2 and Notch3. After acupuncture, the expression of these proteins in CAG patients was less differentiated from that in healthy people. The level of the above 6 proteins were verified by ELISA, and the results were similar to the results of iTRAQ analysis. Conclusions Actin-binding proteins and Notch signaling pathway-related proteins were correlated with the development and progression of CAG and thus are potential diagnostic markers for CAG. Acupuncture may play a role in regulating actin-binding proteins and Notch signaling pathway-related proteins to play a therapeutic role in CAG.
Collapse
|
7
|
Lin L, Zheng J, Zheng F, Cai Z, Yu Q. Advancing serum peptidomic profiling by data-independent acquisition for clear-cell renal cell carcinoma detection and biomarker discovery. J Proteomics 2020; 215:103671. [DOI: 10.1016/j.jprot.2020.103671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/28/2019] [Accepted: 01/26/2020] [Indexed: 12/20/2022]
|
8
|
Pan Q, Cheng G, Liu Y, Xu T, Zhang H, Li B. TMSB10 acts as a biomarker and promotes progression of clear cell renal cell carcinoma. Int J Oncol 2020; 56:1101-1114. [PMID: 32319572 PMCID: PMC7115359 DOI: 10.3892/ijo.2020.4991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common urological malignancies. Identifying novel biomarkers and investigating the underlying mechanism of ccRCC development will be crucial to the management and treatment of ccRCC in patients. Thymosin b10 (TMSB10), a member of the thymosin family, is involved in various physiological processes, including tissue regeneration and inflammatory regulation. Moreover, it has been found to be upregulated in many types of carcinoma. However, its roles in ccRCC remain to be elucidated. The present study aimed to explore the expression of TMSB10 in ccRCC through mining The Cancer Genome Atlas (TCGA) and Oncomine databases, and to investigate the association between TMSB10 expression and clinicopathological factors. Furthermore, immunohistochemistry assays and western blotting were conducted to verify TMSB10 expression levels in human ccRCC tissues and cell lines. Functional analyses were also performed to identify the roles of TMSB10 in vitro. The results revealed that TMSB10 was significantly upregulated in RCC tissues and cell lines. The expression of TMSB10 was closely associated with various clinicopathological parameters. In addition, high expression of TMSB10 predicted poor clinical outcome. The receiver operating characteristic curve revealed that TMSB10 could sufficiently distinguish the tumor from normal kidney (area under the curve = 0.9543, P<0.0001). Furthermore, knockdown of TMSB10 impaired the proliferation of ccRCC cells, and attenuated cell and invasion in vitro. In addition, TMSB10 knockdown downregulated reduced the phosphorylation of PI3K and the expression of vascular endothelial growth factor. In conclusion, the present study demonstrated that high expression of TMSB10 could serve as a useful diagnostic and prognostic biomarker and a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Qiufeng Pan
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Gong Cheng
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuenan Liu
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tianbo Xu
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hao Zhang
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bing Li
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
9
|
Ucal Y, Durer ZA, Atak H, Kadioglu E, Sahin B, Coskun A, Baykal AT, Ozpinar A. Clinical applications of MALDI imaging technologies in cancer and neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:795-816. [PMID: 28087424 DOI: 10.1016/j.bbapap.2017.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/08/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) enables localization of analytes of interest along with histology. More specifically, MALDI-IMS identifies the distributions of proteins, peptides, small molecules, lipids, and drugs and their metabolites in tissues, with high spatial resolution. This unique capacity to directly analyze tissue samples without the need for lengthy sample preparation reduces technical variability and renders MALDI-IMS ideal for the identification of potential diagnostic and prognostic biomarkers and disease gradation. MALDI-IMS has evolved rapidly over the last decade and has been successfully used in both medical and basic research by scientists worldwide. In this review, we explore the clinical applications of MALDI-IMS, focusing on the major cancer types and neurodegenerative diseases. In particular, we re-emphasize the diagnostic potential of IMS and the challenges that must be confronted when conducting MALDI-IMS in clinical settings. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Yasemin Ucal
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Zeynep Aslıhan Durer
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Hakan Atak
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Elif Kadioglu
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Betul Sahin
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Abdurrahman Coskun
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Ahmet Tarık Baykal
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey
| | - Aysel Ozpinar
- Acibadem University, Department of Medical Biochemistry, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
10
|
Lee SY, Park MJ, Lee HK, Son HJ, Kim CN, Kim JH, Kang DW. Increased Expression of Thymosin β 4 Is Independently Correlated with Hypoxia Inducible Factor-1α (HIF-1α) and Worse Clinical Outcome in Human Colorectal Cancer. J Pathol Transl Med 2016; 51:9-16. [PMID: 27744656 PMCID: PMC5267536 DOI: 10.4132/jptm.2016.08.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/09/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022] Open
Abstract
Background Thymosin β4 is a multi-functional hormone-like polypeptide, being involved in cell migration, angiogenesis, and tumor metastasis. This study was undertaken to clarify the clinicopathologic implications of thymosin β4 expression in human colorectal cancers (CRCs). Methods We investigated tissue sections from 143 patients with CRC by immunohistochemistry. In addition, we evaluated the expression patterns and the clinico-pathological significance of thymosin β4 expression in association with hypoxia inducible factor-1α (HIF-1α) expression in the CRC series. Results High expression of thymosin β4 was significantly correlated with lymphovascular invasion, invasion depth, regional lymph node metastasis, distant metastasis, and TNM stage. Patients with high expression of thymosin β4 showed poor recurrence-free survival (p = .001) and poor overall survival (p = .005) on multivariate analysis. We also found that thymosin β4 and HIF-1α were overexpressed and that thymosin β4 expression increased in parallel with HIF-1α expression in CRC. Conclusions A high expression level of thymosin β4 indicates poor clinical outcomes and may be a useful prognostic factor in CRC. Thymosin β4 is functionally related with HIF-1α and may be a potentially valuable biomarker and possible therapeutic target for CRC.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Pathology, Eulji University Hospital, Daejeon, Korea
| | - Mee Ja Park
- Department of Pathology, Eulji University Hospital, Daejeon, Korea
| | - Hye Kyung Lee
- Department of Pathology, Eulji University Hospital, Daejeon, Korea
| | - Hyun Jin Son
- Department of Pathology, Eulji University Hospital, Daejeon, Korea
| | - Chang Nam Kim
- Department of Surgery, Eulji University Hospital, Daejeon, Korea
| | - Joo Heon Kim
- Department of Pathology, Eulji University Hospital, Daejeon, Korea
| | - Dong Wook Kang
- Department of Pathology, Eulji University Hospital, Daejeon, Korea
| |
Collapse
|
11
|
Kim J, Jung Y. Thymosin Beta 4 Is a Potential Regulator of Hepatic Stellate Cells. VITAMINS AND HORMONES 2016; 102:121-149. [PMID: 27450733 DOI: 10.1016/bs.vh.2016.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis, a major characteristic of chronic liver disease, is inappropriate tissue remodeling caused by prolonged parenchymal cell injury and inflammation. During liver injury, hepatic stellate cells (HSCs) undergo transdifferentiation from quiescent HSCs into activated HSCs, which promote the deposition of extracellular matrix proteins, leading to liver fibrosis. Thymosin beta 4 (Tβ4), a major actin-sequestering protein, is the most abundant member of the highly conserved β-thymosin family and controls cell morphogenesis and motility by regulating the dynamics of the actin cytoskeleton. Tβ4 is known to be involved in various cellular responses, including antiinflammation, wound healing, angiogenesis, and cancer progression. Emerging evidence suggests that Tβ4 is expressed in the liver; however, its biological roles are poorly understood. Herein, we introduce liver fibrogenesis and recent findings regarding the function of Tβ4 in various tissues and discuss the potential role of Tβ4 in liver fibrosis with a special focus on the effects of exogenous and endogenous Tβ4. Recent studies have revealed that activated HSCs express Tβ4 in vivo and in vitro. Treatment with the exogenous Tβ4 peptide inhibits the proliferation and migration of activated HSCs and reduces liver fibrosis, indicating it has an antifibrotic action. Meanwhile, the endogenously expressed Tβ4 in activated HSCs is shown to promote HSCs activation. Although the role of Tβ4 has not been elucidated, it is apparent that Tβ4 is associated with HSC activation. Therefore, understanding the potential roles and regulatory mechanisms of Tβ4 in liver fibrosis may provide a novel treatment for patients.
Collapse
Affiliation(s)
- J Kim
- Pusan National University, Pusan, Republic of Korea
| | - Y Jung
- Pusan National University, Pusan, Republic of Korea.
| |
Collapse
|
12
|
Role of thymosin beta 4 in hair growth. Mol Genet Genomics 2016; 291:1639-46. [DOI: 10.1007/s00438-016-1207-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 04/13/2016] [Indexed: 01/12/2023]
|
13
|
Lee JW, Ryu YK, Ji YH, Kang JH, Moon EY. Hypoxia/reoxygenation-experienced cancer cell migration and metastasis are regulated by Rap1- and Rac1-GTPase activation via the expression of thymosin beta-4. Oncotarget 2016; 6:9820-33. [PMID: 25888632 PMCID: PMC4496400 DOI: 10.18632/oncotarget.3218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/26/2015] [Indexed: 11/25/2022] Open
Abstract
Signaling by small guanosine triphosphatases (GTPase), Rap1/Rac1, is one of the major pathways controlling cancer cell migration and tumor metastasis. Thymosin beta-4 (Tβ4), an actin-sequestering protein, has been shown to increase migration of cancer cells. Episodes of hypoxia and re-oxygenation (H/R) are an important phenomenon in tumor microenvironment (TME). We investigated whether Tβ4 could play as an intermediary to crosstalk between Rac1- and Rap1- GTPase activation under hypoxia/reoxygenation (H/R) conditions. Inhibition of Tβ4 expression using transcription activator-like effector nucleases (TALEN) significantly decreased lung metastasis of B16F10 cells. Rac1 and Rap1 activity, as well as cancer cell migration, increased following induction of Tβ4 expression in normoxia- or H/R-experienced cells, but were barely detectable in Tβ4-depleted cells. Rap1-regulated Rac1 activity was decreased by a dominant negative Rap1 (Rap1N17), and increased by 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (CPT), a Rap1 activator. In contrast, a Rac1-specific inhibitor, NSC23766, and dominant negative Rac1 (Rac1N17) enhanced Tβ4 expression and aberrant Rap1 activity. While NSC23766 and Rac1N17 incompletely inhibited tumor metastasis in vivo, and H/R-experienced cancer cell migration in vitro, more efficient attenuation of cancer cell migration was accomplished by simultaneous inactivation of Rap1 and Rac1 with Rap1N17 and Rac1N17, respectively. These data suggest that a combination therapy targeting both Rap1 and Rac1 activity may be an effective method of inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Yun-Kyoung Ryu
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | - Young-Hoon Ji
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Science, Seoul 139-709, Korea
| | - Joo Hyun Kang
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Science, Seoul 139-709, Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| |
Collapse
|
14
|
Thymosin β4 induces proliferation, invasion, and epithelial-to-mesenchymal transition of oral squamous cell carcinoma. Amino Acids 2015; 48:117-27. [PMID: 26276576 DOI: 10.1007/s00726-015-2070-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a vital role in carcinogenesis, invasion, and metastasis of many epithelial tumors including oral squamous cell carcinoma (OSCC), a common malignancy of the head and neck. However, the functional role of the actin-sequestering protein thymosin β4 (Tβ4) in the EMT in OSCCs remains unclear. Thus, we investigated whether overexpression of Tβ4 could induce in vitro tumorigenesis such as cell proliferation and anchorage independency and an EMT-like phenotype in OSCCs. Also, we examined whether it affects invasiveness and cell motility-associated signaling molecules. Tβ4-overexpressing OSCCs, SCC-15_Tβ4 and SCC-25_Tβ4, enhanced cell proliferation and colony formation. In addition, we observed that Tβ4 overexpression induced an EMT-like phenotype, accompanied by a decrease in expression of the epithelial cell marker E-cadherin and an increase in expression of mesenchymal cell markers vimentin and N-cadherin. Also, the expression level of Twist1, an EMT-inducing transcription factor, was significantly enhanced in SCC-15_Tβ4 and SCC-25_Tβ4 cells. Tβ4 overexpression augmented in vitro invasion and MMP-2 activity and enhanced the phosphorylation of paxillin and cortactin and expression of LIMK1. Taken together, these results suggest that Tβ4 overexpression could be one of the causes of tumorigenesis and progression in OSCCs. Further investigation on the Tβ4 molecule would encourage the development of specific targets for cancer treatment.
Collapse
|
15
|
Fu X, Cui P, Chen F, Xu J, Gong L, Jiang L, Zhang D, Xiao Y. Thymosin β4 promotes hepatoblastoma metastasis via the induction of epithelial-mesenchymal transition. Mol Med Rep 2015; 12:127-32. [PMID: 25695679 PMCID: PMC4438935 DOI: 10.3892/mmr.2015.3359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 01/27/2015] [Indexed: 12/26/2022] Open
Abstract
Hepatoblastoma (HB) is the most common malignant hepatic tumor in children and complete surgical resection offers the highest possibility for cure in this disease. Tumor metastasis is the principle obstacle to the development of efficient treatments for patients with HB. The present study aimed to measure the expression levels of thymosin β4 (Tβ4) in liver samples from patients with HB and to investigate the involvement of Tβ4 in HB metastasis. The expression of Tβ4 was significantly higher in liver samples from patients with metastatic HB and in the HepG2 metastatic HB cell line, compared with that in adjacent healthy liver samples and in the L02 healthy hepatic cell line. By contrast, the expression levels of epithelial-cadherin (E-cadherin) and cytosolic accumulation of β-catenin, the two most prominent markers involved in epithelial-mesenchymal transition (EMT), were reduced in liver specimens from patients with metastatic HB compared with that of healthy adjacent control tissue. HepG2 cells were transfected with small interfering-RNA in order to downregulate Tβ4 gene expression. This resulted in a reduced cell migratory capacity compared with control cells. Tβ4 gene expression knockdown significantly inhibited transforming growth factor β1-mediated-EMT in vitro by upregulating the expression of E-cadherin. The results of the present study suggested that Tβ4 may promote HB metastasis via the induction of EMT, and that Tβ4 may therefore be a target for the development of novel treatments for patients with HB.
Collapse
Affiliation(s)
- Xiaojun Fu
- Department of Pediatric Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Peiyuan Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Fangfang Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jianzhong Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Li Gong
- Department of Pediatric Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Lei Jiang
- Department of Pediatric Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Dakun Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yongtao Xiao
- Shanghai Institute of Pediatric Research, Shanghai 200092, P.R. China
| |
Collapse
|
16
|
Ryu YK, Lee JW, Moon EY. Thymosin Beta-4, Actin-Sequestering Protein Regulates Vascular Endothelial Growth Factor Expression via Hypoxia-Inducible Nitric Oxide Production in HeLa Cervical Cancer Cells. Biomol Ther (Seoul) 2015; 23:19-25. [PMID: 25593639 PMCID: PMC4286745 DOI: 10.4062/biomolther.2014.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/16/2014] [Accepted: 10/30/2014] [Indexed: 11/16/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is an important regulator of neovascularization. Hypoxia inducible nitric oxide (NO) enhanced the expression of VEGF and thymosin beta-4 (Tβ4), actin sequestering protein. Here, we investigated whether NO-mediated VEGF expression could be regulated by Tβ4 expression in HeLa cervical cancer cells. Hypoxia inducible NO production and VEGF expression were reduced by small interference (si) RNA of Tβ4. Hypoxia response element (HRE)-luciferase activity and VEGF expression were increased by the treatment with N-(β-D-Glucopyranosyl)-N2-acetyl-S-nitroso-D, L-penicillaminamide (SNAP-1), to generate NO, which was inhibited by the inhibition of Tβ4 expression with Tβ4-siRNA. In hypoxic condition, HRE-luciferase activity and VEGF expression were inhibited by the treatment with NG-monomethyl-L-arginine (L-NMMA), an inhibitor to nitric oxide synthase (NOS), which is accompanied with a decrease in Tβ4 expression. VEGF expression inhibited by L-NMMA treatment was restored by the transfection with pCMV-Tβ4 plasmids for Tβ4 overexpression. Taken together, these results suggest that Tβ4 could be a regulator for the expression of VEGF via the maintenance of NOS activity.
Collapse
Affiliation(s)
- Yun-Kyoung Ryu
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| |
Collapse
|
17
|
The actin-sequestering protein thymosin beta-4 is a novel target of hypoxia-inducible nitric oxide and HIF-1α regulation. PLoS One 2014; 9:e106532. [PMID: 25271630 PMCID: PMC4182666 DOI: 10.1371/journal.pone.0106532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022] Open
Abstract
The actin-sequestering protein thymosin beta-4 (Tβ4) is involved in various cellular and physiological processes such as proliferation, motility, growth and metastasis. Nitric oxide (NO) promotes tumor invasiveness and metastasis by activating various enzymes. Herein, we investigated whether hypoxia-inducible NO regulates Tβ4 expression and cancer cell migration using HeLa cervical cancer cells. NO production and Tβ4 expression were increased in a hypoxic condition. The treatment with N-(β-D-Glucopyranosyl)-N2-acetyl-S-nitroso-D, L-penicillaminamide (SNAP-1), to generate NO, enhanced the transcription of Tβ4 and cancer cell migration. SNAP-1-induced cell migration was decreased by the inhibition of Tβ4 with small interference (si) RNA. In a hypoxic condition, treatment with NG-monomethyl-L-arginine (L-NMMA), nitric oxide synthase (NOS) inhibitor, reduced Tβ4 transcriptional activity, and hypoxia-inducible factor (HIF)-1α. Hypoxia-induced cancer cell migration was also decreased by L-NMMA treatment. In a normoxic condition, Tβ4 transcriptional activity was decreased in the cells incubated in the presence of L-NMMA after co-transfection with Tβ4 promoter and GST-conjugated HIF-1α. Collectively, these results suggest that NO could regulate the expression of Tβ4 by direct or indirect effect of HIF-1α on Tβ4 promoter.
Collapse
|
18
|
In vivo growth suppression of CT-26 mouse colorectal cancer cells by adenovirus-expressed small hairpin RNA specifically targeting thymosin beta-4 mRNA. Cancer Gene Ther 2014; 21:389-96. [PMID: 25124811 DOI: 10.1038/cgt.2014.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
Abstract
Thymosin beta-4 (Tβ4) is known to be involved in tumorigenesis. Overexpression of this polypeptide has been observed in a wide variety of cancers, including colorectal carcinoma (CRC). Accordingly, Tβ4 has been proposed to be a novel therapeutic target for CRC, especially in its metastatic form. Although in vitro tumor-suppressive effects of Tβ4 gene silencing mediated by small hairpin RNA (shRNA) have already been demonstrated, the in vivo efficacy of such an approach has not yet been reported. Herein, we demonstrated that infection with recombinant adenovirus expressing an shRNA targeting Tβ4 markedly reduced the growth of and robustly induced apoptosis in CT-26 mouse CRC cells in culture. Additionally, tumors grown in nude mice from the CT-26 cells whose Tβ4 expression already been downregulated by virus infection were also drastically reduced. Most importantly, significant growth arrest of tumors derived from the parental CT-26 cells was observed after multiple intratumoral injections of these viruses. Together, our results show for the first time that in vivo silencing of Tβ4 expression by its shRNA generated after adenoviral infection can suppress CRC growth. These results further demonstrate the feasibility of treating CRC by a Tβ4 knockdown gene therapeutic approach.
Collapse
|
19
|
Theunissen W, Fanni D, Nemolato S, Di Felice E, Cabras T, Gerosa C, Van Eyken P, Messana I, Castagnola M, Faa G. Thymosin beta 4 and thymosin beta 10 expression in hepatocellular carcinoma. Eur J Histochem 2014; 58:2242. [PMID: 24704991 PMCID: PMC3980204 DOI: 10.4081/ejh.2014.2242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/01/2014] [Accepted: 01/02/2014] [Indexed: 01/18/2023] Open
Abstract
Thymosin beta 4 (Tβ4) and thymosin beta 10 (Tβ10) are two members of the beta-thymosin family involved in many cellular processes such as cellular motility, angiogenesis, inflammation, cell survival and wound healing. Recently, a role for beta-thymosins has been proposed in the process of carcinogenesis as both peptides were detected in several types of cancer. The aim of the present study was to investigate the expression pattern of Tβ4 and Tβ10 in hepatocellular carcinoma (HCC). To this end, the expression pattern of both peptides was analyzed in liver samples obtained from 23 subjects diagnosed with HCC. Routinely formalin-fixed and paraffin-embedded liver samples were immunostained by indirect immunohistochemistry with polyclonal antibodies to Tβ4 and Tβ10. Immunoreactivity for Tβ4 and Tβ10 was detected in the liver parenchyma of the surrounding tumor area. Both peptides showed an increase in granular reactivity from the periportal to the periterminal hepatocytes. Regarding HCC, Tβ4 reactivity was detected in 7/23 cases (30%) and Tβ10 reactivity in 22/23 (96%) cases analyzed, adding HCC to human cancers that express these beta-thymosins. Intriguing finding was seen looking at the reactivity of both peptides in tumor cells infiltrating the surrounding liver. Where Tβ10 showed a strong homogeneous expression, was Tβ4 completely absent in cells undergoing stromal invasion. The current study shows expression of both beta-thymosins in HCC with marked differences in their degree of expression and frequency of immunoreactivity. The higher incidence of Tβ10 expression and its higher reactivity in tumor cells involved in stromal invasion indicate a possible major role for Tβ10 in HCC progression.
Collapse
|
20
|
White NMA, Newsted DW, Masui O, Romaschin AD, Siu KWM, Yousef GM. Identification and validation of dysregulated metabolic pathways in metastatic renal cell carcinoma. Tumour Biol 2013; 35:1833-46. [PMID: 24136743 DOI: 10.1007/s13277-013-1245-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/23/2013] [Indexed: 01/03/2023] Open
Abstract
Metastatic renal cell carcinoma (mRCC) is a devastating disease with a 5-year survival rate of approximately 9 % and low response to chemotherapy and radiotherapy. Targeted therapies have slightly improved patient survival, but are only effective in a small subset of patients, who eventually develop resistance. A better understanding of pathways contributing to tumor progression and metastasis will allow for the development of novel targeted therapies and accurate prognostic markers. We performed extensive bioinformatics coupled with experimental validation on proteins dysregulated in mRCC. Gene ontology analysis showed that many proteins are involved in oxidation reduction, metabolic processes, and signal transduction. Pathway analysis showed metabolic pathways are altered in mRCC including glycolysis and pyruvate metabolism, the citric acid cycle, and the pentose phosphate pathway. RT-qPCR analysis showed that genes involved in the citric acid cycle were downregulated in metastatic RCC while genes of the pentose phosphate pathway were overexpressed. Protein-protein interaction analysis showed that most of the 198 proteins altered in mRCC clustered together and many were involved in glycolysis and pyruvate metabolism. We identified 29 reported regions of chromosomal aberrations in metastatic disease that correlate with the direction of protein dysregulation in mRCC. Furthermore, 36 proteins dysregulated in mRCC are predicted to be targets of metastasis-related miRNAs. A more comprehensive understanding of the pathways dysregulated in metastasis can be useful for the development of new therapies and novel prognostic markers. Also, multileveled analyses provide a unique "snapshot" of the molecular "environment" in RCC with prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Nicole M A White
- Department of Laboratory Medicine and the Keenan Research Centre, Li Ka Shing Knowledge Institute of St. Michael's Hospital, 30 Bond Street, Toronto, M5B 1W8, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Nemolato S, Cabras T, Restivo A, Zorcolo L, Di Felice E, Fanni D, Gerosa C, Messana I, Castagnola M, Faa G, Casula G. Thymosin ß4 expression in colorectal polyps and adenomas. Clinics (Sao Paulo) 2013; 68:1220-4. [PMID: 24141838 PMCID: PMC3782725 DOI: 10.6061/clinics/2013(09)08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/24/2013] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Thymosin beta 4 (Tβ4) is a ubiquitous peptide that plays pivotal roles in the cytoskeletal system and in cell differentiation. Recently, a role for Tβ4 has been proposed in experimental and human carcinogenesis, including gastrointestinal cancer. This study was aimed at evaluating the relationship between Tβ4 immunoreactivity and the initial steps of carcinogenesis. METHODS In total, 60 intestinal biopsies, including 10 hyperplastic polyps, 10 sessile serrated adenomas/polyps, 15 colorectal adenomas with low-grade dysplasia, 15 adenomas with high-grade dysplasia, 15 adenocarcinomas and 10 samples of normal colon mucosa, were analyzed for Tβ4 expression by immunohistochemistry. RESULTS Weak cytoplasmic reactivity for Tβ4 was detected in the normal colon mucosa. No reactivity for Tβ4 was found in hyperplastic and sessile serrated polyps/adenomas. Tβ4 expression was observed in 10/15 colorectal adenocarcinomas. In adenomas with low-grade dysplasia, Tβ4 immunoreactivity was mainly detected in dysplastic glands but was absent in hyperplastic glands. Tβ4 immunoreactivity was characterized by spot-like perinuclear staining. In high-grade dysplastic polyps, immunostaining for Tβ4 appeared diffuse throughout the entire cytoplasm of dysplastic cells. Spot-like perinuclear reactivity was detected in adenocarcinoma tumor cells. CONCLUSIONS Our study shows for the first time that Tβ4 is expressed during different steps of colon carcinogenesis. The shift of Tβ4 immunolocalization from low-grade to high-grade dysplastic glands suggests a role for Tβ4 in colorectal carcinogenesis. However, the real meaning of Tβ4 reactivity in dysplastic intestinal epithelium remains unknown.
Collapse
Affiliation(s)
- Sonia Nemolato
- Department of Surgery, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tilghman SL, Townley I, Zhong Q, Carriere PP, Zou J, Llopis SD, Preyan LC, Williams CC, Skripnikova E, Bratton MR, Zhang Q, Wang G. Proteomic signatures of acquired letrozole resistance in breast cancer: suppressed estrogen signaling and increased cell motility and invasiveness. Mol Cell Proteomics 2013; 12:2440-55. [PMID: 23704778 DOI: 10.1074/mcp.m112.023861] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aromatase inhibitors, such as letrozole, have become the first-line treatment for postmenopausal women with estrogen-dependent breast cancer. However, acquired resistance remains a major clinical obstacle. Previous studies demonstrated constitutive activation of the MAPK signaling, overexpression of HER2, and down-regulation of aromatase and ERα in letrozole-resistant breast cancer cells. Given the complex signaling network involved in letrozole-refractory breast cancer and the lack of effective treatment for hormone resistance, further investigation of aromatase inhibitor resistance by a novel systems biology approach may reveal previously unconsidered molecular changes that could be utilized as therapeutic targets. This study was undertaken to characterize for the first time global proteomic alterations occurring in a letrozole-resistant cell line. A quantitative proteomic analysis of the whole cell lysates of LTLT-Ca (resistant) versus AC-1 cells (sensitive) was performed to identify significant protein expression changes. A total of 1743 proteins were identified and quantified, of which 411 were significantly up-regulated and 452 significantly down-regulated (p < 0.05, fold change > 1.20). Bioinformatics analysis revealed that acquired letrozole resistance is associated with a hormone-independent, more aggressive phenotype. LTLT-Ca cells exhibited 84% and 138% increase in migration and invasion compared with the control cells. The ROCK inhibitor partially abrogated the enhanced migration and invasion of the letrozole-resistant cells. Flow cytometric analyses also demonstrated an increase in vimentin and twist expression in letrozole-resistance cells, suggesting an onset of epithelial to mesenchymal transition (EMT). Moreover, targeted gene expression arrays confirmed a 28-fold and sixfold up-regulation of EGFR and HER2, respectively, whereas ERα and pS2 were dramatically reduced by 28-fold and 1100-fold, respectively. Taken together, our study revealed global proteomic signatures of a letrozole-resistant cell line associated with hormone independence, enhanced cell motility, EMT and the potential values of several altered proteins as novel prognostic markers or therapeutic targets for letrozole resistant breast cancer.
Collapse
Affiliation(s)
- Syreeta L Tilghman
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Saelee N, Noonin C, Nupan B, Junkunlo K, Phongdara A, Lin X, Söderhäll K, Söderhäll I. β-thymosins and hemocyte homeostasis in a crustacean. PLoS One 2013; 8:e60974. [PMID: 23565293 PMCID: PMC3614969 DOI: 10.1371/journal.pone.0060974] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/05/2013] [Indexed: 12/22/2022] Open
Abstract
Thymosin proteins are well known for their actin-binding activity. Thymosin beta 4 (Tβ4) has been associated with biological activities in tissue repair and cell migration via interaction with ATP-synthase in vertebrates, while the information of similar thymosin functions in invertebrates is limited. We have shown previously that ATP-synthase is present on the surface of crayfish hematopoietic tissue (HPT) cells, and that astakine 1 (Ast1, an invertebrate cytokine) was found to interact with this β-subunit of ATP synthase. Here, we identified five different β-thymosins from Pacifastacus leniusculus, designated Pl-β-thymosin1-5. The two dominant isoforms in brain, HPT and hemocytes, Pl-β-thymosin1 and 2, were chosen for functional studies. Both isoforms could bind to the β-subunit of ATP-synthase, and Pl-β-thymosin1, but not Pl-β-thymosin2, significantly increased extracellular ATP formation. Moreover, Pl-β-thymosin1 stimulated HPT cell migration in vitro and Ast1 blocked this effect. Pl-β-thymosin2 increased the circulating hemocyte number at an early stage after injection. Additionally, in vivo injection of Pl-β-thymosin1 resulted in significant reduction of reactive oxygen species (ROS) production in crayfish HPT whereas Pl-β-thymosin2 had a similar but transient effect. Both Pl-β-thymosins induced the expression of Ast1 and superoxide dismutase (SOD) transcripts, while silencing of endogenous Pl-β-thymosin 1 and 2 by RNAi resulted in significant reduction of the Ast1 and SOD transcripts. The diverse effects exhibited by Pl-β-thymosin1 and Pl-β-thymosin2 indicates that these proteins are involved in a complex interaction that regulates the hematopoietic stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Netnapa Saelee
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Benjamas Nupan
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Kingkamon Junkunlo
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Amornrat Phongdara
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Xionghui Lin
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Irene Söderhäll
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
24
|
Sribenja S, Wongkham S, Wongkham C, Yao Q, Chen C. Roles and Mechanisms of β-Thymosins in Cell Migration and Cancer Metastasis: An Update. Cancer Invest 2013; 31:103-10. [DOI: 10.3109/07357907.2012.756111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Faa G, Nemolato S, Cabras T, Fanni D, Gerosa C, Fanari M, Locci A, Fanos V, Messana I, Castagnola M. Thymosin β4 expression reveals intriguing similarities between fetal and cancer cells. Ann N Y Acad Sci 2013; 1269:53-60. [PMID: 23045970 DOI: 10.1111/j.1749-6632.2012.06679.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Thymosin β4 (Tβ4) is highly expressed in saliva of human newborns but not in adults. Here preliminary immunohistochemical analyses on different human tissues are reported. Immunoreactivity for Tβ4 in human salivary glands show high quantities of Tβ4 before birth, followed by downregulation of expression in adulthood. In contrast, Tβ4 is detected in tumors of salivary glands, suggesting that tumor cells might utilize fetal programs, including Tβ4 synthesis. Immunohistochemical analyses in the gastrointestinal tract showed strong reactivity for Tβ4 in enterocytes during development, but weak immunostaining in mature enterocytes. In colorectal cancer, the association of a high expression of Tβ4 with epithelial-mesenchymal transition was observed. On the basis of these data, the process of epithelial-mesenchymal transition could represent the unifying process that explains the role of Tβ4 during fetal development and in cancer progression.
Collapse
Affiliation(s)
- Gavino Faa
- Department of Pathology, University Hospital San Giovanni di Dio, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ookuma YF, Kiyoshima T, Kobayashi I, Nagata K, Wada H, Fujiwara H, Yamaza H, Nonaka K, Sakai H. Multiple functional involvement of Thymosin beta-4 in tooth germ development. Histochem Cell Biol 2012; 139:355-70. [DOI: 10.1007/s00418-012-1033-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 12/17/2022]
|
27
|
Wirsching HG, Kretz O, Morosan-Puopolo G, Chernogorova P, Theiss C, Brand-Saberi B. Thymosin β4 induces folding of the developing optic tectum in the chicken (Gallus domesticus). J Comp Neurol 2012; 520:1650-62. [DOI: 10.1002/cne.23004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Ryu YK, Lee YS, Lee GH, Song KS, Kim YS, Moon EY. Regulation of glycogen synthase kinase-3 by thymosin beta-4 is associated with gastric cancer cell migration. Int J Cancer 2012; 131:2067-77. [PMID: 22328534 DOI: 10.1002/ijc.27490] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 01/19/2012] [Indexed: 01/02/2023]
Abstract
Thymosin beta-4 (Tβ4), actin-sequestering protein, plays important roles in many cellular functions including cancer cell migrations. Glycogen synthase kinase (GSK) in Wnt signaling pathway is a key molecule to control intercellular interaction. Here, we investigated whether GSK-3 activity is regulated by Tβ4 and it is associated with Tβ4-mediated migration in gastric cancer cells. Various expression level of Tβ4 was observed in human gastric tumor tissues. Migration in gastric cancer cells, SNU638 and SNU668, was dependent on a relative expression level of Tβ4. Cell migration was higher in SNU668 with a higher expression level of Tβ4 than that in SNU638 with a lower Tβ4. Although the level of phosphorylated(p)-GSK-3α (inactive), β-catenin, E-cadherin and E-cadherin:β-catenin complex was relatively higher, p-GSK-3β (inactive) was lower in SNU638 compared to those in SNU668 cells. LiCl, GSK-3α/β inhibitor, reduced lung metastasis of B16F10 mouse melanoma cells and SNU668 cell migration. Small interference (si)RNA of GSK-3α increased SNU638 cell migration in accordance with the reduction of E-cadherin:β-catenin complex formation through a decrease in β-catenin and E-cadherin. Expression level of GSK-3α/β, β-catenin and E-cadherin in SNU668 and SNU638 was reversed by Tβ4-siRNA and by the treatment with acetylated-serine-aspartic acid-lysine-proline (SDKP) tetrapeptide of Tβ4, respectively. E-cadherin expression in SNU638 cells was decreased by β-catenin-siRNA. PD98059, MEK inhibitor, or U0126, ERK inhibitor, reduced SNU668 cell migration accompanying an increase in p-GSK-3α, β-catenin and E-cadherin. Taken together, data indicated that the expression of GSK-3α, β-catenin and E-cadherin could be negatively regulated by Tβ4-induced ERK phosphorylation. It suggests that Tβ4 could be a novel regulator to control Wnt signaling pathways.
Collapse
Affiliation(s)
- Yun-Kyoung Ryu
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Can B, Karagoz F, Yildiz L, Yildirim A, Kefeli M, Gonullu G, Kandemir B. Thymosin β4 is a novel potential prognostic marker in gastrointestinal stromal tumors. APMIS 2012; 120:689-98. [PMID: 22882257 DOI: 10.1111/j.1600-0463.2012.02887.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022]
Abstract
Thymosin beta-4 (Tβ(4)) is a major actin-sequestering molecule that contributes to cell growth, differentiation, motility, survival, mitosis and angiogenesis. It is overexpressed in certain type of carcinoma and fibrosarcoma cell lines and is associated with metastatic potential. The aim of this study was to investigate the relationship between Tβ(4) expression and clinicopathologic features and VEGF status in gastrointestinal stromal tumors (GISTs). Retrospectively, 60 GISTs were re-examined and immunohistochemistry for Tβ(4) and VEGF was performed. Increased expression of Tβ(4) and VEGF was observed in 26 (43.3%) and in 19 (31.6%) of the tumors, respectively. Tβ(4) expression was positively correlated with VEGF expression (p < 0.01). Tβ(4) and VEGF expression were significantly associated with tumor size (p = 0.00 and p = 0.02, respectively) and high mitosis (p = 0.03 and p = 0.00, respectively). Although Tβ(4) expression was positively associated with pleomorphism (p = 0.01), VEGF expression was positively associated with necrosis (p = 0.03). Tβ(4) expression was related with local recurrence and/or metastasis (p = 0.03), but VEGF expression was not (p = 0.12). We firstly demonstrate the presence of Tβ(4) protein in GISTs. Our study reveals that increased expression of Tβ(4) could be considered as an indicator of aggressive behavior of tumor.
Collapse
Affiliation(s)
- Bilge Can
- Department of Pathology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | | | | | | | | | | | | |
Collapse
|
30
|
Nemolato S, Restivo A, Cabras T, Coni P, Zorcolo L, Orrù G, Fanari M, Cau F, Gerosa C, Fanni D, Messana I, Castagnola M, Casula G, Faa G. Thymosin β 4 in colorectal cancer is localized predominantly at the invasion front in tumor cells undergoing epithelial mesenchymal transition. Cancer Biol Ther 2012; 13:191-7. [PMID: 22233609 DOI: 10.4161/cbt.13.4.18691] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Thymosin β 4 (Tβ(4)) is a ubiquitous peptide that plays pivotal roles in the cytoskeletal system and in cell differentiation during embryogenesis. Recently, a role for Tβ(4) has been proposed in experimental and human carcinogenesis. This study was aimed at evaluating the correlation between Tβ(4) immunoractivity and colorectal cancer, with particular attemption to tumor cells undergoing epithelial-mesenchymal transition. METHODS AND RESULTS 86 intestinal biopsies were retrospectively analyzed including 76 colorectal adenocarcinomas with evident features of epithelial-mesenchymal transition, and 10 samples of normal colorectal mucosa. Paraffin sections were immunostained for Tβ(4) and for E-cadherin. Total RNA was isolated from frozen specimens obtained, at surgery, from the normal colon mucosa, the deeper regions and the superficial tumor regions in four cases of colon cancer. Tβ(4) immunoreactivity was detected in the vast majority (59/76) of colon carcinomas, showing a patchy distribution, with well differentiated areas significantly more reactive than the less differentiated tumor zones. We also noted a zonal pattern in the majority of tumors, characterized by a progressive increase in immunostaining for Tβ(4) from the superficial toward the deepest tumor regions. The strongest expression for Tβ(4) was frequently detected in invading tumor cells with features of epithelial-mesenchymal transition. The increase in reactivity for Tβ(4) matched with a progressive decrease in E-cadherin expression in invading cancer cells. At mRNA level, the differences in Tβ(4) expression between the surrounding colon mucosa and the tumors samples were not significant. CONCLUSIONS Our data show that Tβ(4) is expressed in the majority of colon cancers, with preferential immunoreactivity in deep tumor regions. The preferential expression of the peptide and the increase in intensity of the immunostaining at the invasion front suggests a possible link between the peptide and the process of epithelial mesenchymal transition, suggesting a role for Tβ(4) in colorectal cancer invasion and metastasis.
Collapse
Affiliation(s)
- Sonia Nemolato
- Dipartimento di Citomorfologia, Divisione di Anatomia Patologica, University of Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tang MC, Chan LC, Yeh YC, Chen CY, Chou TY, Wang WS, Su Y. Thymosin beta 4 induces colon cancer cell migration and clinical metastasis via enhancing ILK/IQGAP1/Rac1 signal transduction pathway. Cancer Lett 2011; 308:162-71. [DOI: 10.1016/j.canlet.2011.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/20/2011] [Accepted: 05/02/2011] [Indexed: 01/08/2023]
|
32
|
Tang MC, Su Y. Thymosin β₄ knockdown disrupts mitochondrial functions of SW480 human colon cancer cells. Cancer Sci 2011; 102:1665-72. [PMID: 21668580 DOI: 10.1111/j.1349-7006.2011.02002.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Thymosin β(4) (Tβ(4)), overexpressed in various tumors, has been shown to be involved in cellular anti-oxidation. Reactive oxygen species (ROS) function as signaling molecules and play certain roles in tumor progression. To assess the anti-oxidative role of endogenous Tβ(4) in tumor cells, its expression in SW480 cells was knocked down by a shRNA, which induced significant increases of ROS. Interestingly, some cristae-lost and several electron-dense mitochondria appeared in cells with Tβ(4) knockdown that was accompanied by a marked decline of the membrane potential of these organelles. Strikingly, while the ATP and lactate levels in SW480 cells were notably elevated by Tβ(4) downregulation, this treatment significantly diminished the mitochondrial DNA copy number and protein levels of several subunits of the electron transport complexes. Finally, immunofluorescent staining results suggested the presence of Tβ(4) in mitochondria. To the best of our knowledge, this is the first report to demonstrate that Tβ(4) knockdown can disrupt the morphology and some crucial functions of mitochondria in human colorectal carcinoma (CRC) cells.
Collapse
Affiliation(s)
- Mei-Chuan Tang
- Institute of Biopharmaceutical Sciences, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
33
|
Dettin M, Ghezzo F, Conconi MT, Urbani L, D’Auria G, Falcigno L, Guidolin D, Nico B, Ribatti D, Di Bello C, Parnigotto PP. In vitro and in vivo pro-angiogenic effects of thymosin-β4-derived peptides. Cell Immunol 2011; 271:299-307. [DOI: 10.1016/j.cellimm.2011.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/06/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022]
|
34
|
Wang ZY, Zeng FQ, Zhu ZH, Jiang GS, Lv L, Wan F, Dong R, Xiao XY, Xing SA. Evaluation of thymosin β4 in the regulation of epithelial-mesenchymal transformation in urothelial carcinoma. Urol Oncol 2010; 30:167-76. [PMID: 20864366 DOI: 10.1016/j.urolonc.2010.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/07/2010] [Accepted: 02/10/2010] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To study the underlying alteration in the expression of epithelial markers involved in epithelial-mesenchymal transition (EMT), and elucidate the potential mechanism(s) for Tβ4-induced EMT-like phenotypic changes in bladder cancer cells. MATERIALS AND METHODS All tissue samples in this study were obtained from clinical patients of the Union Hospital of Tongji Medical College, and were confirmed by surgery and pathology. Of these, normal bladder tissues (control), primary urothelial carcinoma of different grades (Stage pTa, Stage pT3), bladder paracancerous tissues, accompanied with 2 bladder cancer cell lines (BIU-87 and T24), were divided into 6 groups. Quantitative RT-PCR, Western blotting, and immunohistochemical study of adhesion molecules Tβ4, ILK, E-cadherin, and β-catenin involved in EMT were carried out. A lentiviral gene transferring vector containing the RNA polymerase III-dependent U6 promoter to express short hairpin RNA (shRNA) directed against Tβ4 was also applied. In the present study, all agents were evaluated using commercial kits. RESULTS A strong correlation between the expression levels of Tβ4, ILK, E-cadherin, and β-catenin was found in the bladder transitional cell carcinoma (TCC) patients. In the BIU-87 and T24 bladder cancer cells overexpressing Tβ4, which were accompanied by a loss of E-cadherin as well as a cytosolic accumulation of β-catenin, up-regulation of ILK was also revealed. The inhibition of the Tβ4 expression with lentiviral shRNA vector could raise EMT-like phenotypic changes, significantly depressed motility, and subsequent invasiveness of bladder cancer cells. CONCLUSIONS Our results imply that the Tβ4 is likely to play a crucial role in EMT progression, and that inhibition of the Tβ4 expression or interactions with other genes should be novel therapeutic targets for bladder cancers with high invasive and metastatic potential.
Collapse
Affiliation(s)
- Zhi Yu Wang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hubei, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Caers J, Otjacques E, Hose D, Klein B, Vanderkerken K. Thymosin beta4 in multiple myeloma: friend or foe. Ann N Y Acad Sci 2010; 1194:125-9. [PMID: 20536459 DOI: 10.1111/j.1749-6632.2010.05470.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple myeloma (MM) is a malignancy characterized by the accumulation of monoclonal plasma cells in the bone marrow (BM). Because of the known involvement of thymosin beta4 (Tbeta4) in metastasis of tumor cells, we examined the expression and role of Tbeta4 in MM disease. In a large patient population, we demonstrated that Tbeta4 expression was significantly lower in myeloma cells compared to normal plasma cells and that patients with a high Tbeta4 expression had a longer event free and overall survival. The decreased Tbeta4 expression was also found in the murine 5TMM model. To study its function, we overexpressed the Tbeta4 gene in 5T33MMvt cells by lentiviral transduction. These cells demonstrated a decreased proliferative capability and an increased sensitivity to apoptosis. Mice injected with Tbeta4-overexpressing cells showed a prolonged survival compared to mice injected with controls. In contrast to its role in solid tumors, we found a decreased expression in myeloma cells compared to their normal counterpart and studies with overexpression of the Tbeta4 gene indicated a tumor suppressive function of Tbeta4 in myeloma development.
Collapse
Affiliation(s)
- Jo Caers
- Department of Hematology, CHU University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
36
|
Ricci-Vitiani L, Mollinari C, di Martino S, Biffoni M, Pilozzi E, Pagliuca A, de Stefano MC, Circo R, Merlo D, De Maria R, Garaci E. Thymosin beta4 targeting impairs tumorigenic activity of colon cancer stem cells. FASEB J 2010; 24:4291-301. [PMID: 20566622 DOI: 10.1096/fj.10-159970] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thymosin β4 (Tβ4) is an actin-binding peptide overexpressed in several tumors, including colon carcinomas. The aim of this study was to investigate the role of Tβ4 in promoting the tumorigenic properties of colorectal cancer stem cells (CR-CSCs), which are responsible for tumor initiation and growth. We first found that CR-CSCs from different patients have higher Tβ4 levels than normal epithelial cells. Then, we used a lentiviral strategy to down-regulate Tβ4 expression in CR-CSCs and analyzed the effects of such modulation on proliferation, survival, and tumorigenic activity of CR-CSCs. Empty vector-transduced CR-CSCs were used as a control. Targeting of the Tβ4 produced CR-CSCs with a lower capacity to grow and migrate in culture and, interestingly, reduced tumor size and aggressiveness of CR-CSC-based xenografts in mice. Moreover, such loss in tumorigenic activity was accompanied by a significant increase of phosphatase and tensin homologue (PTEN) and a concomitant reduction of the integrin-linked kinase (ILK) expression, which resulted in a decreased activation of protein kinase B (Akt). Accordingly, exogenous expression of an active form of Akt rescued all the protumoral features lost after Tβ4 targeting in CR-CSCs. In conclusion, Tβ4 may have important implications for therapeutic intervention for treatment of human colon carcinoma.
Collapse
Affiliation(s)
- Lucia Ricci-Vitiani
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nemolato S, Cabras T, Fanari MU, Cau F, Fraschini M, Manconi B, Messana I, Castagnola M, Faa G. Thymosin beta 4 expression in normal skin, colon mucosa and in tumor infiltrating mast cells. Eur J Histochem 2010; 54:e3. [PMID: 20353910 PMCID: PMC3167296 DOI: 10.4081/ejh.2010.e3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/18/2009] [Indexed: 01/08/2023] Open
Abstract
Mast cells (MCs) are metachromatic cells that originate from multipotential hemopoietic stem cells in the bone marrow. Two distinct populations of MCs have been characterized: mucosal MCs are tryptase-positive while mast cells in skin contain tryptase and chymase. We now show that a sub-population of MCs is highly immunoreactive for thymosin beta4, as revealed by immunohistochemical analyses of normal skin, normal colon mucosa and salivary gland tumors. Four consecutive serial sections from each case were immunostained for thymosin beta4 (Tbeta4), chymase, tryptase and stained for toluidine blue. In skin biopsies, MCs showed a comparable immunoreactivity for Tbeta4, chymase and tryptase. In normal colon mucosa the vast majority of mucosal MCs expressed a strong cytoplasmic immunoreactivity for tryptase and for Tbeta4, in the absence of chymase reactivity. A robust expression of Tbeta4 was detected in tumor-infiltrating and peritumoral mast cells in salivary gland tumors and breast ductal infiltrating carcinomas. Tumor-infiltrating MCs also showed a strong immunoreactivity for chymase and tryptase. In this paper, we first demonstrate that normal dermal and mucosal mast cells exhibit strong expression of thymosin beta4, which could be considered a new marker for the identification of mast cells in skin biopsies as well as in human tumors. The possible relationship between the degree of Tbeta4 expression in tumor-infiltrating mast cells and tumor behaviour warrants further consideration in future investigations.
Collapse
Affiliation(s)
- S Nemolato
- Dipartimento di Citomorfologia, Sez. di Anatomia Patologica, Università di Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Caers J, Hose D, Kuipers I, Bos TJ, Van Valckenborgh E, Menu E, De Bruyne E, Goldschmidt H, Van Camp B, Klein B, Vanderkerken K. Thymosin β4 has tumor suppressive effects and its decreased expression results in poor prognosis and decreased survival in multiple myeloma. Haematologica 2009; 95:163-7. [PMID: 19833631 DOI: 10.3324/haematol.2009.006411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Thymosin beta4 (Tbeta4) is a polypeptide involved in cellular proliferation, differentiation, and migration, over-expressed in several tumor entities. We evaluated its expression and function in 298 newly diagnosed multiple myeloma patients and the murine 5TMM model. Mean Tbeta4 expression was significantly lower in myeloma cells compared to normal plasma cells (P<0.001). The same observation can be made in the 5TMM-mouse model by qRT-PCR and ELISA. Here, Tbeta4 overexpression by lentiviral transduction of 5T33MMvt-cells led to significantly decreased proliferative and migratory capacities and increased sensitivity to apoptosis-induction. Mice injected with Tbeta4 over-expressing myeloma cells showed a longer survival compared to mice injected with controls (88,9 vs. 65,9 days, P<0.05). In 209 MM patients treated with high-dose therapy and autologous stem cell transplantation, expression of Tbeta4 below the median was associated with a significantly shorter event free survival (37.6 vs. 26.2 months, P<0.05). In conclusion, our results indicate a possible tumor suppressive function of Tbeta4.
Collapse
Affiliation(s)
- Jo Caers
- Laboratory of Hematology and Immunology, Vrije Universiteit Brussel, Myeloma Center Brussels, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gai Y, Zhao J, Song L, Wang L, Qiu L, Ning X, Zheng X, Zhang Y, Mu C, Zhang Y, Li L. Two thymosin-repeated molecules with structural and functional diversity coexist in Chinese mitten crab Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:867-876. [PMID: 19428488 DOI: 10.1016/j.dci.2009.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 05/27/2023]
Abstract
Recently, beta-thymosin-like proteins with multiple thymosin domains (defined as thymosin-repeated proteins) have been identified from invertebrate. In the present study, the cDNAs of two thymosin-repeated proteins (designated EsTRP1 and EsTRP2) were cloned from Chinese mitten crab by expressed sequence tags (EST) techniques. BLAST analysis presented three and two thymosin domains in EsTRP1 and EsTRP2, respectively, with the identities amongst the five domains varying from 47% to 100%. Both EsTRP1 and EsTRP2 shared high similarities with previously identified vertebrate beta-thymosins and invertebrate thymosin-repeated proteins (TRPs) with the identities ranging from 43% to 78%, indicating that EsTRPs were new members of the beta-thymosin family. Real-time RT-PCR assay was adopted to determine the tissue distribution of EsTRPs and their temporal expression profile in hemocytes after pathogen stimulation and injury challenge. The expression of EsTRP1 transcript was predominantly detectable in the tissues of hemocytes, hepatopancreas and gonad with the highest expression in hemocytes, while the highest expression level of EsTRP2 was found in heart. EsTRP1 mRNA expression in hemocytes significantly increased at 3 and 48h after Listonella anguillarum challenge, but there was no significant variation in EsTRP2 temporal expression profile. The injury challenge reduced the mRNA expression of EsTRPs, with the down-regulation of EsTRP2 expression occurred earlier than that of EsTRP1. The cDNA fragments encoding their mature peptides of EsTRP1 and EsTRP2 were recombined and expressed in Escherichia coli. The activities of recombinant proteins (rEsTRP1 and rEsTRP2) were examined by MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide) and lysoplate assay. rEsTRP2 could significantly accelerate the growth of human hepatocellular carcinoma cell line, but there was no significant effect of rEsTRP1 on the tumor cell proliferation. Both rEsTRP1 and rEsTRP2 did not possess the ability of killing Micrococcus luteus and L. anguillarum. The differences in the tissue distribution of mRNA transcripts, the response to pathogen stimulation and injury challenge, and the effect of recombinant proteins on human cell proliferation, indicated that there were functional diversity between the two structurally different molecules, EsTRP1 and EsTRP2.
Collapse
Affiliation(s)
- Yunchao Gai
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Elevation of intracellular cyclic AMP inhibits NF-kappaB-mediated thymosin beta4 expression in melanoma cells. Exp Cell Res 2009; 315:3325-35. [PMID: 19500569 DOI: 10.1016/j.yexcr.2009.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 05/22/2009] [Accepted: 05/22/2009] [Indexed: 02/07/2023]
Abstract
Thymosin beta4 (Tbeta4) is a major actin-sequestering protein that has been implicated in the growth, survival, motility, and metastasis of certain tumors and is considered an indicator for malignant progression. Therefore, identifying compounds that can downregulate Tbeta4 expression is very important for the development of anti-cancer chemotherapies. In this study, we investigated the effects of elevated cAMP on Tbeta4 expression and the metastatic potential of murine B16 melanoma cells. In addition, we also dissected the mechanism underlying cAMP-mediated Tbeta4 suppression. We found that treatment with the cAMP-inducing compounds alpha-MSH (alpha-melanocyte stimulating hormone) and IBMX (3-isobutyl-1-methylxanthine) significantly suppressed Tbeta4 expression and regulated EMT-associated genes through the suppression of NF-kappaB activation in B16F10 cells. Along with decreased Tbeta4 expression, the in vitro invasiveness and anchorage-independent growth in a semi-solid agar of these cells were also inhibited. In animal experiments, the metastatic potential of the alpha-MSH- or IBMX-treated B16F10 melanoma cells was decreased compared to untreated control cells. Collectively, our data demonstrate that elevated intracellular cAMP significantly suppresses Tbeta4 expression and reduces MMP-9 activity, which leads to decreased metastatic potential. Moreover, suppression of NF-kappaB activation by alpha-MSH or IBMX is critical for inhibiting Tbeta4 expression.
Collapse
|
41
|
Ito M, Iguchi K, Usui S, Hirano K. Overexpression of Thymosin .BETA.4 Increases Pseudopodia Formation in LNCaP Prostate Cancer Cells. Biol Pharm Bull 2009; 32:1101-4. [DOI: 10.1248/bpb.32.1101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mai Ito
- Laboratory of Pharmaceutics, Gifu Pharmaceutical University
| | | | - Shigeyuki Usui
- Laboratory of Pharmaceutics, Gifu Pharmaceutical University
| | | |
Collapse
|
42
|
Steiniger SC, Coppinger JA, Krüger JA, Yates JR, Janda KD. Quantitative mass spectrometry identifies drug targets in cancer stem cell-containing side population. Stem Cells 2008; 26:3037-46. [PMID: 18802034 PMCID: PMC2745975 DOI: 10.1634/stemcells.2008-0397] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A multifaceted approach is presented as a general strategy to identify new drug targets in a breast cancer stem cell-containing side population. The approach we have utilized combines side population cell sorting and stable isotope labeling by amino acids in cell culture with mass spectrometry to compare and identify proteins with differential expression profiles between side population cells, know to be enriched in cancer stem cells, and nonside population cells, which are depleted in cancer stem cells, for two breast cancer cell lines, MCF7 and MDA-MB231. Almost 900 proteins were quantified, and several important proteins in cell cycle control and differentiation were found to be upregulated in the cancer stem cell-containing side population. Most interestingly, a splice isoform of pyruvate kinase M2 as well as peroxiredoxin 6 were found to be downregulated. The differential levels of three of these proteins, thymosin beta4 (TB4), proliferation-associated protein 2G4, and SIAH-interacting protein, were validated using Western blot. Furthermore, functional validation provided clear evidence that elevated TB4 expression contributes to drug resistance in the stem cell population. Small interfering RNA silencing of TB4 led to a loss of chemoresistance in two separate breast cancer populations. These proteins likely contribute to resistance in the cancer stem cell-containing side population, and their altered expression in a tumor causes clinical resistance to chemotherapy. The ability to perform quantitative mass spectrometry has enabled the identification of a series of proteins that could serve as future therapeutic targets.
Collapse
Affiliation(s)
- Sebastian C.J. Steiniger
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology, La Jolla, California, 92037
| | | | - Jörg A. Krüger
- The Scripps Research Institute, La Jolla, California, 92037
| | - John R. Yates
- The Scripps Research Institute, La Jolla, California, 92037
| | - Kim D. Janda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology, La Jolla, California, 92037
- Worm Institute of Research and Medicine (WIRM), and Department of Immunology, La Jolla, California, 92037
| |
Collapse
|
43
|
Zhang Y, Feurino LW, Zhai Q, Wang H, Fisher WE, Chen C, Yao Q, Li M. Thymosin Beta 4 is overexpressed in human pancreatic cancer cells and stimulates proinflammatory cytokine secretion and JNK activation. Cancer Biol Ther 2008; 7:419-23. [PMID: 18094619 PMCID: PMC2930015 DOI: 10.4161/cbt.7.3.5415] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Thymosin beta 4 (T beta 4) has been shown to be associated with tumor metastasis and angiogenesis; however, its role in pancreatic cancer has not been understood. In the current study, we examined the expression of T beta 4 in pancreatic cancer cells, and determined the effect of exogenous T beta 4 on cytokine secretion, and signal transduction in human pancreatic cancer cells. RESULTS Pancreatic cancer cell lines expressed higher amount of T beta 4 mRNA than normal human pancreatic ductal epithelium (HPDE) cells. Exogenous T beta 4 increased the secretion of proinflammatory cytokines IL-6, IL-8 and MCP-1 in Panc-1 cells. In addition, T beta 4 activated Jun N-terminal Kinase (JNK) signaling pathways in pancreatic cancer cells. METHODS The mRNA levels of T beta 4 were determined by real-time RT PCR. Phosphorylation of JNK in pancreatic cancer cells was determined using Bio-Plex phosphoprotein assay. The expression of cytokines in human pancreatic cancer cell lines was determined with Bio-Plex cytokine assay. CONCLUSIONS T beta 4 might be involved in stimulating human pancreatic cancer progression by promoting proinflammatory cytokine environment and activating JNK signaling pathway. Targeting T beta 4 and related molecules may be a novel therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Yuqing Zhang
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Louis W. Feurino
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Qihui Zhai
- Department of Pathology, The Methodist Hospital, Houston, Texas 77030
| | - Hao Wang
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - William E. Fisher
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Changyi Chen
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Qizhi Yao
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Min Li
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
44
|
Lee HJ, Su Y, Lui WY, Chau GY, Yin PH, Lee HC, Chi CW. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1alpha) upregulated E-cadherin expression in HepG2 cells. FEBS Lett 2008; 582:627-34. [PMID: 18242180 DOI: 10.1016/j.febslet.2008.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/09/2008] [Accepted: 01/22/2008] [Indexed: 02/08/2023]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1alpha), a highly inducible transcriptional coactivator regulating energy homeostasis, is down-regulated in hepatoma tissues. To dissect its role in hepato-tumorigenesis, Ingenuity Pathway Analysis was applied to construct pathways affected by PGC-1alpha upregulation in HepG2 hepatoma cells based on our microarray data. Interestingly, migration of these cells was markedly diminished by PGC-1alpha overexpression in consistency with Ingenuity results. Moreover, a deduced expression increase of E-cadherin was also observed in PGC-1alpha-overexpressing HepG2 cells. Finally, transient transfection and chromatin-immunoprecipitation assays suggested that increased histone acetylation might be responsible for PGC-1alpha-mediated transactivation of a minimal E-cadherin promoter.
Collapse
Affiliation(s)
- Hui-Ju Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
45
|
Bednarek R, Boncela J, Smolarczyk K, Cierniewska-Cieslak A, Wyroba E, Cierniewski CS. Ku80 as a Novel Receptor for Thymosin β4 That Mediates Its Intracellular Activity Different from G-actin Sequestering. J Biol Chem 2008; 283:1534-1544. [DOI: 10.1074/jbc.m707539200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Dhaese S, Jonckheere V, Goethals M, Waltregny D, Vandekerckhove J, Ampe C, Van Troys M. Functional and profiling studies prove that prostate cancer upregulated neuroblastoma thymosin β is the true human homologue of rat thymosin β15. FEBS Lett 2007; 581:4809-15. [PMID: 17888914 DOI: 10.1016/j.febslet.2007.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/24/2007] [Accepted: 09/01/2007] [Indexed: 11/30/2022]
Abstract
A peptide with a sequence identical to rat thymosin beta(Tb)15 was reported to be upregulated in human prostate cancer. However, in this report we provide evidence that TbNB, initially identified in human neuroblastoma, is the only Tb isoform upregulated in human prostate cancer and that the Tb15 sequence is not present herein. In addition, we demonstrate that human TbNB has a higher affinity for actin in comparison to Tb4 and promotes cell migration. In combination, this experimentally validates TbNB as functional homologue of rat Tb15 in the human organism and clarifies the current composition of the human Tb family.
Collapse
Affiliation(s)
- S Dhaese
- VIB Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Kruzelock RP, Short W. Colorectal Cancer Therapeutics and the Challenges of Applied Pharmacogenomics. Curr Probl Cancer 2007; 31:315-66. [PMID: 17905192 DOI: 10.1016/j.currproblcancer.2007.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Qiu P, Kurpakus-Wheater M, Sosne G. Matrix metalloproteinase activity is necessary for thymosin beta 4 promotion of epithelial cell migration. J Cell Physiol 2007; 212:165-73. [PMID: 17348036 DOI: 10.1002/jcp.21012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studies from our laboratory provide substantial evidence that thymosin beta 4, (Tbeta(4)), an actin-sequestering protein, promotes corneal wound healing through its ability to stimulate epithelial cell migration. Matrix metalloproteinases (MMPs), which are expressed in a wide variety of tissues including the cornea, also play a key role in epithelial cell migration and wound healing. In this study we investigated the role of MMPs in Tbeta(4)-stimulated corneal epithelial cell migration. In Boyden chamber assays, XG076, an inhibitor of the conversion of pro- to active MMPs, had no effect on epithelial cell migration stimulated by exogenous activated MMP-1. However, in in vitro migration assays where the activation of pro-MMPs was blocked, XG076 significantly inhibited cell migration and wound healing in the presence or absence of Tbeta(4). GM6001, a broad-spectrum inhibitor of active MMPs and selective MMP inhibitors, also suppressed Tbeta(4)-stimulated cell migration. Tbeta(4) upregulated MMP-1 gene and protein expression in primary human corneal epithelial cells and in transformed human corneal epithelial cells following scrape wounding. From these results we conclude that MMP catalytic activity is necessary for Tbeta(4) promotion of epithelial cell migration. These novel findings are the first to demonstrate a functional link between the two.
Collapse
Affiliation(s)
- Ping Qiu
- Department of Ophthalmology, Kresge Eye Institute, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
49
|
Smart N, Rossdeutsch A, Riley PR. Thymosin beta4 and angiogenesis: modes of action and therapeutic potential. Angiogenesis 2007; 10:229-41. [PMID: 17632766 DOI: 10.1007/s10456-007-9077-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 06/12/2007] [Indexed: 12/14/2022]
Abstract
Here we review the mechanisms by which Thymosin beta4 (Tbeta4) regulates angiogenesis, its role in processes, such as wound healing and tumour progression and we discuss in more detail the role of Tbeta4 in the cardiovascular system and significant recent findings implicating Tbeta4 as a potential therapeutic agent for ischaemic heart disease.
Collapse
Affiliation(s)
- Nicola Smart
- Molecular Medicine Unit, UCL-Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | |
Collapse
|
50
|
Abstract
Overexpression of thymosin beta-4 has been linked to malignant progression but the localization of this polypeptide within tumors is incompletely known. We therefore examined breast cancers for thymosin beta-4 using immunofluorescence. Reactive cells were identified with monoclonal cell marker antibodies. A very heterogeneous staining pattern for thymosin beta-4 was observed. Thus, while leukocytes and macrophages showed intense reactivity for this polypeptide, cancer cells, and endothelial cells showed a much more variable reactivity. A similar heterogeneous staining was observed also in colorectal carcinomas. The degree of staining of breast cancer cells for thymosin beta-4 correlated neither to histological grade nor to endothelial cell staining. However, there was a tendency toward correlation (P = 0.07) between staining of endothelial cells and histological grade. Treatment of cultured breast cancer cells (SK-BR-3) with 1-4 microg thymosin beta-4/mL significantly increased cell numbers, as determined by MTT-assays. These data reveal an unexpected cellular heterogeneity of thymosin beta-4 expression in breast and colonic carcinomas and suggest that local release of this polypeptide in the tumor microenvironment may modulate tumor behavior.
Collapse
Affiliation(s)
- Lars-Inge Larsson
- Anatomy and Cell Biology, IBHV, Faculty of Life Sciences, University of Copenhagen, Gronnegaardsvej 7, DK-1870 Frederiksberg C, Denmark.
| | | |
Collapse
|