1
|
Hossain MB, Tan BJY, Satou Y. Viral oncogenesis of δ-retroviruses, HTLV-1 and BLV, and recent advances in its diagnosis. Virology 2025; 605:110461. [PMID: 40015031 DOI: 10.1016/j.virol.2025.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
The δ-retrovirus genus includes human T-cell leukemia viruses (HTLV-1, HTLV-2, HTLV-3), simian T-lymphotropic viruses (STLV), and bovine leukemia viruses (BLV), which establish lifelong, typically asymptomatic, infections. However, HTLV-1 and BLV can lead to leukemia or lymphoma in 2-5% of infected hosts after prolonged latency. HTLV-1, the first identified human oncogenic retrovirus, drives T-cell leukemia/lymphoma via cell-intrinsic mechanisms. Similarly, BLV induces B-cell lymphoma in cattle, sharing key genomic and disease progression features with HTLV-1. Retrovirus-induced leukemias/lymphomas arise through complex interactions of viral and host factors. This review explores current virological perspectives on δ-retroviral oncogenesis, focusing on proviral integration sites within the host genome. Additionally, we briefly compare HTLV-1 with the human immunodeficiency virus (HIV), highlighting that while HIV causes AIDS, it also induces clonal expansion of infected cells. Finally, we discuss the potential diagnostic and prognostic value of analyzing viral factors and integration sites.
Collapse
Affiliation(s)
- Md Belal Hossain
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan; Department of Food Microbiology, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh
| | - Benjy Jek Yang Tan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
2
|
Úsuga-Monroy C, Díaz FJ, González-Herrera LG, Echeverry-Zuluaga JJ, López-Herrera A. Phylogenetic analysis of the partial sequences of the env and tax BLV genes reveals the presence of genotypes 1 and 3 in dairy herds of Antioquia, Colombia. Virusdisease 2023; 34:483-497. [PMID: 38046065 PMCID: PMC10686916 DOI: 10.1007/s13337-023-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 12/05/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that primarily infects dairy cows. Although few studies have also used the tax gene, phylogenetic studies of BLV use mostly the env gene. The aim of this work was to establish the circulating genotypes of BLV in specialized dairy cattle from Antioquia, Colombia. Twenty blood samples from Holstein Friesian cows were collected, and their DNA was isolated. A PCR was performed for a partial region of the env and tax genes. A phylogenetic analysis was carried out using the maximum likelihood and Bayesian methods for both genes. Nineteen sequences were identified as genotype 1 by env and tax genes. Only one sequence was clustered with genotype 3 and had the highest proportion of different nucleotide sites compared to other strains. Four amino acid substitutions in the 134 amino acid residue fragment of the Env protein were identified in the Colombian sequences, and three new amino acid substitutions were reported in the 296 amino acid residue fragment of the Tax protein. R43K (Z finger), A185T (Activation domain), and L105F changes were identified in the genotype 3 sample. This genotype has been reported in the United States, Japan, Korea, and Mexico, but so far, not in Colombia. The country has a high rate of imported live animals, semen, and embryos, especially from the United States. Although it is necessary to evaluate samples from other regions of the country, the current results indicate the presence of two BLV genotypes in specialized dairy herds.
Collapse
Affiliation(s)
- Cristina Úsuga-Monroy
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - F. J. Díaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Luis Gabriel González-Herrera
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - José Julián Echeverry-Zuluaga
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - Albeiro López-Herrera
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| |
Collapse
|
3
|
Maezawa M, Fujii Y, Akagami M, Kawakami J, Inokuma H. Phylogenetic analysis based on whole genome sequence of bovine leukemia virus in cattle under 3 years old with enzootic bovine leukosis. PLoS One 2023; 18:e0279756. [PMID: 36696379 PMCID: PMC9876212 DOI: 10.1371/journal.pone.0279756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 01/26/2023] Open
Abstract
Enzootic bovine leukosis (EBL) is one of bovine neoplasms caused by bovine leukemia virus (BLV). Although EBL is typically observed in cattle over 3 years old, several cases of EBL onset in cattle under 3 years old have been reported in Japan. The mechanism for EBL onset in young cattle remains unclear. Although genetic variation of BLV is limited, the variations could affect viral properties relating to BLV pathogenesis. The purpose of this study was to clarify relationship between early onset of EBL and BLV groups. Moreover, we also aimed to characterize BLV that cause early onset of EBL. Whole genome sequences of BLV in 72 EBL cattle under 3 years old and 50 EBL cattle over 3 years old were identified. Phylogenetic analysis showed that BLV was divided into 4 groups (A, B-1, B-2 and Other). The BLV from EBL cattle under 3 years old were mainly classified as group A and B-1, while those from EBL cattle over 3 years old were mainly included in group B-2. Common sequence of group A and B-1 was compared with those of group B-2. Specific sequences in LTRs, gag-pro-pol, env and tax gene regions were identified in these groups. Amino acid substitutions of Pro and Tax protein were predicted in those nucleotide sequences. Those genetic variations might contribute to the early onset of EBL.
Collapse
Affiliation(s)
- Masaki Maezawa
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Yuki Fujii
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki, Japan
| | - Masataka Akagami
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki, Japan
| | - Junko Kawakami
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki, Japan
| | - Hisashi Inokuma
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Farm Animal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Kanno T, Ishihara R, Mori H, Tomiyasu T, Okazaki K. Impact of amino acid 233 in Tax on bovine leukemia virus infection in Japanese Black cattle. Res Vet Sci 2023; 154:102-107. [PMID: 36571887 DOI: 10.1016/j.rvsc.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bovine leukemia virus (BLV) is an economically important pathogen that both causes fatal enzootic bovine leukosis (EBL) and reduces lifetime milk production, reproductive efficiency, carcass weight, and longevity in dairy cows. The virus can be divided into two categories based on the amino acid at position 233 in Tax protein, which activates viral transcription and probably plays crucial roles in leukemogenesis. We recently reported that early-onset EBL in Japanese Black (JB) cattle was frequently caused by L233-Tax-carrying virus. This study examined the impact of BLV infection, the proviral load (PVL), and amino acid 233 in Tax on the outcomes of JB cattle. We measured PVL in cattle enrolled between February 2016 and December 2018, determined the Tax type of the isolates, and performed follow-up until March 2022. The results demonstrated that BLV infection increased the risk of involuntary culling and mortality in JB cattle in a PVL-dependent manner. Infection with L233-Tax-carrying virus increased the likelihood of mortality by 1.6-fold compared with the effects of P233-Tax-carrying virus infection. Intrauterine and perinatal infections were frequently caused by L233-Tax-carrying virus, and these infections were likely to influence the early onset of EBL in JB cattle. Conversely, breeding cows infected with P233-Tax-carrying virus were often eliminated by involuntary culling. These findings indicate that amino acid 233 in Tax has importance in terms of preventing economic loss attributable to EBL in JB cattle.
Collapse
Affiliation(s)
- T Kanno
- Division of Pathology and Pathophysiology, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, Japan
| | - R Ishihara
- Division of Pathology and Pathophysiology, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, Japan; Department of Animal Disease Control and Prevention, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki, Japan
| | - H Mori
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - T Tomiyasu
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - K Okazaki
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
5
|
Tariq MH, Bhatti R, Ali NF, Ashfaq UA, Shahid F, Almatroudi A, Khurshid M. Rational design of chimeric Multiepitope Based Vaccine (MEBV) against human T-cell lymphotropic virus type 1: An integrated vaccine informatics and molecular docking based approach. PLoS One 2021; 16:e0258443. [PMID: 34705829 PMCID: PMC8550388 DOI: 10.1371/journal.pone.0258443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is an infectious virus that has been linked to adult T cell leukemia /lymphoma, aggressive CD4-T cell malignancy and many other immune-related medical illnesses. So far, no effective vaccine is known to combat HTLV-1, hence, the current research work was performed to design a potential multi-epitope-based subunit vaccine (MEBV) by adopting the latest methodology of reverse vaccinology. Briefly, three highly antigenic proteins (Glycoprotein, Accessory protein, and Tax protein) with no or minimal (<37%) similarity with human proteome were sorted out and potential B- and T-cell epitopes were forecasted from them. Highly antigenic, immunogenic, non-toxic, non-allergenic and overlapping epitopes were short-listed for vaccine development. The chosen T-cell epitopes displayed a strong binding affinity with their corresponding Human Leukocyte Antigen alleles and demonstrated 95.8% coverage of the world's population. Finally, nine Cytotoxic T Lymphocytes, six Helper T Lymphocytes and five Linear B Lymphocytes epitopes, joint through linkers and adjuvant, were exploited to design the final MEBV construct, comprising of 382 amino acids. The developed MEBV structure showed highly antigenic properties while being non-toxic, soluble, non-allergenic, and stable in nature. Moreover, disulphide engineering further enhanced the stability of the final vaccine protein. Additionally, Molecular docking analysis and Molecular Dynamics (MD) simulations confirmed the strong association between MEBV construct and human pathogenic immune receptor TLR-3. Repeated-exposure simulations and Immune simulations ensured the rapid antigen clearance and higher levels of cell-mediated immunity, respectively. Furthermore, MEBV codon optimization and in-silico cloning was carried out to confirm its augmented expression. Results of our experiments suggested that the proposed MEBV could be a potential immunogenic against HTLV-1; nevertheless, additional wet lab experiments are needed to elucidate our conclusion.
Collapse
Affiliation(s)
- Muhammad Hamza Tariq
- Atta ur Rehman School of Applied Bioscience, National University of Science and Technology, Islamabad, Pakistan
| | - Rashid Bhatti
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nida Fatima Ali
- Atta ur Rehman School of Applied Bioscience, National University of Science and Technology, Islamabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Analysis of Nucleotide Sequence of Tax, miRNA and LTR of Bovine Leukemia Virus in Cattle with Different Levels of Persistent Lymphocytosis in Russia. Pathogens 2021; 10:pathogens10020246. [PMID: 33672613 PMCID: PMC7924208 DOI: 10.3390/pathogens10020246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leucosis (EBL), a lymphoproliferative disease of the bovine species. In BLV-infected cells, the long terminal repeat (LTR), the viral Tax protein and viral miRNAs promote viral and cell proliferation as well as tumorigenesis. Although their respective roles are decisive in BLV biology, little is known about the genetic sequence variation of these parts of the BLV genome and their impact on disease outcome. Therefore, the objective of this study was to assess the relationship between disease progression and sequence variation of the BLV Tax, miRNA and LTR regions in infected animals displaying either low or high levels of persistent lymphocytosis (PL). A statistically significant association was observed between the A(+187)C polymorphism in the downstream activator sequence (DAS) region in LTR (p-value = 0.00737) and high lymphocytosis. Our study also showed that the mutation A(−4)G in the CAP site occurred in 70% of isolates with low PL and was not found in the high PL group. Conversely, the mutations G(−133)A/C in CRE2 (46.7%), C(+160)T in DAS (30%) and A(310)del in BLV-mir-B4-5p, A(357)G in BLV-mir-B4-3p, A(462)G in BLV-mir-B5-5p, and GA(497–498)AG in BLV-mir-B5-3p (26.5%) were often seen in isolates with high PL and did not occur in the low PL group. In conclusion, we found several significant polymorphisms among BLV genomic sequences in Russia that would explain a progression towards higher or lower lymphoproliferation. The data presented in this article enabled the classification between two different genotypes; however, clear association between genotypes and the PL development was not found.
Collapse
|
7
|
Kobayashi T, Inagaki Y, Ohnuki N, Sato R, Murakami S, Imakawa K. Increasing Bovine leukemia virus (BLV) proviral load is a risk factor for progression of Enzootic bovine leucosis: A prospective study in Japan. Prev Vet Med 2019; 178:S0167-5877(18)30795-5. [PMID: 31079891 DOI: 10.1016/j.prevetmed.2019.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/26/2022]
Abstract
Bovine leukemia virus (BLV) belongs to the genus Deltaretrovirus in the family Retroviridae, and is etiologically associated with Enzootic Bovine Leukosis (EBL). The majority of BLV-infected cattle remain asymptomatic throughout their productive lives, whereas approximately 5%-10% of infected cattle develop EBL. Data accumulated recently indicate that whole blood proviral load (PVL) levels of BLV-infected cattle could be an indicator of disease progression in the field. However, a few cross-sectional studies have been reported. Here, we prospectively evaluated 866 cattle enrolled between August 2015 and December 2015, and followed until November 2018, identifying 407 asymptomatic BLV-infected cattle. There were no significant differences in the median PVL level among the category of herd seroprevalence (p = 0.57), herd size (p = 0.19), nor among the category of past EBL history in the herd (p = 0.31). During the study period, 12 cattle developed EBL. The PVL levels of EBL cattle at the time of enrollment were significantly higher than that of cattle that did not progress to EBL (median, 90,695 vs 39,139 copies/105 cells, p = 0.0005). Moreover, the adjusted hazard ratio for the increase in PVL was 2.61 (95% CI, 1.51-4.53) as estimated by the Cox proportional hazards frailty model. These results indicate that a high PVL level is a significant risk factor for progression to EBL, and could potentially be used as an indicator for the identification of cattle to be culled from the herd long before the progression of EBL. This knowledge might be useful to design a strategy for decreasing economic loss from EBL or even eradicating it from herds.
Collapse
Affiliation(s)
- Tomoko Kobayashi
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Yasuko Inagaki
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Nagaki Ohnuki
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Rina Sato
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Satoshi Murakami
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto 862-8652, Japan.
| |
Collapse
|
8
|
Mori H, Tomiyasu T, Nishiyama K, Matsumoto M, Osawa Y, Okazaki K. L233P mutation in the bovine leukemia virus Tax protein depresses endothelial cell recruitment and tumorigenesis in athymic nude mice. Arch Virol 2019; 164:1343-1351. [DOI: 10.1007/s00705-019-04191-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/31/2019] [Indexed: 11/25/2022]
|
9
|
Reichert M. Proteome analysis of sheep B lymphocytes in the course of bovine leukemia virus-induced leukemia. Exp Biol Med (Maywood) 2017; 242:1363-1375. [PMID: 28436273 DOI: 10.1177/1535370217705864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Presented are the results of a study of the expression pattern of different proteins in the course of bovine leukemia virus-induced leukemia in experimental sheep and I discuss how the obtained data may be useful in gaining a better understanding of the pathogenesis of the disease, diagnosis, and for the selection of possible therapeutic targets. In cattle, the disease is characterized by life-long persistent lymphocytosis leading to leukemia/lymphoma in about 5% of infected animals. In sheep, as opposed to cattle, the course of the disease is always fatal and clinical symptoms usually occur within a three-year period after infection. For this reason, sheep are an excellent experimental model of retrovirus-induced leukemia. This model can be useful for human pathology, as bovine leukemia virus is closely related to human T-lymphotropic virus type 1. The data presented here provide novel insights into the molecular mechanisms of the bovine leukemia virus-induced tumorigenic process and indicate the potential marker proteins both for monitoring progression of the disease and as possible targets of pharmacological intervention. A study of the proteome of B lymphocytes from four leukemic sheep revealed 11 proteins with altered expression. Among them, cytoskeleton and intermediate filament proteins were the most abundant, although proteins belonging to the other functional groups, i.e. enzymes, regulatory proteins, and transcription factors, were also present. It was found that trypsin inhibitor, platelet factor 4, thrombospondin 1, vasodilator-stimulated phosphoprotein, fibrinogen alpha chain, zyxin, filamin-A, and vitamin D-binding protein were downregulated, whereas cleavage and polyadenylation specificity factor subunit 5, non-POU domain-containing octamer-binding protein and small glutamine-rich tetratricopeptide repeat-containing protein alpha were upregulated. Discussed are the possible mechanisms of their altered expression and its significance in the bovine leukemia virus-induced leukemogenic process. Impact statement The submitted manuscript provides new data on the molecular mechanisms of BLV-induced tumorigenic process indicating the potential marker proteins both for monitoring the progression of the disease and as possible targets of pharmacological intervention. This is to my knowledge the first study of the proteome of the transformed lymphocytes in the course of bovine leukemia virus-induced leukemia in susceptible animals. BLV can be considered as useful model for related human pathogen - HTLV-1, another member of the deltaretrovirus genus evolutionary closely related to BLV. Information gathered in this study can be useful to speculate on possible shared mechanisms of deltaretrovirus-induced carcinogenesis.
Collapse
Affiliation(s)
- Michal Reichert
- Department of Pathology, National Veterinary Research Institute, Pulawy 24-100, Poland
| |
Collapse
|
10
|
Brym P, Bojarojć-Nosowicz B, Oleński K, Hering DM, Ruść A, Kaczmarczyk E, Kamiński S. Genome-wide association study for host response to bovine leukemia virus in Holstein cows. Vet Immunol Immunopathol 2016; 175:24-35. [PMID: 27269789 DOI: 10.1016/j.vetimm.2016.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 03/10/2016] [Accepted: 04/28/2016] [Indexed: 11/16/2022]
Abstract
The mechanisms of leukemogenesis induced by bovine leukemia virus (BLV) and the processes underlying the phenomenon of differential host response to BLV infection still remain poorly understood. The aim of the study was to screen the entire cattle genome to identify markers and candidate genes that might be involved in host response to bovine leukemia virus infection. A genome-wide association study was performed using Holstein cows naturally infected by BLV. A data set included 43 cows (BLV positive) and 30 cows (BLV negative) genotyped for 54,609 SNP markers (Illumina Bovine SNP50 BeadChip). The BLV status of cows was determined by serum ELISA, nested-PCR and hematological counts. Linear Regression Analysis with a False Discovery Rate and kinship matrix (computed on the autosomal SNPs) was calculated to find out which SNP markers significantly differentiate BLV-positive and BLV-negative cows. Nine markers reached genome-wide significance. The most significant SNPs were located on chromosomes 23 (rs41583098), 3 (rs109405425, rs110785500) and 8 (rs43564499) in close vicinity of a patatin-like phospholipase domain containing 1 (PNPLA1); adaptor-related protein complex 4, beta 1 subunit (AP4B1); tripartite motif-containing 45 (TRIM45) and cell division cycle associated 2 (CDCA2) genes, respectively. Furthermore, a list of 41 candidate genes was composed based on their proximity to significant markers (within a distance of ca. 1 Mb) and functional involvement in processes potentially underlying BLV-induced pathogenesis. In conclusion, it was demonstrated that host response to BLV infection involves nine sub-regions of the cattle genome (represented by 9 SNP markers), containing many genes which, based on the literature, could be involved to enzootic bovine leukemia progression. New group of promising candidate genes associated with the host response to BLV infection were identified and could therefore be a target for future studies. The functions of candidate genes surrounding significant SNP markers imply that there is no single regulatory process that is solely targeted by BLV infection, but rather the network of interrelated pathways is deregulated, leading to the disruption of the control of B-cell proliferation and programmed cell death.
Collapse
Affiliation(s)
- P Brym
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland.
| | - B Bojarojć-Nosowicz
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - K Oleński
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - D M Hering
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - A Ruść
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - E Kaczmarczyk
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - S Kamiński
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
11
|
Watanabe T, Inoue E, Mori H, Osawa Y, Okazaki K. Delayed-onset enzootic bovine leukosis possibly caused by superinfection with bovine leukemia virus mutated in the pol gene. Arch Virol 2015; 160:2087-91. [PMID: 26025155 DOI: 10.1007/s00705-015-2457-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/15/2015] [Indexed: 01/08/2023]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis (EBL), to which animals are most susceptible at 4-8 years of age. In this study, we examined tumor cells associated with EBL in an 18-year-old cow to reveal that the cells carried at least two different copies of the virus, one of which was predicted to encode a reverse transcriptase (RT) lacking ribonuclease H activity and no integrase. Such a deficient enzyme may exhibit a dominant negative effect on the wild-type RT and cause insufficient viral replication, resulting in delayed tumor development in this cow.
Collapse
Affiliation(s)
- Tadaaki Watanabe
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | | | | | | | | |
Collapse
|
12
|
Bovine leukemia virus: a major silent threat to proper immune responses in cattle. Vet Immunol Immunopathol 2014; 163:103-14. [PMID: 25554478 DOI: 10.1016/j.vetimm.2014.11.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/27/2014] [Accepted: 11/26/2014] [Indexed: 11/22/2022]
Abstract
Bovine leukemia virus (BLV) infection is widespread in the US dairy industry and the majority of producers do not actively try to manage or reduce BLV incidence within their herds. However, BLV is estimated to cost the dairy industry hundreds of millions of dollars annually and this is likely a conservative estimate. BLV is not thought to cause animal distress or serious pathology unless infection progresses to leukemia or lymphoma. However, a wealth of research supports the notion that BLV infection causes widespread abnormal immune function. BLV infection can impact cells of both the innate and adaptive immune system and alter proper functioning of uninfected cells. Despite strong evidence of abnormal immune signaling and functioning, little research has investigated the large-scale effects of BLV infection on host immunity and resistance to other infectious diseases. This review focuses on mechanisms of immune suppression associated with BLV infection, specifically aberrant signaling, proliferation and apoptosis, and the implications of switching from BLV latency to activation. In addition, this review will highlight underdeveloped areas of research relating to BLV infection and how it causes immune suppression.
Collapse
|
13
|
Lairmore MD. Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: insights in transmission and pathogenesis. Annu Rev Anim Biosci 2013; 2:189-208. [PMID: 25384140 DOI: 10.1146/annurev-animal-022513-114117] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bovine leukemia virus (BLV) and human T-lymphotrophic virus type-1 (HTLV-1) are related retroviruses associated with persistent and lifelong infections and a low incidence of lymphomas within their hosts. Both viruses can be spread through contact with bodily fluids containing infected cells, most often from mother to offspring through breast milk. Each of these complex retroviruses contains typical gag, pol, and env genes but also unique, nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the pathogenesis of each virus. Comparisons of BLV and HTLV-1 provide insights into mechanisms of spread and tumor formation, as well as potential approaches to therapeutic intervention against the infections.
Collapse
Affiliation(s)
- Michael D Lairmore
- School of Veterinary Medicine, University of California, Davis, California, 95616;
| |
Collapse
|
14
|
Aida Y, Murakami H, Takahashi M, Takeshima SN. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol 2013; 4:328. [PMID: 24265629 PMCID: PMC3820957 DOI: 10.3389/fmicb.2013.00328] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/17/2013] [Indexed: 11/27/2022] Open
Abstract
Bovine leukemia virus (BLV) and human T-cell leukemia virus type 1 (HTLV-1) make up a unique retrovirus family. Both viruses induce chronic lymphoproliferative diseases with BLV affecting the B-cell lineage and HTLV-1 affecting the T-cell lineage. The pathologies of BLV- and HTLV-induced infections are notably similar, with an absence of chronic viraemia and a long latency period. These viruses encode at least two regulatory proteins, namely, Tax and Rex, in the pX region located between the env gene and the 3′ long terminal repeat. The Tax protein is a key contributor to the oncogenic potential of the virus, and is also the key protein involved in viral replication. However, BLV infection is not sufficient for leukemogenesis, and additional events such as gene mutations must take place. In this review, we first summarize the similarities between the two viruses in terms of genomic organization, virology, and pathology. We then describe the current knowledge of the BLV model, which may also be relevant for the understanding of leukemogenesis caused by HTLV-1. In addition, we address our improved understanding of Tax functions through the newly identified BLV Tax mutants, which have a substitution between amino acids 240 and 265.
Collapse
Affiliation(s)
- Yoko Aida
- Viral Infectious Diseases Unit, RIKEN Wako, Saitama, Japan
| | | | | | | |
Collapse
|
15
|
Inoue E, Matsumura K, Soma N, Hirasawa S, Wakimoto M, Arakaki Y, Yoshida T, Osawa Y, Okazaki K. L233P mutation of the Tax protein strongly correlated with leukemogenicity of bovine leukemia virus. Vet Microbiol 2013; 167:364-71. [PMID: 24139177 DOI: 10.1016/j.vetmic.2013.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
The bovine leukemia virus (BLV) Tax protein is believed to play a crucial role in leukemogenesis by the virus. BLV usually causes asymptomatic infections in cattle, but only one-third develop persistent lymphocytosis that rarely progress after a long incubation period to lymphoid tumors, namely enzootic bovine leucosis (EBL). In the present study, we demonstrated that the BLV tax genes could be divided into two alleles and developed multiplex PCR detecting an L233P mutation of the Tax protein. Then, in order to define the relationship between the Tax protein and leukemogenicity, we examined 360 tumor samples randomly collected from dairy or breeding cattle in Japan, of which Tax proteins were categorized, for age at the time of diagnosis of EBL. The ages of 288 animals (80.0%) associated with L233-Tax and those of 70 animals (19.4%) with P233-Tax individually followed log-normal distributions. Only the two earliest cases (0.6%) with L233-Tax disobeyed the log-normal distribution. These findings suggest that the animals affected by EBL were infected with the virus at a particular point in life, probably less than a few months after birth. Median age of those with P233-Tax was 22 months older than that with L233-Tax and geometric means exhibited a significant difference (P<0.01). It is also quite unlikely that viruses carrying the particular Tax protein infect older cattle. Here, we conclude that BLV could be divided into two categories on the basis of amino acid at position 233 of the Tax protein, which strongly correlated with leukemogenicity.
Collapse
Affiliation(s)
- Emi Inoue
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proc Natl Acad Sci U S A 2013; 110:2306-11. [PMID: 23345446 DOI: 10.1073/pnas.1213842110] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however, remains poorly understood, especially as viral mRNA/protein are tightly silenced in tumors. Here, using deep sequencing of broad windows of small RNA sizes in the bovine leukemia virus ovine model of leukemia/lymphoma, we provide in vivo evidence of the production of noncanonical RNA polymerase III (Pol III)-transcribed viral microRNAs in leukemic B cells in the complete absence of Pol II 5'-LTR-driven transcriptional activity. Processed from a cluster of five independent self-sufficient transcriptional units located in a proviral region dispensable for in vivo infectivity, bovine leukemia virus microRNAs represent ∼40% of all microRNAs in both experimental and natural malignancy. They are subject to strong purifying selection and associate with Argonautes, consistent with a critical function in silencing of important cellular and/or viral targets. Bovine leukemia virus microRNAs are strongly expressed in preleukemic and malignant cells in which structural and regulatory gene expression is repressed, suggesting a key role in tumor onset and progression. Understanding how Pol III-dependent microRNAs subvert cellular and viral pathways will contribute to deciphering the intricate perturbations that underlie malignant transformation.
Collapse
|
17
|
Hajj HE, Nasr R, Kfoury Y, Dassouki Z, Nasser R, Kchour G, Hermine O, de Thé H, Bazarbachi A. Animal models on HTLV-1 and related viruses: what did we learn? Front Microbiol 2012; 3:333. [PMID: 23049525 PMCID: PMC3448133 DOI: 10.3389/fmicb.2012.00333] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/28/2012] [Indexed: 12/22/2022] Open
Abstract
Retroviruses are associated with a wide variety of diseases, including immunological, neurological disorders, and different forms of cancer. Among retroviruses, Oncovirinae regroup according to their genetic structure and sequence, several related viruses such as human T-cell lymphotropic viruses types 1 and 2 (HTLV-1 and HTLV-2), simian T cell lymphotropic viruses types 1 and 2 (STLV-1 and STLV-2), and bovine leukemia virus (BLV). As in many diseases, animal models provide a useful tool for the studies of pathogenesis, treatment, and prevention. In the current review, an overview on different animal models used in the study of these viruses will be provided. A specific attention will be given to the HTLV-1 virus which is the causative agent of adult T-cell leukemia/lymphoma (ATL) but also of a number of inflammatory diseases regrouping the HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), infective dermatitis and some lung inflammatory diseases. Among these models, rabbits, monkeys but also rats provide an excellent in vivo tool for early HTLV-1 viral infection and transmission as well as the induced host immune response against the virus. But ideally, mice remain the most efficient method of studying human afflictions. Genetically altered mice including both transgenic and knockout mice, offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated leukemia. The development of different strains of immunodeficient mice strains (SCID, NOD, and NOG SCID mice) provide a useful and rapid tool of humanized and xenografted mice models, to test new drugs and targeted therapy against HTLV-1-associated leukemia, to identify leukemia stem cells candidates but also to study the innate immunity mediated by the virus. All together, these animal models have revolutionized the biology of retroviruses, their manipulation of host genes and more importantly the potential ways to either prevent their infection or to treat their associated diseases.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Arainga M, Takeda E, Aida Y. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genomics 2012; 13:121. [PMID: 22455445 PMCID: PMC3441221 DOI: 10.1186/1471-2164-13-121] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/16/2012] [Indexed: 12/21/2022] Open
Abstract
Background Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G) or reduced (TaxS240P) transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting, respectively, after transfecting Tax proteins into bovine cells and human HeLa cells. Conclusion A comparative analysis of wild-type and mutant Tax proteins indicates that Tax protein exerts a significant impact on cellular functions as diverse as transcription, signal transduction, cell growth, stress response and immune response. Importantly, our study is the first report that shows the extent to which BLV Tax regulates the innate immune response.
Collapse
Affiliation(s)
- Mariluz Arainga
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
19
|
Inoue E, Matsumura K, Maekawa K, Nagatsuka K, Nobuta M, Hirata M, Minagawa A, Osawa Y, Okazaki K. Genetic heterogeneity among bovine leukemia viruses in Japan and their relationship to leukemogenicity. Arch Virol 2011; 156:1137-41. [PMID: 21387204 DOI: 10.1007/s00705-011-0955-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
Abstract
Bovine leukemia virus (BLV) infection in cattle causes persistent lymphocytosis, and a few percent of infected animals develop lymphoid tumors, namely enzootic bovine leukosis (EBL). In this study, a 440-bp fragment of the env gene was amplified from 204 tumor samples collected from different regions of Japan and analyzed by restriction fragment length polymorphism (RFLP) to determine the association of BLV with EBL. Of the seven RFLP types defined, types I, II, and III were dominant and found in 12.7, 75.0, and 8.3% of tumor samples, respectively. Cattle harboring type III virus were significantly older than other animals at the time of diagnosis of EBL. Type III viruses were found in approximately 33% and 5.5% of Japanese Black and Holstein cattle, respectively, with EBL. These findings indicate that genetically distinct BLV was associated with EBL in Japan and that the genetic profile may influence the leukemogenicity of the virus.
Collapse
Affiliation(s)
- Emi Inoue
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Van den Broeke A, Oumouna M, Beskorwayne T, Szynal M, Cleuter Y, Babiuk S, Bagnis C, Martiat P, Burny A, Griebel P. Cytotoxic responses to BLV tax oncoprotein do not prevent leukemogenesis in sheep. Leuk Res 2010; 34:1663-9. [PMID: 20591480 DOI: 10.1016/j.leukres.2010.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 10/19/2022]
Abstract
Delta retrovirus-mediated leukemogenesis is dependent on the oncogenic potential of Tax. It is not clear, however, whether Tax-specific immune responses play a role in leukemia onset and progression. Using the BLV-associated leukemia model in sheep, we found that Tax-specific cytotoxic responses induced by DNA immunization or viral infection of naïve animals were not predictive of disease outcome and did not prevent tumor development. Furthermore, provirus and tax may be absent from blood for extended periods, emphasizing the relevance of surveying other compartments during chronic lymphoproliferative disorders. Our results support the conclusion that Tax-specific cytotoxic responses, even during the initial phase of infection, are not sufficient to prevent leukemogenesis.
Collapse
Affiliation(s)
- Anne Van den Broeke
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Merimi M, Klener P, Szynal M, Cleuter Y, Bagnis C, Kerkhofs P, Burny A, Martiat P, Van den Broeke A. Complete suppression of viral gene expression is associated with the onset and progression of lymphoid malignancy: observations in Bovine Leukemia Virus-infected sheep. Retrovirology 2007; 4:51. [PMID: 17645797 PMCID: PMC1948017 DOI: 10.1186/1742-4690-4-51] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 07/23/2007] [Indexed: 11/30/2022] Open
Abstract
Background During malignant progression, tumor cells need to acquire novel characteristics that lead to uncontrolled growth and reduced immunogenicity. In the Bovine Leukemia Virus-induced ovine leukemia model, silencing of viral gene expression has been proposed as a mechanism leading to immune evasion. However, whether proviral expression in tumors is completely suppressed in vivo was not conclusively demonstrated. Therefore, we studied viral expression in two selected experimentally-infected sheep, the virus or the disease of which had features that made it possible to distinguish tumor cells from their nontransformed counterparts. Results In the first animal, we observed the emergence of a genetically modified provirus simultaneously with leukemia onset. We found a Tax-mutated (TaxK303) replication-deficient provirus in the malignant B-cell clone while functional provirus (TaxE303) had been consistently monitored over the 17-month aleukemic period. In the second case, both non-transformed and transformed BLV-infected cells were present at the same time, but at distinct sites. While there was potentially-active provirus in the non-leukemic blood B-cell population, as demonstrated by ex-vivo culture and injection into naïve sheep, virus expression was completely suppressed in the malignant B-cells isolated from the lymphoid tumors despite the absence of genetic alterations in the proviral genome. These observations suggest that silencing of viral genes, including the oncoprotein Tax, is associated with tumor onset. Conclusion Our findings suggest that silencing is critical for tumor progression and identify two distinct mechanisms-genetic and epigenetic-involved in the complete suppression of virus and Tax expression. We demonstrate that, in contrast to systems that require sustained oncogene expression, the major viral transforming protein Tax can be turned-off without reversing the transformed phenotype. We propose that suppression of viral gene expression is a contributory factor in the impairment of immune surveillance and the uncontrolled proliferation of the BLV-infected tumor cell.
Collapse
Affiliation(s)
- Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Pavel Klener
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
- Institute of Pathological Physiology, Charles University, Prague, Czech Republic
| | - Maud Szynal
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Yvette Cleuter
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Claude Bagnis
- Etablissement Français du Sang, 13009 Marseille, France
| | | | - Arsène Burny
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Philippe Martiat
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Anne Van den Broeke
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| |
Collapse
|
23
|
Merimi M, Klener P, Szynal M, Cleuter Y, Kerkhofs P, Burny A, Martiat P, Van den Broeke A. Suppression of viral gene expression in bovine leukemia virus-associated B-cell malignancy: interplay of epigenetic modifications leading to chromatin with a repressive histone code. J Virol 2007; 81:5929-39. [PMID: 17392371 PMCID: PMC1900279 DOI: 10.1128/jvi.02606-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ovine leukemia/lymphoma resulting from bovine leukemia virus infection of sheep offers a large animal model for studying mechanisms underlying leukemogenesis. Silencing of viral information including Tax, the major contributor to the oncogenic potential of the virus, is critical if not mandatory for tumor progression. In this study, we have identified epigenetic mechanisms that govern the complete suppression of viral expression, using a lymphoma-derived B-cell clone carrying a silent provirus. Silencing was not relieved by injection of the malignant B cells into sheep. However, exogenous expression of Tax or treatment with either the DNA methyltransferase inhibitor 5'azacytidine or the histone deacetylase (HDAC) inhibitor trichostatin A rescued viral expression, as demonstrated by in vivo infectivity trials. Comparing silent and reactivated provirus, we found mechanistic connections between chromatin conformation and tumor-associated transcriptional repression. Silencing is associated with DNA methylation and decreased accessibility of promoter sequences. HDAC1 and the transcriptional corepressor mSin3A are associated with the inactive but not the reactivated promoter. Silencing correlates with a repressed chromatin structure marked by histone H3 and H4 hypoacetylation, a loss of methylation at H3 lysine 4, and an increase of H3 lysine 9 methylation. These observations point to the critical role of epigenetic mechanisms in tumor-specific virus/oncogene silencing, a potential strategy to evade immune response and favor the propagation of the transformed cell.
Collapse
Affiliation(s)
- Makram Merimi
- Laboratory of Experimental Hematology, Bordet Institute, ULB, 121, Blvd. de Waterloo, 1000 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gillet N, Florins A, Boxus M, Burteau C, Nigro A, Vandermeers F, Balon H, Bouzar AB, Defoiche J, Burny A, Reichert M, Kettmann R, Willems L. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 2007; 4:18. [PMID: 17362524 PMCID: PMC1839114 DOI: 10.1186/1742-4690-4-18] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/16/2007] [Indexed: 12/15/2022] Open
Abstract
In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arnaud Florins
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Mathieu Boxus
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Catherine Burteau
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Annamaria Nigro
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Fabian Vandermeers
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Hervé Balon
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Amel-Baya Bouzar
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Julien Defoiche
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arsène Burny
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | - Richard Kettmann
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Luc Willems
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
- Luc Willems, National fund for Scientific Research, Molecular and Cellular Biology laboratory, 13 avenue Maréchal Juin, 5030 Gembloux, Belgium
| |
Collapse
|
25
|
Klener P, Szynal M, Cleuter Y, Merimi M, Duvillier H, Lallemand F, Bagnis C, Griebel P, Sotiriou C, Burny A, Martiat P, Van den Broeke A. Insights into gene expression changes impacting B-cell transformation: cross-species microarray analysis of bovine leukemia virus tax-responsive genes in ovine B cells. J Virol 2006; 80:1922-38. [PMID: 16439548 PMCID: PMC1367148 DOI: 10.1128/jvi.80.4.1922-1938.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Large-animal models for leukemia have the potential to aid in the understanding of networks that contribute to oncogenesis. Infection of cattle and sheep with bovine leukemia virus (BLV), a complex retrovirus related to human T-cell leukemia virus type 1 (HTLV-1), is associated with the development of B-cell leukemia. Whereas the natural disease in cattle is characterized by a low tumor incidence, experimental infection of sheep leads to overt leukemia in the majority of infected animals, providing a model for studying the pathogenesis associated with BLV and HTLV-1. Tax(BLV), the major oncoprotein, initiates a cascade of events leading toward malignancy, although the basis of transformation is not fully understood. We have taken a cross-species ovine-to-human microarray approach to identify Tax(BLV)-responsive transcriptional changes in two sets of cultured ovine B cells following retroviral vector-mediated delivery of Tax(BLV). Using cDNA-spotted microarrays comprising 10,336 human genes/expressed sequence tags, we identified a cohort of differentially expressed genes, including genes related to apoptosis, DNA transcription, and repair; proto-oncogenes; cell cycle regulators; transcription factors; small Rho GTPases/GTPase-binding proteins; and previously reported Tax(HTLV-1)-responsive genes. Interestingly, genes known to be associated with human neoplasia, especially B-cell malignancies, were extensively represented. Others were novel or unexpected. The results suggest that Tax(BLV) deregulates a broad network of interrelated pathways rather than a single B-lineage-specific regulatory process. Although cross-species approaches do not permit a comprehensive analysis of gene expression patterns, they can provide initial clues for the functional roles of genes that participate in B-cell transformation and pinpoint molecular targets not identified using other methods in animal models.
Collapse
Affiliation(s)
- Pavel Klener
- Laboratory of Experimental Hematology, Bordet Institute, 121 Blvd. de Waterloo, 1000 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Takahashi M, Tajima S, Takeshima SN, Konnai S, Yin SA, Okada K, Davis WC, Aida Y. Ex vivo survival of peripheral blood mononuclear cells in sheep induced by bovine leukemia virus (BLV) mainly occurs in CD5- B cells that express BLV. Microbes Infect 2005; 6:584-95. [PMID: 15158193 DOI: 10.1016/j.micinf.2004.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Accepted: 02/09/2004] [Indexed: 10/26/2022]
Abstract
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leukosis (EBL). In a previous report, we found that in a sheep model, only CD5(-) B cells proliferated clonally, while CD5(+) B cells rapidly decreased when the disease progressed to the lymphoma stage. We demonstrate here that, although both CD5(+) and CD5(-) B cells, but not CD4(+) T, CD8(+) T and gammadeltaTCR(+)T cells, are protected from spontaneous ex vivo apoptosis in sheep infected with wild-type and a mutant BLV that encodes a mutant Tax D247G protein with elevated trans-activation activity, only CD5(-) B cells become the main target for ex vivo survival when the disease proceeds to the persistent lymphocytotic stage, which showed an increased expansion of the CD5(-) B cells. In addition, we identified, by four-color flow cytometric analysis, that in CD5(-) B cells, the apoptotic rates of cells that expressed wild-type and mutant BLV were greatly decreased compared with those of BLV-negative cells. There was only a slight reduction in the apoptotic rates in BLV-positive cells from CD5(+) B cells. In addition, supernatants from peripheral blood mononuclear cell (PBMC) cultures from wild-type- and mutant BLV-infected sheep mainly protected CD5(-) B cells from spontaneous apoptosis. Our results suggest that, although BLV can protect both CD5(+) and CD5(-) B cells from ex vivo apoptosis, the mechanisms accounting for the ex vivo survival between these two B-cell subsets differ. Therefore, it appears that the phenotypic changes in cells that express CD5 at the lymphoma stage could result from a difference in susceptibility to apoptosis in CD5(+) and CD5(-) B cells in BLV-infected sheep.
Collapse
MESH Headings
- Animals
- Apoptosis
- B-Lymphocyte Subsets/physiology
- B-Lymphocyte Subsets/virology
- CD4 Antigens/analysis
- CD5 Antigens/analysis
- CD8 Antigens/analysis
- Cattle
- Cells, Cultured
- Deltaretrovirus Infections/physiopathology
- Deltaretrovirus Infections/virology
- Disease Progression
- Enzootic Bovine Leukosis/virology
- Flow Cytometry
- Genes, pX
- Leukemia Virus, Bovine/genetics
- Leukemia Virus, Bovine/physiology
- Leukocytes, Mononuclear/physiology
- Leukocytes, Mononuclear/virology
- Mutation, Missense
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Sheep
Collapse
Affiliation(s)
- Masahiko Takahashi
- Retrovirus Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Takahashi M, Tajima S, Okada K, Davis WC, Aida Y. Involvement of bovine leukemia virus in induction and inhibition of apoptosis. Microbes Infect 2004; 7:19-28. [PMID: 15716078 DOI: 10.1016/j.micinf.2004.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/17/2004] [Accepted: 09/21/2004] [Indexed: 11/18/2022]
Abstract
In a previous study, we identified an interesting mutant form of the Tax protein of bovine leukemia virus (BLV), designated D247G, that has an enhanced capacity to transactivate the long terminal repeat (LTR) of BLV and the cellular proto-oncogene c-fos when compared with wild-type Tax (wt-Tax). We demonstrate here that an infectious strain of BLV containing the mutant D247G form of Tax also differs in its capacity to modulate cell survival both positively and negatively. When peripheral blood mononuclear cells (PBMCs) infected with wild-type or mutant BLV are cultured ex vivo with staurosporine, an agent known to induce a mitochondrial caspase cascade pathway regulating apoptosis, the rate of apoptosis is reduced to a greater extent in cells infected with mutant BLV than wild-type BLV, consistent with previous observations in cultures without staurosporine. The increase in survival was associated with an increase in expression of mRNA of bcl-xl but not bcl-2 and bax ex vivo. In contrast, when a tissue culture-adapted cell line, 293T, was transiently transfected with either wild-type or mutant BLV, apoptosis was induced. The increase in the rate of apoptosis was higher in cells transfected with mutant BLV. The same difference was noted in cells transiently transfected with wild-type and mutant D247G Tax, suggesting that the observed positive and negative modulation of cell survival is attributed to the functional characteristics of mutant D247G Tax.
Collapse
|
28
|
Michael B, Nair A, Lairmore MD. Role of accessory proteins of HTLV-1 in viral replication, T cell activation, and cellular gene expression. FRONT BIOSCI-LANDMRK 2004; 9:2556-76. [PMID: 15358581 PMCID: PMC2829751 DOI: 10.2741/1417] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1), causes adult T cell leukemia/lymphoma (ATLL), and initiates a variety of immune mediated disorders. The viral genome encodes common structural and enzymatic proteins characteristic of all retroviruses and utilizes alternative splicing and alternate codon usage to make several regulatory and accessory proteins encoded in the pX region (pX ORF I to IV). Recent studies indicate that the accessory proteins p12I, p27I, p13II, and p30II, encoded by pX ORF I and II, contribute to viral replication and the ability of the virus to maintain typical in vivo expression levels. Proviral clones that are mutated in either pX ORF I or II, while fully competent in cell culture, are severely limited in their replicative capacity in a rabbit model. These HTLV-1 accessory proteins are critical for establishment of viral infectivity, enhance T-lymphocyte activation and potentially alter gene transcription and mitochondrial function. HTLV-1 pX ORF I expression is critical to the viral infectivity in resting primary lymphocytes suggesting a role for the calcineurin-binding protein p12I in lymphocyte activation. The endoplasmic reticulum and cis-Golgi localizing p12I activates NFAT, a key T cell transcription factor, through calcium-mediated signaling pathways and may lower the threshold of lymphocyte activation via the JAK/STAT pathway. In contrast p30II localizes to the nucleus and represses viral promoter activity, but may regulate cellular gene expression through p300/CBP or related co-activators of transcription. The mitochondrial localizing p13II induces morphologic changes in the organelle and may influence energy metabolism infected cells. Future studies of the molecular details HTLV-1 "accessory" proteins interactions will provide important new directions for investigations of HTLV-1 and related viruses associated with lymphoproliferative diseases. Thus, the accessory proteins of HTLV-1, once thought to be dispensable for viral replication, have proven to be directly involved in viral spread in vivo and represent potential targets for therapeutic intervention against HTLV-1 infection and disease.
Collapse
Affiliation(s)
- Bindhu Michael
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Amithraj Nair
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Michael D. Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
- Corresponding Author: Dr. Michael D. Lairmore, The Ohio State University, Department of Veterinary Biosciences, 1925 Coffey Road, Columbus, OH 43210-1093, Phone: (614) 292-4489. Fax: (614) 292-6473.
| |
Collapse
|
29
|
Harms JS, Eakle KA, Kuo LS, Bremel RD, Splitter GA. Comparison of bovine leukemia virus (BLV) and CMV promoter-driven reporter gene expression in BLV-infected and non-infected cells. GENETIC VACCINES AND THERAPY 2004; 2:11. [PMID: 15327692 PMCID: PMC516020 DOI: 10.1186/1479-0556-2-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 08/24/2004] [Indexed: 11/25/2022]
Abstract
Background Viral promoters are used in mammalian expression vectors because they generally have strong activity in a wide variety of cells of differing tissues and species. Methods The utility of the BLV LTR/promoter (BLVp) for use in mammalian expression vectors was investigated through direct comparison to the CMV promoter (CMVp). Promoter activity was measured using luciferase assays of cell lines from different tissues and species stably transduced with BLVp or CMVp driven luciferase vectors including D17, FLK, BL3.1 and primary bovine B cells. Cells were also modified through the addition of BLV Tax expression vectors and/or BLV infection as well as treatment with trichostatin A (TSA). Results Results indicate the BLV promoter, while having low basal activity compared to the CMV promoter, can be induced to high-levels of activity similar to the CMV promoter in all cells tested. Tax or BLV infection specifically enhanced BLVp activity with no effect on CMVp activity. In contrast, the non-specific activator, TSA, enhanced both BLVp and CMVp activity. Conclusion Based on these data, we conclude the BLV promoter could be very useful for transgene expression in mammalian expression vectors.
Collapse
Affiliation(s)
- Jerome S Harms
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, WI 53706-1581, USA
| | - Kurt A Eakle
- GALA Biotech, 8137 Forsythia Street, Middleton, WI 53562, USA
| | - Lillian S Kuo
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, WI 53706-1581, USA
| | - Robert D Bremel
- IoGenetics LLC, 3591 Anderson St., Suite 218, Madison, WI 53704, USA
| | - Gary A Splitter
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, WI 53706-1581, USA
| |
Collapse
|