1
|
Obanya DI, Wootton LM, Morgan EL. Advances in understanding the mechanisms of the human papillomavirus oncoproteins. Biochem Soc Trans 2025:BST20253041. [PMID: 40380881 DOI: 10.1042/bst20253041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
High-risk human papillomaviruses (HPVs) are responsible for almost all cervical cancer cases and a growing number of oropharyngeal and anogenital cancers. The primary HPV oncoproteins, E6 and E7, act together to manipulate multiple cellular pathways that can ultimately result in malignant transformation. This includes the deregulation of several signalling pathways that regulate cell proliferation, cell cycle progression and cell survival. Although multiple functions of HPV E6 and E7 in driving oncogenesis are well known, recent studies have uncovered novel oncogenic functions of the HPV oncoproteins, including the manipulation of emerging mechanisms of cancer development, such as epigenetic modifications, cellular plasticity and genomic instability. This review explores current advances in understanding how the HPV oncoproteins interact with these cellular processes, highlighting potential therapeutic targets in HPV-associated cancers.
Collapse
Affiliation(s)
| | | | - Ethan L Morgan
- School of Life Sciences, University of Sussex, Brighton, U.K
| |
Collapse
|
2
|
Xiao Q, Liu Y, Li T, Wang C, He S, Zhai L, Yang Z, Zhang X, Wu Y, Liu Y. Viral oncogenesis in cancer: from mechanisms to therapeutics. Signal Transduct Target Ther 2025; 10:151. [PMID: 40350456 PMCID: PMC12066790 DOI: 10.1038/s41392-025-02197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 05/14/2025] Open
Abstract
The year 2024 marks the 60th anniversary of the discovery of the Epstein-Barr virus (EBV), the first virus confirmed to cause human cancer. Viral infections significantly contribute to the global cancer burden, with seven known Group 1 oncogenic viruses, including hepatitis B virus (HBV), human papillomavirus (HPV), EBV, Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), and human immunodeficiency virus (HIV). These oncogenic viruses induce cellular transformation and cancer development by altering various biological processes within host cells, particularly under immunosuppression or co-carcinogenic exposures. These viruses are primarily associated with hepatocellular carcinoma, gastric cancer, cervical cancer, nasopharyngeal carcinoma, Kaposi sarcoma, lymphoma, and adult T-cell leukemia/lymphoma. Understanding the mechanisms of viral oncogenesis is crucial for identifying and characterizing the early biological processes of virus-related cancers, providing new targets and strategies for treatment or prevention. This review first outlines the global epidemiology of virus-related tumors, milestone events in research, and the process by which oncogenic viruses infect target cells. It then focuses on the molecular mechanisms by which these viruses induce tumors directly or indirectly, including the regulation of oncogenes or tumor suppressor genes, induction of genomic instability, disruption of regular life cycle of cells, immune suppression, chronic inflammation, and inducing angiogenesis. Finally, current therapeutic strategies for virus-related tumors and recent advances in preclinical and clinical research are discussed.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Tingting Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyu Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
3
|
La Frazia S, Pauciullo S, Zulian V, Garbuglia AR. Viral Oncogenesis: Synergistic Role of Genome Integration and Persistence. Viruses 2024; 16:1965. [PMID: 39772271 PMCID: PMC11728759 DOI: 10.3390/v16121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production. This review focuses on the process of genome integration, which may occur at different stages of infection (e.g., HBV), during the chronic phase of infection (e.g., HPV, EBV), or as an essential part of the viral life cycle, as seen in retroviruses (HIV, HTLV-1). It also explores the close relationship between integration, persistence, and oncogenesis. Several models have been proposed to describe the genome integration process, including non-homologous recombination, looping, and microhomology models. Integration can occur either randomly or at specific genomic sites, often leading to genome destabilization. In some cases, integration results in the loss of genomic regions or impairs the regulation of oncogene and/or oncosuppressor expression, contributing to tumor development.
Collapse
Affiliation(s)
- Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| |
Collapse
|
4
|
Jones KM, Bryan A, McCunn E, Lantz PE, Blalock H, Ojeda IC, Mehta K, Cosper PF. The Causes and Consequences of DNA Damage and Chromosomal Instability Induced by Human Papillomavirus. Cancers (Basel) 2024; 16:1662. [PMID: 38730612 PMCID: PMC11083350 DOI: 10.3390/cancers16091662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins induce chromosomal instability, or chromosome missegregation during mitosis, which is associated with a further increase in DNA damage, particularly due to micronuclei and double-strand break formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV activates the DNA damage response, how it induces chromosome missegregation and micronuclei formation, and discuss how these factors may affect radiation response. Understanding how HPV affects the DNA damage response in the context of radiation therapy may help determine potential mechanisms to improve therapeutic response.
Collapse
Affiliation(s)
- Kathryn M. Jones
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Ava Bryan
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Emily McCunn
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Pate E. Lantz
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Hunter Blalock
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Isabel C. Ojeda
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Kavi Mehta
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
5
|
Mallick S, Choi Y, Taylor AM, Cosper PF. Human Papillomavirus-Induced Chromosomal Instability and Aneuploidy in Squamous Cell Cancers. Viruses 2024; 16:501. [PMID: 38675844 PMCID: PMC11053578 DOI: 10.3390/v16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Chromosomal instability (CIN) and aneuploidy are hallmarks of cancer. CIN is defined as a continuous rate of chromosome missegregation events over the course of multiple cell divisions. CIN causes aneuploidy, a state of abnormal chromosome content differing from a multiple of the haploid. Human papillomavirus (HPV) is a well-known cause of squamous cancers of the oropharynx, cervix, and anus. The HPV E6 and E7 oncogenes have well-known roles in carcinogenesis, but additional genomic events, such as CIN and aneuploidy, are often required for tumor formation. HPV+ squamous cancers have an increased frequency of specific types of CIN, including polar chromosomes. CIN leads to chromosome gains and losses (aneuploidies) specific to HPV+ cancers, which are distinct from HPV- cancers. HPV-specific CIN and aneuploidy may have implications for prognosis and therapeutic response and may provide insight into novel therapeutic vulnerabilities. Here, we review HPV-specific types of CIN and patterns of aneuploidy in squamous cancers, as well as how this impacts patient prognosis and treatment.
Collapse
Affiliation(s)
- Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - Yeseo Choi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alison M. Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
6
|
Cosper PF, Hrycyniak LCF, Paracha M, Lee DL, Wan J, Jones K, Bice SA, Nickel K, Mallick S, Taylor AM, Kimple RJ, Lambert PF, Weaver BA. HPV16 E6 induces chromosomal instability due to polar chromosomes caused by E6AP-dependent degradation of the mitotic kinesin CENP-E. Proc Natl Acad Sci U S A 2023; 120:e2216700120. [PMID: 36989302 PMCID: PMC10083562 DOI: 10.1073/pnas.2216700120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Chromosome segregation during mitosis is highly regulated to ensure production of genetically identical progeny. Recurrent mitotic errors cause chromosomal instability (CIN), a hallmark of tumors. The E6 and E7 oncoproteins of high-risk human papillomavirus (HPV), which causes cervical, anal, and head and neck cancers (HNC), cause mitotic defects consistent with CIN in models of anogenital cancers, but this has not been studied in the context of HNC. Here, we show that HPV16 induces a specific type of CIN in patient HNC tumors, patient-derived xenografts, and cell lines, which is due to defects in chromosome congression. These defects are specifically induced by the HPV16 oncogene E6 rather than E7. We show that HPV16 E6 expression causes degradation of the mitotic kinesin CENP-E, whose depletion produces chromosomes that are chronically misaligned near spindle poles (polar chromosomes) and fail to congress. Though the canonical oncogenic role of E6 is the degradation of the tumor suppressor p53, CENP-E degradation and polar chromosomes occur independently of p53. Instead, E6 directs CENP-E degradation in a proteasome-dependent manner via the E6-associated ubiquitin protein ligase E6AP/UBE3A. This study reveals a mechanism by which HPV induces CIN, which may impact HPV-mediated tumor initiation, progression, and therapeutic response.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
| | - Laura C. F. Hrycyniak
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI53705
| | - Maha Paracha
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Denis L. Lee
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI53705
| | - Kathryn Jones
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Sophie A. Bice
- University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Kwangok Nickel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY10032
| | - Alison M. Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
| | - Paul F. Lambert
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
7
|
Dacus D, Stancic S, Pollina SR, Rifrogiate E, Palinski R, Wallace NA. Beta Human Papillomavirus 8 E6 Induces Micronucleus Formation and Promotes Chromothripsis. J Virol 2022; 96:e0101522. [PMID: 36129261 PMCID: PMC9555153 DOI: 10.1128/jvi.01015-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cutaneous beta genus human papillomaviruses (β-HPVs) are suspected to promote the development of nonmelanoma skin cancer (NMSC) by destabilizing the host genome. Multiple studies have established the genome destabilizing capacities of β-HPV proteins E6 and E7 as a cofactor with UV. However, the E6 protein from β-HPV8 (HPV8 E6) induces tumors in mice without UV exposure. Here, we examined a UV-independent mechanism of HPV8 E6-induced genome destabilization. We showed that HPV8 E6 reduced the abundance of anaphase bridge resolving helicase, Bloom syndrome protein (BLM). The diminished BLM was associated with increased segregation errors and micronuclei. These HPV8 E6-induced micronuclei had disordered micronuclear envelopes but retained replication and transcription competence. HPV8 E6 decreased antiproliferative responses to micronuclei and time-lapse imaging revealed HPV8 E6 promoted cells with micronuclei to complete mitosis. Finally, whole-genome sequencing revealed that HPV8 E6 induced chromothripsis in nine chromosomes. These data provide insight into mechanisms by which HPV8 E6 induces genome instability independent of UV exposure. IMPORTANCE Some beta genus human papillomaviruses (β-HPVs) may promote skin carcinogenesis by inducing mutations in the host genome. Supporting this, the E6 protein from β-HPV8 (8 E6) promotes skin cancer in mice with or without UV exposure. Many mechanisms by which 8 E6 increases mutations caused by UV have been elucidated, but less is known about how 8 E6 induces mutations without UV. We address that knowledge gap by showing that 8 E6 causes mutations stemming from mitotic errors. Specifically, 8 E6 reduces the abundance of BLM, a helicase that resolves and prevents anaphase bridges. This hinders anaphase bridge resolution and increases their frequency. 8 E6 makes the micronuclei that can result from anaphase bridges more common. These micronuclei often have disrupted envelopes yet retain localization of nuclear-trafficked proteins. 8 E6 promotes the growth of cells with micronuclei and causes chromothripsis, a mutagenic process where hundreds to thousands of mutations occur in a chromosome.
Collapse
Affiliation(s)
- Dalton Dacus
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Steven Stancic
- Veterinary Diagnostic Laboratory, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Sarah R Pollina
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Elizabeth Rifrogiate
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Rachel Palinski
- Veterinary Diagnostic Laboratory, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
- Diagnostic Medicine/Pathobiology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Nicholas A Wallace
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| |
Collapse
|
8
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Association of Relative Telomere Length and Risk of High Human Papillomavirus Load in Cervical Epithelial Cells. Balkan J Med Genet 2022; 24:65-70. [PMID: 36249518 PMCID: PMC9524175 DOI: 10.2478/bjmg-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Importunate high-risk HPV (HR-HPV) infection is the most common trigger for the cervical carcinogenesis process. In this respect, the presence of cancer can be imputed to telomere lengthening or shortening. This paper explores the possible correlation between relative telomere length and viral load in two groups of women, namely: those with high-risk HPV infection and those who do not have this infection. Thus, samples comprising of 50 women in each group were evaluated for this research. The Amplisens HPV HCR screen-titre-FRT PCR kite was employed for quantitative analysis. Relative telomere length was quantified by real-time PCR. In each of the two HPV load groups, there was no correlation between age and telomere length. Telomere shortening was found in the cervical cell samples of women with high HPV loads, compared with women in the control group. Telomere shortening is associated with elevated HPV loads.
Collapse
|
10
|
Kornilova AA, Zhapbasov RZ, Zhomartov AM, Sibataev AK, Begimbetova DA, Bekmanov BO. Genotoxic Effect of Unused and Banned Pesticides on the Body of Cattle Kept on the Territory of South Kazakhstan. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Vliet-Gregg PA, Robinson KL, Levan J, Matsumoto LR, Katzenellenbogen RA. NFX1-123 is highly expressed in cervical cancer and increases growth and telomerase activity in HPV 16E6 expressing cells. Cancer Lett 2019; 449:106-113. [PMID: 30776478 DOI: 10.1016/j.canlet.2019.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/29/2022]
Abstract
A significant contributor to women's cancer mortality worldwide is cervical cancer, which is caused by high-risk human papillomavirus (HR HPV). The two viral oncoproteins of HR HPV, E6 and E7, partner with host cell proteins to target oncogenic proteins and pathways. Previously, we have shown HR HPV type 16 E6 (16E6) interacts with the host protein NFX1-123 to target telomerase and cellular immortalization, requiring NFX1-123 to fully upregulate telomerase activity. We now report that NFX1-123 is highly expressed in primary cervical cancers. In vitro, cells expressing 16E6 and overexpressing NFX1-123 have extended active growth, decreased senescence marker staining, and more rapid cell cycling compared to 16E6 expressing cells with endogenous amounts of NFX1-123. These findings were associated with increased telomerase activity and augmented expression of its catalytic subunit, hTERT. In complement, HPV 16 positive cervical cancer cell lines with knocked down NFX1-123 had slowed growth and reduced hTERT over time. In cells that express HR HPV E6, greater expression of NFX1-123 can modify active cellular growth and augment hTERT expression and telomerase activity over time, potentially supporting the initiation and progression of HPV-associated cancers.
Collapse
Affiliation(s)
- Portia A Vliet-Gregg
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, 1900 Ninth Ave., Seattle, WA, 98101-1309, USA
| | - Kristin L Robinson
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, 1900 Ninth Ave., Seattle, WA, 98101-1309, USA
| | - Justine Levan
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, 1900 Ninth Ave., Seattle, WA, 98101-1309, USA; Dept. of Global Health, Pathobiology Program, University of Washington, Seattle, WA, USA
| | - Lisa R Matsumoto
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, 1900 Ninth Ave., Seattle, WA, 98101-1309, USA
| | - Rachel A Katzenellenbogen
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, 1900 Ninth Ave., Seattle, WA, 98101-1309, USA; Dept. of Global Health, Pathobiology Program, University of Washington, Seattle, WA, USA; Dept. of Pediatrics, Div. of Adolescent Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Bernal A, Zafon E, Domínguez D, Bertran E, Tusell L. Generation of Immortalised But Unstable Cells after hTERT Introduction in Telomere-Compromised and p53-Deficient vHMECs. Int J Mol Sci 2018; 19:ijms19072078. [PMID: 30018248 PMCID: PMC6073565 DOI: 10.3390/ijms19072078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 01/08/2023] Open
Abstract
Telomeres, the natural ends of chromosomes, hide the linear telomeric DNA from constitutive exposure to the DNA damage response with a lariat structure or t-loop. Progressive telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in t-loop collapse and unmasked telomeres. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptosis, but they can also promote tumour initiation when cell cycle checkpoints are disabled. In this setting, telomere dysfunction promotes increasing chromosome instability (CIN) through breakage-fusion-bridge cycles. Excessive instability may hamper cell proliferation but might allow for the appearance of some rare advantageous mutations that could be selected and ultimately favour neoplastic progression. With the aim of generating pre-malignant immortalised cells, we ectopically expressed telomerase in telomere-compromised variant human mammary epithelial cells (vHMECs), proficient and deficient for p53, and analysed structural and numerical chromosomal aberrations as well as abnormal nuclear morphologies. Importantly, this study provides evidence that while immortalisation of vHMECs at early stages results in an almost stable karyotype, a transient telomere-dependent CIN period—aggravated by p53 deficiency—and followed by hTERT overexpression serves as a mechanism for the generation of immortal unstable cells which, due to their evolving karyotype, could attain additional promoting properties permissive to malignancy.
Collapse
Affiliation(s)
- Aina Bernal
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Elisenda Zafon
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Daniel Domínguez
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Enric Bertran
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Laura Tusell
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
13
|
Kotsantis P, Petermann E, Boulton SJ. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov 2018; 8:537-555. [PMID: 29653955 DOI: 10.1158/2159-8290.cd-17-1461] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022]
Abstract
Oncogene activation disturbs cellular processes and accommodates a complex landscape of changes in the genome that contribute to genomic instability, which accelerates mutation rates and promotes tumorigenesis. Part of this cellular turmoil involves deregulation of physiologic DNA replication, widely described as replication stress. Oncogene-induced replication stress is an early driver of genomic instability and is attributed to a plethora of factors, most notably aberrant origin firing, replication-transcription collisions, reactive oxygen species, and defective nucleotide metabolism.Significance: Replication stress is a fundamental step and an early driver of tumorigenesis and has been associated with many activated oncogenes. Deciphering the mechanisms that contribute to the replication stress response may provide new avenues for targeted cancer treatment. In this review, we discuss the latest findings on the DNA replication stress response and examine the various mechanisms through which activated oncogenes induce replication stress. Cancer Discov; 8(5); 537-55. ©2018 AACR.
Collapse
Affiliation(s)
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
14
|
Telomeres: Implications for Cancer Development. Int J Mol Sci 2018; 19:ijms19010294. [PMID: 29351238 PMCID: PMC5796239 DOI: 10.3390/ijms19010294] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Telomeres facilitate the protection of natural ends of chromosomes from constitutive exposure to the DNA damage response (DDR). This is most likely achieved by a lariat structure that hides the linear telomeric DNA through protein-protein and protein-DNA interactions. The telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in unmasked telomeres. Then, the subsequent activation of the DDR will define the fate of cells according to the functionality of cell cycle checkpoints. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptotic pathways, but they can also promote tumour initiation. Studies in telomere dynamics and karyotype analysis underpin telomere crisis as a key event driving genomic instability. Significant attainment of telomerase or alternative lengthening of telomeres (ALT)-pathway to maintain telomere length may be permissive and required for clonal evolution of genomically-unstable cells during progression to malignancy. We summarise current knowledge of the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.
Collapse
|
15
|
Bellon M, Nicot C. Telomere Dynamics in Immune Senescence and Exhaustion Triggered by Chronic Viral Infection. Viruses 2017; 9:v9100289. [PMID: 28981470 PMCID: PMC5691640 DOI: 10.3390/v9100289] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
The progressive loss of immunological memory during aging correlates with a reduced proliferative capacity and shortened telomeres of T cells. Growing evidence suggests that this phenotype is recapitulated during chronic viral infection. The antigenic volume imposed by persistent and latent viruses exposes the immune system to unique challenges that lead to host T-cell exhaustion, characterized by impaired T-cell functions. These dysfunctional memory T cells lack telomerase, the protein capable of extending and stabilizing chromosome ends, imposing constraints on telomere dynamics. A deleterious consequence of this excessive telomere shortening is the premature induction of replicative senescence of viral-specific CD8+ memory T cells. While senescent cells are unable to expand, they can survive for extended periods of time and are more resistant to apoptotic signals. This review takes a closer look at T-cell exhaustion in chronic viruses known to cause human disease: Epstein–Barr virus (EBV), Hepatitis B/C/D virus (HBV/HCV/HDV), human herpesvirus 8 (HHV-8), human immunodeficiency virus (HIV), human T-cell leukemia virus type I (HTLV-I), human papillomavirus (HPV), herpes simplex virus-1/2 (HSV-1/2), and Varicella–Zoster virus (VZV). Current literature linking T-cell exhaustion with critical telomere lengths and immune senescence are discussed. The concept that enduring antigen stimulation leads to T-cell exhaustion that favors telomere attrition and a cell fate marked by enhanced T-cell senescence appears to be a common endpoint to chronic viral infections.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology, Center for Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Christophe Nicot
- Department of Pathology, Center for Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
16
|
Telomerase Induction in HPV Infection and Oncogenesis. Viruses 2017; 9:v9070180. [PMID: 28698524 PMCID: PMC5537672 DOI: 10.3390/v9070180] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Telomerase extends the repetitive DNA at the ends of linear chromosomes, and it is normally active in stem cells. When expressed in somatic diploid cells, it can lead to cellular immortalization. Human papillomaviruses (HPVs) are associated with and high-risk for cancer activate telomerase through the catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT). The expression of hTERT is affected by both high-risk HPVs, E6 and E7. Seminal studies over the last two decades have identified the transcriptional, epigenetic, and post-transcriptional roles high-risk E6 and E7 have in telomerase induction. This review will summarize these findings during infection and highlight the importance of telomerase activation as an oncogenic pathway in HPV-associated cancer development and progression.
Collapse
|
17
|
Abstract
Genomic instability plays a key role in driving cancer development. It is already found in precancerous lesions and allows the acquisition of additional cancerous features. A major source of genomic instability in early stages of tumorigenesis is DNA replication stress. Normally, origin licensing and activation, as well as replication fork progression, are tightly regulated to allow faithful duplication of the genome. Aberrant origin usage and/or perturbed replication fork progression leads to DNA damage and genomic instability. Oncogene activation is an endogenous source of replication stress, disrupting replication regulation and inducing DNA damage. Oncogene-induced replication stress and its role in cancer development have been studied comprehensively, however its molecular basis is still unclear. Here, we review the current understanding of replication regulation, its potential disruption and how oncogenes perturb the replication and induce DNA damage leading to genomic instability in cancer.
Collapse
Affiliation(s)
| | - Batsheva Kerem
- Correspondence: ; Tel.: +972-2-658-5678; Fax: +972-2-658-4810
| |
Collapse
|
18
|
Katzenellenbogen RA. Activation of telomerase by HPVs. Virus Res 2017; 231:50-55. [DOI: 10.1016/j.virusres.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
|
19
|
Lima CF, Alves MGO, Furtado JJD, Marcucci M, Balducci I, Almeida JD. Effect of HIV infection in the micronuclei frequency on the oral mucosa. J Oral Pathol Med 2016; 46:644-648. [PMID: 27873361 DOI: 10.1111/jop.12527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The genotoxic impact of HIV infection on the oral cavity malignancies is unknown. The aim of this study was to evaluate the effect of HIV infection in micronucleus (MN) frequency on the oral mucosa of HIV+ patients and establish a relationship with early cytogenetic changes in oral carcinogenesis. METHODS Thirty HIV+ individuals who are under highly active antiretroviral therapy (HAART) and 30 non-HIV patients were evaluated. Two smears were taken from the lateral border of the tongue and mouth floor and stained by Feulgen. The frequency of MN was examined in 3000 cells per subject under common microscopy. RESULTS MN analysis showed no significant difference between groups by Mann-Whitney U-test for total MNs (P = 0.178). The presence of single MN was greater in control group with statistical significance (P = 0.009), while in HIV group, multiple MNs were exhibited in higher mean. CONCLUSIONS HIV patients under HAART therapy and low viral load values showed higher frequency of multiple MNs, which, although not statistically significant, may be caused by the action of the Vpr gene, an accessory gene of HIV. These results corroborate the theory of HIV infection cytogenetic damage.
Collapse
Affiliation(s)
| | | | | | - Marcelo Marcucci
- Department of Stomatology, Heliopolis Hospital, São Paulo, Brazil
| | - Ivan Balducci
- Department of Social and Pediatric Dentistry, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, São Paulo, Brazil
| | - Janete Dias Almeida
- Department of Bioscience and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
20
|
Jiang E. Differences in the origins of kinetochore-positive and kinetochore-negative micronuclei: A live cell imaging study. Mutat Res 2016; 787:7-14. [PMID: 26938028 DOI: 10.1016/j.mrfmmm.2016.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 02/06/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Micronuclei (MNi) are extensively used to evaluate genotoxicity and chromosomal instability. Classification of kinetochore-negative (K-MNi) and kinetochore-positive micronuclei (K+MNi) improves the specificity and sensitivity of the micronucleus (MN) test; however, the fundamental differences in the origins of K-MNi and K+MNi have not been addressed due to the limitations of traditional methods. In the current study, HeLa CENP B-GFP H2B-mCherry cells were constructed in which histone 2B (H2B) and centromere protein B (CENP B) were expressed as fusion proteins to monomeric Cherry (mCherry) and EGFP, respectively. MNi were identified using H2B-mCherry; K+MN contained CENP B-GFP, while K-MN did not. Long-term live cell imaging was conducted to examine MN formation in the dual-color fluorescent HeLa cells. The results suggested that K-MNi were derived from kinetochore-negative displaced chromosomes (K-DCs), kinetochore-negative lagging chromosomes (K-LCs) and fragments of broken chromosome bridges (CBs) during late mitotic stages. The results also indicated that K+MNi are derived from kinetochore-positive displaced chromosomes (K+DCs), kinetochore-positive lagging chromosomes (K+LCs), and fragments of broken CBs. Different aberrant chromosomes emerged during mitosis at different frequencies and developed into K-MNi and/or K+MNi in the daughter cells at different rates. K+LCs formed K+MNi at a higher frequency than K+DCs, and K-LCs formed K-MNi at a higher rate than K-DCs; however, broken CBs transformed into K-MNi and/or K+MNi. In summary, these results show that K-MNi and K+MNi have different origins in HeLa cells and that each mechanism of MN formation contributes differently to the overall number of K-MNi and K+MNi.
Collapse
Affiliation(s)
- Erkang Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agriculture University, Hefei, Anhui 230036, People's Republic of China.
| |
Collapse
|
21
|
Asatryan AD, Komarova NL. Evolution of genetic instability in heterogeneous tumors. J Theor Biol 2016; 396:1-12. [PMID: 26826489 DOI: 10.1016/j.jtbi.2015.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Genetic instability is an important characteristic of cancer. While most cancers develop genetic instability at some stage of their progression, sometimes a temporary rise of instability is followed by the return to a relatively stable genome. Neither the reasons for these dynamics, nor, more generally, the role of instability in tumor progression, are well understood. In this paper we develop a class of mathematical models to study the evolutionary competition dynamics among different sub-populations in a heterogeneous tumor. We observe that despite the complexity of this multi-component and multi-process system, there is only a small number of scenarios expected in the context of the evolution of instability. If the penalty incurred by unstable cells (the decrease in the growth due to deleterious mutations) is high compared with the gain (the production rate of advantageous mutations), then instability does not evolve. In the opposite case, instability evolves and comes to dominate the system. In the intermediate parameter regime, instability is generated but later gives way to stable clones. Moreover, the model also informs us of the patterns of instability for cancer lineages corresponding to different stages of progression. It is predicted that mutations causing instability are merely "passengers" in tumors that have undergone only a small number of malignant mutations. Further down the path of carcinogenesis, however, unstable cells are more likely to give rise to the winning clonal wave that takes over the tumor and carries the evolution forward, thus conferring a causal role of the instability in such cases. Further, each individual clonal wave (i.e. cells harboring a fixed number of malignant driver mutations) experiences its own evolutionary history. It can fall under one of three types of temporal behavior: stable throughout, unstable to stable, or unstable throughout. Which scenario is realized depends on the subtle (but predictable) interplay among mutation rates and the death toll associated with the instability. The modeling approach provided here sheds light onto important aspects of the evolutionary dynamics of instability, which may be relevant to treatment scenarios that target instability or damage repair.
Collapse
Affiliation(s)
- Ani D Asatryan
- Department of Mathematics, University of California Irvine, Irvine, CA 92697, United States
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, CA 92697, United States; Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
22
|
Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J 2015; 283:232-45. [DOI: 10.1111/febs.13574] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/04/2015] [Accepted: 10/21/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Jordi Carreras Puigvert
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| | - Thomas Helleday
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
23
|
Abstract
The first human tumor virus was discovered in the middle of the last century by Anthony Epstein, Bert Achong and Yvonne Barr in African pediatric patients with Burkitt's lymphoma. To date, seven viruses -EBV, KSHV, high-risk HPV, MCPV, HBV, HCV and HTLV1- have been consistently linked to different types of human cancer, and infections are estimated to account for up to 20% of all cancer cases worldwide. Viral oncogenic mechanisms generally include: generation of genomic instability, increase in the rate of cell proliferation, resistance to apoptosis, alterations in DNA repair mechanisms and cell polarity changes, which often coexist with evasion mechanisms of the antiviral immune response. Viral agents also indirectly contribute to the development of cancer mainly through immunosuppression or chronic inflammation, but also through chronic antigenic stimulation. There is also evidence that viruses can modulate the malignant properties of an established tumor. In the present work, causation criteria for viruses and cancer will be described, as well as the viral agents that comply with these criteria in human tumors, their epidemiological and biological characteristics, the molecular mechanisms by which they induce cellular transformation and their associated cancers.
Collapse
|
24
|
Pericentromeric regions are refractory to prompt repair after replication stress-induced breakage in HPV16 E6E7-expressing epithelial cells. PLoS One 2012; 7:e48576. [PMID: 23119062 PMCID: PMC3485353 DOI: 10.1371/journal.pone.0048576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022] Open
Abstract
Chromosomal instability is the major form of genomic instability in cancer cells. Amongst various forms of chromosomal instability, pericentromeric or centromeric instability remains particularly poorly understood. In the present study, we found that pericentromeric instability, evidenced by dynamic formation of pericentromeric or centromeric rearrangements, breaks, deletions or iso-chromosomes, was a general phenomenon in human cells immortalized by expression of human papillomavirus type 16 E6 and E7 (HPV16 E6E7). In particular, for the first time, we surprisingly found a dramatic increase in the proportion of pericentromeric chromosomal aberrations relative to total aberrations in HPV16 E6E7-expressing cells 72 h after release from aphidicolin (APH)-induced replication stress, with pericentromeric chromosomal aberrations becoming the predominant type of structural aberrations (∼70% of total aberrations). In contrast, pericentromeric aberrations accounted for only about 20% of total aberrations in cells at the end of APH treatment. This increase in relative proportion of pericentromeric aberrations after release from APH treatment revealed that pericentromeric breaks induced by replication stress are refractory to prompt repair in HPV16 E6E7-expressing epithelial cells. Telomerase-immortalized epithelial cells without HPV16 E6E7 expression did not exhibit such preferential pericentromeric instability after release from APH treatment. Cancer development is often associated with replication stress. Since HPV16 E6 and E7 inactivate p53 and Rb, and p53 and Rb pathway defects are common in cancer, our finding that pericentromeric regions are refractory to prompt repair after replication stress-induced breakage in HPV16 E6E7-expressing cells may shed light on mechanism of general pericentromeric instability in cancer.
Collapse
|
25
|
The Asian-American E6 variant protein of human papillomavirus 16 alone is sufficient to promote immortalization, transformation, and migration of primary human foreskin keratinocytes. J Virol 2012; 86:12384-96. [PMID: 22951839 DOI: 10.1128/jvi.01512-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We examined how well the human papillomavirus (HPV) E6 oncogene can function in the absence of the E7 oncogene during the carcinogenic process in human keratinocytes using a common HPV variant strongly associated with cervical cancer: the Asian-American E6 variant (AAE6). This E6 variant is 20 times more frequently detected in cervical cancer than the prototype European E6 variant, as evidenced by independent epidemiological data. Using cell culture and cell-based functional assays, we assessed how this variant can perform crucial carcinogenesis steps compared to the prototype E6 variant. The ability to immortalize and transform primary human foreskin keratinocytes (PHFKs) to acquire resilient phenotypes and the ability to promote cell migration were evaluated. The immortalization capability was assayed based on population doublings, number of passages, surpassing mortality stages 1 and 2, human telomerase reverse transcriptase (hTERT) expression, and the ability to overcome G(1) arrest via p53 degradation. Transformation and migration efficiency were analyzed using a combination of functional cell-based assays. We observed that either AAE6 or prototype E6 proteins alone were sufficient to immortalize PHFKs, although AAE6 was more potent in doing so. The AAE6 variant protein alone pushed PHFKs through transformation and significantly increased their migration ability over that of the E6 prototype. Our findings are in line with epidemiological data that the AA variant of HPV16 confers an increased risk over the European prototype for cervical cancer, as evidenced by a superior immortalization, transformation, and metastatic potential.
Collapse
|
26
|
Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011; 145:435-46. [PMID: 21529715 DOI: 10.1016/j.cell.2011.03.044] [Citation(s) in RCA: 657] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 01/18/2011] [Accepted: 03/29/2011] [Indexed: 12/28/2022]
Abstract
Chromosomal instability in early cancer stages is caused by stress on DNA replication. The molecular basis for replication perturbation in this context is currently unknown. We studied the replication dynamics in cells in which a regulator of S phase entry and cell proliferation, the Rb-E2F pathway, is aberrantly activated. Aberrant activation of this pathway by HPV-16 E6/E7 or cyclin E oncogenes significantly decreased the cellular nucleotide levels in the newly transformed cells. Exogenously supplied nucleosides rescued the replication stress and DNA damage and dramatically decreased oncogene-induced transformation. Increased transcription of nucleotide biosynthesis genes, mediated by expressing the transcription factor c-myc, increased the nucleotide pool and also rescued the replication-induced DNA damage. Our results suggest a model for early oncogenesis in which uncoordinated activation of factors regulating cell proliferation leads to insufficient nucleotides that fail to support normal replication and genome stability.
Collapse
|
27
|
Abstract
Although micronuclei (MNi) have been extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their formation was not completely addressed until recently, due to limitations of traditional experimental methods. The development of live-cell imaging, combined with genetically engineered chromosome labelling techniques makes it possible to investigate the origin of a micronucleus in a single cell in a real-time and high-throughput manner. Here, we review all the available studies on the origins of MNi in live cells and discuss novel findings based on this recently emerged methodology. Some unsolved questions on MNi formation and limitations of live-cell imaging in the investigation of MNi have also been discussed.
Collapse
Affiliation(s)
- Yun Huang
- Laboratory of Molecular and Cell Genetics, Department of Biochemistry and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | |
Collapse
|
28
|
Abstract
Chromosomal instability occurs early in the development of cancer and may represent an important step in promoting the multiple genetic changes required for the initiation and/or progression of the disease. Telomere erosion is one of the factors that contribute to chromosome instability through end-to-end chromosome fusions entering BFB (breakage-fusion-bridge) cycles. Uncapped chromosomes with short dysfunctional telomeres represent an initiating substrate for both pre- and post-replicative joining, which leads to unstable chromosome rearrangements prone to bridge at mitotic anaphase. Resolution of chromatin bridge intermediates is likely to contribute greatly to the generation of segmental chromosome amplification events, unbalanced chromosome rearrangements and whole chromosome aneuploidy. Accordingly, telomere-driven instability generates highly unstable genomes that could promote cell immortalization and the acquisition of a tumour phenotype.
Collapse
|
29
|
Genescà A, Pampalona J, Frías C, Domínguez D, Tusell L. Role of telomere dysfunction in genetic intratumor diversity. Adv Cancer Res 2011; 112:11-41. [PMID: 21925300 DOI: 10.1016/b978-0-12-387688-1.00002-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most solid tumors are unable to maintain the stability of their genomes at the chromosome level. Indeed, cancer cells display highly rearranged karyotypes containing translocations, amplifications, deletions, and gains and losses of whole chromosomes, which reshuffle steadily. This chromosomal instability most likely occurs early in the development of cancer, and may represent an important step in promoting the multiple genetic changes required for the initiation and/or progression of the disease. Different mechanisms may underlie chromosome instability in cancer cells, but a prominent role for telomeres, the tip of linear chromosomes, has been determined. Telomeres are ribonucleoprotein structures that prevent natural chromosome ends being recognized as DNA double-strand breaks, by adopting a loop structure. Loss of telomere function appears from either alteration on telomere-binding proteins or from the progressive telomere shortening that normally occurs under physiological conditions in the majority of cells in tissues. Importantly, unmasked telomeres may either trigger the senescent phenotype that has been linked to the aging process or may initiate the chromosome instability needed for cancer development, depending on the integrity of the DNA damage checkpoint responses. Telomere dysfunction contributes to chromosome instability through end-to-end chromosome fusions entering breakage-fusion-bridge (BFB) cycles. Resolution of chromatin bridge intermediates is likely to contribute greatly to the generation of segmental chromosome amplification events, unbalanced chromosome rearrangements, and whole chromosome aneuploidy. Noteworthy is the fact that telomere length heterogeneity among individuals may directly influence the scrambling of the genome at tumor initiation. However, reiterated BFB cycles would randomly reorganize the cell karyotype, thus increasing the genetic diversity that characterizes tumor cells. Even though a direct link is still lacking, multiple evidence lead one to believe that telomere dysfunction directly contributes to cancer development in humans. The expansion of highly unstable cells due to telomere dysfunction enhances the genetic diversity needed to fuel specific mutations that may promote cell immortalization and the acquisition of a tumor phenotype.
Collapse
|
30
|
Pampalona J, Soler D, Genescà A, Tusell L. Whole chromosome loss is promoted by telomere dysfunction in primary cells. Genes Chromosomes Cancer 2010; 49:368-78. [PMID: 20088004 DOI: 10.1002/gcc.20749] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Errors in chromosome segregation during mitosis result in aneuploidy, which in humans may play a role in the onset of neoplasia by changing gene dosage. Nearly all solid tumors exhibit genomic instability at the chromosomal level, showing both structural and numerical chromosome abnormalities. Chromosomal instability occurs early in the development of cancer and may represent an important step in the initiation and/or progression of the disease. Telomere integrity appears to be a critical element in the genesis of structural chromosome imbalances, but it is still not clear whether it can also generate numerical chromosome aberrations. We investigated the possible relationship between telomere shortening and aneuploidy formation in human mammary epithelial cells using the cytokinesis-block micronucleus assay combined with fluorescent DNA probes. In this cell system, uncapped chromosomes fuse with each other resulting in dicentric chromosomes, which are known to be a source of new structural chromosome rearrangements. Here, we show that in primary epithelial cells, the chromosomes with short telomeres are more frequently involved in missegregation events than chromosomes of normal telomere length. Whole chromosome aneuploidy occurs through both nondisjunction and anaphase lagging of dicentric chromatids, which suggests that pulling anaphase bridges toward opposite poles can generate the necessary force for detaching a chromosome from the microtubules of one or both spindle poles. Therefore, telomere-driven instability can promote not only the appearance of chromosomal rearrangements but also the appearance of numerical chromosome aberrations that could favor cell immortalization and the acquisition of a tumor phenotype.
Collapse
Affiliation(s)
- Judit Pampalona
- Cell Biology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
31
|
Chen JJ. Genomic Instability Induced By Human Papillomavirus Oncogenes. NORTH AMERICAN JOURNAL OF MEDICINE & SCIENCE 2010; 3:43-47. [PMID: 21643539 PMCID: PMC3106442 DOI: 10.7156/v3i2p043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. Human papillomavirus (HPV) infection is necessary but not sufficient for the development of cervical cancer. Genomic instability caused by HPV allows cells to acquire additional mutations required for malignant transformation. Genomic instability in the form of polyploidy has been implicated in a causal role in cervical carcinogenesis. Polyploidy not only occurs as an early event during cervical carcinogenesis but also predisposes cervical cells to aneuploidy, an important hallmark of human cancers. Cell cycle progression is regulated at several checkpoints whose defects contribute to genomic instability.The high-risk HPVs encode two oncogenes, E6 and E7, which are essential for cellular transformation in HPV-positive cells. The ability of high-risk HPV E6 and E7 protein to promote the degradation of p53 and pRb, respectively, has been suggested as a mechanism by which HPV oncogenes induce cellular transformation. E6 and E7 abrogate cell cycle checkpoints and induce genomic instability that leads to malignant conversion.Although the prophylactic HPV vaccine has recently become available, it will not be effective for immunosuppressed individuals or those who are already infected. Therefore, understanding the molecular basis for HPV-associated cancers is still clinically relevant. Studies on genomic instability will shed light on mechanisms by which HPV induces cancer and hold promise for the identification of targets for drug development.
Collapse
Affiliation(s)
- Jason J Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
32
|
HTLV-I Tax-dependent and -independent events associated with immortalization of human primary T lymphocytes. Blood 2010; 115:2441-8. [PMID: 20093405 DOI: 10.1182/blood-2009-08-241117] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human T-cell leukemia virus type I (HTLV-I)-associated malignancies are seen in a small percentage of infected persons. Although in vitro immortalization by HTLV-I virus is very efficient, we report that Tax has poor oncogenic activity in human primary T cells and that immortalization by Tax is rare. Sustained telomerase activity represents one of the oncogenic steps required for Tax-mediated immortalization. Tax expression was required for the growth of primary T cells, but was not sufficient to propel T cells into cell cycle in the absence of exogenous interleukin-2 (IL-2). Tax was sufficient to activate the phosphoinositide-3 kinase (PI3K)/Akt pathway as shown by down regulation of Src homology phosphatase-1 and increased phosphorylation of Akt. We also found disruption of putative tumor suppressors IL-16 and translocated promoter region (TPR) in Tax-immortalized and HTLV-I-transformed cell lines. Our results confirmed previous observations that Tax activates the anaphase-promoting complex. However, Tax did not affect the mitotic spindle checkpoint, which was also functional in HTLV-I-transformed cells. These data provide a better understanding of Tax functions in human T cells, and highlight the limitations of Tax, suggesting that other viral proteins are key to T-cell transformation and development of adult T-cell leukemia.
Collapse
|
33
|
Duensing A, Duensing S. Centrosomes, polyploidy and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 676:93-103. [PMID: 20687471 DOI: 10.1007/978-1-4419-6199-0_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer cells are frequently characterized by ploidy changes including tetra-, poly- or aneuploidy. At the same time, malignant cells often contain supernumerary centrosomes. Aneuploidy and centrosome alterations are both hallmarks of tumor aggressiveness and increase with malignant progression. It has been proposed that aneuploidy results from a sequence of events in which failed mitoses produce tetra-/polyploid cells that enter a subsequent cell division with an increased number of centrosomes and hence with an increased risk for multipolar spindle formation and chromosome missegregation. Although this model attempts to integrate several common findings in cancer cells, it has been difficult to prove. Findings that centrosome aberrations can arise in diploid cells and the uncertain proliferative potential of polyploid cells suggest that alternative routes to chromosomal instability may exist. We discuss here recent results on centrosome biogenesis and the possible link between ploidy changes, centrosome aberrations and cancer.
Collapse
Affiliation(s)
- Anette Duensing
- Molecular Virology Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion Suite 1.8, 5117 Centre Avenue, Pittsburgh, Pennslyvania 15213, USA
| | | |
Collapse
|
34
|
Merkley MA, Hildebrandt E, Podolsky RH, Arnouk H, Ferris DG, Dynan WS, Stöppler H. Large-scale analysis of protein expression changes in human keratinocytes immortalized by human papilloma virus type 16 E6 and E7 oncogenes. Proteome Sci 2009; 7:29. [PMID: 19698150 PMCID: PMC2744660 DOI: 10.1186/1477-5956-7-29] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/23/2009] [Indexed: 01/08/2023] Open
Abstract
Background Infection with high-risk type human papilloma viruses (HPVs) is associated with cervical carcinomas and with a subset of head and neck squamous cell carcinomas. Viral E6 and E7 oncogenes cooperate to achieve cell immortalization by a mechanism that is not yet fully understood. Here, human keratinocytes were immortalized by long-term expression of HPV type 16 E6 or E7 oncoproteins, or both. Proteomic profiling was used to compare expression levels for 741 discrete protein features. Results Six replicate measurements were performed for each group using two-dimensional difference gel electrophoresis (2D-DIGE). The median within-group coefficient of variation was 19–21%. Significance of between-group differences was tested based on Significance Analysis of Microarray and fold change. Expression of 170 (23%) of the protein features changed significantly in immortalized cells compared to primary keratinocytes. Most of these changes were qualitatively similar in cells immortalized by E6, E7, or E6/7 expression, indicating convergence on a common phenotype, but fifteen proteins (~2%) were outliers in this regulatory pattern. Ten demonstrated opposite regulation in E6- and E7-expressing cells, including the cell cycle regulator p16INK4a; the carbohydrate binding protein Galectin-7; two differentially migrating forms of the intermediate filament protein Cytokeratin-7; HSPA1A (Hsp70-1); and five unidentified proteins. Five others had a pattern of expression that suggested cooperativity between the co-expressed oncoproteins. Two of these were identified as forms of the small heat shock protein HSPB1 (Hsp27). Conclusion This large-scale analysis provides a framework for understanding the cooperation between E6 and E7 oncoproteins in HPV-driven carcinogenesis.
Collapse
Affiliation(s)
- Mark A Merkley
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - Ellen Hildebrandt
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA.,Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | - Robert H Podolsky
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Hilal Arnouk
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA.,Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Daron G Ferris
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, GA, USA.,Department of Family Medicine, Medical College of Georgia, Augusta, GA, USA
| | - William S Dynan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - Hubert Stöppler
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA.,Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
35
|
Yugawa T, Kiyono T. Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Rev Med Virol 2009; 19:97-113. [PMID: 19156753 DOI: 10.1002/rmv.605] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last two decades, since the initial discovery of human papillomavirus (HPV) type 16 and 18 DNAs in cervical cancers by Dr. Harald zur Hausen (winner of the Nobel Prize in Physiology or Medicine, 2008), the HPVs have been well characterised as causative agents for cervical cancer. Viral DNA from a specific group of HPVs can be detected in at least 90% of all cervical cancers and two viral genes, E6 and E7, are invariably expressed in HPV-positive cervical cancer cells. Their gene products are known to inactivate the major tumour suppressors, p53 and retinoblastoma protein (pRB), respectively. In addition, one function of E6 is to activate telomerase, and E6 and E7 cooperate to effectively immortalise human primary epithelial cells. Though expression of E6 and E7 is itself not sufficient for cancer development, it seems to be either directly or indirectly involved in every stage of multi-step carcinogenesis. Epidemiological and biological studies suggest the potential efficacy of prophylactic vaccines to prevent genital HPV infection as an anti-cancer strategy. However, given the widespread nature of HPV infection and unresolved issues about the duration and type specificity of the currently available HPV vaccines, it is crucial that molecular details of the natural history of HPV infection as well as the biological activities of the viral oncoproteins be elucidated in order to provide the basis for development of new therapeutic strategies against HPV-associated malignancies. This review highlights novel functions of E6 and E7 as well as the molecular mechanisms of HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Takashi Yugawa
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | |
Collapse
|
36
|
Characterization of immortalized human epidermolysis bullosa simplex (KRT5) cell lines: Trimethylamine N-oxide protects the keratin cytoskeleton against disruptive stress condition. J Dermatol Sci 2009; 53:198-206. [DOI: 10.1016/j.jdermsci.2008.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/17/2008] [Accepted: 11/13/2008] [Indexed: 12/18/2022]
|
37
|
Localization of TEIF in the centrosome and its functional association with centrosome amplification in DNA damage, telomere dysfunction and human cancers. Oncogene 2009; 28:1549-60. [PMID: 19198626 DOI: 10.1038/onc.2008.503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Centrosome amplification and telomere shortening, which are commonly detected in human cancers, have been implicated in the induction of chromosome instability in tumorigenesis. The functions of these two structures are closely related to DNA damage repair machinery, and some factors that operate in the maintenance of telomeres also take part in the regulation of centrosome status, suggesting they are functionally linked. We report that TEIF (telomerase transcriptional elements-interacting factor), a transactivator of the hTERT (human telomerase reverse transcriptase subunit) gene, is distributed in the centrosome throughout the cell cycle, but its transport into the centrosome is increased under some conditions, and its distribution is dependent on its C-terminal domain. Experimental modulation of TEIF expression through overexpression, polypeptide expression or depletion affected centrosome status and increased abnormalities of cell mitosis. Localization of TEIF to the centrosome was also stimulated by treatment with genotoxic agents and experimental telomere dysfunction, accompanying centrosome amplification. Moreover, we demonstrated that the expression level of TEIF is not only closely correlated with centrosome amplification in soft tissue sarcomas but it is also significantly related to tumor histologic grade. Our data confirmed TEIF functions as a centrosome regulator. Its participation in DNA damage response, including telomere dysfunction and tumorigenesis, indicates TEIF is likely to be a factor involved in linking centrosome amplification and telomere dysfunction in cancer development.
Collapse
|
38
|
Hu L, Plafker K, Vorozhoko V, Zuna RE, Hanigan MH, Gorbsky GJ, Plafker SM, Angeletti PC, Ceresa BP. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion. Virology 2009; 384:125-34. [PMID: 19041112 PMCID: PMC2658674 DOI: 10.1016/j.virol.2008.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/25/2008] [Accepted: 10/01/2008] [Indexed: 02/01/2023]
Abstract
Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes--E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis.
Collapse
Affiliation(s)
- Lulin Hu
- Department of Cell Biology, University of Oklahoma HSC
| | | | - Valeriya Vorozhoko
- Department of Cell Biology, University of Oklahoma HSC
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation
| | | | | | - Gary J. Gorbsky
- Department of Cell Biology, University of Oklahoma HSC
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation
| | | | | | | |
Collapse
|
39
|
Rao X, Zhang Y, Yi Q, Hou H, Xu B, Chu L, Huang Y, Zhang W, Fenech M, Shi Q. Multiple origins of spontaneously arising micronuclei in HeLa cells: direct evidence from long-term live cell imaging. Mutat Res 2008; 646:41-49. [PMID: 18845170 DOI: 10.1016/j.mrfmmm.2008.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/27/2008] [Accepted: 09/01/2008] [Indexed: 05/26/2023]
Abstract
Although micronuclei (MNi) are extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their origins has not been completely addressed due to limitations of traditional methods. Recently, long-term live cell imaging was developed to monitor the dynamics of single cell in a real-time and high-throughput manner. In the present study, this state-of-the-art technique was employed to examine spontaneous micronucleus (MN) formation in untreated HeLa cells. We demonstrate that spontaneous MNi are derived from incorrectly aligned chromosomes in metaphase (displaced chromosomes, DCs), lagging chromosomes (LCs) and broken chromosome bridges (CBs) in later mitotic stages, but not nuclear buds in S phase. However, most of bipolar mitoses with DCs (91.29%), LCs (73.11%) and broken CBs (88.93%) did not give rise to MNi. Our data also show directly, for the first time, that MNi could originate spontaneously from (1) MNi already presented in the mother cells; (2) nuclear fragments that appeared during mitosis with CB; and (3) chromosomes being extruded into a minicell which fused with one of the daughter cells later. Quantitatively, most of MNi originated from LCs (63.66%), DCs (10.97%) and broken CBs (9.25%). Taken together, these direct evidences show that there are multiple origins for spontaneously arising MNi in HeLa cells and each mechanism contributes to overall MN formation to different extents.
Collapse
Affiliation(s)
- Xiaotang Rao
- Laboratory of Molecular and Cell Genetics, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kirk KE, Christ C, McGuire JM, Paul AG, Vahedi M, Stuart KR, Cole ES. Abnormal micronuclear telomeres lead to an unusual cell cycle checkpoint and defects in Tetrahymena oral morphogenesis. EUKARYOTIC CELL 2008; 7:1712-23. [PMID: 18469136 PMCID: PMC2568063 DOI: 10.1128/ec.00393-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 04/16/2008] [Indexed: 11/20/2022]
Abstract
Telomere mutants have been well studied with respect to telomerase and the role of telomere binding proteins, but they have not been used to explore how a downstream morphogenic event is related to the mutated telomeric DNA. We report that alterations at the telomeres can have profound consequences on organellar morphogenesis. Specifically, a telomerase RNA mutation termed ter1-43AA results in the loss of germ line micronuclear telomeres in the binucleate protozoan Tetrahymena thermophila. These cells also display a micronuclear mitotic arrest, characterized by an extreme delay in anaphase with an elongated, condensed chromatin and a mitotic spindle apparatus. This anaphase defect suggests telomere fusions and consequently a spindle rather than a DNA damage checkpoint. Most surprisingly, these mutants exhibit unique, dramatic defects in the formation of the cell's oral apparatus. We suggest that micronuclear telomere loss leads to a "dynamic pause" in the program of cortical development, which may reveal an unusual cell cycle checkpoint.
Collapse
Affiliation(s)
- Karen E Kirk
- Department of Biology, Lake Forest College, Lake Forest, Illinois 60045, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
The E6 oncoproteins from human betapapillomaviruses differentially activate telomerase through an E6AP-dependent mechanism and prolong the lifespan of primary keratinocytes. J Virol 2008; 82:3894-902. [PMID: 18256157 DOI: 10.1128/jvi.01818-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPVs) belonging to the Betapapillomavirus genus have recently been implicated in squamous cell carcinomas of the skin, though the mechanisms by which they initiate carcinogenesis are unclear. We show that human foreskin keratinocytes (HFKs) expressing several betapapillomavirus E6 (beta-E6) proteins display life span extension, but not to the extent seen in HFKs expressing HPV type 16 E6 (16E6). Additionally, we demonstrate that beta-E6 proteins can differentially activate telomerase. HFKs expressing 38E6 exhibit significant telomerase activity but to a lesser degree than that observed with 16E6; however, other beta-E6 proteins, including 5E6, 8E6, 20E6, and 22E6, exhibit low or background levels of telomerase activity. Utilizing glutathione S-transferase pull-down and coimmunoprecipitation experiments, the beta-E6 proteins were shown to interact with the cellular proteins E6-associated protein (E6AP) and NFX1-91, two proteins known to be important for telomerase activation by 16E6. Interestingly, the relative strength of the interaction between E6 and E6AP or NFX1-91 was proportionate to the activation of telomerase by each beta-E6 protein. To address the requirement for E6AP in telomerase activation by beta-E6 proteins, we utilized a shRNA to knock down endogenous levels of E6AP. Lysates with decreased levels of E6AP showed a reduced ability to activate telomerase, suggesting that E6AP is a necessary component. These data suggest that complex formation between E6, E6AP, and NFX1-91 is a critical step in mediating telomerase activation, which may be one contributing factor to cellular life span extension during human betapapillomavirus infection.
Collapse
|
42
|
Kisseljov F, Sakharova O, Kondratjeva T. Chapter 2 Cellular and Molecular Biological Aspects of Cervical Intraepithelial Neoplasia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:35-95. [DOI: 10.1016/s1937-6448(08)01202-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Eriksson D, Löfroth PO, Johansson L, Riklund KA, Stigbrand T. Cell cycle disturbances and mitotic catastrophes in HeLa Hep2 cells following 2.5 to 10 Gy of ionizing radiation. Clin Cancer Res 2007; 13:5501s-5508s. [PMID: 17875782 DOI: 10.1158/1078-0432.ccr-07-0980] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Experimental radioimmunotherapy delivering absorbed doses of 2.5 to 10 Gy has been shown to cause growth retardation of tumors. The purpose of this study was to elucidate the sequential molecular and cellular events occurring in HeLa Hep2 cells exposed to such doses. METHODS Dose-response curves, activation of cell cycle checkpoints, and mitotic behavior were investigated in HeLa Hep2 cells following 2.5- to 10-Gy irradiation by carrying out 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, Western blots, fluorescence-activated cell sorting analysis, and immunofluorescence stainings. Terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling staining was used to detect apoptosis. RESULTS A G2-M arrest was shown by fluorescence-activated cell sorting analysis. p53 and p21 were found to be up-regulated but were not immediately related to the arrest. The G2-M arrest was transient and the cells reentered the cell cycle still containing unrepaired cellular damage. This premature entry caused an increase of anaphase bridges, lagging chromosomal material, and multipolar mitotic spindles as visualized by propidium iodide staining and immunofluorescence staining with alpha-tubulin and gamma-tubulin antibodies. Furthermore, a dose-dependent significant increase in centrosome numbers from 12.6+/-6.6% to 67+/-5.3% was identified as well as a dose-dependent increase of polyploid cells from 2.8+/-1.3% to 17.6+/-2.1% with the highest absorbed dose of 10 Gy. These disturbances caused the cells to progress into mitotic catastrophe and a fraction of these dying cells showed apoptotic features as displayed by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling staining 5 to 7 days after irradiation. CONCLUSION An absorbed dose of 2.5 to 10 Gy was shown to force HeLa Hep2 cells into mitotic catastrophe and delayed apoptosis. These might be important cell death mechanisms involved in tumor growth retardation following radioimmunotherapy of solid tumors.
Collapse
|
44
|
Cheng YW, Wu MF, Wang J, Yeh KT, Goan YG, Chiou HL, Chen CY, Lee H. Human papillomavirus 16/18 E6 oncoprotein is expressed in lung cancer and related with p53 inactivation. Cancer Res 2007; 67:10686-93. [PMID: 18006810 DOI: 10.1158/0008-5472.can-07-1461] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inactivation of p53 by human papillomavirus 16/18 E6 plays a crucial role in cervical tumorigenesis. To investigate the involvement of HPV16/18 in lung tumorigenesis, the association between HPV16 or HPV18 E6 and p53 protein expression in 122 lung tumors was evaluated by immunohistochemistry, and data showed that HPV16/18 E6 expression correlated inversely with p53 expression, which was further confirmed by tissue in situ immunostaining. Real-time reverse transcription-PCR analysis indicated that E6-positive tumors had lower p21(WAF1/CIP1) and mdm2 mRNA levels than E6-negative tumors. To elucidate the role of E6 in p53 inactivation, we successfully established lung adenocarcinoma cell lines with or without HPV16 infection from patients' pleural effusions. Western blotting showed that E6 protein was indeed expressed in HPV16-infected cells and a lower level of p53 protein was observed in E6-positive cells compared with E6-negative cells. Moreover, the levels of p21(WAF1/CIP1) and mdm2 mRNA in E6-positive cells were lower than in E6-negative cells. The interaction of E6 with p53 protein was revealed by immunoprecipitation assay showing that p53 could be inactivated by E6 protein. Conversely, p53 proteins and p21(WAF1/CIP1) and mdm2 mRNA expressions were restored in E6-knockdown cells by RNA interference compared with control cells. These results reveal that HPV16/18 E6 may be partially involved in p53 inactivation to down-regulate p21(WAF1/CIP1) and mdm2 transcription. In conclusion, HPV16/18 E6 is indeed expressed in HPV DNA-positive lung tumors and is involved in p53 inactivation to contributing to HPV-mediated lung tumorigenesis.
Collapse
Affiliation(s)
- Ya-Wen Cheng
- Institute of Medicine, Lung Cancer Research Center, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gabet AS, Accardi R, Bellopede A, Popp S, Boukamp P, Sylla BS, Londoño-Vallejo JA, Tommasino M. Impairment of the telomere/telomerase system and genomic instability are associated with keratinocyte immortalization induced by the skin human papillomavirus type 38. FASEB J 2007; 22:622-32. [PMID: 17898088 DOI: 10.1096/fj.07-8389com] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The skin human papillomavirus (HPV) types belonging to the genus beta of the HPV phylogenetic tree appear to be associated with nonmelanoma skin cancer. We previously showed that the beta HPV type 38 E6 and E7 oncoproteins are able to inactivate the tumor suppressors p53 and retinoblastoma. Here, both viral proteins were expressed in primary human skin keratinocytes in order to study their effects on the telomere/telomerase system. We show that immortalization of skin keratinocytes induced by HPV38 E6/E7 is associated with hTERT gene overexpression. This event is, in part, explained by the accumulation of the p53-related protein, DeltaNp73. Despite elevated levels of hTERT mRNA, the telomerase activity detected in HPV38 E6/E7 keratinocytes was lower than that observed in HPV16 E6/E7 keratinocytes. The low telomerase activation in highly proliferative HPV38 E6/E7 keratinocytes resulted in the presence of extremely short and unstable telomeres. In addition, we observed anaphase bridges, mitotic multipolarity, and dramatic genomic aberrations. Interestingly, the ectopic expression of hTERT prevents both telomere erosion and genomic instability. Thus, we showed that in HPV38 E6/E7 keratinocytes characterized by unscheduled proliferation, suboptimal activation of telomerase and subsequent extensive telomere shortening result in genomic instability facilitating cellular immortalization.
Collapse
Affiliation(s)
- Anne-Sophie Gabet
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69372 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Deng W, Tsao SW, Guan XY, Cheung ALM. Microtubule breakage is not a major mechanism for resolving end-to-end chromosome fusions generated by telomere dysfunction during the early process of immortalization. Chromosoma 2007; 116:557-68. [PMID: 17726612 DOI: 10.1007/s00412-007-0120-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 11/25/2022]
Abstract
Telomeres, the terminal chromosomal structure crucial for maintaining genomic integrity, shorten with deoxyribonucleic acid replications in most human somatic cells. Chromosomes carrying critically short telomeres tend to form end-to-end fusions, which are subject to breakage during cell division. However, it remains obscure how such telomere-mediated fusions are resolved during the process of immortalization, which is an early and indispensable step toward cancer. It has been hypothesized that the breakage could occur at either the microtubule or chromatid, causing numerical or structural chromosome instability, respectively. In this paper, we show that although the distributions of chromosomal segment losses or gains involved in structural aberrations were significantly correlated with the profiles of critically short telomeres in human epithelial cells undergoing immortalization, no such association was detected for whole-chromosome losses or gains in either metaphase or interphase cells. By distinguishing between homologues, we further showed that the specific homologues with critically short telomeres and frequent end-to-end fusions were not preferentially involved in respective whole-chromosome losses or gains. Our data therefore demonstrate that microtubule breakage is not a major mechanism for resolving chromosomal end-to-end fusions in human cells undergoing immortalization. An important implication of this finding is that microtubule-kinetochore attachment is stronger than the chromosome structure.
Collapse
Affiliation(s)
- W Deng
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
47
|
Maida Y, Kyo S, Forsyth NR, Takakura M, Sakaguchi J, Mizumoto Y, Hashimoto M, Nakamura M, Nakao S, Inoue M. Distinct telomere length regulation in premalignant cervical and endometrial lesions: implications for the roles of telomeres in uterine carcinogenesis. J Pathol 2006; 210:214-23. [PMID: 16909412 DOI: 10.1002/path.2038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mouse models show that progressive shortening of telomeres with ageing causes chromosomal instability, which can lead to the initiation of cancer. However, it is unclear what roles telomere shortening plays in human carcinogenesis. The present study has investigated the involvement of telomere dynamics in uterine carcinogenesis. Using telomere-FISH (telo-FISH) assays, telomere lengths in premalignant and malignant cervical and endometrial lesions were measured and compared with chromosomal arm loss or gain. Telo-FISH signals were visualized with Cy3-labelled telomere-specific probes and presented as telomere intensity (TI). Early-stage cervical intraepithelial neoplasias (CINs), especially CIN2, had significantly shorter telomeres than corresponding normal squamous epithelia (p = 0.019), together with increased rates of chromosomal arm loss/gain (p < 0.001). Cervical cancers had relatively short telomeres, but they also showed greater heterogeneity than other sampled tissues, including those with long telomeres. In contrast, there was no significant difference between the telomere length of normal endometrium and of endometrial hyperplasia and endometrial cancer. There was no significant difference in the rate of chromosomal arm loss/gain between normal endometrium and endometrial hyperplasia. These findings suggest that progressive shortening of telomeres occurs in CIN, in association with chromosomal instability, which may play critical roles in cervical carcinogenesis. In contrast, endometrial hyperplasias have relatively stable telomeres without widespread chromosome alteration, implying that endometrial carcinogenesis involves mechanisms distinct from those of cervical carcinogenesis, possibly including microsatellite instability.
Collapse
Affiliation(s)
- Y Maida
- Department of Obstetrics and Gynaecology, Graduate School of Medical Science, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
McGhee EM, Cotter PD, Weier JF, Berline JW, Turner MA, Gormley M, Palefsky JM. Molecular cytogenetic characterization of human papillomavirus16-transformed foreskin keratinocyte cell line 16-MT. ACTA ACUST UNITED AC 2006; 168:36-43. [PMID: 16772119 DOI: 10.1016/j.cancergencyto.2005.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/15/2005] [Accepted: 12/30/2005] [Indexed: 10/24/2022]
Abstract
Anogenital cancers are closely associated with human papillomavirus (HPV), and HPV-infected individuals, particularly those with high-grade dysplasias, are at increased risk for cervical and anal cancers. Although genomic instability has been documented in HPV-infected keratinocytes, the full spectrum of genetic changes in HPV-associated lesions has not been fully defined. To address this, we examined an HPV16-transformed foreskin keratinocyte cell line, 16-MT, by GTG-banding, spectral karyotyping (SKY), and array comparative genomic hybridization (array CGH); these analyses revealed multiple numerical, complex, and cryptic chromosome rearrangements. Based on GTG-banding, the 16-MT karyotype was interpreted as 78-83,XXY,+add(1)(p36.3),+3,+4,+5,+5,+7,+8,+i(8)(q10)x2,+10,?der(12),der(13;14)(q10;q10),+15,+16,add(19)(q13.3),+21,+21,-22[cp20]. Multicolor analysis by SKY confirmed and further characterized the anomalies identified by GTG banding. The add(1) was identified as a der(1)(1qter-->1q25::1p36.1-->1qter), the add(19) as a dup(19), and the der(12) interpreted as a der(11) involving a duplication of chromosome 11 material and rearrangement with chromosome 19. In addition, previously unidentified der(9)t(9;22), der(3)t(3;19), and der(4)t(4;9) were noted. The 16-MT cell line showed losses and gains of DNA due to unbalanced translocations and complex rearrangements of regions containing known tumor suppressor genes. Chromosomal changes in these regions might explain the increased risk of cancer associated with HPV. Also, array CGH detected copy-number gains or amplifications of chromosomes 2, 8, 10, and 11 and deletions of chromosomes 3, 4, 11, and 15. These results provide the basis for the identification of candidate oncogenes responsible for cervical and anal cancer in amplified regions, and for putative tumor suppressor genes in commonly deleted regions like 11q22-23. Furthermore, these data represent the first full characterization of the HPV-positive cell line 16-MT.
Collapse
MESH Headings
- Aneuploidy
- Anus Neoplasms/genetics
- Anus Neoplasms/virology
- Cell Line, Transformed
- Cell Transformation, Viral/genetics
- Chromosome Aberrations
- Chromosome Banding
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 8/genetics
- Female
- Human papillomavirus 16
- Humans
- Infant, Newborn
- Karyotyping
- Keratinocytes/virology
- Male
- Models, Biological
- Penis
- Telomerase/metabolism
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/virology
Collapse
Affiliation(s)
- Eva M McGhee
- Department of Community Health Systems, University of California, San Francisco, Room N505, Box 0608 San Francisco, CA 94143-0608, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Lindel K, de Villiers EM, Burri P, Studer U, Altermatt HJ, Greiner RH, Gruber G. Impact of viral E2-gene status on outcome after radiotherapy for patients with human papillomavirus 16-positive cancer of the uterine cervix. Int J Radiat Oncol Biol Phys 2006; 65:760-5. [PMID: 16682151 DOI: 10.1016/j.ijrobp.2006.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 01/13/2006] [Accepted: 01/18/2006] [Indexed: 11/20/2022]
Abstract
PURPOSE Integration of high-risk papillomavirus DNA has been considered an important step in oncogenic progression to cervical carcinoma. Disruption of the human papillomavirus (HPV) genome within the E2 gene is frequently a consequence. This study investigated the influence of episomal viral DNA on outcome in patients with advanced cervical cancer treated with primary radiotherapy. METHODS AND MATERIALS Paraffin-embedded biopsies of 82 women with locally advanced cervical cancer could be analyzed for HPV infection by multiplex polymerase chain reaction (PCR) by use of SPF1/2 primers. E2-gene intactness of HPV-16-positive samples was analyzed in 3 separate amplification reactions by use of the E2A, E2B, E2C primers. Statistical analyses (Kaplan-Meier method; log-rank test) were performed for overall survival (OS), disease-free survival (DFS), local progression-free survival (LPFS), and distant metastases-free survival (DMFS). RESULTS Sixty-one (75%) of 82 carcinomas were HPV positive, 44 of them for HPV-16 (72%). Seventeen of the 44 HPV-16-positive tumors (39%) had an intact E2 gene. Patients with a HPV-16-positive tumor and an intact E2 gene showed a trend for a better DFS (58% vs. 38%, p = 0.06) compared with those with a disrupted E2 gene. A nonsignificant difference occurred regarding OS (87% vs. 66%, p = 0.16) and DMFS (57% vs. 48%, p = 0.15). CONCLUSION E2-gene status may be a promising new target, but more studies are required to elucidate the effect of the viral E2 gene on outcome after radiotherapy in HPV-positive tumors.
Collapse
Affiliation(s)
- Katja Lindel
- Department of Radiation Oncology and Radiotherapy, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Sun B, Chen M, Hawks C, Hornsby PJ, Wang X. Tumorigenic study on hepatocytes coexpressing SV40 with Ras. Mol Carcinog 2006; 45:213-9. [PMID: 16173010 DOI: 10.1002/mc.20137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A model of neoplastic transformation by the combination of SV40 large T antigen (LT), SV40 small T antigen (ST), oncogenic Ras, and human telomerase reverse trasncriptase subunit (hTERT) has become established and replicated in primary human fibroblasts, however, there is no report on human hepatocytes. Here we use cell transplantation model, and show that transplantation of human hepatocytes of HL-7702 and HL-7703 expressing Ha-RasV12 and SV40 LT into subrenal capsule of immunodeficient mice results in fully malignant tumors, in contrast to conventional subcutaneous injections where tumors fail to develop. In GM-847 cell study, we have found that hTERT is not required for tumorigenic growth in subrenal capsule transplantation, however, it is required in subcutaneous injection assay. These results demonstrate that Human hepatocytes can be transformed under kidney capsule by coexpressing SV40 LT and Ha-RasV12, neither hTERT nor protein phosphatase 2A (PP2A) inhibition are required for malignant transformation, a gene which increases cell survival in the subcutaneous injection model is not required for tumorigenic growth in subrenal capsule.
Collapse
Affiliation(s)
- Beicheng Sun
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | | | | | | | | |
Collapse
|