1
|
Zhang X, Yang C, Meng Z, Zhong H, Hou X, Wang F, Lu Y, Guo J, Zeng Y. miR-124 and VAMP3 Act Antagonistically in Human Neuroblastoma. Int J Mol Sci 2023; 24:14877. [PMID: 37834325 PMCID: PMC10573497 DOI: 10.3390/ijms241914877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor that affects developing nerve cells in the fetus, infants, and children. miR-124 is a microRNA (miRNA) enriched in neuronal tissues, and VAMP3 (vesicle-associated membrane protein 3) has been reported to be an miR-124 target, although the relationship between NB and miR-124 or VAMP3 is unknown. Our current work identified that miR-124 levels are high in NB cases and that elevated miR-124 correlates with worse NB outcomes. Conversely, depressed VAMP3 correlates with worse NB outcomes. To investigate the mechanisms by which miR-124 and VAMP3 regulate NB, we altered miR-124 or VAMP3 expression in human NB cells and observed that increased miR-124 and reduced VAMP3 stimulated cell proliferation and suppressed apoptosis, while increased VAMP3 had the opposite effects. Genome-wide mRNA expression analyses identified gene and pathway changes which might explain the NB cell phenotypes. Together, our studies suggest that miR-124 and VAMP3 could be potential new markers of NB and targets of NB treatments.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyong Yang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Meng
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huanhuan Zhong
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xutian Hou
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fenfen Wang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiping Lu
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Yan Zeng
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Ogushi K, Yokobori T, Nobusawa S, Shirakura T, Hirato J, Erkhem-Ochir B, Okami H, Dorjkhorloo G, Nishi A, Suzuki M, Otake S, Saeki H, Shirabe K. High Tumoral STMN1 Expression Is Associated with Malignant Potential and Poor Prognosis in Patients with Neuroblastoma. Cancers (Basel) 2023; 15:4482. [PMID: 37760452 PMCID: PMC10526320 DOI: 10.3390/cancers15184482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Stathmin 1 (STMN1), a marker for immature neurons and tumors, controls microtubule dynamics by destabilizing tubulin. It plays an essential role in cancer progression and indicates poor prognosis in several cancers. This potential protein has not been clarified in clinical patients with neuroblastoma. Therefore, this study aimed to assess the clinical significance and STMN1 function in neuroblastoma with and without MYCN amplification. METHODS Using immunohistochemical staining, STMN1 expression was examined in 81 neuroblastoma samples. Functional analysis revealed the association among STMN1 suppression, cellular viability, and endogenous or exogenous MYCN expression in neuroblastoma cell lines. RESULT High levels of STMN1 expression were associated with malignant potential, proliferation potency, and poor prognosis in neuroblastoma. STMN1 expression was an independent prognostic factor in patients with neuroblastoma. Furthermore, STMN1 knockdown inhibited neuroblastoma cell growth regardless of endogenous and exogenous MYCN overexpression. CONCLUSION Our data suggest that assessing STMN1 expression in neuroblastoma could be a powerful indicator of prognosis and that STMN1 might be a promising therapeutic candidate against refractory neuroblastoma with and without MYCN amplification.
Collapse
Affiliation(s)
- Kenjiro Ogushi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Takehiko Yokobori
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
- Division of Integrated Oncology Research, Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8511, Japan;
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (S.N.); (T.S.)
| | - Takahiro Shirakura
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (S.N.); (T.S.)
| | - Junko Hirato
- Department of Pathology, Public Tomioka General Hospital, Tomioka 370-2393, Japan;
| | - Bilguun Erkhem-Ochir
- Division of Integrated Oncology Research, Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8511, Japan;
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Gendensuren Dorjkhorloo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Akira Nishi
- Department of Surgery, Gunma Children’s Medical Center, Shibukawa 377-8577, Japan;
| | - Makoto Suzuki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
- Department of Surgery, Iwate Medical University School of Medicine, Morioka 028-3695, Japan
| | - Sayaka Otake
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| |
Collapse
|
3
|
Zhang Y, Remillard D, Onubogu U, Karakyriakou B, Asiaban JN, Ramos AR, Bowland K, Bishop TR, Barta PA, Nance S, Durbin AD, Ott CJ, Janiszewska M, Cravatt BF, Erb MA. Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities. Nat Struct Mol Biol 2023; 30:1160-1171. [PMID: 37488358 PMCID: PMC10529074 DOI: 10.1038/s41594-023-01041-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Transcriptional co-regulators have been widely pursued as targets for disrupting oncogenic gene regulatory programs. However, many proteins in this target class are universally essential for cell survival, which limits their therapeutic window. Here we unveil a genetic interaction between histone deacetylase 1 (HDAC1) and HDAC2, wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal deletions that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic disruption or dTAG-mediated degradation, we show that targeting HDAC2 suppresses the growth of HDAC1-deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2-NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders that could leverage HDAC1/2 synthetic lethality to target NuRD vulnerabilities. Altogether, we identify HDAC1/2 collateral synthetic lethality as a potential therapeutic target and reveal an unexplored mechanism for targeting NuRD-associated cancer dependencies.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - David Remillard
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ugoma Onubogu
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Joshua N Asiaban
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Anissa R Ramos
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Kirsten Bowland
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Timothy R Bishop
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Paige A Barta
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher J Ott
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Michalina Janiszewska
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
Caglar HO. Bioinformatics analysis of recurrent deletion regions in neuroblastoma. Med Oncol 2022; 39:31. [DOI: 10.1007/s12032-021-01639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023]
|
5
|
de Krijger I, Boersma V, Jacobs JJL. REV7: Jack of many trades. Trends Cell Biol 2021; 31:686-701. [PMID: 33962851 DOI: 10.1016/j.tcb.2021.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023]
Abstract
The HORMA domain protein REV7, also known as MAD2L2, interacts with a variety of proteins and thereby contributes to the establishment of different complexes. With doing so, REV7 impacts a diverse range of cellular processes and gained increasing interest as more of its activities became uncovered. REV7 has important roles in translesion synthesis and mitotic progression, and acts as a central component in the recently discovered shieldin complex that operates in DNA double-strand break repair. Here we discuss the roles of REV7 in its various complexes, focusing on its activity in genome integrity maintenance. Moreover, we will describe current insights on REV7 structural features that allow it to be such a versatile protein.
Collapse
Affiliation(s)
- Inge de Krijger
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Vera Boersma
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Yan L, Lin M, Pan S, Assaraf YG, Wang ZW, Zhu X. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat 2020; 49:100673. [PMID: 31877405 DOI: 10.1016/j.drup.2019.100673] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Chemotherapy continues to be a major treatment strategy for various human malignancies. However, the frequent emergence of chemoresistance compromises chemotherapy efficacy leading to poor prognosis. Thus, overcoming drug resistance is pivotal to achieve enhanced therapy efficacy in various cancers. Although increased evidence has revealed that reduced drug uptake, increased drug efflux, drug target protein alterations, drug sequestration in organelles, enhanced drug metabolism, impaired DNA repair systems, and anti-apoptotic mechanisms, are critically involved in drug resistance, the detailed resistance mechanisms have not been fully elucidated in distinct cancers. Recently, F-box protein (FBPs), key subunits in Skp1-Cullin1-F-box protein (SCF) E3 ligase complexes, have been found to play critical roles in carcinogenesis, tumor progression, and drug resistance through degradation of their downstream substrates. Therefore, in this review, we describe the functions of FBPs that are involved in drug resistance and discuss how FBPs contribute to the development of cancer drug resistance. Furthermore, we propose that targeting FBPs might be a promising strategy to overcome drug resistance and achieve better treatment outcome in cancer patients. Lastly, we state the limitations and challenges of using FBPs to overcome chemotherapeutic drug resistance in various cancers.
Collapse
Affiliation(s)
- Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
7
|
Sultan I, Tbakhi A. BCL11A gene over-expression in high risk neuroblastoma. Cancer Genet 2020; 244:30-31. [PMID: 32113148 DOI: 10.1016/j.cancergen.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/30/2019] [Accepted: 02/09/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Iyad Sultan
- Department of Pediatrics, King Hussein Cancer Center, 202 Queen Rania Abdullah Street, P.O. Box 1269 Al-Jubaiha, Amman, 11941 Jordan.
| | - Abdelghani Tbakhi
- Department of Cell Therapy & Applied Genomics, King Hussein Cancer Center, 202 Queen Rania Abdullah Street, P.O. Box 1269 Al-Jubaiha, Amman, 11941 Jordan.
| |
Collapse
|
8
|
Upregulation of MIIP regulates human breast cancer proliferation, invasion and migration by mediated by IGFBP2. Pathol Res Pract 2019; 215:152440. [PMID: 31078343 DOI: 10.1016/j.prp.2019.152440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 01/07/2023]
Abstract
AIMS The migration and invasion inhibitory protein (MIIP) was initially discovered in a yeast two-hybrid screen for proteins that interact and inhibit the migration and invasion-promoting protein insulin-like growth factor binding protein 2 (IGFBP2). This study aims to evaluate the biological effects of MIIP in breast cancer by targeting IGFBP2. MATERIALS AND METHODS Reverse transcription quantitative real-time polymerase chain reaction and Western blotting were used to evaluate the abnormal expression of MIIP and IGFBP2 in breast cancer tissue or breast cancer cell lines. Transfection assay was used to overexpress MIIP protein in breast cancer cells. MTT assay and colony formation assay were used to detect cell viability of breast cancer cells after MIIP overexpression. Transwell and wound-healing assays were used to detect cell invasion and migration after MIIP overexpression. RESULTS MIIP was significantly decreased and IGFBP2 was significantly increased in breast cancer tissues versus para cancerous. Breast cancer tissues of HER2 overexpression and Basal-like were more significant than Luminal A and Luminal B. MIIP was obviously downregulated and IGFBP2 was upregulated in MDA-MB-231, SKBR3 and MCF-7 versus MCF-10A especially in MDA-MB-231. Cell proliferation, cell migration and cell invasion were significantly inhibited after overexpression of MIIP. IGFBP2 was downregulated after overexpression of MIIP. The effects of MIIP on cell proliferation, cell migration and invasion were significantly reversed by IGFBP2. CONCLUSION The abnormal expression of MIIP in breast cancer affects the cell biological effects. IGFBP2 was regulated via MIIP which may be associated with these biological effects. These results reveal that MIIP can be a potential target for breast cancer treatment.
Collapse
|
9
|
Tang Z, Zeng Q, Li Y, Zhang X, Ma J, Suto MJ, Xu B, Yi N. Development of a radiosensitivity gene signature for patients with soft tissue sarcoma. Oncotarget 2018; 8:27428-27439. [PMID: 28404969 PMCID: PMC5432346 DOI: 10.18632/oncotarget.16194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/24/2017] [Indexed: 12/17/2022] Open
Abstract
Adjuvant radiotherapy is an important clinical treatment option for the majority of sarcomas. The motivation of current study is to identify a gene signature and to predict radiosensitive patients who are most likely to benefit from radiotherapy. Using the public available data of soft tissue sarcoma from The Cancer Genome Atlas, we developed a cross-validation procedure for identifying a gene signature and predicting radiosensitive patients through. The result showed that the predicted radiosensitive patients who received radiotherapy had a significantly better survival with a reduced rate of new tumor event and disease progression. Strata analysis showed that the predicted radiosensitive patients had significantly better survival under radiotherapy independent of histologic types. A hierarchical cluster analysis was used to validate the gene signature, and the results showed the predicted sensitivity for each patient well matched the results from cluster analysis. Together, we demonstrate a radiosensitive molecular signature that can be potentially used for identifying radiosensitive patients with sarcoma.
Collapse
Affiliation(s)
- Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China.,Center for Genetic Epidemiology and Genomics, Medical College of Soochow University, Suzhou, 215123, China.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qinghua Zeng
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35294, USA
| | - Yan Li
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xinyan Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jinlu Ma
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35294, USA.,Department of Radiation Oncology, The First Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, 710061, China
| | - Mark J Suto
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35294, USA
| | - Bo Xu
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35294, USA
| | - Nengjun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
10
|
GONG JIAN, CAO JUAN, LIU GUINAN, HUO JIRONG. Function and mechanism of F-box proteins in gastric cancer (Review). Int J Oncol 2015; 47:43-50. [DOI: 10.3892/ijo.2015.2983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/24/2015] [Indexed: 11/06/2022] Open
|
11
|
Schimmack S, Taylor A, Lawrence B, Schmitz-Winnenthal H, Fischer L, Büchler MW, Modlin IM, Kidd M, Tang LH. Stathmin in pancreatic neuroendocrine neoplasms: a marker of proliferation and PI3K signaling. Tumour Biol 2014; 36:399-408. [DOI: 10.1007/s13277-014-2629-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/10/2014] [Indexed: 12/28/2022] Open
|
12
|
Schleiermacher G, Janoueix-Lerosey I, Delattre O. Recent insights into the biology of neuroblastoma. Int J Cancer 2014; 135:2249-61. [PMID: 25124476 DOI: 10.1002/ijc.29077] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/08/2014] [Indexed: 01/24/2023]
Abstract
Neuroblastoma (NB) is an embryonal tumor of the sympathetic nervous system which accounts for 8-10% of pediatric cancers. It is characterized by a broad spectrum of clinical behaviors from spontaneous regression to fatal outcome despite aggressive therapies. Considerable progress has been made recently in the germline and somatic genetic characterization of patients and tumors. Indeed, predisposition genes that account for a significant proportion of familial and syndromic cases have been identified and genome-wide association studies have retrieved a number of susceptibility loci. In addition, genome-wide sequencing, copy-number and expression studies have been conducted on tumors and have detected important gene modifications, profiles and signatures that have strong implications for the therapeutic stratification of patients. The identification of major players in NB oncogenesis, including MYCN, ALK, PHOX2B and LIN28B, has enabled the development of new animal models. Our review focuses on these recent advances, on the insights they provide on the mechanisms involved in NB development and their applications for the clinical management of patients.
Collapse
Affiliation(s)
- Gudrun Schleiermacher
- Equipe SIRIC Recherche Translationnelle en Oncologie Pédiatrique, Département de Recherche Translationnelle et Inserm U830, Centre de Recherche, Paris Cedex, 05, France; Département de pédiatrie, Institut Curie, Paris Cedex, 05, France; Unité Génétique et Biologie des Cancers, Inserm U830, Centre de Recherche, Institut Curie, Paris Cedex, 05, France
| | | | | |
Collapse
|
13
|
Cloning and expression analysis of the gastric carcinoma-related gene, ELCOX3. Oncol Lett 2013; 6:1744-1748. [PMID: 24260070 PMCID: PMC3834307 DOI: 10.3892/ol.2013.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/29/2013] [Indexed: 12/02/2022] Open
Abstract
Gastric cancer is a pathological process of an accumulation of multigene and multistage mutations. A new gene segment, MDSCBC11, has been previously obtained using a gene chip and is negatively associated with gastric cancer. The present study aimed to clone the full cDNA sequence of the MDSCBC11 segment and to detect its expression in gastric carcinomas and normal gastric mucosa. Multiple-tissue northern blots revealed that the new MDSCBC11-represented gene was expressed as two transcripts that were 0.8 kb and 1.5 kb in size. The cDNA sequence of the smaller transcript was 822 bp, created by 5′ rapid amplification of cDNA ends (RACE) and 3′ RACE methods. A bioinformatics analysis indicated that the deduced amino acid sequence of MDSCBC11 had a 99% homology with the cytochrome c oxidase III (COX3) gene in the mitochondria. A total of 46 cases of gastric carcinomas, adjacent gastric mucosa and normal gastric mucosa were individually collected, and the mRNA expression of the ELCOX3 gene was detected by RT-PCR. ELCOX3 mRNA was expressed in all 46 cases of the normal gastric mucosa. The expression levels of ELCOX3 mRNA in the gastric carcinomas were lower compared with that of the adjacent and normal gastric mucosa (P<0.05), with the percent of downregulation at 23.91% (11/46 cases). The downregulation of ELCOX3 gene expression was associated with the development of human gastric carcinomas.
Collapse
|
14
|
Epigenetic deregulation of microRNAs in rhabdomyosarcoma and neuroblastoma and translational perspectives. Int J Mol Sci 2012; 13:16554-79. [PMID: 23443118 PMCID: PMC3546707 DOI: 10.3390/ijms131216554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed.
Collapse
|
15
|
|
16
|
Cornero A, Acquaviva M, Fardin P, Versteeg R, Schramm A, Eva A, Bosco MC, Blengio F, Barzaghi S, Varesio L. Design of a multi-signature ensemble classifier predicting neuroblastoma patients' outcome. BMC Bioinformatics 2012; 13 Suppl 4:S13. [PMID: 22536959 PMCID: PMC3314564 DOI: 10.1186/1471-2105-13-s4-s13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Neuroblastoma is the most common pediatric solid tumor of the sympathetic nervous system. Development of improved predictive tools for patients stratification is a crucial requirement for neuroblastoma therapy. Several studies utilized gene expression-based signatures to stratify neuroblastoma patients and demonstrated a clear advantage of adding genomic analysis to risk assessment. There is little overlapping among signatures and merging their prognostic potential would be advantageous. Here, we describe a new strategy to merge published neuroblastoma related gene signatures into a single, highly accurate, Multi-Signature Ensemble (MuSE)-classifier of neuroblastoma (NB) patients outcome. Methods Gene expression profiles of 182 neuroblastoma tumors, subdivided into three independent datasets, were used in the various phases of development and validation of neuroblastoma NB-MuSE-classifier. Thirty three signatures were evaluated for patients' outcome prediction using 22 classification algorithms each and generating 726 classifiers and prediction results. The best-performing algorithm for each signature was selected, validated on an independent dataset and the 20 signatures performing with an accuracy > = 80% were retained. Results We combined the 20 predictions associated to the corresponding signatures through the selection of the best performing algorithm into a single outcome predictor. The best performance was obtained by the Decision Table algorithm that produced the NB-MuSE-classifier characterized by an external validation accuracy of 94%. Kaplan-Meier curves and log-rank test demonstrated that patients with good and poor outcome prediction by the NB-MuSE-classifier have a significantly different survival (p < 0.0001). Survival curves constructed on subgroups of patients divided on the bases of known prognostic marker suggested an excellent stratification of localized and stage 4s tumors but more data are needed to prove this point. Conclusions The NB-MuSE-classifier is based on an ensemble approach that merges twenty heterogeneous, neuroblastoma-related gene signatures to blend their discriminating power, rather than numeric values, into a single, highly accurate patients' outcome predictor. The novelty of our approach derives from the way to integrate the gene expression signatures, by optimally associating them with a single paradigm ultimately integrated into a single classifier. This model can be exported to other types of cancer and to diseases for which dedicated databases exist.
Collapse
Affiliation(s)
- Andrea Cornero
- Laboratory of Molecular Biology, G. Gaslini Institute, Genoa 16147, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Les altérations génétiques dans le neuroblastome et leur apport pour la prise en charge thérapeutique. Bull Cancer 2011; 98:477-88. [DOI: 10.1684/bdc.2011.1364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Schleiermacher G, Janoueix-Lerosey I, Ribeiro A, Klijanienko J, Couturier J, Pierron G, Mosseri V, Valent A, Auger N, Plantaz D, Rubie H, Valteau-Couanet D, Bourdeaut F, Combaret V, Bergeron C, Michon J, Delattre O. Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol 2010; 28:3122-30. [PMID: 20516441 DOI: 10.1200/jco.2009.26.7955] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Neuroblastoma is characterized by two distinct types of genetic profiles, consisting of either numerical or segmental chromosome alterations. The latter are associated with a higher risk of relapse, even when occurring together with numerical alterations. We explored the role of segmental alterations in tumor progression and the possibility of evolution from indolent to aggressive genomic types. PATIENTS AND METHODS Array-based comparative genomic hybridization data of 394 neuroblastoma samples were analyzed and linked to clinical data. RESULTS Integration of ploidy and genomic data indicated that pseudotriploid tumors with mixed numerical and segmental profiles may be derived from pseudotriploid tumors with numerical alterations only. This was confirmed by the analysis of paired samples, at diagnosis and at relapse, as in tumors with a purely numerical profile at diagnosis additional segmental alterations at relapse were frequently observed. New segmental alterations at relapse were also seen in patients with segmental alterations at diagnosis. This was not linked to secondary effects of cytotoxic treatments since it occurred even in patients treated with surgery alone. A higher number of chromosome breakpoints were correlated with advanced age at diagnosis, advanced stage of disease, with a higher risk of relapse, and a poorer outcome. CONCLUSION These data provide further evidence of the role of segmental alterations, suggesting that tumor progression is linked to the accumulation of segmental alterations in neuroblastoma. This possibility of genomic evolution should be taken into account in treatment strategies of low- and intermediate-risk neuroblastoma and should warrant biologic reinvestigation at the time of relapse.
Collapse
Affiliation(s)
- Gudrun Schleiermacher
- L'Institut National de la Santé et de la Recherche Médicale U830, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The migration and invasion inhibitor protein (MIIP, also known as IIp45) was discovered as a negative regulator of cell migration and invasion in glioma. Our previous studies have shown that the MIIP protein was reduced or undetectable in some tissue samples obtained from patients with glioblastoma. The significance of MIIP in gliomagenesis is unknown. In this study, we report that MIIP has an important role in the inhibition of gliomagenesis and attenuation of mitotic transition. Increased MIIP expression levels inhibited colony formation and cell growth of glioma cell lines in vitro, whereas decreased expression by specific small interfering RNA for MIIP resulted in increased cell growth. Expression of MIIP in a glial-specific mouse model blocked glioma development and progression, thus showing that MIIP is an inhibitor of gliomagenesis. Furthermore, we show that MIIP attenuates mitotic transition and results in increased mitotic catastrophe. The biochemical mechanism of MIIP in this process is associated with its regulation of anaphase-promoting complex (APC/C) activity. MIIP interacts directly with Cdc20, and the interaction of MIIP with Cdc20 inhibits APC/C-mediated degradation of cyclin B1. Thus, MIIP attenuates mitotic transition and increases mitotic catastrophe, thereby inhibiting glioma development and progression.
Collapse
|
21
|
Vandepoele K, Staes K, Andries V, van Roy F. Chibby interacts with NBPF1 and clusterin, two candidate tumor suppressors linked to neuroblastoma. Exp Cell Res 2010; 316:1225-33. [PMID: 20096688 DOI: 10.1016/j.yexcr.2010.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 11/24/2022]
Abstract
The NBPF genes are members of a gene family that underwent a remarkable increase in their copy number during recent primate evolution. The NBPF proteins contain 5 to 40 copies of a domain known as the NBPF repeat or DUF1220. Very little is known about the function of these domains or about the NBPF proteins. We performed a yeast two-hybrid screening with the aminoterminal domain of NBPF11 and found that Chibby, a documented repressor of Wnt signaling, interacts with multiple NBPF proteins. More specifically, a coiled-coil region in the NBPF proteins interacts with the coiled-coil domain in the carboxyterminal region of Chibby. Nonetheless, this interaction did not influence the repressor function of Chibby in a TOPFLASH reporter assay. Using Chibby as bait in a new yeast two-hybrid screening, we identified clusterin as a binding protein. Chibby and clusterin were co-immunoprecipitated with NBPF1, suggesting the formation of a tri-molecular complex. Although we have not pinpointed the role of these mutual interactions, the possible formation of a macromolecular complex of three candidate tumor suppressor proteins, including the enigmatic NBPF1, points at important functional implications.
Collapse
Affiliation(s)
- Karl Vandepoele
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium.
| | | | | | | |
Collapse
|
22
|
Abstract
Mutations of the retinoblastoma tumour suppressor gene (RB1) or components regulating the RB pathway have been identified in almost every human malignancy. The E2F transcription factors function in cell cycle control and are intimately regulated by RB. Studies of model organisms have revealed conserved functions for E2Fs during development, suggesting that the cancer-related proliferative roles of E2F family members represent a recent evolutionary adaptation. However, given that some human tumours have concurrent RB1 inactivation and E2F amplification and overexpression, we propose that there are alternative tumour-promoting activities for the E2F family, which are independent of cell cycle regulation.
Collapse
Affiliation(s)
- Hui-Zi Chen
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics and Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
23
|
De Preter K, De Brouwer S, Van Maerken T, Pattyn F, Schramm A, Eggert A, Vandesompele J, Speleman F. Meta-mining of Neuroblastoma and Neuroblast Gene Expression Profiles Reveals Candidate Therapeutic Compounds. Clin Cancer Res 2009; 15:3690-6. [DOI: 10.1158/1078-0432.ccr-08-2699] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Vandepoele K, Andries V, van Roy F. The NBPF1 promoter has been recruited from the unrelated EVI5 gene before simian radiation. Mol Biol Evol 2009; 26:1321-32. [PMID: 19282512 DOI: 10.1093/molbev/msp047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most new genes arise through the duplication of existing genes. In most cases, the duplication is not limited to the coding sequence but encompasses the regulatory region as well. The NBPF gene family has expanded during recent primate evolution, and it has no known mouse ortholog. One of its members, NBPF1, was found to be disrupted by a constitutional translocation in a neuroblastoma patient. Here, we show that the ancestral NBPF gene copied the regulatory region from an unrelated gene, EVI5, after the split between simians and prosimians but before simian radiation. Phylogenetic analysis points to the possible involvement of positive selection acting on the NBPF1 promoter in the simian lineage. We previously showed decreased NBPF1 expression in certain neuroblastoma cell lines. Here, we show that this expression pattern is mimicked by the EVI5 gene, but partly by different mechanisms. Epigenetic regulation of the EVI5 promoter is common in neuroblastoma cell lines, but it is not for the NBPF promoters. Here, we describe the recent acquisition of the NBPF1 promoter from an unrelated gene, and remarkably, both the donor (EVI5) and acceptor (NBPF1) genes are disrupted by constitutional translocations in patients with neuroblastoma, suggesting a functional link between these genes and the disease.
Collapse
Affiliation(s)
- Karl Vandepoele
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | | | | |
Collapse
|
25
|
Fix A, Lucchesi C, Ribeiro A, Lequin D, Pierron G, Schleiermacher G, Delattre O, Janoueix-Lerosey I. Characterization of amplicons in neuroblastoma: high-resolution mapping using DNA microarrays, relationship with outcome, and identification of overexpressed genes. Genes Chromosomes Cancer 2008; 47:819-34. [PMID: 18553563 DOI: 10.1002/gcc.20583] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Somatically acquired chromosomal imbalances are a key feature of neuroblastoma, a heterogeneous pediatric solid tumor. Among these alterations, genomic amplification targeting the MYCN oncogene and observed in about 25-30% of the cases, strongly correlates with advanced stage and poor outcome. In this work, we have used BAC and SNP arrays as well as gene expression arrays to characterize amplifications in neuroblastoma. Eighty-eight distinct BACs defining high-level amplification events were identified in 65 samples, including 43 tumors and 22 cell lines. Although the highest recurrence was observed on chromosome 2, clones on chromosomes 8, 12, 16, and 17 also revealed genomic amplification in several samples. A detailed analysis of the 2p22-2p25 MYCN containing region indicated highly complex patterns in a number of cases. Coamplifications involving MYCN and other regions were explored by FISH in three cell lines. High-resolution arrays then allowed us to further refine the mapping of 25 amplicons in 19 samples, either reducing the size of a single continuous amplicon or increasing the complexity by highlighting multiple noncontiguous regions of amplification. Combined analysis of gene expression profiling and array-CGH data indicated that 12 to 25% of the genes that are targeted by genomic amplification are actually over-expressed in tumor cells, several of them having already been implicated in cancer. Finally, our results suggest that the presence of amplicons localized outside of chromosome 2, in addition to MYCN amplification, may be linked to a particularly severe outcome in neuroblastoma patients.
Collapse
Affiliation(s)
- Anne Fix
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Di Pietro C, Ragusa M, Barbagallo D, Duro LR, Guglielmino MR, Majorana A, Giunta V, Rapisarda A, Tricarichi E, Miceli M, Angelica R, Grillo A, Banelli B, Defferari I, Forte S, Laganà A, Bosco C, Giugno R, Pulvirenti A, Ferro A, Grzeschik KH, Di Cataldo A, Tonini GP, Romani M, Purrello M. Involvement of GTA protein NC2beta in neuroblastoma pathogenesis suggests that it physiologically participates in the regulation of cell proliferation. Mol Cancer 2008; 7:52. [PMID: 18538002 PMCID: PMC2443168 DOI: 10.1186/1476-4598-7-52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 06/06/2008] [Indexed: 11/10/2022] Open
Abstract
Background The General Transcription Apparatus (GTA) comprises more than one hundred proteins, including RNA Polymerases, GTFs, TAFs, Mediator, and cofactors such as heterodimeric NC2. This complexity contrasts with the simple mechanical role that these proteins are believed to perform and suggests a still uncharacterized participation to important biological functions, such as the control of cell proliferation. Results To verify our hypothesis, we analyzed the involvement in Neuroblastoma (NB) pathogenesis of GTA genes localized at 1p, one of NB critical regions: through RT-PCR of fifty eight NB biopsies, we demonstrated the statistically significant reduction of the mRNA for NC2β (localized at 1p22.1) in 74% of samples (p = 0.0039). Transcripts from TAF13 and TAF12 (mapping at 1p13.3 and 1p35.3, respectively) were also reduced, whereas we didn't detect any quantitative alteration of the mRNAs from GTF2B and NC2α (localized at 1p22-p21 and 11q13.3, respectively). We confirmed these data by comparing tumour and constitutional DNA: most NB samples with diminished levels of NC2β mRNA had also genomic deletions at the corresponding locus. Conclusion Our data show that NC2β is specifically involved in NB pathogenesis and may be considered a new NB biomarker: accordingly, we suggest that NC2β, and possibly other GTA members, are physiologically involved in the control of cell proliferation. Finally, our studies unearth complex selective mechanisms within NB cells.
Collapse
Affiliation(s)
- Cinzia Di Pietro
- Dipartimento di Scienze Biomediche, Sezione di Biologia Generale, Biologia Cellulare, Genetica Molecolare G Sichel, Unità di Biologia Genomica e dei Sistemi Complessi, Genetica, Bioinformatica, Università di Catania, 95123 Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vandepoele K, Andries V, Van Roy N, Staes K, Vandesompele J, Laureys G, De Smet E, Berx G, Speleman F, van Roy F. A constitutional translocation t(1;17)(p36.2;q11.2) in a neuroblastoma patient disrupts the human NBPF1 and ACCN1 genes. PLoS One 2008; 3:e2207. [PMID: 18493581 PMCID: PMC2386287 DOI: 10.1371/journal.pone.0002207] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/11/2008] [Indexed: 11/18/2022] Open
Abstract
The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17)(p36.2;q11.2) may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types.
Collapse
Affiliation(s)
- Karl Vandepoele
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Vanessa Andries
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Katrien Staes
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Geneviève Laureys
- Department of Pediatric Hematology and Oncology, Ghent University Hospital, Ghent, Belgium
| | - Els De Smet
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Geert Berx
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Frans van Roy
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Carén H, Fransson S, Ejeskär K, Kogner P, Martinsson T. Genetic and epigenetic changes in the common 1p36 deletion in neuroblastoma tumours. Br J Cancer 2007; 97:1416-24. [PMID: 17940511 PMCID: PMC2360241 DOI: 10.1038/sj.bjc.6604032] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chromosome 1p is frequently deleted in neuroblastoma (NB) tumours. The commonly deleted region has been narrowed down by loss of heterozygosity studies undertaken by different groups. Based on earlier mapping data, we have focused on a region on 1p36 (chr1: 7 765 595–11 019 814) and performed an analysis of 30 genes by exploring features such as epigenetic regulation, that is DNA methylation and histone deacetylation, mutations at the DNA level and mRNA expression. Treatment of NB cell lines with the histone deacetylase inhibitor trichostatin A led to increased gene transcription of four of the 30 genes, ERRFI1 (MIG-6), PIK3CD, RBP7 (CRBPIV) and CASZ1, indicating that these genes could be affected by epigenetic downregulation in NBs. Two patients with nonsynonymous mutations in the PIK3CD gene were detected. One patient harboured three variations in the same exon, and p.R188W. The other patient had the variation p.M655I. In addition, synonymous variations and one variation in an intronic sequence were also found. The mRNA expression of this gene is downregulated in unfavourable, compared to favourable, NBs. One nonsynonymous mutation was also identified in the ERRFI1 gene, p.N343S, and one synonymous. None of the variations above were found in healthy control individuals. In conclusion, of the 30 genes analysed, the PIK3CD gene stands out as one of the most interesting for further studies of NB development and progression.
Collapse
Affiliation(s)
- H Carén
- Department of Clinical Genetics, Institute of Biomedicine, Göteborg University, Sahlgrenska University Hospital, Göteborg SE-41345, Sweden
| | | | | | | | | |
Collapse
|
29
|
Stallings RL. Are chromosomal imbalances important in cancer? Trends Genet 2007; 23:278-83. [PMID: 17400327 DOI: 10.1016/j.tig.2007.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 02/12/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Tumor-specific patterns of large-scale chromosomal imbalances characterize most forms of cancer. Based on evidence primarily from neuroblastomas, it can be argued that large-scale chromosomal imbalances are crucial for tumor pathogenesis and have an impact on the global transcriptional profile of cancer cells, and that some imbalances even initiate cancer. The genes and genetic pathways that have been dysregulated by such imbalances remain surprisingly elusive. Many genes are affected by the regions of gain and loss, and there are complex interactions and relationships that occur between these genes, hindering their identification. The study of untranslated RNA sequences, such as microRNAs, is in its infancy, and it is likely that such sequences are also dysregulated by chromosomal imbalance, contributing to pathogenesis.
Collapse
Affiliation(s)
- Raymond L Stallings
- Children's Cancer Research Institute and Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, MC 7784, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
30
|
Łastowska M, Viprey V, Santibanez-Koref M, Wappler I, Peters H, Cullinane C, Roberts P, Hall AG, Tweddle DA, Pearson ADJ, Lewis I, Burchill SA, Jackson MS. Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data. Oncogene 2007; 26:7432-44. [PMID: 17533364 DOI: 10.1038/sj.onc.1210552] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Identifying genes, whose expression is consistently altered by chromosomal gains or losses, is an important step in defining genes of biological relevance in a wide variety of tumour types. However, additional criteria are needed to discriminate further among the large number of candidate genes identified. This is particularly true for neuroblastoma, where multiple genomic copy number changes of proven prognostic value exist. We have used Affymetrix microarrays and a combination of fluorescent in situ hybridization and single nucleotide polymorphism (SNP) microarrays to establish expression profiles and delineate copy number alterations in 30 primary neuroblastomas. Correlation of microarray data with patient survival and analysis of expression within rodent neuroblastoma cell lines were then used to define further genes likely to be involved in the disease process. Using this approach, we identify >1000 genes within eight recurrent genomic alterations (loss of 1p, 3p, 4p, 10q and 11q, 2p gain, 17q gain, and the MYCN amplicon) whose expression is consistently altered by copy number change. Of these, 84 correlate with patient survival, with the minimal regions of 17q gain and 4p loss being enriched significantly for such genes. These include genes involved in RNA and DNA metabolism, and apoptosis. Orthologues of all but one of these genes on 17q are overexpressed in rodent neuroblastoma cell lines. A significant excess of SNPs whose copy number correlates with survival is also observed on proximal 4p in stage 4 tumours, and we find that deletion of 4p is associated with improved outcome in an extended cohort of tumours. These results define the major impact of genomic copy number alterations upon transcription within neuroblastoma, and highlight genes on distal 17q and proximal 4p for downstream analyses. They also suggest that integration of discriminators, such as survival and comparative gene expression, with microarray data may be useful in the identification of critical genes within regions of loss or gain in many human cancers.
Collapse
Affiliation(s)
- M Łastowska
- Institute of Human Genetics, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, Edenberg HJ, Kuczenski R, Geyer MA, Nurnberger JI, Faraone SV, Tsuang MT, Niculescu AB. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:129-58. [PMID: 17266109 DOI: 10.1002/ajmg.b.30481] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent - phencyclidine (PCP), and an anti-psychotic - clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007; 26:5017-22. [PMID: 17297439 DOI: 10.1038/sj.onc.1210293] [Citation(s) in RCA: 597] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuroblastoma (NB) is one of the most common forms of cancer in children, accounting for 15% of pediatric cancer deaths. The clinical course of these tumors is highly variable and is dependent on such factors as age at presentation, stage, ploidy and genomic abnormalities. Hemizygous deletion of chromosome 1p occurs in approximately 30% of advanced stage tumors, is associated with a poor prognosis, and likely leads to the loss of one or more tumor suppressor genes. We show here that microRNA (miRNA)-34a (1p36.23) is generally expressed at lower levels in unfavorable primary NB tumors and cell lines relative to normal adrenal tissue and that reintroduction of this miRNA into three different NB cell lines causes a dramatic reduction in cell proliferation through the induction of a caspase-dependent apoptotic pathway. As a potential mechanistic explanation for this observation, we demonstrate that miR-34a directly targets the messenger ribonucleic acid (mRNA) encoding E2F3 and significantly reduces the levels of E2F3 protein, a potent transcriptional inducer of cell-cycle progression. Furthermore, miR-34a expression increases during retinoic acid-induced differentiation of the SK-N-BE cell line, whereas E2F3 protein levels decrease. Thus, adding to the increasing role of miRNAs in cancer, miR-34a may act as a suppressor of NB tumorgenesis.
Collapse
Affiliation(s)
- C Welch
- Children's Cancer Research Institute and Department of Pediatrics, The University of Texas Health Science Center at San Antonio, MC 7784, TX, USA
| | | | | |
Collapse
|
33
|
Wang Q, Diskin S, Rappaport E, Attiyeh E, Mosse Y, Shue D, Seiser E, Jagannathan J, Shusterman S, Bansal M, Khazi D, Winter C, Okawa E, Grant G, Cnaan A, Zhao H, Cheung NK, Gerald W, London W, Matthay KK, Brodeur GM, Maris JM. Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number. Cancer Res 2006; 66:6050-62. [PMID: 16778177 DOI: 10.1158/0008-5472.can-05-4618] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is remarkable for its clinical heterogeneity and is characterized by genomic alterations that are strongly correlated with tumor behavior. The specific genes that influence neuroblastoma biology and are targeted by genomic alterations remain largely unknown. We quantified mRNA expression in a highly annotated series of 101 prospectively collected diagnostic neuroblastoma primary tumors using an oligonucleotide-based microarray. Genomic copy number status at the prognostically relevant loci 1p36, 2p24 (MYCN), 11q23, and 17q23 was determined by PCR and was aberrant in 26, 20, 40, and 38 cases, respectively. In addition, 72 diagnostic neuroblastoma primary tumors assayed in a different laboratory were used as an independent validation set. Unsupervised hierarchical clustering showed that gene expression was highly correlated with genomic alterations and clinical markers of tumor behavior. The vast majority of samples with MYCN amplification and 1p36 loss of heterozygosity (LOH) clustered together on a terminal node of the sample dendrogram, whereas the majority of samples with 11q deletion clustered separately and both of these were largely distinct from the copy number neutral group of tumors. Genes involved in neurodevelopment were broadly overrepresented in the more benign tumors, whereas genes involved in RNA processing and cellular proliferation were highly represented in the most malignant cases. By combining transcriptomic and genomic data, we showed that LOH at 1p and 11q was associated with significantly decreased expression of 122 (61%) and 88 (27%) of the genes mapping to 1p35-36 and all of 11q, respectively, suggesting that multiple genes may be targeted by LOH events. A total of 71 of the 1p35-36 genes were also differentially expressed in the independent validation data set, providing a prioritized list of candidate neuroblastoma suppressor genes. Taken together, these data are consistent with the hypotheses that the neuroblastoma transcriptome is a sensitive marker of underlying tumor biology and that chromosomal deletion events in this cancer likely target multiple genes through alteration in mRNA dosage. Lead positional candidates for neuroblastoma suppressor genes can be inferred from these data, but the potential multiplicity of transcripts involved has significant implications for ongoing gene discovery strategies.
Collapse
Affiliation(s)
- Qun Wang
- Division of Oncology, Children's Hospital of Philadelphia, PA 19104-4399, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Limpaiboon T, Tapdara S, Jearanaikoon P, Sripa B, Bhudhisawasdi V. Prognostic significance of microsatellite alterations at 1p36 in cholangiocarcinoma. World J Gastroenterol 2006; 12:4377-82. [PMID: 16865781 PMCID: PMC4087750 DOI: 10.3748/wjg.v12.i27.4377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate loss of heterozygosity (LOH) and microsatellite instability (MSI) on the chromosomal region 1p36-pter in cholangiocarcinoma (CCA) patients and determine the association between microsatellite alterations and clinicopathological parameters.
METHODS: Ten polymorphic microsatellite markers were determined for LOH and MSI using GS-3000 gel scan fragment autoanalyzer.
RESULTS: Sixty-eight out of 90 cases (75.6%) showed LOH in one or more loci. LOH was found most frequently at D1S199 (40.0%), D1S507 (34.6%), D1S2845 (30.5%), and D1S2734 (30.1%). MSI was found in 34 of 90 cases (37.8%) at one or more loci. Fine mapping at 1p36 showed two distinctive regions of common loss, which were D1S2845 and the 25.5-cM region between D1S507 and D1S2734, indicating the existence of putative tumor suppressor genes that is likely to play important roles in the development of CCA. Patients with LOH at D1S234 showed less lymphatic invasion (P = 0.017), whereas patients with LOH at D1S2676 exhibited more lymphatic invasion than those without (P = 0.031). LOH at D1S2845 showed a significant correlation with nerve invasion (P = 0.029). Moreover, patients who demonstrated MSI at D1S228 showed a poor prognosis (P = 0.0026).
CONCLUSION: Allelic loss plays a major role in microsatellite alterations at chromosome 1p36, which may contribute to carcinogenesis and pathogenesis of liver fluke related CCA and these alterations can be used as molecular prognostic indicators for CCA patients.
Collapse
Affiliation(s)
- Temduang Limpaiboon
- Department of Clinical Chemistry, Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | | | | | | |
Collapse
|
35
|
Cheung HW, Chun ACS, Wang Q, Deng W, Hu L, Guan XY, Nicholls JM, Ling MT, Chuan Wong Y, Tsao SW, Jin DY, Wang X. Inactivation of human MAD2B in nasopharyngeal carcinoma cells leads to chemosensitization to DNA-damaging agents. Cancer Res 2006; 66:4357-67. [PMID: 16618761 DOI: 10.1158/0008-5472.can-05-3602] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rev7p has been suggested to play an important role in regulating DNA damage response in yeast, and recently, the human homologue (i.e., MAD2B) has been identified, which shares significant homology to the mitotic checkpoint protein MAD2. In this study, we investigated whether MAD2B played a key role in cellular sensitivity to DNA-damaging anticancer drugs by suppressing its expression using RNA interference in nasopharyngeal carcinoma cells. Using colony formation assay, we found that suppression of MAD2B conferred hypersensitivity to a range of DNA-damaging agents, especially DNA cross-linkers, such as cisplatin, and gamma-irradiation. This effect was associated with reduced frequencies of spontaneous and drug-induced mutations, elevated phosphorylation of histone H2AX, and markedly increased chromosomal aberrations in response to DNA damage. In addition, there was also a significant decrease in cisplatin-induced sister chromatid exchange rate, a marker for homologous recombination-mediated post-replication repair in MAD2B-depleted cells. These results indicate that MAD2B may be a key factor in regulating cellular response to DNA damage in cancer cells. Our findings reveal a novel strategy for cancer therapy, in which cancer cells are sensitized to DNA-damaging anticancer drugs through inactivation of the MAD2B gene.
Collapse
Affiliation(s)
- Hiu Wing Cheung
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Klener P, Szynal M, Cleuter Y, Merimi M, Duvillier H, Lallemand F, Bagnis C, Griebel P, Sotiriou C, Burny A, Martiat P, Van den Broeke A. Insights into gene expression changes impacting B-cell transformation: cross-species microarray analysis of bovine leukemia virus tax-responsive genes in ovine B cells. J Virol 2006; 80:1922-38. [PMID: 16439548 PMCID: PMC1367148 DOI: 10.1128/jvi.80.4.1922-1938.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Large-animal models for leukemia have the potential to aid in the understanding of networks that contribute to oncogenesis. Infection of cattle and sheep with bovine leukemia virus (BLV), a complex retrovirus related to human T-cell leukemia virus type 1 (HTLV-1), is associated with the development of B-cell leukemia. Whereas the natural disease in cattle is characterized by a low tumor incidence, experimental infection of sheep leads to overt leukemia in the majority of infected animals, providing a model for studying the pathogenesis associated with BLV and HTLV-1. Tax(BLV), the major oncoprotein, initiates a cascade of events leading toward malignancy, although the basis of transformation is not fully understood. We have taken a cross-species ovine-to-human microarray approach to identify Tax(BLV)-responsive transcriptional changes in two sets of cultured ovine B cells following retroviral vector-mediated delivery of Tax(BLV). Using cDNA-spotted microarrays comprising 10,336 human genes/expressed sequence tags, we identified a cohort of differentially expressed genes, including genes related to apoptosis, DNA transcription, and repair; proto-oncogenes; cell cycle regulators; transcription factors; small Rho GTPases/GTPase-binding proteins; and previously reported Tax(HTLV-1)-responsive genes. Interestingly, genes known to be associated with human neoplasia, especially B-cell malignancies, were extensively represented. Others were novel or unexpected. The results suggest that Tax(BLV) deregulates a broad network of interrelated pathways rather than a single B-lineage-specific regulatory process. Although cross-species approaches do not permit a comprehensive analysis of gene expression patterns, they can provide initial clues for the functional roles of genes that participate in B-cell transformation and pinpoint molecular targets not identified using other methods in animal models.
Collapse
Affiliation(s)
- Pavel Klener
- Laboratory of Experimental Hematology, Bordet Institute, 121 Blvd. de Waterloo, 1000 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Henrich KO, Fischer M, Mertens D, Benner A, Wiedemeyer R, Brors B, Oberthuer A, Berthold F, Wei JS, Khan J, Schwab M, Westermann F. Reduced expression of CAMTA1 correlates with adverse outcome in neuroblastoma patients. Clin Cancer Res 2006; 12:131-8. [PMID: 16397034 DOI: 10.1158/1078-0432.ccr-05-1431] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A distal portion of 1p is frequently deleted in human neuroblastomas, and it is generally assumed that this region harbors at least one gene relevant for neuroblastoma development. A 1p36.3 commonly deleted region, bordered by D1S2731 and D1S214 has been defined. The present study surveys whether expression of genes mapping to this region is associated with tumor behavior. EXPERIMENTAL DESIGN Candidate genes localized within the deleted region were identified by sequence data analysis. Their expression was assessed in a cohort of 49 primary neuroblastomas using cDNA microarray analysis. Gene expression patterns associated with known prognostic markers and patient outcome were further evaluated by quantitative real-time reverse transcription-PCR in a cohort of 102 neuroblastomas. RESULTS The commonly deleted region spans 261 kb and encompasses two genes, FLJ10737 and CAMTA1. We found no evidence for an association of FLJ10737 expression with established prognostic variables or outcome. In contrast, low CAMTA1 expression characterized tumors with 1p deletion, MYCN amplification, and advanced tumor stages 3 and 4. Moreover, low CAMTA1 expression was significantly associated with poor outcome (P < 0.001). In multivariate analysis of event-free survival, the prognostic information of low CAMTA1 expression was independent of 1p status, MYCN status, tumor stage, and age of the patient at diagnosis (hazard ratio, 3.52; 95% confidence interval, 1.21-10.28; P = 0.02). CONCLUSIONS Our data suggest that assessment of CAMTA1 expression may improve the prognostic models for neuroblastoma and that it will be important to define the biological function of CAMTA1 in this disease.
Collapse
Affiliation(s)
- Kai-Oliver Henrich
- Department of Tumour Genetics B030, Molecular Genetics B060, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ohira M, Oba S, Nakamura Y, Hirata T, Ishii S, Nakagawara A. A review of DNA microarray analysis of human neuroblastomas. Cancer Lett 2005; 228:5-11. [PMID: 15936139 DOI: 10.1016/j.canlet.2005.01.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 01/12/2005] [Indexed: 11/18/2022]
Abstract
Neuroblastoma (NBL) is an enigmatic tumor with heterogeneous clinical behaviors including maturation, regression, and aggressive growth. Despite recent progress in therapeutic strategies against advanced NBL, long-term outcomes still remain very poor. The prediction of cancer prognosis is one of the most urgent demands to initiate the suitable treatment of NBL. Recent papers have demonstrated that cancers can be diagnosed on the basis of gene expression profiling. We have been proceeded NBL cDNA project to collect a large number of genes expressed in NBLs, to identify the genes differentially expressed between favorable and unfavorable NBLs, and to make an NBL-proper cDNA chip for large-scale analysis of NBL tumors. Computational analysis of gene expression data in NBLs identified many prognosis-related genes and provided a classifier to predict the patient prognosis with high efficiency. Conversion of these findings into better diagnosis and treatment is now underway. Thus, molecular profiling of NBL has become a feasible tool for clinical applications.
Collapse
Affiliation(s)
- Miki Ohira
- Division of Biochemistry, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Scaruffi P, Valent A, Schramm A, Astrahantseff K, Eggert A, Tonini GP. Application of microarray-based technology to neuroblastoma. Cancer Lett 2005; 228:13-20. [PMID: 15951106 DOI: 10.1016/j.canlet.2005.01.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 01/12/2005] [Indexed: 11/28/2022]
Abstract
In the past decade, microarray technology has become a major tool for high-throughput comprehensive analysis of gene expression, genotyping and re-sequencing applications. High-throughput microarrays are used for expression profiling analyses with the aims of gene or pathway discovery, tumor subclassification or relapse risk assessment. The introduction of microarray CGH provides a powerful tool to precisely detect and quantify genomic aberrations and map these directly onto the human genome. This review summarizes the current status of the application of microarray technology to neuroblastoma research.
Collapse
Affiliation(s)
- Paola Scaruffi
- Unit of Translational Paediatric Oncology, National Institute for Cancer Research (IST), Genoa, Italy
| | | | | | | | | | | |
Collapse
|
40
|
White PS, Thompson PM, Gotoh T, Okawa ER, Igarashi J, Kok M, Winter C, Gregory SG, Hogarty MD, Maris JM, Brodeur GM. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene 2005; 24:2684-94. [PMID: 15829979 DOI: 10.1038/sj.onc.1208306] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Substantial genomic and functional evidence from primary tumors and cell lines indicates that a consistent region of distal chromosome 1p is deleted in a sizable proportion of human neuroblastomas, suggesting that this region contains one or more tumor suppressor genes. To determine systematically and precisely the location and extent of 1p deletion in neuroblastomas, we performed allelic loss studies of 737 primary neuroblastomas and genotype analysis of 46 neuroblastoma cell lines. Together, the results defined a single region within 1p36.3 that was consistently deleted in 25% of tumors and 87% of cell lines. Two neuroblastoma patients had constitutional deletions of distal 1p36 that overlapped the tumor-defined region. The tumor- and constitutionally-derived deletions together defined a smallest region of consistent deletion (SRD) between D1S2795 and D1S253. The 1p36.3 SRD was deleted in all but one of the 184 tumors with 1p deletion. Physical mapping and DNA sequencing determined that the SRD minimally spans an estimated 729 kb. Genomic content and sequence analysis of the SRD identified 15 characterized, nine uncharacterized, and six predicted genes in the region. The RNA expression profiles of 21 of the genes were investigated in a variety of normal tissues. The SHREW1 and KCNAB2 genes both had tissue-restricted expression patterns, including expression in the nervous system. In addition, a novel gene (CHD5) with strong homology to proteins involved in chromatin remodeling was expressed mainly in neural tissues. Together, these results suggest that one or more genes involved in neuroblastoma tumorigenesis or tumor progression are likely contained within this region.
Collapse
Affiliation(s)
- Peter S White
- Division of Oncology, The Children's Hospital of Philadelphia, 3516 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
de Ridder D, van der Linden CE, Schonewille T, Dik WA, Reinders MJT, van Dongen JJM, Staal FJT. Purity for clarity: the need for purification of tumor cells in DNA microarray studies. Leukemia 2005; 19:618-27. [PMID: 15744349 DOI: 10.1038/sj.leu.2403685] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is now well established that gene expression profiling using DNA microarrays can provide novel information about various types of hematological malignancies, which may lead to identification of novel diagnostic markers. However, to successfully use microarrays for this purpose, the quality and reproducibility of the procedure need to be guaranteed. The quality of microarray analyses may be severely reduced, if variable frequencies of nontarget cells are present in the starting material. To systematically investigate the influence of different types of impurity, we determined gene expression profiles of leukemic samples containing different percentages of nonleukemic leukocytes. Furthermore, we used computer simulations to study the effect of different kinds of impurity as an alternative to conducting hundreds of microarray experiments on samples with various levels of purity. As expected, the percentage of erroneously identified genes rose with the increase of contaminating nontarget cells in the samples. The simulations demonstrated that a tumor load of less than 75% can lead to up to 25% erroneously identified genes. A tumor load of at least 90% leads to identification of at most 5% false-positive genes. We therefore propose that in order to draw well-founded conclusions, the percentage of target cells in microarray experiment samples should be at least 90%.
Collapse
Affiliation(s)
- D de Ridder
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Song SW, Fuller GN, Zheng H, Zhang W. Inactivation of the Invasion Inhibitory Gene IIp45 by Alternative Splicing in Gliomas. Cancer Res 2005; 65:3562-7. [PMID: 15867349 DOI: 10.1158/0008-5472.can-04-3392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The invasion inhibitory protein 45 (IIp45) we recently identified was underexpressed in glioblastoma multiforme, the most malignant form of glioma. The IIp45 gene is located at chromosome 1p36 where frequent deletions have been reported in various types of tumors, including gliomas, raising the possibility that IIp45 may be a classic tumor suppressor gene that can be inactivated by frequent point mutations. To test this hypothesis, we sequenced the IIp45 gene in 59 diffuse glioma samples of different grades and histologic subtypes and identified a possible point mutation or a rare polymorphism in only one sample (1.7%), suggesting that IIp45 is not a classic tumor suppressor gene such as p53. Instead, reverse transcription-PCR and subsequent sequencing results revealed a tumor-specific IIp45 spliced isoform (IIp45S) in 20 of 59 (34%) gliomas examined, particularly in glioblastoma multiformes, including native tissue samples (15 of 25; 60%) and cell lines (5 of 5; 100%). The alternative splicing event is independent of 1p36 deletion, which is not common in glioblastoma multiforme. The IIp45S transcript was not detected in any of 18 normal organs, including fetal and adult brain. We determined that the IIp45S isoform results from exclusion of IIp45 exon 7 and encodes a variant protein that carries a COOH terminus different from that of IIp45 due to a frame-shift mutation. IIp45S protein was undetectable in glioma tissues, although IIp45S mRNA was prevalent. We found that IIp45S, once translated, is rapidly degraded by an ubiquitin-proteasome mechanism. Thus, the IIp45 gene is inactivated by a tumor-specific alternative splicing that generates an aberrant and unstable IIp45 isoform in infiltrative gliomas.
Collapse
Affiliation(s)
- Sonya W Song
- Department of Pathology and Brain Tumor Center, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
43
|
Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, Eichmann A, Bikfalvi A. Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci U S A 2005; 102:1643-8. [PMID: 15665100 PMCID: PMC547849 DOI: 10.1073/pnas.0408622102] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Experimental in vivo tumor models are essential for comprehending the dynamic process of human cancer progression, identifying therapeutic targets, and evaluating antitumor drugs. However, current rodent models are limited by high costs, long experimental duration, variability, restricted accessibility to the tumor, and major ethical concerns. To avoid these shortcomings, we investigated whether tumor growth on the chick chorio-allantoic membrane after human glioblastoma cell grafting would replicate characteristics of the human disease. Avascular tumors consistently formed within 2 days, then progressed through vascular endothelial growth factor receptor 2-dependent angiogenesis, associated with hemorrhage, necrosis, and peritumoral edema. Blocking of vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor signaling pathways by using small-molecule receptor tyrosine kinase inhibitors abrogated tumor development. Gene regulation during the angiogenic switch was analyzed by oligonucleotide microarrays. Defined sample selection for gene profiling permitted identification of regulated genes whose functions are associated mainly with tumor vascularization and growth. Furthermore, expression of known tumor progression genes identified in the screen (IL-6 and cysteine-rich angiogenic inducer 61) as well as potential regulators (lumican and F-box-only 6) follow similar patterns in patient glioma. The model reliably simulates key features of human glioma growth in a few days and thus could considerably increase the speed and efficacy of research on human tumor progression and preclinical drug screening.
Collapse
Affiliation(s)
- Martin Hagedorn
- Institut National de la Santé et de la Recherche Médicale E0113, Molecular Mechanisms of Angiogenesis, University Bordeaux I, Avenue des Facultés, 33405 Talence, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Dauphinot L, Lyle R, Rivals I, Dang MT, Moldrich RX, Golfier G, Ettwiller L, Toyama K, Rossier J, Personnaz L, Antonarakis SE, Epstein CJ, Sinet PM, Potier MC. The cerebellar transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model for Down syndrome. Hum Mol Genet 2004; 14:373-84. [PMID: 15590701 DOI: 10.1093/hmg/ddi033] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The central nervous system of persons with Down syndrome presents cytoarchitectural abnormalities that likely result from gene-dosage effects affecting the expression of key developmental genes. To test this hypothesis, we have investigated the transcriptome of the cerebellum of the Ts1Cje mouse model of Down syndrome during postnatal development using microarrays and quantitative PCR (qPCR). Genes present in three copies were consistently overexpressed, with a mean ratio relative to euploid of 1.52 as determined by qPCR. Out of 63 three-copy genes tested, only five, nine and seven genes had ratios >2 or <1.2 at postnatal days 0 (P0), P15 and P30, respectively. This gene-dosage effect was associated with a dysregulation of the expression of some two-copy genes. Out of 8258 genes examined, the Ts1Cje/euploid ratios differed significantly from 1.0 for 406 (80 and 154 with ratios above 1.5 and below 0.7, respectively), 333 (11 above 1.5 and 55 below 0.7) and 246 genes (59 above 1.5 and 69 below 0.7) at P0, P15 and P30, respectively. Among the two-copy genes differentially expressed in the trisomic cerebellum, six homeobox genes, two belonging to the Notch pathway, were severely repressed. Overall, at P0, transcripts involved in cell differentiation and development were over-represented among the dysregulated genes, suggesting that cell differentiation and migration might be more altered than cell proliferation. Finally, global gene profiling revealed that transcription in Ts1Cje mice is more affected by the developmental changes than by the trisomic state, and that there is no apparent detectable delay in the postnatal development of the cerebellum of Ts1Cje mice.
Collapse
Affiliation(s)
- L Dauphinot
- Unité Mixte de Recherche 7637, Centre National de la Recherche Scientifique, Ecole Supérieure de Physique et de Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|