1
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
2
|
Regulation of Metastasis in Ewing Sarcoma. Cancers (Basel) 2022; 14:cancers14194902. [PMID: 36230825 PMCID: PMC9563756 DOI: 10.3390/cancers14194902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Ewing sarcoma (EwS) is a type of bone and soft tissue tumor in children and adolescents. Over 85% of cases are caused by the expression of fusion protein EWSR1-FLI1 generated by chromosome translocation. Acting as a potent chimeric oncoprotein, EWSR1-FLI1 binds to chromatin, changes the epigenetic states, and thus alters the expression of a large set of genes. Several studies have revealed that the expression level of EWSR1-FLI1 is variable and dynamic within and across different EwS cell lines and primary tumors, leading to tumoral heterogeneity. Cells with high EWSR1-FLI1 expression (EWSR1-FLI1-high) proliferate in an exponential manner, whereas cells with low EWSR1-FLI1 expression (EWSR1-FLI1-low) tend to have a strong propensity to migrate, invade, and metastasize. Metastasis is the leading cause of cancer-related deaths. The continuous evolution of EwS research has revealed some of the molecular underpinnings of this dissemination process. In this review, we discuss the molecular signatures that contribute to metastasis.
Collapse
|
3
|
Ubiquitous Neural Cell Adhesion Molecule (NCAM): Potential Mechanism and Valorisation in Cancer Pathophysiology, Drug Targeting and Molecular Transductions. Mol Neurobiol 2022; 59:5902-5924. [PMID: 35831555 DOI: 10.1007/s12035-022-02954-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Neural cell adhesion molecule, an integrated molecule of immunoglobulin protein superfamily involved in cell-cell adhesion, undergoes various structural modifications through numerous temporal-spatial regulations that generously alter their expressions on cell surfaces. These varied expression patterns are mostly envisioned in the morphogenesis and innervations of different human organs and systems. The considerable role of NCAM in neurite growth, brain development and etc. and its altered expression of NCAM in proliferating tumour cells and metastasis of various human melanomas clearly substantiate its appropriateness as a cell surface marker for diagnosis and potential target for several therapeutic moieties. This characteristic behaviour of NCAM is confined to its novel biochemistry, structural properties, signalling interactions and polysialylation. In particular, the characteristic expressions of NCAM are mainly attributed by its polysialylation, a post-translational modification that attaches polysialyl groups to the NCAM. The altered expression of NCAM on cell surface develops curiosity amidst pharmaceutical scientists, which drives them to understand its role of such expressions in various human melanomas and to elucidate the promising therapeutic strategies that are currently available to target NCAM appositely. Therefore, this review article is articulated with an insight on the altered expressions of NCAM, the clinical significances and the consequences of such atypical expression patterns in various human organs and systems.
Collapse
|
4
|
Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, Hardes J, Hartmann W, Kovar H, Metzler M, Shulman DS, Streitbürger A, Timmermann B, Toretsky JA, Uhlenbruch Y, Vieth V, Grünewald TGP, Dirksen U. Ewing Sarcoma-Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J Clin Med 2021; 10:1685. [PMID: 33919988 PMCID: PMC8071040 DOI: 10.3390/jcm10081685] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ewing sarcoma, a highly aggressive bone and soft-tissue cancer, is considered a prime example of the paradigms of a translocation-positive sarcoma: a genetically rather simple disease with a specific and neomorphic-potential therapeutic target, whose oncogenic role was irrefutably defined decades ago. This is a disease that by definition has micrometastatic disease at diagnosis and a dismal prognosis for patients with macrometastatic or recurrent disease. International collaborations have defined the current standard of care in prospective studies, delivering multiple cycles of systemic therapy combined with local treatment; both are associated with significant morbidity that may result in strong psychological and physical burden for survivors. Nevertheless, the combination of non-directed chemotherapeutics and ever-evolving local modalities nowadays achieve a realistic chance of cure for the majority of patients with Ewing sarcoma. In this review, we focus on the current standard of diagnosis and treatment while attempting to answer some of the most pressing questions in clinical practice. In addition, this review provides scientific answers to clinical phenomena and occasionally defines the resulting translational studies needed to overcome the hurdle of treatment-associated morbidities and, most importantly, non-survival.
Collapse
Affiliation(s)
- Stefan K. Zöllner
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| | - James F. Amatruda
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
| | - Sebastian Bauer
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, Sarcoma Center, University Hospital Essen, 45147 Essen, Germany
| | - Stéphane Collaud
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Thoracic Surgery, Ruhrlandklinik, University of Essen-Duisburg, 45239 Essen, Germany
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IbiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBERONC, 41013 Seville, Spain;
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Jendrik Hardes
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany;
- West German Cancer Center (WTZ), Network Partner Site, University Hospital Münster, 48149 Münster, Germany
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute and Medical University Vienna, 1090 Vienna, Austria;
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Arne Streitbürger
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Beate Timmermann
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre, 45147 Essen, Germany
| | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA;
| | - Yasmin Uhlenbruch
- St. Josefs Hospital Bochum, University Hospital, 44791 Bochum, Germany;
| | - Volker Vieth
- Department of Radiology, Klinikum Ibbenbüren, 49477 Ibbenbühren, Germany;
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, Hopp-Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center, 69120 Heidelberg, Germany
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
5
|
McCann TS, Parrish JK, Hsieh J, Sechler M, Sobral LM, Self C, Jones KL, Goodspeed A, Costello JC, Jedlicka P. KDM5A and PHF2 positively control expression of pro-metastatic genes repressed by EWS/Fli1, and promote growth and metastatic properties in Ewing sarcoma. Oncotarget 2020; 11:3818-3831. [PMID: 33196691 PMCID: PMC7597412 DOI: 10.18632/oncotarget.27737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Ewing sarcoma is an aggressive malignant neoplasm with high propensity for metastasis and poor clinical outcomes. The EWS/Fli1 oncofusion is the disease driver in > 90% of cases, but presents a difficult therapeutic target. Moreover, EWS/Fli1 plays a complex role in disease progression, with inhibitory effects on critical steps of metastasis. Like many other pediatric cancers, Ewing sarcoma is a disease marked by epigenetic dysregulation. Epigenetic mechanisms present alternative targeting opportunities, but their contributions to Ewing sarcoma metastasis and disease progression remain poorly understood. Here, we show that the epigenetic regulators KDM5A and PHF2 promote growth and metastatic properties in Ewing sarcoma, and, strikingly, activate expression many pro-metastatic genes repressed by EWS/Fli1. These genes include L1CAM, which is associated with adverse outcomes in Ewing sarcoma, and promotes migratory and invasive properties. KDM5A and PHF2 retain their growth promoting effects in more metastatically potent EWS/Fli1low cells, and PHF2 promotes both invasion and L1CAM expression in this cell population. Furthermore, KDM5A and PHF2 each contribute to the increased metastatic potency of EWS/Fli1low cells in vivo. Together, these studies identify KDM5A and PHF2 as novel disease-promoting factors, and potential new targets, in Ewing sarcoma, including the more metastatically potent EWS/Fli1low cell population.
Collapse
Affiliation(s)
- Tyler S McCann
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Janet K Parrish
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph Hsieh
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Medical Scientist Training Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Cancer Biology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Marybeth Sechler
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Cancer Biology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Lays M Sobral
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Chelsea Self
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
| | - Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Medical Scientist Training Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Cancer Biology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Chen Y, Hesla AC, Lin Y, Ghaderi M, Liu M, Yang C, Zhang Y, Tsagkozis P, Larsson O, Haglund F. Transcriptome profiling of Ewing sarcomas - treatment resistance pathways and IGF-dependency. Mol Oncol 2020; 14:1101-1117. [PMID: 32115849 PMCID: PMC7191197 DOI: 10.1002/1878-0261.12655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 11/06/2022] Open
Abstract
Ewing sarcomas (ESs) are aggressive sarcomas driven by EWS fusion genes. We sought to investigate whether whole-transcriptome sequencing (RNA-seq) could be used to detect patterns associated with chemotherapy response or tumor progression after first-line treatment. Transcriptome sequencing (RNA-seq) of 13 ES cases was performed. Among the differentially expressed pathways, we identified IGF2 expression as a potential driver of chemotherapy response and progression. We investigated the effect of IGF2 on proliferation, radioresistance, apoptosis, and the transcriptome pattern in four ES cell lines and the effect of IGF2 expression in a validation series of 14 patients. Transcriptome analysis identified differentially expressed genes (adj. P < 0.005) and pathways associated with chemotherapy response (285 genes), short overall survival (662 genes), and progression after treatment (447 genes). Imprinting independent promoter P3-mediated IGF2 expression was identified in a subset of cases with aggressive clinical course. In ES cell lines, IGF2 induced proliferation, but promoted radioresistance only in CADO cells. High IGF2 expression was also significantly associated with shorter overall survival in patients with ES. Transcriptome analysis of the clinical samples and the cell lines revealed an IGF-dependent signature, potentially related to a stem cell-like phenotype. Transcriptome analysis is a potentially powerful complementary tool to predict the clinical behavior of ES and may be utilized for clinical trial stratification strategies and personalized oncology. Certain gene signatures, for example, IGF-related pathways, are coupled to biological functions that could be of clinical importance. Finally, our results indicate that IGF inhibition may be successful as a first-line therapy in conjunction with conventional radiochemotherapy for a subset of patients.
Collapse
Affiliation(s)
- Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Asle C Hesla
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Orthopedic Surgery, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mehran Ghaderi
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mingzhi Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Chen Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yifan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Panagiotis Tsagkozis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Orthopedic Surgery, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology and Cytology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology and Cytology, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
7
|
Tian YN, Chen HD, Tian CQ, Wang YQ, Miao ZH. Polymerase independent repression of FoxO1 transcription by sequence-specific PARP1 binding to FoxO1 promoter. Cell Death Dis 2020; 11:71. [PMID: 31992690 PMCID: PMC6987093 DOI: 10.1038/s41419-020-2265-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) regulates gene transcription in addition to functioning as a DNA repair factor. Forkhead box O1 (FoxO1) is a transcription factor involved in extensive biological processes. Here, we report that PARP1 binds to two separate motifs on the FoxO1 promoter and represses its transcription in a polymerase-independent manner. Using PARP1-knock out (KO) cells, wild-type-PARP1-complemented cells and catalytic mutant PARP1E988K-reconstituted cells, we investigated transcriptional regulation by PARP1. PARP1 loss led to reduced DNA damage response and ~362-fold resistance to five PARP inhibitors (PARPis) in Ewing sarcoma cells. RNA sequencing showed 492 differentially expressed genes in a PARP1-KO subline, in which the FoxO1 mRNA levels increased up to more than five times. The change in the FoxO1 expression was confirmed at both mRNA and protein levels in different PARP1-KO and complemented cells. Moreover, exogenous PARP1 overexpression reduced the endogenous FoxO1 protein in RD-ES cells. Competitive EMSA and ChIP assays revealed that PARP1 specifically bound to the FoxO1 promoter. DNase I footprinting, mutation analyses, and DNA pulldown FREP assays showed that PARP1 bound to two particular nucleotide sequences separately located at −813 to −826 bp and −1805 to −1828 bp regions on the FoxO1 promoter. Either the PARPi olaparib or the PARP1 catalytic mutation (E988K) did not impair the repression of PARP1 on the FoxO1 expression. Exogenous FoxO1 overexpression did not impair cellular PARPi sensitivity. These findings demonstrate a new PARP1-gene promoter binding mode and a new transcriptional FoxO1 gene repressor.
Collapse
Affiliation(s)
- Yu-Nan Tian
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hua-Dong Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Chang-Qing Tian
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ying-Qing Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China. .,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
8
|
Huang J, Wu M, Lu F, Ou-Yang L, Zhu Z. Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization. BMC Bioinformatics 2019; 20:657. [PMID: 31870274 PMCID: PMC6929405 DOI: 10.1186/s12859-019-3197-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Synthetic lethality has attracted a lot of attentions in cancer therapeutics due to its utility in identifying new anticancer drug targets. Identifying synthetic lethal (SL) interactions is the key step towards the exploration of synthetic lethality in cancer treatment. However, biological experiments are faced with many challenges when identifying synthetic lethal interactions. Thus, it is necessary to develop computational methods which could serve as useful complements to biological experiments. RESULTS In this paper, we propose a novel graph regularized self-representative matrix factorization (GRSMF) algorithm for synthetic lethal interaction prediction. GRSMF first learns the self-representations from the known SL interactions and further integrates the functional similarities among genes derived from Gene Ontology (GO). It can then effectively predict potential SL interactions by leveraging the information provided by known SL interactions and functional annotations of genes. Extensive experiments on the synthetic lethal interaction data downloaded from SynLethDB database demonstrate the superiority of our GRSMF in predicting potential synthetic lethal interactions, compared with other competing methods. Moreover, case studies of novel interactions are conducted in this paper for further evaluating the effectiveness of GRSMF in synthetic lethal interaction prediction. CONCLUSIONS In this paper, we demonstrate that by adaptively exploiting the self-representation of original SL interaction data, and utilizing functional similarities among genes to enhance the learning of self-representation matrix, our GRSMF could predict potential SL interactions more accurately than other state-of-the-art SL interaction prediction methods.
Collapse
Affiliation(s)
- Jiang Huang
- College of Computer Science and Software Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen, 518060, China
| | - Min Wu
- Institute for Infocomm Research (I2R), A*STAR, 1 Fusionopolis Way, Singapore, Singapore
| | - Fan Lu
- Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security, College of Electronics and Information Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen, 518060, China
| | - Le Ou-Yang
- Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security, College of Electronics and Information Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen, 518060, China. .,Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.
| | - Zexuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen, 518060, China.
| |
Collapse
|
9
|
Deng Y, Xie Q, Zhang G, Li S, Wu Z, Ma Z, He X, Gao Y, Wang Y, Kang X, Wang J. Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma. Oncol Lett 2019; 18:6431-6442. [PMID: 31807166 PMCID: PMC6876326 DOI: 10.3892/ol.2019.11044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022] Open
Abstract
Ewing's sarcoma (ES) is a common malignant bone tumor in children and adolescents. Although great efforts have been made to understand the pathogenesis and development of ES, the underlying molecular mechanism remains unclear. The present study aimed to identify new key genes as potential biomarkers for the diagnosis, targeted therapy or prognosis of ES. mRNA expression profile chip data sets GSE17674, GSE17679 and GSE45544 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened using the R software limma package, and functional and pathway enrichment analyses were performed using the enrichplot package and GSEA software. The NetworkAnalyst online tool, as well as Cytoscape and its plug-ins cytoHubba and NetworkAnalyzer, were used to construct a protein-protein interaction network (PPI) and conduct module analysis to screen key (hub) genes. LABSO COX regression and overall survival (OS) analysis of the Hub genes were performed. A total of 211 DEGs were obtained by integrating and analyzing the three data sets. The functions and pathways of the DEGs were mainly associated with the regulation of small-molecule metabolic processes, cofactor-binding, amino acid, proteasome and ribosome biosynthesis in eukaryotes, as well as the Rac1, cell cycle and P53 signaling pathways. A total of one important module and 20 hub genes were screened from the PPI network using the Maximum Correlation Criteria algorithm of cytoHubba. LASSO COX regression results revealed that titin (TTN), fast skeletal muscle troponin T, skeletal muscle actin α-actin, nebulin, troponin C type 2 (fast), myosin light-chain 3 (MYL3), slow skeletal muscle troponin T (TNNT1), myosin-binding protein C1 slow-type, tropomyosin 3 and myosin heavy-chain 7 were associated with prognosis in patients with ES. The Kaplan-Meier curves demonstrated that high mRNA expression levels of TNNT1 (P<0.001), TTN (P=0.049), titin-cap (P=0.04), tropomodulin 1 (P=0.011), troponin I2 fast skeletal type (P=0.021) and MYL3 (P=0.017) were associated with poor OS in patients with ES. In conclusion, the DEGs identified in the present study may be key genes in the pathogenesis of ES, three of which, namely TNNT1, TTN and MYL3, may be potential prognostic biomarkers for ES.
Collapse
Affiliation(s)
- Yajun Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Qiqi Xie
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Shaoping Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zuolong Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhanjun Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yicheng Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jing Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
10
|
Imatinib revives the therapeutic potential of metformin on ewing sarcoma by attenuating tumor hypoxic response and inhibiting convergent signaling pathways. Cancer Lett 2019; 469:195-206. [PMID: 31672491 DOI: 10.1016/j.canlet.2019.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Ewing sarcoma (EwS) is an aggressive pediatric tumor treated with intensive cytotoxic chemotherapies. Overall survival for metastatic or relapsed disease is only 20-30%. Metformin has long been an attractive therapeutic option for EwS, but hypoxia limits its efficacy. Through a systematic integration of drug combination screening, bioinformatics analyses, functional and in vivo studies, and correlation with clinical outcome, we identified another known drug, imatinib that could augment the in vivo anti-tumor capacity of metformin by attenuating tumor hypoxic response. This drug combination regimen widely suppressed multiple dominant mechanisms in EwS genesis, growth, and metastasis, including key EWS-FLI1 downstream targets that converge into the PI3K/AKT/mTOR signaling pathway. In addition, the combination significantly enhanced inhibition on tumor cell proliferation by standard EwS chemotherapy drugs, including cyclophosphamide and ifosfamide. This suggests a potential clinical benefit of the metformin/imatinib combination by allowing the reduction in dose intensity of standard chemotherapy without compromising survival outcome and represents a potential faster track application for EwS patients.
Collapse
|
11
|
Selvanathan S, Graham G, Grego A, Baker T, Hogg J, Simpson M, Batish M, Crompton B, Stegmaier K, Tomazou E, Kovar H, Üren A, Toretsky J. EWS-FLI1 modulated alternative splicing of ARID1A reveals novel oncogenic function through the BAF complex. Nucleic Acids Res 2019; 47:9619-9636. [PMID: 31392992 PMCID: PMC6765149 DOI: 10.1093/nar/gkz699] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Connections between epigenetic reprogramming and transcription or splicing create novel mechanistic networks that can be targeted with tailored therapies. Multiple subunits of the chromatin remodeling BAF complex, including ARID1A, play a role in oncogenesis, either as tumor suppressors or oncogenes. Recent work demonstrated that EWS-FLI1, the oncogenic driver of Ewing sarcoma (ES), plays a role in chromatin regulation through interactions with the BAF complex. However, the specific BAF subunits that interact with EWS-FLI1 and the precise role of the BAF complex in ES oncogenesis remain unknown. In addition to regulating transcription, EWS-FLI1 also alters the splicing of many mRNA isoforms, but the role of splicing modulation in ES oncogenesis is not well understood. We have identified a direct connection between the EWS-FLI1 protein and ARID1A isoform protein variant ARID1A-L. We demonstrate here that ARID1A-L is critical for ES maintenance and supports oncogenic transformation. We further report a novel feed-forward cycle in which EWS-FLI1 leads to preferential splicing of ARID1A-L, promoting ES growth, and ARID1A-L reciprocally promotes EWS-FLI1 protein stability. Dissecting this interaction may lead to improved cancer-specific drug targeting.
Collapse
Affiliation(s)
- Saravana P Selvanathan
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | - Garrett T Graham
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | - Alexander R Grego
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | | | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Simpson
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, Newark, NJ 07103, USA
| | - Mona Batish
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, Newark, NJ 07103, USA
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Brian Crompton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Eleni M Tomazou
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Aykut Üren
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
12
|
Jiang L, Tolani B, Yeh CC, Fan Y, Reza JA, Horvai AE, Xia E, Kratz JR, Jablons DM, Mann MJ. Differential gene expression identifies KRT7 and MUC1 as potential metastasis-specific targets in sarcoma. Cancer Manag Res 2019; 11:8209-8218. [PMID: 31686913 PMCID: PMC6751227 DOI: 10.2147/cmar.s218676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/07/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite numerous discoveries regarding the molecular genesis and progression of primary cancers, the biology of metastasis remains poorly understood. Compared to very large numbers of circulating tumor cells that are now known to accompany nearly all cancers, a relatively limited number of lesions actually develop in most patients with metastases. We hypothesized that phenotypic changes driven by differential gene expression in a finite subpopulation of tumor cells render those cells capable of metastasis and sought to identify key pathways through analysis of gene expression in primary and metastatic lesions from the same patients. METHODS We compared whole-genome expression in 4 matched samples of primary and metastatic sarcoma, then evaluated candidate genes with differential expression via quantitative PCR in 30 additional matched sets, tumor tissue immunostaining, siRNA loss-of-function in a sarcoma cell migration assay, and clinical correlation with overall and disease-free survival after metastasectomy. RESULTS Comparison of microarray signals identified differential expression of cell adhesion genes, including upregulation of KRT7 and MUC1 in metastases; KRT7 and MUC1 upregulation was confirmed in 22 (73%) and 20 (67%) matched sets of metastatic/primary tumors, respectively. Silencing of KRT7 and MUC1 via targeted siRNAs suppressed sarcoma cell migration in vitro, and a significant correlation (two-sided) was observed between both KRT7 and MUC1 expression in metastases and overall patient survival. CONCLUSION KRT7 and MUC1 may play a significant role in enabling sarcoma metastasis, and they may therefore be important prognostic biomarkers as well as potential targets for therapeutic prevention of metastasis.
Collapse
Affiliation(s)
- Long Jiang
- Thoracic Oncology Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Bhairavi Tolani
- Thoracic Oncology Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Che-Chung Yeh
- Thoracic Oncology Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Yanying Fan
- Thoracic Oncology Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Joseph A Reza
- Thoracic Oncology Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Andrew E Horvai
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Endi Xia
- Thoracic Oncology Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Johannes R Kratz
- Thoracic Oncology Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - David M Jablons
- Thoracic Oncology Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Michael J Mann
- Thoracic Oncology Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| |
Collapse
|
13
|
Pishas KI, Lessnick SL. Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation. Oncotarget 2018; 9:36413-36429. [PMID: 30559927 PMCID: PMC6284858 DOI: 10.18632/oncotarget.26326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/28/2018] [Indexed: 12/26/2022] Open
Abstract
Ewing sarcoma is the second most common solid bone malignancy diagnosed in pediatric and young adolescent populations. Despite global co-operative efforts, outcomes for patients with relapsed and refractory disease remains obstinately poor. It has become increasingly clear that disruption of the epigenome as a result of alterations in epigenetic regulators, plays a pivotal role in tumorigenesis. As such, this study investigated Ewing sarcoma mechanisms of acquired resistance to the small molecule reversible lysine specific demethylase (LSD1/KDM1A) inhibitor SP-2509. Surprisingly, whole exome sequencing analysis of our generated A673 SP-2509 drug resistant cell line revealed an absence of mutations in KDM1A. Compared to parental counterparts, SP-2509 drug resistant cells demonstrated decreased anchorage independent growth capacity, enhanced sensitivity to the HDAC inhibitors vorinostat/entinostat and a distinct transcriptional profile that was enriched for extracellular matrix proteins. SP-2509 drug resistant cells also exhibited elevated expression levels of the multi-drug resistance genes ABCB1, ABCC3, and ABBC5 and decreased expression of the transcriptional repressor RCOR1/CoREST. Following several months of SP-2509 withdrawal, low level SP-2509 resistance was still apparent (6.3 fold increase in IC50), with drug resistant cell populations maintaining their distinct transcriptional profile. Furthermore, compared to parental cells, washout drug resistant lines displayed equal sensitivity to the standard Ewing sarcoma chemotherapeutic agent's vincristine and doxorubicin. Together these findings indicate that resistance to SP-2509 is not fully reversible or driven by direct mutation in KDM1A.
Collapse
Affiliation(s)
- Kathleen I. Pishas
- Cancer Therapeutics Laboratory, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Stephen L. Lessnick
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Pishas KI, Drenberg CD, Taslim C, Theisen ER, Johnson KM, Saund RS, Pop IL, Crompton BD, Lawlor ER, Tirode F, Mora J, Delattre O, Beckerle MC, Callen DF, Sharma S, Lessnick SL. Therapeutic Targeting of KDM1A/LSD1 in Ewing Sarcoma with SP-2509 Engages the Endoplasmic Reticulum Stress Response. Mol Cancer Ther 2018; 17:1902-1916. [PMID: 29997151 DOI: 10.1158/1535-7163.mct-18-0373] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/15/2018] [Accepted: 07/02/2018] [Indexed: 11/16/2022]
Abstract
Multi-agent chemotherapeutic regimes remain the cornerstone treatment for Ewing sarcoma, the second most common bone malignancy diagnosed in pediatric and young adolescent populations. We have reached a therapeutic ceiling with conventional cytotoxic agents, highlighting the need to adopt novel approaches that specifically target the drivers of Ewing sarcoma oncogenesis. As KDM1A/lysine-specific demethylase 1 (LSD1) is highly expressed in Ewing sarcoma cell lines and tumors, with elevated expression levels associated with worse overall survival (P = 0.033), this study has examined biomarkers of sensitivity and mechanisms of cytotoxicity to targeted KDM1A inhibition using SP-2509 (reversible KDM1A inhibitor). We report, that innate resistance to SP-2509 was not observed in our Ewing sarcoma cell line cohort (n = 17; IC50 range, 81 -1,593 nmol/L), in contrast resistance to the next-generation KDM1A irreversible inhibitor GSK-LSD1 was observed across multiple cell lines (IC50 > 300 μmol/L). Although TP53/STAG2/CDKN2A status and basal KDM1A mRNA and protein levels did not correlate with SP-2509 response, induction of KDM1B following SP-2509 treatment was strongly associated with SP-2509 hypersensitivity. We show that the transcriptional profile driven by SP-2509 strongly mirrors KDM1A genetic depletion. Mechanistically, RNA-seq analysis revealed that SP-2509 imparts robust apoptosis through engagement of the endoplasmic reticulum stress pathway. In addition, ETS1/HIST1H2BM were specifically induced/repressed, respectively following SP-2509 treatment only in our hypersensitive cell lines. Together, our findings provide key insights into the mechanisms of SP-2509 cytotoxicity as well as biomarkers that can be used to predict KDM1A inhibitor sensitivity in Ewing sarcoma. Mol Cancer Ther; 17(9); 1902-16. ©2018 AACR.
Collapse
Affiliation(s)
- Kathleen I Pishas
- Cancer Therapeutics Laboratory, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Christina D Drenberg
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Emily R Theisen
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kirsten M Johnson
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ranajeet S Saund
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ioana L Pop
- Huntsman Cancer Institute, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Brian D Crompton
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Elizabeth R Lawlor
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Franck Tirode
- Univ Lyon, Universite Claude Bernard Lyon, Centre Leon Berard, Cancer Research Center of Lyon, Lyon, France
| | - Jaume Mora
- Department of Pediatric Hemato-Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Olivier Delattre
- Institut Curie, PSL Research University, Service de Genetique, Pole de Medecine Diagnostique et Theranostique, Unité de Génétique Somatique, Paris, France
| | - Mary C Beckerle
- Huntsman Cancer Institute, School of Medicine, University of Utah, Salt Lake City, Utah
| | - David F Callen
- Cancer Therapeutics Laboratory, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sunil Sharma
- TGen Clinical Sciences, Applied Cancer Research and Drug Discovery, Phoenix, Arizona
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio. .,Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Ohio State University, Columbus, Ohio
| |
Collapse
|
15
|
Tanabe Y, Suehara Y, Kohsaka S, Hayashi T, Akaike K, Mukaihara K, Kurihara T, Kim Y, Okubo T, Ishii M, Kazuno S, Kaneko K, Saito T. IRE1α-XBP1 inhibitors exerted anti-tumor activities in Ewing's sarcoma. Oncotarget 2018; 9:14428-14443. [PMID: 29581854 PMCID: PMC5865680 DOI: 10.18632/oncotarget.24467] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/03/2018] [Indexed: 02/02/2023] Open
Abstract
Ewing's sarcoma (ES) is the second-most frequent pediatric bone tumor. Chromosomal translocation t(11;22)(q24:q12) results in the formation of EWS/FLI1 gene fusion, which is detected in approximately 90% of tumors of the Ewing family. Several transcriptome studies have provided lists of genes associated with EWS/FLI1 expression. However, the protein expression profiles associated with EWS/FLI1 have yet to be elucidated. In this study, to identify the regulated proteins associated with EWS/FLI1 and therapeutic targets in ES, we conducted proteomic studies using EWS/FLI1 knockdown in four Ewing's sarcoma cell lines and human mesenchymal stem cells (hMSCs) expressing EWS/FLI1. Isobaric tags for relative and absolute quantitation (i-TRAQ) analyses identified more than 2,000 proteins regulated by the EWS/FLI1 fusion. In addition, the network analyses identified several critical pathways, including XBP1, which was ranked the highest. XBP1 is a protein well known to play an important role in the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress through the IRE1α-XBP1 pathway. We confirmed the high mRNA expression of XBP1 (spliced XBP1 and unspliced XBPl) in surgical samples and cell lines in ES. The silencing of XBP1 significantly suppressed the cell viabilities in ES cell lines. In the inhibitor assays using IRE1α-XBP1 inhibitors, including toyocamycin, we confirmed that these agents significantly suppressed the cell viabilities, leading to apoptosis in ES cells both in vitro and in vivo. Our findings suggested that IRE1α-XBP1 inhibitors might be useful for developing novel therapeutic strategies in ES.
Collapse
Affiliation(s)
- Yu Tanabe
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenta Mukaihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Taisei Kurihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Youngji Kim
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Taketo Okubo
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Midori Ishii
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazuo Kaneko
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
16
|
Luo W, Xu C, Ayello J, Dela Cruz F, Rosenblum JM, Lessnick SL, Cairo MS. Protein phosphatase 1 regulatory subunit 1A in ewing sarcoma tumorigenesis and metastasis. Oncogene 2017; 37:798-809. [PMID: 29059150 DOI: 10.1038/onc.2017.378] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Protein phosphatase inhibitors are often considered as tumor promoters. Protein phosphatase 1 regulatory subunit 1A (PPP1R1A) is a potent protein phosphatase 1 (PP1) inhibitor; however, its role in tumor development is largely undefined. Here we characterize, for the first time, the functions of PPP1R1A in Ewing sarcoma (ES) pathogenesis. We found that PPP1R1A is one of the top ranked target genes of EWS/FLI, the master regulator of ES, and is upregulated by EWS/FLI via a GGAA microsatellite enhancer element. Depletion of PPP1R1A resulted in a significant decrease in oncogenic transformation and cell migration in vitro as well as xenograft tumor growth and metastasis in an orthotopic mouse model. RNA-sequencing and functional annotation analyses revealed that PPP1R1A regulates genes associated with various cellular functions including cell junction, adhesion and neurogenesis. Interestingly, we found a significant overlap of PPP1R1A-regulated gene set with that of ZEB2 and EWS, which regulates metastasis and neuronal differentiation in ES, respectively. Further studies for characterization of the molecular mechanisms revealed that activation of PPP1R1A by PKA phosphorylation at Thr35, and subsequent PP1 binding and inhibition, was required for PPP1R1A-mediated tumorigenesis and metastasis, likely by increasing the phosphorylation levels of various PP1 substrates. Furthermore, we found that a PKA inhibitor impaired ES cell proliferation, tumor growth and metastasis, which was rescued by the constitutively active PPP1R1A. Together, these results offered new insights into the role and mechanism of PPP1R1A in tumor development and identified an important kinase and phosphatase pathway, PKA/PPP1R1A/PP1, in ES pathogenesis. Our findings strongly suggest a potential therapeutic value of inhibition of the PKA/PPP1R1A/PP1 pathway in the treatment of primary and metastatic ES.
Collapse
Affiliation(s)
- W Luo
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA.,Departments of Pathology, New York Medical College, Valhalla, NY, USA
| | - C Xu
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - J Ayello
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - F Dela Cruz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J M Rosenblum
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - S L Lessnick
- Nationwide Children's Hospital, Columbus, OH, USA
| | - M S Cairo
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA.,Departments of Pathology, New York Medical College, Valhalla, NY, USA.,Departments of Medicine, New York Medical College, Valhalla, NY, USA.,Departments of Immunology and Microbiology, New York Medical College, Valhalla, NY, USA.,Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
17
|
Zöllner SK, Selvanathan SP, Graham GT, Commins RMT, Hong SH, Moseley E, Parks S, Haladyna JN, Erkizan HV, Dirksen U, Hogarty MD, Üren A, Toretsky JA. Inhibition of the oncogenic fusion protein EWS-FLI1 causes G 2-M cell cycle arrest and enhanced vincristine sensitivity in Ewing's sarcoma. Sci Signal 2017; 10:10/499/eaam8429. [PMID: 28974650 DOI: 10.1126/scisignal.aam8429] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ewing's sarcoma (ES) is a rare and highly malignant cancer that grows in the bones or surrounding tissues mostly affecting adolescents and young adults. A chimeric fusion between the RNA binding protein EWS and the ETS family transcription factor FLI1 (EWS-FLI1), which is generated from a chromosomal translocation, is implicated in driving most ES cases by modulation of transcription and alternative splicing. The small-molecule YK-4-279 inhibits EWS-FLI1 function and induces apoptosis in ES cells. We aimed to identify both the underlying mechanism of the drug and potential combination therapies that might enhance its antitumor activity. We tested 69 anticancer drugs in combination with YK-4-279 and found that vinca alkaloids exhibited synergy with YK-4-279 in five ES cell lines. The combination of YK-4-279 and vincristine reduced tumor burden and increased survival in mice bearing ES xenografts. We determined that independent drug-induced events converged to cause this synergistic therapeutic effect. YK-4-279 rapidly induced G2-M arrest, increased the abundance of cyclin B1, and decreased EWS-FLI1-mediated generation of microtubule-associated proteins, which rendered cells more susceptible to microtubule depolymerization by vincristine. YK-4-279 reduced the expression of the EWS-FLI1 target gene encoding the ubiquitin ligase UBE2C, which, in part, contributed to the increase in cyclin B1. YK-4-279 also increased the abundance of proapoptotic isoforms of MCL1 and BCL2, presumably through inhibition of alternative splicing by EWS-FLI1, thus promoting cell death in response to vincristine. Thus, a combination of vincristine and YK-4-279 might be therapeutically effective in ES patients.
Collapse
Affiliation(s)
- Stefan K Zöllner
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.,Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Saravana P Selvanathan
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Garrett T Graham
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Ryan M T Commins
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Sung Hyeok Hong
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Eric Moseley
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Sydney Parks
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Jessica N Haladyna
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Hayriye V Erkizan
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Colket Translational Research Building, Room 3020, 3501 Civic Center Boulevard, Philadelphia, PA 19014, USA
| | - Aykut Üren
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - Jeffrey A Toretsky
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.
| |
Collapse
|
18
|
Oberg JA, Glade Bender JL, Sulis ML, Pendrick D, Sireci AN, Hsiao SJ, Turk AT, Dela Cruz FS, Hibshoosh H, Remotti H, Zylber RJ, Pang J, Diolaiti D, Koval C, Andrews SJ, Garvin JH, Yamashiro DJ, Chung WK, Emerson SG, Nagy PL, Mansukhani MM, Kung AL. Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med 2016; 8:133. [PMID: 28007021 PMCID: PMC5180407 DOI: 10.1186/s13073-016-0389-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular characterization has the potential to advance the management of pediatric cancer and high-risk hematologic disease. The clinical integration of genome sequencing into standard clinical practice has been limited and the potential utility of genome sequencing to identify clinically impactful information beyond targetable alterations has been underestimated. METHODS The Precision in Pediatric Sequencing (PIPseq) Program at Columbia University Medical Center instituted prospective clinical next generation sequencing (NGS) for pediatric cancer and hematologic disorders at risk for treatment failure. We performed cancer whole exome sequencing (WES) of patient-matched tumor-normal samples and RNA sequencing (RNA-seq) of tumor to identify sequence variants, fusion transcripts, relative gene expression, and copy number variation (CNV). A directed cancer gene panel assay was used when sample adequacy was a concern. Constitutional WES of patients and parents was performed when a constitutionally encoded disease was suspected. Results were initially reviewed by a molecular pathologist and subsequently by a multi-disciplinary molecular tumor board. Clinical reports were issued to the ordering physician and posted to the patient's electronic medical record. RESULTS NGS was performed on tumor and/or normal tissue from 101 high-risk pediatric patients. Potentially actionable alterations were identified in 38% of patients, of which only 16% subsequently received matched therapy. In an additional 38% of patients, the genomic data provided clinically relevant information of diagnostic, prognostic, or pharmacogenomic significance. RNA-seq was clinically impactful in 37/65 patients (57%) providing diagnostic and/or prognostic information for 17 patients (26%) and identified therapeutic targets in 15 patients (23%). Known or likely pathogenic germline alterations were discovered in 18/90 patients (20%) with 14% having germline alternations in cancer predisposition genes. American College of Medical Genetics (ACMG) secondary findings were identified in six patients. CONCLUSIONS Our results demonstrate the feasibility of incorporating clinical NGS into pediatric hematology-oncology practice. Beyond the identification of actionable alterations, the ability to avoid ineffective/inappropriate therapies, make a definitive diagnosis, and identify pharmacogenomic modifiers is clinically impactful. Taking a more inclusive view of potential clinical utility, 66% of cases tested through our program had clinically impactful findings and samples interrogated with both WES and RNA-seq resulted in data that impacted clinical decisions in 75% of cases.
Collapse
Affiliation(s)
- Jennifer A. Oberg
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
| | - Julia L. Glade Bender
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Maria Luisa Sulis
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Danielle Pendrick
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
| | - Anthony N. Sireci
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Susan J. Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Andrew T. Turk
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
- Present address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Rebecca J. Zylber
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
| | - Jiuhong Pang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Daniel Diolaiti
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Present address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Carrie Koval
- Department of Clinical Genetics, Columbia University Medical Center, New York, NY 10032 USA
| | - Stuart J. Andrews
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - James H. Garvin
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Darrell J. Yamashiro
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Stephen G. Emerson
- Department of Medicine, Columbia University Medical Center, New York, NY 10032 USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Peter L. Nagy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Present address: MNG Laboratories, 5424 Glenridge Drive, Atlanta, GA 30342 USA
| | - Mahesh M. Mansukhani
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Andrew L. Kung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
- Present address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|
19
|
Abstract
Ewing sarcoma is an aggressive, poorly differentiated neoplasm of solid bone that disproportionally afflicts the young. Despite intensive multi-modal therapy and valiant efforts, 70% of patients with relapsed and metastatic Ewing sarcoma will succumb to their disease. The persistent failure to improve overall survival for this subset of patients highlights the urgent need for rapid translation of novel therapeutic strategies. As Ewing sarcoma is associated with a paucity of mutations in readily targetable signal transduction pathways, targeting the key genetic aberration and master regulator of Ewing sarcoma, the EWS/ETS fusion, remains an important goal.
Collapse
Affiliation(s)
- Kathleen I Pishas
- Cancer Therapeutics Laboratory, Center for Personalized Cancer Medicine, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia; Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Potratz J, Tillmanns A, Berning P, Korsching E, Schaefer C, Lechtape B, Schleithoff C, Unland R, Schäfer KL, Müller-Tidow C, Jürgens H, Dirksen U. Receptor tyrosine kinase gene expression profiles of Ewing sarcomas reveal ROR1 as a potential therapeutic target in metastatic disease. Mol Oncol 2016; 10:677-92. [PMID: 26739507 PMCID: PMC5423155 DOI: 10.1016/j.molonc.2015.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 01/10/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) have provided molecular targets for the development of novel, prognosis-improving agents in many cancers; however, resistances to these therapies occur. On the cellular level, one resistance mechanism is attributed to functional RTK redundancies and compensatory cross-signaling, leading to perception of RTKs as signaling and target networks. To provide a basis for better exploitation of this network in Ewing sarcoma, we generated comprehensive qPCR gene expression profiles of RTKs in Ewing sarcoma cell lines and 21 untreated primary tumors. Key findings confirm broad-spectrum RTK expressions with potential for signaling redundancy. Profile analyses with regard to patient risk-group further revealed several individual RTKs of interest. Among them, VEGFR3 and TIE1 showed high-level expressions and also were suggestive of poor prognosis in localized tumors; underscoring the relevance of angiogenic signaling pathways and tumor-stroma interactions in Ewing sarcoma. Of note, compared to localized disease, tumors derived from metastatic disease were marked by global high-level RTK expressions. Nine individual RTKs were significantly over-expressed, suggesting contributions to molecular mechanisms of metastasis. Of these, ROR1 is being pursued as therapeutic target in leukemias and carcinomas, but un-characterized in sarcomas. We demonstrate expression of ROR1 and its putative ligand Wnt5a in Ewing sarcomas, and of an active ROR1 protein variant in cell lines. ROR1 silencing impaired cell migration in vitro. Therefore, ROR1 calls for further evaluation as a therapeutic target in metastatic Ewing sarcoma; and described as a pseudo-kinase with several isoforms, underlines these additional complexities arising in our understanding of RTK signaling networks.
Collapse
Affiliation(s)
- Jenny Potratz
- Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| | - Amelie Tillmanns
- Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Philipp Berning
- Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Eberhard Korsching
- Institute of Bioinformatics, Westfälische-Wilhelms Universität Münster, Niels-Stensen-Strasse 12, 48149 Münster, Germany
| | - Christiane Schaefer
- Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Birgit Lechtape
- Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Carolin Schleithoff
- Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Rebekka Unland
- Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Karl-Ludwig Schäfer
- Institute of Pathology, University Medical Center Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Carsten Müller-Tidow
- Department of Inner Medicine IV, Hematology and Oncology, University Hospital Halle, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Heribert Jürgens
- Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Uta Dirksen
- Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
21
|
Wan-Ibrahim WI, Singh VA, Hashim OH, Abdul-Rahman PS. Biomarkers for Bone Tumors: Discovery from Genomics and Proteomics Studies and Their Challenges. Mol Med 2015; 21:861-872. [PMID: 26581086 DOI: 10.2119/molmed.2015.00183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023] Open
Abstract
Diagnosis of bone tumor currently relies on imaging and biopsy, and hence, the need to find less invasive ways for its accurate detection. More recently, numerous promising deoxyribonucleic acid (DNA) and protein biomarkers with significant prognostic, diagnostic and/or predictive abilities for various types of bone tumors have been identified from genomics and proteomics studies. This article reviewed the putative biomarkers for the more common types of bone tumors (that is, osteosarcoma, Ewing sarcoma, chondrosarcoma [malignant] and giant cell tumor [benign]) that were unveiled from the studies. The benefits and drawbacks of these biomarkers, as well as the technology platforms involved in the research, were also discussed. Challenges faced in the biomarker discovery studies and the problems in their translation from the bench to the clinical settings were also addressed.
Collapse
Affiliation(s)
- Wan I Wan-Ibrahim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vivek A Singh
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Onn H Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Centre of Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia
| | - Puteri S Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Centre of Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Fleuren EDG, Hillebrandt-Roeffen MHS, Flucke UE, Te Loo DMWM, Boerman OC, van der Graaf WTA, Versleijen-Jonkers YMH. The role of AXL and the in vitro activity of the receptor tyrosine kinase inhibitor BGB324 in Ewing sarcoma. Oncotarget 2015; 5:12753-68. [PMID: 25528764 PMCID: PMC4350331 DOI: 10.18632/oncotarget.2648] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022] Open
Abstract
New targets for Ewing sarcoma (ES) patients are urgently needed. Therefore, we investigated the expression and genetic aberrations of the oncogenic receptor tyrosine kinase (RTK) AXL in ES and determined the efficacy of AXL targeting on cell viability and migration. First, AXL and Gas6 (ligand) mRNA expression was determined by RT-PCR on 29 ES samples. Low, medium and high AXL mRNA expression was observed in 31% (n = 9), 48% (n = 14) and 21% (n = 6) of samples. Gas6 was abundantly present in all specimens. We next tested AXL protein expression immunohistochemically in 36 tumors (primary, post-chemotherapy, metastasized and relapsed samples) from 25 ES patients. Low, medium and high AXL protein expression was observed in 17% (n = 6), 19% (n = 7) and 36% (n = 13) of samples. In primary tumors (n = 15), high AXL expression correlated significantly with a worse overall survival compared to patients with lower expression (61 vs. 194 months, p = 0.026). No genetic aberrations were detected in the AXL RTK domain (n = 29). The AXL-inhibitor BGB324 affected viability (IC50 0.79-2.13 μmol/L) and migratory potential of all tested ES cell lines in vitro (n = 5-6). BGB324 chemosensitized chemotherapy-resistant ES-4 cells to vincristine and doxorubicin. These data suggest that AXL is a potential novel, druggable therapeutic target in ES.
Collapse
Affiliation(s)
- Emmy D G Fleuren
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | - Uta E Flucke
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - D Maroeska W M Te Loo
- Department of Pediatric Hematology and Oncology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | | |
Collapse
|
23
|
Hatano M, Matsumoto Y, Fukushi JI, Matsunobu T, Endo M, Okada S, Iura K, Kamura S, Fujiwara T, Iida K, Fujiwara Y, Nabeshima A, Yokoyama N, Fukushima S, Oda Y, Iwamoto Y. Cadherin-11 regulates the metastasis of Ewing sarcoma cells to bone. Clin Exp Metastasis 2015; 32:579-91. [DOI: 10.1007/s10585-015-9729-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/15/2015] [Indexed: 12/25/2022]
|
24
|
|
25
|
Volchenboum SL, Andrade J, Huang L, Barkauskas DA, Krailo M, Womer RB, Ranft A, Potratz J, Dirksen U, Triche TJ, Lawlor ER. Gene Expression Profiling of Ewing Sarcoma Tumors Reveals the Prognostic Importance of Tumor-Stromal Interactions: A Report from the Children's Oncology Group. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2015; 1:83-94. [PMID: 26052443 PMCID: PMC4457396 DOI: 10.1002/cjp2.9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Relapse of Ewing sarcoma (ES) can occur months or years after initial remission, and salvage therapy for relapsed disease is usually ineffective. Thus, there is great need to develop biomarkers that can predict which patients are at risk for relapse so that therapy and post‐therapy evaluation can be adjusted accordingly. For this study, we performed whole genome expression profiling on two independent cohorts of clinically annotated ES tumours in an effort to identify and validate prognostic gene signatures. ES specimens were obtained from the Children's Oncology Group and whole genome expression profiling performed using Affymetrix Human Exon 1.0 ST arrays. Lists of differentially expressed genes between survivors and non‐survivors were used to identify prognostic gene signatures. An independent cohort of tumours from the Euro‐Ewing cooperative group was similarly analysed as a validation cohort. Unsupervised clustering of gene expression data failed to segregate tumours based on outcome. Supervised analysis of survivors versus non‐survivors revealed a small number of differentially expressed genes and several statistically significant gene signatures. Gene‐specific enrichment analysis demonstrated that integrin and chemokine genes were associated with survival in tumours where stromal contamination was present. Tumours that did not harbour stromal contamination showed no association of any genes or pathways with clinical outcome. Our results reflect the challenges of performing RNA‐based assays on archived bone tumour specimens. In addition, they reveal a key role for tumour stroma in determining ES prognosis. Future biological and clinical investigations should focus on elucidating the contribution of tumour:micro‐environment interactions on ES progression and response to therapy.
Collapse
Affiliation(s)
- Samuel L Volchenboum
- Center for Research Informatics, University of Chicago ; Department of Pediatrics, University of Chicago
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago
| | - Lei Huang
- Center for Research Informatics, University of Chicago
| | - Donald A Barkauskas
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern
| | - Mark Krailo
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern
| | - Richard B Womer
- Children's Hospital of Philadelphia and University of Pennsylvania
| | - Andreas Ranft
- University Hospital Muenster, Department of Pediatrics and Pediatric Hematology and Oncology
| | - Jenny Potratz
- University Hospital Muenster, Department of Pediatrics and Pediatric Hematology and Oncology
| | - Uta Dirksen
- University Hospital Muenster, Department of Pediatrics and Pediatric Hematology and Oncology
| | - Timothy J Triche
- Department of Pathology, Keck School of Medicine of the University of Southern California
| | - Elizabeth R Lawlor
- Department of Pediatrics and Department of Pathology, University of Michigan
| |
Collapse
|
26
|
Przybyl J, Kozak K, Kosela H, Falkowski S, Switaj T, Lugowska I, Szumera-Cieckiewicz A, Ptaszynski K, Grygalewicz B, Chechlinska M, Pienkowska-Grela B, Debiec-Rychter M, Siedlecki JA, Rutkowski P. Gene expression profiling of peripheral blood cells: new insights into Ewing sarcoma biology and clinical applications. Med Oncol 2014; 31:109. [PMID: 25008066 PMCID: PMC4119582 DOI: 10.1007/s12032-014-0109-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023]
Abstract
Ewing sarcoma (ES) is a group of highly aggressive small round cell tumors of bone or soft tissue with high metastatic potential and low cure rate. ES tumors are associated with a rapid osteolysis and necrosis. The currently accepted clinical prognostic parameters do not accurately predict survival of high-risk patients. Moreover, neither the subtype of EWS-FLI1/ERG in the tumor, nor the detection of fusion transcripts in the peripheral blood (PB) samples, has prognostic value in ES patients. We evaluated the prevalence of circulating tumor cells (CTCs) in 34 adult ES patients. Since CTCs were confirmed in only small subset of patients, we further explored the expression profiles of PB leukocytes using a panel of genes associated with immune system status and increased tumor invasiveness. Moreover, we analyzed the alterations of the routine blood tests in the examined cohort of patients and correlated our findings with the clinical outcome. A uniform decrease in ZAP70 expression in PB cells among all ES patients, as compared to healthy individuals, was observed. Monocytosis and the abnormal expression of CDH2 and CDT2 genes in the PB cells significantly correlated with poor prognosis in ES patients. Our study supports the previously proposed hypothesis of systemic nature of ES. Based on the PB cell expression profiles, we propose a mechanism by which immune system may be involved in intensification of osteoclastogenesis and disease progression in ES patients. Moreover, we demonstrate the prognostic value of molecular PB testing at the time of routine histopathological diagnosis.
Collapse
Affiliation(s)
- Joanna Przybyl
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5 W.K. Roentgen Street, 02-781, Warsaw, Poland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ambati SR, Lopes EC, Kosugi K, Mony U, Zehir A, Shah SK, Taldone T, Moreira AL, Meyers PA, Chiosis G, Moore MAS. Pre-clinical efficacy of PU-H71, a novel HSP90 inhibitor, alone and in combination with bortezomib in Ewing sarcoma. Mol Oncol 2013; 8:323-36. [PMID: 24388362 DOI: 10.1016/j.molonc.2013.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022] Open
Abstract
Ewing sarcoma is characterized by multiple deregulated pathways that mediate cell survival and proliferation. Heat shock protein 90 (HSP90) is a critical component of the multi-chaperone complexes that regulate the disposition and activity of a large number of proteins involved in cell-signaling systems. We tested the efficacy of PU-H71, a novel HSP90 inhibitor in Ewing sarcoma cell lines, primary samples, benign mesenchymal stromal cells and hematopoietic stem cells. We performed cell cycle analysis, clonogenic assay, immunoblot analysis and reverse phase protein array in Ewing cell lines and in vivo experiments in NSG and nude mice using the A673 cell line. We noted a significant therapeutic window in the activity of PU-H71 against Ewing cell lines and benign cells. PU-H71 treatment resulted in G2/M phase arrest. Exposure to PU-H71 resulted in depletion of critical proteins including AKT, pERK, RAF-1, c-MYC, c-KIT, IGF1R, hTERT and EWS-FLI1 in Ewing cell lines. Our results indicated that Ewing sarcoma tumor growth and the metastatic burden were significantly reduced in the mice injected with PU-H71 compared to the control mice. We also investigated the effects of bortezomib, a proteasome inhibitor, alone and in combination with PU-H71 in Ewing sarcoma. Combination index (CI)-Fa plots and normalized isobolograms indicated synergism between PU-H71 and bortezomib. Ewing sarcoma xenografts were significantly inhibited when mice were treated with the combination compared to vehicle or either drug alone. This provides a strong rationale for clinical evaluation of PU-H71 alone and in combination with bortezomib in Ewing sarcoma.
Collapse
Affiliation(s)
- Srikanth R Ambati
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| | - Eloisi Caldas Lopes
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kohji Kosugi
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ullas Mony
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ahmet Zehir
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Smit K Shah
- Department of Molecular Pharmacology & Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Tony Taldone
- Department of Molecular Pharmacology & Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Andre L Moreira
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Paul A Meyers
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Gabriela Chiosis
- Department of Molecular Pharmacology & Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Malcolm A S Moore
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
28
|
Sankar S, Tanner JM, Bell R, Chaturvedi A, Randall RL, Beckerle MC, Lessnick SL. A novel role for keratin 17 in coordinating oncogenic transformation and cellular adhesion in Ewing sarcoma. Mol Cell Biol 2013; 33:4448-60. [PMID: 24043308 PMCID: PMC3838177 DOI: 10.1128/mcb.00241-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
Oncogenic transformation in Ewing sarcoma is caused by EWS/FLI, an aberrant transcription factor fusion oncogene. Glioma-associated oncogene homolog 1 (GLI1) is a critical target gene activated by EWS/FLI, but the mechanism by which GLI1 contributes to the transformed phenotype of Ewing sarcoma was unknown. In this work, we identify keratin 17 (KRT17) as a direct downstream target gene upregulated by GLI1. We demonstrate that KRT17 regulates cellular adhesion by activating AKT/PKB (protein kinase B) signaling. In addition, KRT17 is necessary for oncogenic transformation in Ewing sarcoma and accounts for much of the GLI1-mediated transformation function but via a mechanism independent of AKT signaling. Taken together, our data reveal previously unknown molecular functions for a cytoplasmic intermediate filament protein, KRT17, in coordinating EWS/FLI- and GLI1-mediated oncogenic transformation and cellular adhesion in Ewing sarcoma.
Collapse
MESH Headings
- Animals
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Cell Adhesion
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Keratin-17/genetics
- Keratin-17/metabolism
- Mice
- Mice, Nude
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Zinc Finger Protein GLI1
Collapse
Affiliation(s)
- Savita Sankar
- Department of Oncological Sciences, Huntsman Cancer Institute, School of Medicine, University of Utah
| | - Jason M. Tanner
- Department of Oncological Sciences, Huntsman Cancer Institute, School of Medicine, University of Utah
| | - Russell Bell
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah
| | - Aashi Chaturvedi
- Department of Oncological Sciences, Huntsman Cancer Institute, School of Medicine, University of Utah
| | - R. Lor Randall
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah
- Department of Orthopedics, Sarcoma Services, Huntsman Cancer Institute, University of Utah
| | - Mary C. Beckerle
- Department of Oncological Sciences, Huntsman Cancer Institute, School of Medicine, University of Utah
- Department of Biology, University of Utah
| | - Stephen L. Lessnick
- Department of Oncological Sciences, Huntsman Cancer Institute, School of Medicine, University of Utah
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah
- Division of Pediatric Hematology/Oncology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
29
|
Crompton BD, Carlton AL, Thorner AR, Christie AL, Du J, Calicchio ML, Rivera MN, Fleming MD, Kohl NE, Kung AL, Stegmaier K. High-throughput tyrosine kinase activity profiling identifies FAK as a candidate therapeutic target in Ewing sarcoma. Cancer Res 2013; 73:2873-83. [PMID: 23536552 DOI: 10.1158/0008-5472.can-12-1944] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Limited progress has been made in the treatment of advanced-stage pediatric solid tumors despite the accelerated pace of cancer discovery over the last decade. Tyrosine kinase inhibition is one tractable therapeutic modality for treating human malignancy. However, little is known about the kinases critical to the development or maintenance of many pediatric solid tumors such as Ewing sarcoma. Using a fluorescent, bead-based technology to profile activated tyrosine kinases, we identified focal adhesion kinase (FAK, PTK2) as a candidate target in Ewing sarcoma. FAK is a tyrosine kinase critical for cellular adhesion, growth, and survival. As such, it is a compelling target for cancer-based therapy. In this study, we have shown that FAK is highly phosphorylated in primary Ewing sarcoma tumor samples and that downregulation of FAK by short hairpin RNA and treatment with a FAK-selective kinase inhibitor, PF-562271, impaired growth and colony formation in Ewing sarcoma cell lines. Moreover, treatment of Ewing sarcoma cell lines with PF-562271 induced apoptosis and led to downregulation of AKT/mTOR and CAS activity. Finally, we showed that small-molecule inhibition of FAK attenuated Ewing sarcoma tumor growth in vivo. With FAK inhibitors currently in early-phase clinical trials for adult malignancies, these findings may bear immediate relevance to patients with Ewing sarcoma.
Collapse
Affiliation(s)
- Brian D Crompton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hingorani P, Dickman P, Garcia-Filion P, White-Collins A, Kolb EA, Azorsa DO. BIRC5 expression is a poor prognostic marker in Ewing sarcoma. Pediatr Blood Cancer 2013; 60:35-40. [PMID: 22961763 DOI: 10.1002/pbc.24290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/22/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND BIRC5 (Survivin), an inhibitor of apoptosis protein (IAP), is over-expressed in several human cancers and increased expression is associated with poor prognosis. The goal of the current study was to evaluate the role of BIRC5 in Ewing sarcoma (ES), the second most common pediatric bone sarcoma. PROCEDURE BIRC5 protein expression was determined in ES cell lines using Western Blot analysis. Functional role of survivin on growth and viability of ES cells was assessed by siRNA knockdown of BIRC5 and by using a small molecule inhibitor YM155. Immunohistochemical analysis for BIRC5 protein was performed on patient tumor samples using an anti-survivin antibody. The degree of BIRC5 protein expression was correlated with clinical parameters and patient outcome. RESULTS BIRC5 is over-expressed in a panel of ES cell lines. Gene silencing of BIRC5 in the ES cell line TC-71 decreases cell growth by more than 50% for each BIRC5 siRNA construct compared to non-silencing siRNA control constructs. YM155 also reduces ES cell growth and viability with an EC(50) ranging from 2.8 to 6.2 nM. BIRC5 protein is expressed in majority of the ES tumor samples with minimal expression in normal tissue (P < 0.005). Tumors with more than 50% expression are associated with worse overall survival than tumors with less than 50% expression (Hazard Ratio: 6.05; CI: 1.7-21.4; P = 0.04). CONCLUSION BIRC5 is over-expressed in ES cell lines and tumor samples. Further, it plays an important role in cell growth and viability in vitro. Higher degree of expression in patients is an independent poor prognostic factor.
Collapse
Affiliation(s)
- Pooja Hingorani
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ 85016, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Heidel FH, Bullinger L, Arreba-Tutusaus P, Wang Z, Gaebel J, Hirt C, Niederwieser D, Lane SW, Döhner K, Vasioukhin V, Fischer T, Armstrong SA. The cell fate determinant Llgl1 influences HSC fitness and prognosis in AML. ACTA ACUST UNITED AC 2012; 210:15-22. [PMID: 23277453 PMCID: PMC3549713 DOI: 10.1084/jem.20120596] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A unique characteristic of hematopoietic stem cells (HSCs) is the ability to self-renew. Several genes and signaling pathways control the fine balance between self-renewal and differentiation in HSCs and potentially also in leukemia stem cells. Recently, studies have shed light on developmental molecules and evolutionarily conserved signals as regulators of stem cells in hematopoiesis and leukemia. In this study, we provide evidence that the cell fate determinant Llgl1 (lethal giant larvae homolog 1) plays an important role in regulation of HSCs. Loss of Llgl1 leads to an increase in HSC numbers that show increased repopulation capacity and competitive advantage after transplantation. This advantage increases upon serial transplantation or when stress is applied to HSCs. Llgl1(-/-) HSCs show increased cycling but neither exhaust nor induce leukemia in recipient mice. Llgl1 inactivation is associated with transcriptional repression of transcription factors such as KLF4 (Krüppel-like factor 4) and EGR1 (early-growth-response 1) that are known inhibitors of HSC self-renewal. Decreased Llgl1 expression in human acute myeloid leukemia (AML) cells is associated with inferior patient survival. Thus, inactivation of Llgl1 enhances HSC self-renewal and fitness and is associated with unfavorable outcome in human AML.
Collapse
Affiliation(s)
- Florian H Heidel
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Davicioni E, Wai DH, Anderson MJ. Diagnostic and Prognostic Sarcoma Signatures. Mol Diagn Ther 2012; 12:359-74. [DOI: 10.1007/bf03256302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Abstract
Lethal giant larvae proteins have key roles in regulating polarity in a variety of cell types and function as tumour suppressors. A transcriptional programme initiated by aberrant Snail expression transforms epithelial cells to potentially aggressive cancer cells. Although progress in defining the molecular determinants of this programme has been made, we have little knowledge as to how the Snail-induced phenotype can be suppressed. In our studies we identified the human lethal giant larvae homologue 2, Hugl-2, (Llgl2/Lgl2) polarity gene as downregulated by Snail. Snail binds E-boxes in the Hugl-2 promoter and represses Hugl-2 expression, whereas removal of the E-boxes releases Hugl-2 from Snail repression. We demonstrate that inducing Hugl-2 in cells with constitutive Snail expression reverses the phenotype including changes in morphology, motility, tumour growth and dissemination in vivo, and expression of epithelial markers. Hugl-2 expression reduced the nuclear localization of Snail and thus binding of Snail to its target promoters. Our results placing Hugl-2 within the Snail network as well as its ability to suppress Snail carcinogenesis identifies Hugl-2 as a target molecule driving cascades, which may have preventative and therapeutic promise to minimize cancer progression.
Collapse
|
34
|
van Maldegem AM, Hogendoorn PC, Hassan AB. The clinical use of biomarkers as prognostic factors in Ewing sarcoma. Clin Sarcoma Res 2012; 2:7. [PMID: 22587879 PMCID: PMC3351700 DOI: 10.1186/2045-3329-2-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 02/08/2012] [Indexed: 11/10/2022] Open
Abstract
Ewing Sarcoma is the second most common primary bone sarcoma with 900 new diagnoses per year in Europe (EU27). It has a poor survival rate in the face of metastatic disease, with no more than 10% survival of the 35% who develop recurrence. Despite the remaining majority having localised disease, approximately 30% still relapse and die despite salvage therapies. Prognostic factors may identify patients at higher risk that might require differential therapeutic interventions. Aside from phenotypic features, quantitative biomarkers based on biological measurements may help identify tumours that are more aggressive. We audited the research which has been done to identify prognostic biomarkers for Ewing sarcoma in the past 15 years. We identified 86 articles were identified using defined search criteria. A total of 11,625 patients were reported, although this number reflects reanalysis of several cohorts. For phenotypic markers, independent reports suggest that tumour size > 8 cm and the presence of metastasis appeared strong predictors of negative outcome. Good histological response (necrosis > 90%) after treatment appeared a significant predictor for a positive outcome. However, data proposing biological biomarkers for practical clinical use remain un-validated with only one secondary report published. Our recommendation is that we can stratify patients according to their stage and using the phenotypic features of metastases, tumour size and histological response. For biological biomarkers, we suggest a number of validating studies including markers for 9p21 locus, heat shock proteins, telomerase related markers, interleukins, tumour necrosis factors, VEGF pathway, lymphocyte count, and a number of other markers including Ki-67.
Collapse
|
35
|
Skubitz KM, Francis P, Skubitz APN, Luo X, Nilbert M. Gene expression identifies heterogeneity of metastatic propensity in high-grade soft tissue sarcomas. Cancer 2012; 118:4235-43. [PMID: 22252777 DOI: 10.1002/cncr.26733] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/29/2011] [Accepted: 10/05/2011] [Indexed: 02/05/2023]
Abstract
BACKGROUND Metastatic propensity of soft tissue sarcoma (STS) is heterogeneous and may be determined by gene expression patterns that do not correlate well with morphology. The authors have reported gene expression patterns that distinguish 2 broad classes of clear cell renal carcinoma (ccRCC-gene set), and other patterns that can distinguish heterogeneity of serous ovarian carcinoma (OVCA-gene set) and aggressive fibromatosis (AF-gene set); however, clinical follow-up data were not available for these samples. METHODS In the current study, gene expression patterns in 73 samples of high-grade STS were examined using spotted cDNA microarray slides that contained ∼16,000 unique UniGene clusters. Approximately 50% of the genes present in the ccRCC-, OVCA-, and AF-gene sets were also represented in the data from this chip set, and these were combined to form a composite gene set of 278 probes. RESULTS Hierarchical clustering using this composite gene set suggested the existence of subsets of the STS samples. Analysis revealed differences in the time to development of metastatic disease between the clusters defined by the first branch point of the clustering dendrogram (P = .005), and also among the 4 different clusters defined by the second branch points (P = .001). CONCLUSIONS This approach suggests the existence of >2 subsets of high-grade pleomorphic STS, each with distinct clinical behavior. A composite gene set such as that described here may be useful to stratify STS in clinical trials, and may be of practical utility in patient management.
Collapse
Affiliation(s)
- Keith M Skubitz
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| | | | | | | | | |
Collapse
|
36
|
Leacock SW, Basse AN, Chandler GL, Kirk AM, Rakheja D, Amatruda JF. A zebrafish transgenic model of Ewing's sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis. Dis Model Mech 2011; 5:95-106. [PMID: 21979944 PMCID: PMC3255547 DOI: 10.1242/dmm.007401] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ewing’s sarcoma, a malignant bone tumor of children and young adults, is a member of the small-round-blue-cell tumor family. Ewing’s sarcoma family tumors (ESFTs), which include peripheral primitive neuroectodermal tumors (PNETs), are characterized by chromosomal translocations that generate fusions between the EWS gene and ETS-family transcription factors, most commonly FLI1. The EWS-FLI1 fusion oncoprotein represents an attractive therapeutic target for treatment of Ewing’s sarcoma. The cell of origin of ESFT and the molecular mechanisms by which EWS-FLI1 mediates tumorigenesis remain unknown, and few animal models of Ewing’s sarcoma exist. Here, we report the use of zebrafish as a vertebrate model of EWS-FLI1 function and tumorigenesis. Mosaic expression of the human EWS-FLI1 fusion protein in zebrafish caused the development of tumors with histology strongly resembling that of human Ewing’s sarcoma. The incidence of tumors increased in a p53 mutant background, suggesting that the p53 pathway suppresses EWS-FLI1-driven tumorigenesis. Gene expression profiling of the zebrafish tumors defined a set of genes that might be regulated by EWS-FLI1, including the zebrafish ortholog of a crucial EWS-FLI1 target gene in humans. Stable zebrafish transgenic lines expressing EWS-FLI1 under the control of the heat-shock promoter exhibit altered embryonic development and defective convergence and extension, suggesting that EWS-FLI1 interacts with conserved developmental pathways. These results indicate that functional targets of EWS-FLI1 that mediate tumorigenesis are conserved from zebrafish to human and provide a novel context in which to study the function of this fusion oncogene.
Collapse
Affiliation(s)
- Stefanie W Leacock
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8534, USA
| | | | | | | | | | | |
Collapse
|
37
|
Identification of genes associated with local aggressiveness and metastatic behavior in soft tissue tumors. Transl Oncol 2011; 3:23-32. [PMID: 20165692 DOI: 10.1593/tlo.09166] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 09/20/2009] [Accepted: 09/22/2009] [Indexed: 02/08/2023] Open
Abstract
Soft tissue tumors represent a group of neoplasia with different histologic and biological presentations varying from benign, locally confined to very aggressive and metastatic tumors. The molecular mechanisms responsible for such differences are still unknown. The understanding of these molecular alterations mechanism will be critical to discriminate patients who need systemic treatment from those that can be treated only locally and could also guide the development of new drugs' against this tumors. Using 102 tumor samples representing a large spectrum of these tumors, we performed expression profiling and defined differentially expression genes that are likely to be involved in tumors that are locally aggressive and in tumors with metastatic potential. We described a set of 12 genes (SNRPD3, MEGF9, SPTAN-1, AFAP1L2, ENDOD1, SERPIN5, ZWINTAS, TOP2A, UBE2C, ABCF1, MCM2, and ARL6IP5) showing opposite expression when these two conditions were compared. These genes are mainly related to cell-cell and cell-extracellular matrix interactions and cell proliferation and might represent helpful tools for a more precise classification and diagnosis as well as potential drug targets.
Collapse
|
38
|
Daves MH, Hilsenbeck SG, Lau CC, Man TK. Meta-analysis of multiple microarray datasets reveals a common gene signature of metastasis in solid tumors. BMC Med Genomics 2011; 4:56. [PMID: 21736749 PMCID: PMC3212952 DOI: 10.1186/1755-8794-4-56] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 07/07/2011] [Indexed: 02/02/2023] Open
Abstract
Background Metastasis is the number one cause of cancer deaths. Expression microarrays have been widely used to study metastasis in various types of cancer. We hypothesize that a meta-analysis of publicly available gene expression datasets in various tumor types can identify a signature of metastasis that is common to multiple tumor types. This common signature of metastasis may help us to understand the shared steps in the metastatic process and identify useful biomarkers that could predict metastatic risk. Methods We identified 18 publicly available gene expression datasets in the Oncomine database comparing distant metastases to primary tumors in various solid tumors which met our eligibility criteria. We performed a meta-analysis using a modified permutation counting method in order to obtain a common gene signature of metastasis. We then validated this signature in independent datasets using gene set expression comparison analysis with the LS-statistic. Results A common metastatic signature of 79 genes was identified in the metastatic lesions compared with primaries with a False Discovery Proportion of less than 0.1. Interestingly, all the genes in the signature, except one, were significantly down-regulated, suggesting that overcoming metastatic suppression may be a key feature common to all metastatic tumors. Pathway analysis of the significant genes showed that the genes were involved in known metastasis-associated pathways, such as integrin signaling, calcium signaling, and VEGF signaling. To validate the signature, we used an additional six expression datasets that were not used in the discovery study. Our results showed that the signature was significantly enriched in four validation sets with p-values less than 0.05. Conclusions We have modified a previously published meta-analysis method and identified a common metastatic signature by comparing primary tumors versus metastases in various tumor types. This approach, as well as the gene signature identified, provides important insights to the common metastatic process and a foundation for future discoveries that could have broad application, such as drug discovery, metastasis prediction, and mechanistic studies.
Collapse
Affiliation(s)
- Marla H Daves
- Dan L, Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
39
|
López-Guerrero JA, Machado I, Scotlandi K, Noguera R, Pellín A, Navarro S, Serra M, Calabuig-Fariñas S, Picci P, Llombart-Bosch A. Clinicopathological significance of cell cycle regulation markers in a large series of genetically confirmed Ewing's sarcoma family of tumors. Int J Cancer 2011; 128:1139-50. [PMID: 20473914 DOI: 10.1002/ijc.25424] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
More than 90% of all Ewing's Sarcoma Family of Tumors (ESFT) exhibit specific chromosomal rearrangements between the EWS gene on chromosome 22 and various members of the ETS gene family of transcription factors. The gene fusion type and other secondary genetic alterations, mainly involving cell cycle regulators, have been shown to be of prognostic relevance in ESFT. However, no conclusive results have been reported. We analyzed the clinicopathological significance of relevant cell cycle regulators in genetically confirmed ESFT. A total of 324 cases were analyzed for the immunohistochemical expression of p53, p21(Waf1/Cip1) , p27(Kip1) and Ki67 and the chromosomal alterations of the p53 and 9p21 locus by fluorescent in situ hybridization. We observed that expression of p53 (p = 0.025), p21(Waf1/Cip1) (p = 0.015) and p27(Kip1) (p = 0.013) was higher in disseminated than in localized disease. Furthermore, a cohort of 217 patients with localized disease was considered for studying the prognosis involvement of these factors on patient follow-up. The median follow-up was 39 months (range: 0.17-452) with an overall survival (OS) of 55%. Ki67 was expressed in 34% of cases and constituted an independent prognostic factor for progression free survival and OS independently of the type of treatment [hazard ratio of 2.0 (95% CI: 1.3-3.1; p = 0.003) and 1.9 (95% IC: 1.3-2.9; p = 0.007) for progression free survival and OS, respectively, being especially relevant in the group of patients which incorporated radiotherapy in their regimen schedules. In conclusion, this study demonstrates that Ki67 expression constitutes a valuable indicator of poor prognosis in localized ESFT.
Collapse
|
40
|
Establishment, characterization, and drug sensitivity of a new Ewing sarcoma cell line (SS-ES-1). J Pediatr Hematol Oncol 2010; 32:e331-7. [PMID: 20962673 DOI: 10.1097/mph.0b013e3181ee4d16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ewing sarcoma (ES) is one of the most malignant tumors in children and young adults. We present here a new ES cell line, SS-ES-1, established from the left thoracic tumor of a 16-year-old female patient. The SS-ES-1 cells retained genotype, morphology, and growth rate for over 150 passages. Immunocytochemical staining showed the strong immunoreactivity for cytokeratin, epithelial membrane antigen, neurofilament, CD99, P53, Ki-67, platelet-derived growth factor receptor-β, estrogen receptor-α (ER-α), and Bcl-2, but no reactivity for glial fibrillary acidic protein, epidermal growth factor receptor, and HER-2/neu. The presence of the type 1 EWS/FLI-1 fusion transcripts was confirmed by reverse transcriptase-polymerase chain reaction. On the basis of the MTT assay results, GW2974, a dual inhibitor of epidermal growth factor receptor and HER-2/neu, exhibited only a weak cytotoxic response in SS-ES-1 cells. In contrast, tyrphostin A9, a specific inhibitor of platelet-derived growth factor receptor, had a high cytotoxic effect against these cells. Surprisingly, it was found that SS-ES-1 cells displayed a high sensitivity to 4OH-tamoxifen. In conclusion, the SS-ES-1 cell line shows unique cellular properties, which makes it a useful model for studying various aspects of the biology of ES. In addition, the results suggest that ER can be a good therapeutic target for ER + ES.
Collapse
|
41
|
Pinto A, Dickman P, Parham D. Pathobiologic markers of the ewing sarcoma family of tumors: state of the art and prediction of behaviour. Sarcoma 2010; 2011:856190. [PMID: 20981347 PMCID: PMC2957858 DOI: 10.1155/2011/856190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 01/08/2023] Open
Abstract
Over the past three decades, the outcome of Ewing sarcoma family tumor (ESFT) patients who are nonmetastatic at presentation has improved considerably. The prognosis of patients with metastatic disease at the time of diagnosis and recurrence after therapy remains dismal. Drug-resistant disease at diagnosis or at relapse remains a major cause of mortality among patients diagnosed with ESFT. In order to improve the outcome for patients with potential relapse, there is an urgent need to find reliable markers that either predict tumor behaviour at diagnosis or identify therapeutic molecular targets at the time of recurrence. An improved understanding of the cell of origin and the molecular pathways that regulate tumorigenicity in ESFT should aid us in the search for novel therapies for ESFT. The purpose of this paper is thus to outline current concepts of sarcomagenesis in ESFT and to discuss ESFT patterns of differentiation and molecular markers that might affect prognosis or direct future therapeutic development.
Collapse
Affiliation(s)
- Alfredo Pinto
- Calgary Laboratory Services, University of Calgary, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8
| | - Paul Dickman
- Department of Pathology, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ 85016, USA
- Departments of Pathology and Pediatrics, University of Arizona, College of Medicine, Phoenix, AZ 85016, USA
| | - David Parham
- Health Sciences Center, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
42
|
Abstract
Progress in the treatment of Ewing's sarcoma, the second most common bone tumour in children and adolescents, has improved survival from about 10% in the period before chemotherapy was introduced to about 75% today for patients with localised tumours. However, patients with metastases still fare badly, and the therapy carries short-term and long-term toxicities. Multidisciplinary care is indispensable for these patients. Molecular techniques and new imaging modalities are affecting the diagnosis and classification of patients with Ewing's sarcoma. Cooperative group studies have led to chemotherapy regimens using the same drugs (vincristine, doxorubicin, cyclophosphamide, ifosfamide, and etoposide), although the exact regimens differ in Europe and North America. The EWS-ETS family of gene fusions and their downstream effects in Ewing's sarcomas provide opportunities for new approaches to treatment. These include the inhibition of the fusion gene or its protein product, and pathways related to IGF1 and mTOR. Inhibition of tyrosine kinases, exploitation of non-apoptotic cell death, and interference with angiogenesis are promising new approaches. With many new approaches and relatively few patients, it will be challenging to integrate new and established treatments through clinical trials.
Collapse
|
43
|
Meynet O, Scotlandi K, Pradelli E, Manara MC, Colombo MP, Schmid-Antomarchi H, Picci P, Bernard A, Bernard G. Xg expression in Ewing's sarcoma is of prognostic value and contributes to tumor invasiveness. Cancer Res 2010; 70:3730-8. [PMID: 20388798 DOI: 10.1158/0008-5472.can-09-2837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ewing's sarcoma (EWS) is an aggressive tumor of children and young adults that requires intensive treatment. The search for new prognostic factors is very important to choose the most appropriate therapy and to better understand the biology of the disease for the development of new therapeutic tools. We found that Xg, a thus far poorly described molecule and member of the CD99 family, is expressed in EWS cell lines and EWS primary tumors. Immunohistochemical analysis confirmed the expression of Xg in 24% of patients. We found that Xg expression in EWS defines a subgroup of patients with worse prognosis compared with those with Xg-negative localized tumors, indicating a clinical relevance of Xg expression in EWS. Forced expression of Xg in an EWS cell line upregulated cell migration and invasion in vitro. Furthermore, knockdown of Xg expression with specific short hairpin RNA significantly reduced migration and invasion of EWS cells. Consistent with these data, in vivo xenotransplant studies in nude mice revealed that Xg expression increased the incidence and the number of metastases of EWS cells. Thus, Xg expression is associated with lower overall survival in EWS patients with localized tumors and is implicated in metastasis.
Collapse
Affiliation(s)
- Ophélie Meynet
- Institut National de la Sante et de la Recherche Medicale UMR 576 and CHU Nice, Hopital de l'Archet, Laboratoire d'Immunologie, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Development of chemotherapeutic treatment modalities resulted in a dramatic increase in the survival of children with many types of cancer. Still, in case of some pediatric cancer entities including rhabdomyosarcoma, osteosarcoma and Ewing's sarcoma, survival of patients remains dismal and novel treatment approaches are urgently needed. Therefore, based on the concept of targeted therapy, numerous potential targets for the treatment of these cancers have been evaluated pre-clinically or in some cases even clinically during the last decade. This review gives an overview over many different potential therapeutic targets for treatment of these childhood sarcomas, including receptor tyrosine kinases, intracellular signaling molecules, cell cycle and apoptosis regulators, proteasome, hsp90, histone deacetylases, angiogenesis regulators and sarcoma specific fusion proteins. The large number of potential therapeutic targets suggests that improved comparability of pre-clinical models might be necessary to prioritize the most effective ones for future clinical trials.
Collapse
Affiliation(s)
- Marco Wachtel
- University Children's Hospital, Department of Oncology, Zürich, Switzerland
| | | |
Collapse
|
45
|
Nielsen TO, West RB. Translating gene expression into clinical care: sarcomas as a paradigm. J Clin Oncol 2010; 28:1796-805. [PMID: 20194847 DOI: 10.1200/jco.2009.26.1917] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Whereas most solid tumors are characterized by considerable genetic instability and molecular heterogeneity, sarcomas include many subtypes with very specific underlying molecular events driving oncogenesis. Gene expression profiling and other modern techniques have consequently had particular success in identifying the critical biologic pathways active in specific sarcomas, yielding insights which can be translated into useful diagnostic biomarkers. Public availability of data sets and new sequencing-based technologies will accelerate this process. Molecular studies have also identified oncogenic pathways of particular importance in sarcomas which can be targeted by investigational drugs. Examples include histone deacetylases in translocation-associated sarcomas of young adults, Akt/mammalian target of rapamycin in pleomorphic sarcomas, and macrophage colony-stimulating factor in tenosynovial giant cell tumor. Despite challenges in organization and accrual, future clinical trials of sarcomas need to be designed that take into account specific molecular subtypes as distinct diseases.
Collapse
Affiliation(s)
- Torsten O Nielsen
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
46
|
Avigad S, Shukla S, Naumov I, Cohen IJ, Ash S, Meller I, Kollender Y, Issakov J, Yaniv I. Aberrant methylation and reduced expression of RASSF1A in Ewing sarcoma. Pediatr Blood Cancer 2009; 53:1023-8. [PMID: 19637319 DOI: 10.1002/pbc.22115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ewing sarcoma (ES) is the second most common solid bone and soft tissue malignancy in children and young adults with low cure rates indicating the need to identify further prognostic markers. The importance of methylation in the inactivation of key tumor suppressor genes including RASSF1A has begun to be appreciated in context of cancer development, prognosis and therapy. However there is lack of similar broad based studies in ES. The objective of this study was to analyze RASSF1A methylation and assess its clinical significance in ES. PROCEDURE The methylation of RASSF1A was determined 31 ES tumor samples and 4 ES cell lines. ES cell lines were also treated with demethylating agent 5-aza-2'-deoxycytidine to ascertain its effect on methylation. RASSF1A expression was studied in 12 ES tumors. The association between RASSF1A methylation, clinical parameters and outcome was also analyzed. RESULTS Methylation of RASSF1A was observed in 21/31 (68%) tumors and in 3/4 ES cell lines. A significant correlation of methylation to reduced expression of RASSF1A was observed in 12 ES tumors analyzed (P = 0.0013) and in all cell lines. ES patients with methylated RASSF1A had worse prognosis compared to the unmethylated group (P = 0.049). Treatment with 5-aza-2'-deoxycytidine resulted in the re-expression of the unmethylated form of RASSF1A in two ES cell lines. CONCLUSION RASSF1A is frequently methylated in ES.
Collapse
Affiliation(s)
- Smadar Avigad
- Molecular Oncology, Felsenstein Medical Research Center, Petah Tikva, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zambelli D, Zuntini M, Nardi F, Manara MC, Serra M, Landuzzi L, Lollini PL, Ferrari S, Alberghini M, Llombart-Bosch A, Piccolo E, Iacobelli S, Picci P, Scotlandi K. Biological indicators of prognosis in Ewing's sarcoma: an emerging role for lectin galactoside-binding soluble 3 binding protein (LGALS3BP). Int J Cancer 2009; 126:41-52. [PMID: 19544526 DOI: 10.1002/ijc.24670] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Starting from an experimental model that accounts for the 2 most important adverse processes to successful therapy of Ewing's sarcoma (EWS), chemoresistance and the presence of metastasis at the time of diagnosis, we defined a molecular signature of potential prognostic value. Functional annotation of differentially regulated genes revealed 3 major networks related to cell cycle, cell-to-cell interactions and cellular development. The prognostic impact of 8 genes, representative of these 3 networks, was validated in 56 EWS patients. High mRNA expression levels of HINT1, IFITM2, LGALS3BP, STOML2 and c-MYC were associated with reduced risk to death and lower risk to develop metastasis. At multivariate analysis, LGALS3BP, a matricellular protein with a role in tumor progression and metastasis, was the most important predictor of event-free survival and overall survival. The association between LGALS3BP and prognosis was confirmed at protein level, when expression of the molecule was determined in tumor tissues but not in serum, indicating a role for the protein at local tumor microenvironment. Engineered enhancement of LGALS3BP expression in EWS cells resulted in inhibition of anchorage independent cell growth and reduction of cell migration and metastasis. Silencing of LGALS3BP expression reverted cell behavior with respect to in vitro parameters, thus providing further functional validation of genetic data obtained in clinical samples. Thus, we propose LGALS3BP as a novel reliable indicator of prognosis, and we offer genetic signatures to the scientific communities for cross-validation and meta-analysis, which are indispensable tools for a rare tumor such as EWS.
Collapse
Affiliation(s)
- Diana Zambelli
- Laboratory of Oncologic Research, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Beck AH, West RB, van de Rijn M. Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers. Virchows Arch 2009; 456:141-51. [PMID: 19412622 DOI: 10.1007/s00428-009-0774-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/31/2009] [Accepted: 04/14/2009] [Indexed: 12/22/2022]
Abstract
Soft tissue sarcomas are malignant neoplasms derived from mesenchymal tissues. Their pathogenesis is poorly understood and there are few effective treatment options for advanced disease. In the past decade, gene expression profiling has been applied to sarcomas to facilitate understanding of sarcoma pathogenesis and to identify diagnostic, prognostic, and predictive markers. In this paper, we review this body of work and discuss how gene expression profiling has led to advancements in the understanding of sarcoma pathobiology, the identification of clinically useful biomarkers, and the refinement of sarcoma classification schemes. Lastly, we conclude with a discussion of strategies to further optimize the translation of gene expression data into a greater understanding of sarcoma pathogenesis and improved clinical outcomes for sarcoma patients.
Collapse
Affiliation(s)
- Andrew H Beck
- Pathology Department, Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | |
Collapse
|
49
|
Scotlandi K, Remondini D, Castellani G, Manara MC, Nardi F, Cantiani L, Francesconi M, Mercuri M, Caccuri AM, Serra M, Knuutila S, Picci P. Overcoming Resistance to Conventional Drugs in Ewing Sarcoma and Identification of Molecular Predictors of Outcome. J Clin Oncol 2009; 27:2209-16. [DOI: 10.1200/jco.2008.19.2542] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose The improvement of Ewing sarcoma (EWS) therapy is currently linked to the discovery of strategies to select patients with poor and good prognosis and of modified treatment regimens. In this study, we analyzed the molecular factors governing EWS response to chemotherapy to identify genetic signatures to be used for risk-adapted therapy. Patients and Methods Microarray technology was used for profiling 30 primary tumors and seven metastases of patients who were classified according to event-free survival. For selected genes, real-time polymerase chain reaction was applied in 42 EWS primary tumors as validation assay. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test was used to evaluate in vitro drug sensitivity. Results We identified molecular signatures that reflect tumor resistance to chemotherapy. Annotation analysis was applied to reveal the biologic functions that critically influenced clinical outcome. The prognostic relevance of glutathione metabolism pathway was validated. The expression of MGST1, the microsomal glutathione S-transferase (GST), was found to clearly predict EWS prognosis. MGST1 expression was associated with doxorubicin chemosensitivity. This prompted us to assess the in vitro effectiveness of 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX), a new anticancer agent that efficiently inhibits GST enzymes. Six cell lines were found to be sensitive to this new drug. Conclusion Classification of EWS patients into high- and low-risk groups is feasible with restricted molecular signatures that may have practical value at diagnosis for selecting patients with EWS who are unresponsive to current treatments. Glutathione metabolism pathway emerged as one of the most significantly altered prognosis-associated pathway. NBDHEX is proposed as a new potential therapeutic possibility.
Collapse
Affiliation(s)
- Katia Scotlandi
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Daniel Remondini
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Gastone Castellani
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Maria Cristina Manara
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Filippo Nardi
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Lara Cantiani
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Mirko Francesconi
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Mario Mercuri
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Anna Maria Caccuri
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Massimo Serra
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Sakari Knuutila
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Piero Picci
- From the Department of Oncology, Orthopaedic Institute Rizzoli; Department of Veterinary Morphophysiology and Animal Production and Department of Physics, University of Bologna, Bologna; Department of Science and Chemical Technologies, Università Tor Vergata, Roma, Italy; and Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
50
|
Kikuta K, Tochigi N, Shimoda T, Yabe H, Morioka H, Toyama Y, Hosono A, Beppu Y, Kawai A, Hirohashi S, Kondo T. Nucleophosmin as a Candidate Prognostic Biomarker of Ewing's Sarcoma Revealed by Proteomics. Clin Cancer Res 2009; 15:2885-94. [DOI: 10.1158/1078-0432.ccr-08-1913] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|