1
|
Braun T, Bisht A, Zhu C, Idrees M, Alabeedi F, Kujan O. Diagnostic, prognostic, and metastatic value of chemokines as biomarkers for oral squamous cell carcinoma and their precursor lesions - A systematic review. Crit Rev Oncol Hematol 2025; 211:104738. [PMID: 40268074 DOI: 10.1016/j.critrevonc.2025.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025] Open
Abstract
Oral cancer remains a significant public health concern, with many patients diagnosed at advanced stages and facing poor prognoses. Despite advances in cancer research, diagnosis has seen only limited improvements, with biopsies still being the primary reliable method. This systematic review investigates the role of chemokines as potential biomarkers for early detection, prognosis, and metastasis in oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). Through an extensive literature search of MEDLINE, EMBASE, PubMed, and Scopus, 3350 articles were initially identified. After eliminating duplicates and screening for eligibility, 50 high-quality studies were included, offering a comprehensive overview of chemokine research in OSCC and OPMDs. Key findings indicate that CCR7 shows significant promise as a diagnostic, prognostic, and metastatic marker, although its function in precancerous conditions remains inadequately understood. CXCL10 and CCL22 were also highlighted for their strong prognostic and metastatic relevance, while CXCR4 and CXCL12 were identified as critical indicators of OSCC metastasis. Other chemokines, such as CXCR2, CCR4, XCR1, CXCL13, and CCL2 can aid OSCC differentiation and staging. However, the review emphasises the limitations of small patient cohorts and the lack of longitudinal research, stressing the need for further studies. Additionally, there is a pressing gap in research addressing chemokines as biomarkers for OPMDs. Rigorous validation is crucial to establish these biomarkers' reliability and clinical utility across various stages of oral cancer development.
Collapse
Affiliation(s)
- Timothy Braun
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Abhimanyu Bisht
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Christopher Zhu
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Majdy Idrees
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Faris Alabeedi
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
2
|
Ortiz RC, Amôr NG, Saito LM, Santesso MR, Lopes NM, Buzo RF, Fonseca AC, Amaral-Silva GK, Moyses RA, Rodini CO. CSC highE-cadherin low immunohistochemistry panel predicts poor prognosis in oral squamous cell carcinoma. Sci Rep 2024; 14:10583. [PMID: 38719848 PMCID: PMC11078993 DOI: 10.1038/s41598-024-55594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 05/12/2024] Open
Abstract
Identifying marker combinations for robust prognostic validation in primary tumour compartments remains challenging. We aimed to assess the prognostic significance of CSC markers (ALDH1, CD44, p75NTR, BMI-1) and E-cadherin biomarkers in OSCC. We analysed 94 primary OSCC and 67 metastatic lymph node samples, including central and invasive tumour fronts (ITF), along with clinicopathological data. We observed an increase in ALDH1+/CD44+/BMI-1- tumour cells in metastatic lesions compared to primary tumours. Multivariate analysis highlighted that elevated p75NTR levels (at ITF) and reduced E-cadherin expression (at the tumour centre) independently predicted metastasis, whilst ALDH1high exhibited independent predictive lower survival at the ITF, surpassing the efficacy of traditional tumour staging. Then, specifically at the ITF, profiles characterized by CSChighE-cadherinlow (ALDH1highp75NTRhighE-cadherinlow) and CSCintermediateE-cadherinlow (ALDH1 or p75NTRhighE-cadherinlow) were significantly associated with worsened overall survival and increased likelihood of metastasis in OSCC patients. In summary, our study revealed diverse tumour cell profiles in OSCC tissues, with varying CSC and E-cadherin marker patterns across primary tumours and metastatic sites. Given the pivotal role of reduced survival rates as an indicator of unfavourable prognosis, the immunohistochemistry profile identified as CSChighE-cadherinlow at the ITF of primary tumours, emerges as a preferred prognostic marker closely linked to adverse outcomes in OSCC.
Collapse
Affiliation(s)
- Rafael Carneiro Ortiz
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
- Post-Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Av. Octavio Pinheiro Brisolla, 9-75, Jardim Brasil, São Paulo, Brazil.
| | - Nádia Ghinelli Amôr
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Luciana Mieli Saito
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Mariana Rodrigues Santesso
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, 18618-687, Brazil
| | - Nathália Martins Lopes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rodrigo Fonseca Buzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Angélica Cristina Fonseca
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Raquel Ajub Moyses
- Department of Head and Neck Surgery, LIM28, Clinical Hospital HCFMUSP, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
3
|
Whitley CA, Ellis BG, Triantafyllou A, Gunning PJ, Gardner P, Barrett SD, Shaw RJ, Smith CI, Weightman P, Risk JM. Prediction of prognosis in oral squamous cell carcinoma using infrared microspectroscopy. Cancer Med 2024; 13:e7094. [PMID: 38468595 PMCID: PMC10928453 DOI: 10.1002/cam4.7094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Estimation of prognosis of oral squamous cell carcinoma (OSCC) is inaccurate prior to surgery, only being effected following subsequent pathological analysis of the primary tumour and excised lymph nodes. Consequently, a proportion of patients are overtreated, with an increase in morbidity, or undertreated, with inadequate margins and risk of recurrence. We hypothesise that it is possible to accurately characterise clinical outcomes from infrared spectra arising from diagnostic biopsies. In this first step, we correlate survival with IR spectra derived from the primary tumour. METHODS Infrared spectra were collected from tumour tissue from 29 patients with OSCC and subject to classification modelling. RESULTS The model had a median AUROC of 0.89 with regard to prognosis, a median specificity of 0.83, and a hazard ratio of 6.29 in univariate Cox proportional hazard modelling. CONCLUSION The data suggest that FTIR spectra may be a useful early biomarker of prognosis in OSCC.
Collapse
Affiliation(s)
| | | | - Asterios Triantafyllou
- Department of Pathology, Liverpool Clinical LaboratoriesUniversity of LiverpoolLiverpoolUK
| | - Philip J. Gunning
- Department of Molecular and Clinical Cancer MedicineInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Peter Gardner
- Department of Chemical EngineeringThe University of ManchesterManchesterUK
| | | | - Richard J. Shaw
- Department of Molecular and Clinical Cancer MedicineInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
- Regional Maxillofacial UnitLiverpool University Hospitals NHS Foundation TrustLiverpoolUK
| | | | | | - Janet M. Risk
- Department of Molecular and Clinical Cancer MedicineInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| |
Collapse
|
4
|
Brennan K, Espín-Pérez A, Chang S, Bedi N, Saumyaa S, Shin JH, Plevritis SK, Gevaert O, Sunwoo JB, Gentles AJ. Loss of p53-DREAM-mediated repression of cell cycle genes as a driver of lymph node metastasis in head and neck cancer. Genome Med 2023; 15:98. [PMID: 37978395 PMCID: PMC10656821 DOI: 10.1186/s13073-023-01236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The prognosis for patients with head and neck cancer (HNC) is poor and has improved little in recent decades, partially due to lack of therapeutic options. To identify effective therapeutic targets, we sought to identify molecular pathways that drive metastasis and HNC progression, through large-scale systematic analyses of transcriptomic data. METHODS We performed meta-analysis across 29 gene expression studies including 2074 primary HNC biopsies to identify genes and transcriptional pathways associated with survival and lymph node metastasis (LNM). To understand the biological roles of these genes in HNC, we identified their associated cancer pathways, as well as the cell types that express them within HNC tumor microenvironments, by integrating single-cell RNA-seq and bulk RNA-seq from sorted cell populations. RESULTS Patient survival-associated genes were heterogenous and included drivers of diverse tumor biological processes: these included tumor-intrinsic processes such as epithelial dedifferentiation and epithelial to mesenchymal transition, as well as tumor microenvironmental factors such as T cell-mediated immunity and cancer-associated fibroblast activity. Unexpectedly, LNM-associated genes were almost universally associated with epithelial dedifferentiation within malignant cells. Genes negatively associated with LNM consisted of regulators of squamous epithelial differentiation that are expressed within well-differentiated malignant cells, while those positively associated with LNM represented cell cycle regulators that are normally repressed by the p53-DREAM pathway. These pro-LNM genes are overexpressed in proliferating malignant cells of TP53 mutated and HPV + ve HNCs and are strongly associated with stemness, suggesting that they represent markers of pre-metastatic cancer stem-like cells. LNM-associated genes are deregulated in high-grade oral precancerous lesions, and deregulated further in primary HNCs with advancing tumor grade and deregulated further still in lymph node metastases. CONCLUSIONS In HNC, patient survival is affected by multiple biological processes and is strongly influenced by the tumor immune and stromal microenvironments. In contrast, LNM appears to be driven primarily by malignant cell plasticity, characterized by epithelial dedifferentiation coupled with EMT-independent proliferation and stemness. Our findings postulate that LNM is initially caused by loss of p53-DREAM-mediated repression of cell cycle genes during early tumorigenesis.
Collapse
Affiliation(s)
- Kevin Brennan
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Almudena Espín-Pérez
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Serena Chang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Nikita Bedi
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Saumyaa Saumyaa
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - June Ho Shin
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Andrew J Gentles
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Shaikh S, Yadav DK, Bhadresha K, Rawal RM. Integrated computational screening and liquid biopsy approach to uncover the role of biomarkers for oral cancer lymph node metastasis. Sci Rep 2023; 13:14033. [PMID: 37640804 PMCID: PMC10462753 DOI: 10.1038/s41598-023-41348-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer is an abnormal, heterogeneous growth of cells with the ability to invade surrounding tissue and even distant organs. Worldwide, GLOBOCAN had an estimated 18.1 million new cases and 9.6 million death rates of cancer in 2018. Among all cancers, Oral cancer (OC) is the sixth most common cancer worldwide, and the third most common in India, the most frequent type, oral squamous cell carcinoma (OSCC), tends to spread to lymph nodes in advanced stages. Throughout the past few decades, the molecular landscape of OSCC biology has remained unknown despite breakthroughs in our understanding of the genome-scale gene expression pattern of oral cancer particularly in lymph node metastasis. Moreover, due to tissue variability in single-cohort studies, investigations on OSCC gene-expression profiles are scarce or inconsistent. The work provides a comprehensive analysis of changed expression and lays a major focus on employing a liquid biopsy base method to find new therapeutic targets and early prediction biomarkers for lymph node metastasis. Therefore, the current study combined the profile information from GSE9844, GSE30784, GSE3524, and GSE2280 cohorts to screen for differentially expressed genes, and then using gene enrichment analysis and protein-protein interaction network design, identified the possible candidate genes and pathways in lymph node metastatic patients. Additionally, the mRNA expression of discovered genes was assessed using real-time PCR, and the Human Protein Atlas database was utilized to determine the protein levels of hub genes in tumor and normal tissues. Angiogenesis was been investigated using the Chorioallentoic membrane (CAM) angiogenesis test. In a cohort of OSCC patients, fibronectin (FN1), C-X-C Motif Chemokine Ligand 8 (CXCL8), and matrix metallopeptidase 9 (MMP9) were significantly upregulated, corroborating these findings. Our identified significant gene signature showed greater serum exosome effectiveness in early detection and clinically linked with intracellular communication in the establishment of the premetastatic niche. Also, the results of the CAM test reveal that primary OC derived exosomes may have a function in angiogenesis. As a result, our study finds three potential genes that may be used as a possible biomarker for lymph node metastasis early detection and sheds light on the underlying processes of exosomes that cause a premetastatic condition.
Collapse
Affiliation(s)
- Shayma Shaikh
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Deep Kumari Yadav
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Kinjal Bhadresha
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
- National Institute of Health, Bethesda, MD, USA
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
- Department of Biochemistry and Forensic Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
6
|
Patel D, Dabhi AM, Dmello C, Seervi M, Sneha KM, Agrawal P, Sahani MH, Kanojia D. FKBP1A upregulation correlates with poor prognosis and increased metastatic potential of HNSCC. Cell Biol Int 2021; 46:443-453. [PMID: 34882900 DOI: 10.1002/cbin.11741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy globally. The etiology of HNSCC is multifactorial, including cellular stress induced by a tobacco smoking, tobacco chewing excess alcohol consumption, and human papillomavirus infection. The induction of stress includes autophagy as one of the response pathways in maintaining homeostatic equilibrium. We evaluated the expression of autophagy-related genes in HNSCC tissues from RNA sequencing datasets and identified 19 genes correlated with poor prognosis and 18 genes correlated with improved prognosis of HNSCC patients. Further analysis of independent gene expression datasets revealed that ATG12, HSP90AB1, and FKBP1A are overexpressed in HNSCC and correlate with poor prognosis, whereas the overexpression of ANXA1, FOS, and ULK3 correlates with improved prognosis. Using independent datasets, we also found that ATG12, HSP90AB1, and FKBP1A expression increased with an increase in the T-stage of HNSCC. Among all the datasets analyzed, FKBP1A was overexpressed in HNSCC and was strongly associated with lymph node metastasis in multiple in silico datasets. In conclusion, our analysis indicates dynamic alterations in autophagy genes during HNSCC and warrants further investigation, specifically on FKBP1A and its role in tumor progression and metastasis.
Collapse
Affiliation(s)
- Dhruti Patel
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Aarsh M Dabhi
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Crismita Dmello
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - K M Sneha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Pavan Agrawal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Mayurbhai H Sahani
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Deepak Kanojia
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
7
|
Zhu F, Yang T, Yao M, Shen T, Fang C. HNRNPA2B1, as a m 6A Reader, Promotes Tumorigenesis and Metastasis of Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:716921. [PMID: 34631545 PMCID: PMC8494978 DOI: 10.3389/fonc.2021.716921] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/02/2021] [Indexed: 01/28/2023] Open
Abstract
N6-methyladenosine (m6A) modification is the most prevalent modification on eukaryotic RNA, and the m6A modification regulators were involved in the progression of various cancers. However, the functions of m6A regulators in oral squamous cell carcinoma (OSCC) remain poorly understood. In this study, we demonstrated that 13 of 19 m6A-related genes in OSCC tissues are dysregulated, and HNRNPA2B1 was the most prognostically important locus of the 19 m6A regulatory genes in OSCC. Moreover, HNRNPA2B1 expression is elevated in OSCC, and a high level of HNRNPA2B1 is significantly associated with poor overall survival in OSCC patients. Functional studies, combined with further analysis of the correlation between the expression of HNRNPA2B1 and the EMT-related markers from the TCGA database, reveal that silencing HNRNPA2B1 suppresses the proliferation, migration, and invasion of OSCC via EMT. Collectively, our work shows that HNRNPA2B1 may have the potential to promote carcinogenesis of OSCC by targeting EMT via the LINE-1/TGF-β1/Smad2/Slug signaling pathway and provide insight into the critical roles of HNRNPA2B1 in OSCC.
Collapse
Affiliation(s)
- Feiya Zhu
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Tianru Yang
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Mianfeng Yao
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Ting Shen
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Changyun Fang
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| |
Collapse
|
8
|
Role of IGFBP-2 in oral cancer metastasis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166143. [PMID: 33864954 DOI: 10.1016/j.bbadis.2021.166143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 01/01/2023]
Abstract
Cancer metastasis is one of most main causes of failure in cancer treatment. Nonetheless, more than half of oral cancer patients were diagnosed as advanced oral cancer with dramatically decreased 5-year survival rate to lower than 20%, while the stages become more advanced. In order to improve oral cancer treatment, the identification of cancer metastatic biomarkers and mechanisms is critical. In the current study, two pairs of oral squamous cell carcinoma lines, OC3/C9, and invasive OC3-I5/C9-I5were used as model systems to investigate invasive mechanism as well as to identify potential therapy-associated targets. Based on our previous proteomic analysis, insulin-like growth factor-binding protein 2 (IGFBP-2) was reported participating in oral cancer metastasis. Subsequent studies have applied interference RNA as well as recombinant protein techniques to confirm the roles of IGFBP-2 in oral cancer metastasis and examine their potency in regulating invasion as well as the mechanism IGFBP-2 involved. The results demonstrated that expression of epithelial-mesenchymal transition (EMT) markers including Twist, Snail1, SIP1, profilin, vimentin, uPA and MMP9 were increased in both OC3-I5 and C9-I5 compared to OC3 and C9 cells, while E-cadherin expression was down-regulated in the OC3-I5 and C9-I5 cells. Moreover, IGFBP-2 is shown to affect not only migration and invasion but also wound healing ability and cell proliferation. Our results also revealed that uPA is a downstream target of IGFBP-2 to intermediate oral cancer metastasis. To sum up, the current studies indicated that elevated IGFBP-2 is strongly correlated with oral cancer metastasis and progression, and that it could potentially serve as a prognostic biomarker as well as an innovative target for the treatment of oral cancer invasion.
Collapse
|
9
|
Wang Y, Wang L, Li X, Qu X, Han N, Ruan M, Zhang C. Decreased CSTA expression promotes lymphatic metastasis and predicts poor survival in oral squamous cell carcinoma. Arch Oral Biol 2021; 126:105116. [PMID: 33831734 DOI: 10.1016/j.archoralbio.2021.105116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Herein, we aimed to identify biomarkers that affect lymphatic metastasis of oral squamous cell carcinoma (OSCC) through bioinformatic analysis, and clinicopathological and in vitro verifications. DESIGN The OSCC-related gene expression dataset was retrieved from The Cancer Genome Atlas (TCGA) and analyzed to identify differentially expressed genes (DEGs), which were subjected to pathway analysis. Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis were performed to identify hub genes. Expression of potential biomarkers was examined using quantitative real-time polymerase chain reaction, immunohistochemistry, and western blotting. Statistical analyses were performed to determine the association between biomarker expression and clinicopathological characteristics of patients with OSCC. Effects of selected biomarkers on proliferation, migration, and invasion were evaluated using in vitro assays. RESULTS For DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed potential lymphatic metastasis-related biological processes and signaling pathways. Eight hub genes - ALOXE3, CSTA, PLA2G4E, PPL, SPRR1A, SPRR2A, SPRR2D, and SPRR2E, were identified via WGCNA and PPI analyses. CSTA expression was markedly downregulated in primary OSCC tissues, and low CSTA expression significantly correlated with high tumor grade (P = 0.001), nodal metastasis (P = 0.028), and poor overall survival (P < 0.001). CTSA overexpression inhibited OSCC cell migration and invasion in vitro, with little effect on OSCC cell proliferation. CONCLUSIONS Our study revealed that CSTA is a promising biomarker and therapeutic target with prognostic implications in patients with OSCC. CSTA may play an essential role in OSCC lymphatic metastasis and tumor differentiation.
Collapse
Affiliation(s)
- Yupu Wang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China; National Center for Stomatology, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Lin Wang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China; National Center for Stomatology, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xing Li
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China; National Center for Stomatology, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China; School of Stomatology, Weifang Medical University, Weifang, 261031, Shandong, China
| | - Xingzhou Qu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China; National Center for Stomatology, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Nannan Han
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China; National Center for Stomatology, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Min Ruan
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China; National Center for Stomatology, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China; National Center for Stomatology, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| |
Collapse
|
10
|
Smart needle to diagnose metastatic lymph node using electrical impedance spectroscopy. Auris Nasus Larynx 2020; 48:281-287. [PMID: 33288360 DOI: 10.1016/j.anl.2020.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The cause of cervical lymphadenopathy varies from inflammation to malignancy. Accurate and prompt diagnosis is crucial as delayed detection of malignant lymph node can lead to a worse prognosis. To improve the diagnostic accuracy of metastatic lymph node, electrical spectroscopy was employed to study human normal and metastatic lymph nodes using a hypodermic needle with fine interdigitated electrodes on its tip (EoN). SUBJECTS AND METHODS The electrical impedance of samples collected from 8 patients were analyzed in the sweeping frequency range from 1 Hz to 1 MHz. To align the impedance level data of the patients, normalized impedance was employed. RESULTS The optimal frequency exhibiting the best discrimination results between the normal and cancerous tissues was introduced based on a discrimination index. A high sensitivity (86.2%) and specificity (88.9%) were obtained, which implied that the EoN holds the potential to improve the in vivo diagnostic accuracy of metastatic lymph node during biopsy and surgery. CONCLUSION EoN has a promising potential to be utilized in real-time in actual clinical trials without a need for any pre/post-treatment during FNA or surgery. We believe that the EoN could reduce unnecessary operations with its associated morbidity.
Collapse
|
11
|
Huang HY, Chou HC, Law CH, Chang WT, Wen TN, Liao EC, Lin MW, Lin LH, Wei YS, Tsai YT, Chen HY, Tan KT, Kuo WH, Ko ML, Chang SJ, Lee YR, Chan HL. Progesterone receptor membrane component 1 is involved in oral cancer cell metastasis. J Cell Mol Med 2020; 24:9737-9751. [PMID: 32672400 PMCID: PMC7520311 DOI: 10.1111/jcmm.15535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023] Open
Abstract
Cancer metastasis is a common cause of failure in cancer therapy. However, over 60% of oral cancer patients present with advanced stage disease, and the five‐year survival rates of these patients decrease from 72.6% to 20% as the stage becomes more advanced. In order to manage oral cancer, identification of metastasis biomarker and mechanism is critical. In this study, we use a pair of oral squamous cell carcinoma lines, OC3, and invasive OC3‐I5 as a model system to examine invasive mechanism and to identify potential therapeutic targets. We used two‐dimensional differential gel electrophoresis (2D‐DIGE) and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF/TOF MS) to examine the global protein expression changes between OC3 and invasive OC3‐I5. A proteomic study reveals that invasive properties alter the expression of 101 proteins in OC3‐I5 cells comparing to OC3 cells. Further studies have used RNA interference technique to monitor the influence of progesterone receptor membrane component 1 (PGRMC1) protein in invasion and evaluate their potency in regulating invasion and the mechanism it involved. The results demonstrated that expression of epithelial‐mesenchymal transition (EMT) markers including Twist, p‐Src, Snail1, SIP1, JAM‐A, vimentin and vinculin was increased in OC3‐I5 compared to OC3 cells, whereas E‐cadherin expression was decreased in the OC3‐I5 cells. Moreover, in mouse model, PGRMC1 is shown to affect not only migration and invasion but also metastasis in vivo. Taken together, the proteomic approach allows us to identify numerous proteins, including PGRMC1, involved in invasion mechanism. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of oral cancer invasion.
Collapse
Affiliation(s)
- Hsun-Yu Huang
- Dental Department of Dimanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsuan Law
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wan-Ting Chang
- Dental Department of Dimanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Tzu-Ning Wen
- Dental Department of Dimanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - En-Chi Liao
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Meng-Wei Lin
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Hsun Lin
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Shan Wei
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ting Tsai
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Yi Chen
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Lan Ko
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.,Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Hong-Lin Chan
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
12
|
Jadhav KB, Shah V, Parmar G, Chauhan N, Shah N, Gupta N. Assessment of cervical lymph node metastasis based on total RNA from saliva and tumor tissue in patients with oral squamous cell carcinoma: An observational study. J Oral Maxillofac Pathol 2020; 24:230-236. [PMID: 33456230 PMCID: PMC7802875 DOI: 10.4103/jomfp.jomfp_58_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In case of oral squamous cell carcinoma (OSCC) most patients die within first 2 years due to metastasis. To overcome the limitations and drawbacks of the present available methods of assessment of lymph nodes metastasis, the search for alternative method is needed. AIM The aim of the study is to evaluate the sensitivity, specificity and diagnostic accuracy of salivary and tumor tissue RNA for assessment of lymph node metastasis in patients with OSCC. METHODOLOGY Patients histologically diagnosed with OSCC were included as participants. The unstimulated saliva and tumor tissue were collected and stored at deep freeze before surgical therapy. The pretreatment lymph node metastasis assessment was done by radioimaging investigation. The posttreatment histopathological status of cervical lymph nodes was noted. The RNA was isolated and quantified from stored saliva sample and tumor tissue. The collected data were statistically analyzed for specificity and sensitivity and significance. RESULTS The area under curve for salivary RNA level is 0.647 and for tumor tissue RNA level is 0.628 with moderate predictability at 95% confidence interval. It was observed that the sensitivity was 63.50% and 71.40% and specificity was 62.70% and 58.80% for saliva and tumor tissue respectively with diagnostic accuracy of 63%-65%. The Kappa statistics showed moderate degree of agreement with high statistical significance (P ≤ 0.05). CONCLUSION Saliva and tumor tissue RNA can be a good marker for pretreatment assessment of lymph node metastasis in patients with OSCC. Although the diagnostic accuracy which range from 63% to 65%, further characterization and study of specific mRNA, siRNA and miRNA may come out with high diagnostic accuracy.
Collapse
Affiliation(s)
- Kiran B Jadhav
- Department of Oral Pathology and Microbiology, K.M. Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
- Department of Oral Pathology and Microbiology, Vasantdada Patil Dental College and Hospital, Sangli, Maharashtra, India
| | - Vandana Shah
- Department of Oral Pathology and Microbiology, K.M. Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Ghansham Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Nirali Chauhan
- Department of ENT, Smt. B.K. Shah Medical College and Research Centre, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Naveen Shah
- Department of Oral and Maxillofacial Surgery, K.M. Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Nidhi Gupta
- Department of Oral Pathology and Microbiology, Vasantdada Patil Dental College and Hospital, Sangli, Maharashtra, India
| |
Collapse
|
13
|
Das P, Roychowdhury A, Das S, Roychoudhury S, Tripathy S. sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic. Front Genet 2020; 11:247. [PMID: 32346383 PMCID: PMC7169426 DOI: 10.3389/fgene.2020.00247] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/02/2020] [Indexed: 11/26/2022] Open
Abstract
Biological data are accumulating at a faster rate, but interpreting them still remains a problem. Classifying biological data into distinct groups is the first step in understanding them. Data classification in response to a certain treatment is an extremely important aspect for differentially expressed genes in making present/absent calls. Many feature selection algorithms have been developed including the support vector machine recursive feature elimination procedure (SVM-RFE) and its variants. Support vector machine RFEs are greedy methods that attempt to find superlative possible combinations leading to binary classification, which may not be biologically significant. To overcome this limitation of SVM-RFE, we propose a novel feature selection algorithm, termed as “sigFeature” (https://bioconductor.org/packages/sigFeature/), based on SVM and t statistic to discover the differentially significant features along with good performance in classification. The “sigFeature” R package is centered around a function called “sigFeature,” which provides automatic selection of features for the binary classification. Using six publicly available microarray data sets (downloaded from Gene Expression Omnibus) with different biological attributes, we further compared the performance of “sigFeature” to three other feature selection algorithms. A small number of selected features (by “sigFeature”) also show higher classification accuracy. For further downstream evaluation of its biological signature, we conducted gene set enrichment analysis with the selected features (genes) from “sigFeature” and compared it with the outputs of other algorithms. We observed that “sigFeature” is able to predict the signature of four out of six microarray data sets accurately, whereas the other algorithms predict less data set signatures. Thus, “sigFeature” is considerably better than related algorithms in discovering differentially significant features from microarray data sets.
Collapse
Affiliation(s)
- Pijush Das
- Computational Genomics lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | - Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Subhadeep Das
- Computational Genomics lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | | | - Sucheta Tripathy
- Computational Genomics lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
14
|
Huang CY, Liao KW, Chou CH, Shrestha S, Yang CD, Chiew MY, Huang HT, Hong HC, Huang SH, Chang TH, Huang HD. Pilot Study to Establish a Novel Five-Gene Biomarker Panel for Predicting Lymph Node Metastasis in Patients With Early Stage Endometrial Cancer. Front Oncol 2020; 9:1508. [PMID: 32039004 PMCID: PMC6985442 DOI: 10.3389/fonc.2019.01508] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Introduction: In the United States and Europe, endometrial endometrioid carcinoma (EEC) is the most prevalent gynecologic malignancy. Lymph node metastasis (LNM) is the key determinant of the prognosis and treatment of EEC. A biomarker that predicts LNM in patients with EEC would be beneficial, enabling individualized treatment. Current preoperative assessment of LNM in EEC is not sufficiently accurate to predict LNM and prevent overtreatment. This pilot study established a biomarker signature for the prediction of LNM in early stage EEC. Methods: We performed RNA sequencing in 24 clinically early stage (T1) EEC tumors (lymph nodes positive and negative in 6 and 18, respectively) from Cathay General Hospital and analyzed the RNA sequencing data of 289 patients with EEC from The Cancer Genome Atlas (lymph node positive and negative in 33 and 256, respectively). We analyzed clinical data including tumor grade, depth of tumor invasion, and age to construct a sequencing-based prediction model using machine learning. For validation, we used another independent cohort of early stage EEC samples (n = 72) and performed quantitative real-time polymerase chain reaction (qRT-PCR). Finally, a PCR-based prediction model and risk score formula were established. Results: Eight genes (ASRGL1, ESR1, EYA2, MSX1, RHEX, SCGB2A1, SOX17, and STX18) plus one clinical parameter (depth of myometrial invasion) were identified for use in a sequencing-based prediction model. After qRT-PCR validation, five genes (ASRGL1, RHEX, SCGB2A1, SOX17, and STX18) were identified as predictive biomarkers. Receiver operating characteristic curve analysis revealed that these five genes can predict LNM. Combined use of these five genes resulted in higher diagnostic accuracy than use of any single gene, with an area under the curve of 0.898, sensitivity of 88.9%, and specificity of 84.1%. The accuracy, negative, and positive predictive values were 84.7, 98.1, and 44.4%, respectively. Conclusion: We developed a five-gene biomarker panel associated with LNM in early stage EEC. These five genes may represent novel targets for further mechanistic study. Our results, after corroboration by a prospective study, may have useful clinical implications and prevent unnecessary elective lymph node dissection while not adversely affecting the outcome of treatment for early stage EEC.
Collapse
Affiliation(s)
- Chia-Yen Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Cathay General Hospital, Taipei, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Hung Chou
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Sirjana Shrestha
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chi-Dung Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China.,Warshel Institute for Computational Biology, Chinese University of Hong Kong, Shenzhen, China
| | - Men-Yee Chiew
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Tzu Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsiao-Chin Hong
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China.,Warshel Institute for Computational Biology, Chinese University of Hong Kong, Shenzhen, China
| | - Shih-Hung Huang
- Department of Pathology, Cathay General Hospital, Taipei, Taiwan
| | - Tzu-Hao Chang
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Da Huang
- School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China.,Warshel Institute for Computational Biology, Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
15
|
Companion canines: an under-utilised model to aid in translating anti-metastatics to the clinic. Clin Exp Metastasis 2020; 37:7-12. [PMID: 31691156 PMCID: PMC7007897 DOI: 10.1007/s10585-019-10002-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
|
16
|
Expression profile analysis identifies IER3 to predict overall survival and promote lymph node metastasis in tongue cancer. Cancer Cell Int 2019; 19:307. [PMID: 31832020 PMCID: PMC6873470 DOI: 10.1186/s12935-019-1028-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background Lymph node metastasis is one of the most important factors affecting the prognosis of tongue cancer, and the molecular mechanism regulating lymph node metastasis of tongue cancer is poorly known. Methods The gene expression dataset GSE2280 and The Cancer Genome Atlas (TCGA) tongue cancer dataset were downloaded. R software was used to identify the differentially expressed hallmark gene sets and individual genes between metastatic lymph node tissues and primary tongue cancer tissues, and the Kaplan-Meier method was used to evaluate the association with overall survival. The screening and validation of functional genes was performed using western blot, q-PCR, CCK-8, migration and invasion assays, and lymphangiogenesis was examined by using a tube formation assay. Results Thirteen common hallmark gene sets were found based on Gene Set Variation Analysis (GSVA) and then subjected to differential gene expression analysis, by which 76 deregulated genes were found. Gene coexpression network analysis and survival analysis further confirmed that IER3 was the key gene associated with the prognosis and lymph node metastasis of tongue cancer patients. Knockdown of IER3 with siRNA inhibited the proliferation, colony formation, migration and invasion of Tca-8113 cells in vitro and it also inhibited the secretion and expression of VEGF-C in these cells. The culture supernatant of Tca-8113 cells could promote lymphangiogenesis and migration of lymphatic endothelial cells, and knockdown of IER3 in Tca-8113 cells suppressed these processes. Conclusion Our study demonstrated that IER3 plays important roles in lymphangiogenesis regulation and prognosis in tongue cancer and might be a potential therapeutic target.
Collapse
|
17
|
Zhang N, Zhang SW. Identification of differentially expressed genes between primary lung cancer and lymph node metastasis via bioinformatic analysis. Oncol Lett 2019; 18:3754-3768. [PMID: 31516588 PMCID: PMC6732948 DOI: 10.3892/ol.2019.10723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC), with its high morbidity and mortality rates, is one of the most widespread and malignant neoplasms. Mediastinal lymph node metastasis (MLNM) severely affects postoperative survival of patients with LC. Additionally, the molecular mechanisms of LC with MLNM (MM LC) remain not well understood. To identify the key biomarkers in its carcinogenesis and development, the datasets GSE23822 and GSE13213 were obtained from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified, and the Database for Annotation, Visualization and Integrated Discovery was used to perform functional annotations of DEGs. Search Tool for the Retrieval of Interacting Genes and Cytoscape were utilized to obtain the protein-protein interaction (PPI) network, and to analyze the most significant module. Subsequently, a Kaplan-Meier plotter was used to analyze overall survival (OS). Additionally, one co-expression network of the hub genes was obtained from cBioPortal. A total of 308 DEGs were identified in the two microarray datasets, which were mainly enriched during cellular processes, including the Gene Ontology terms ‘cell’, ‘catalytic activity’, ‘molecular function regulator’, ‘signal transducer activity’ and ‘binding’. The PPI network was composed of 315 edges and 167 nodes. Its significant module had 11 hub genes, and high expression of actin β, MYC, arginine vasopressin, vesicle associated membrane protein 2 and integrin subunit β1, and low expression of NOTCH1, synaptojanin 2 and intersectin 2 were significantly associated with poor OS. In summary, hub genes and DEGs presented in the present study may help identify underlying targets for diagnostic and therapeutic methods for MM LC.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shao-Wei Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
18
|
Li Y, Liu K, Ke Y, Zeng Y, Chen M, Li W, Liu W, Hua X, Li Z, Zhong Y, Xie C, Yu H. Risk Factors Analysis of Pathologically Confirmed Cervical Lymph Nodes Metastasis in Oral Squamous Cell Carcinoma Patients with Clinically Negative Cervical Lymph Node: Results from a Cancer Center of Central China. J Cancer 2019; 10:3062-3069. [PMID: 31281484 PMCID: PMC6590044 DOI: 10.7150/jca.30502] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/27/2019] [Indexed: 12/30/2022] Open
Abstract
Objective: To explore the risk factors of cervical lymph node metastasis in oral squamous cell carcinoma (OSCC) patients with clinical negative cervical lymph nodes(cN0) and provide a reference for clinical treatment. Methods: The clinical data of 161 OSCC patients with cN0 were retrospectively analyzed. All patients underwent extended primary resection combined with cervical lymph node dissection. The level and number of cervical lymph node metastasis were confirmed by postoperative pathology. The risk factors of cervical lymph node metastasis in patients were analyzed by univariate and multivariate Logistic regression analysis. Results: Thirty-one out of 161 cases (19%) were confirmed cervical lymph node metastasis. Among them, there were 28 cases of lymph node metastasis in one cervical level and 3 cases in two cervical levels. A total of 42 positive lymph nodes were detected in 34 cervical levels. The level number of positive areas in the IA, IB, IIA, IIB, III, IV and V levels was 2, 15, 12, 1, 4,0, and 0, respectively. The corresponding regional metastasis rates were 5.9%, 44.1%, 35.3%, 2.9%, 11.8%, 0% and 0%, respectively. The number of positive lymph node metastases in the corresponding levels were 2, 17, 17, 1, 5, 0, and 0 respectively. Univariate analysis showed that gender, age, lesion location, T stage, and perineural invasion/lymphvascular invasion (PNI/PVI) had no significant effect on cervical lymph node metastasis (P>0.05). The growth pattern, degree of differentiation, depth of invasion, neutrophil/lymphocyte ratio (NLR) and the short/long axis diameter ratio (S/L ratio) of lymph nodes were important factors influencing the cervical lymph node metastasis in cN0 OSCC patients (P<0.05). Multivariate Logistic regression analysis indicated that the growth pattern, degree of differentiation, depth of invasion, NLR, and the S/L ratio of lymph nodes were independent risk factors for cervical lymph node metastasis (P<0.05). Conclusion: The growth pattern, degree of differentiation, depth of invasion, neutrophil/lymphocyte ratio, and the short/long axis diameter ratio of lymph nodes were the independent risk factors for pathological cervical lymph node metastasis in oral squamous cell carcinoma patients with cN0. If patients with the above risk factors receive nonstandard radical neck dissection or no dissection, it may be necessary for them to receive the corresponding regional postoperative radiotherapy.
Collapse
Affiliation(s)
- Yonghong Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University; Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Oncology and Surgery, The First Hospital of Tianmen City of Hubei Province, Tianmen, Hubei, China
| | - Ke Liu
- Department of Oromaxillofacial and Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan Ke
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University; Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Yifei Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University; Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Mengge Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University; Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Wei Li
- Department of Oncology and Surgery, The First Hospital of Tianmen City of Hubei Province, Tianmen, Hubei, China
| | - Wenming Liu
- Department of Oncology and Surgery, The First Hospital of Tianmen City of Hubei Province, Tianmen, Hubei, China
| | - Xinying Hua
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University; Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Zheng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University; Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University; Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University; Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University; Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| |
Collapse
|
19
|
Biswas NK, Das C, Das S, Maitra A, Nair S, Gupta T, D'Cruz AK, Sarin R, Majumder PP. Lymph node metastasis in oral cancer is strongly associated with chromosomal instability and DNA repair defects. Int J Cancer 2019; 145:2568-2579. [PMID: 30924133 DOI: 10.1002/ijc.32305] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/01/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is highly prevalent in south and southeast Asia. Many (30-50%) OSCC patients develop lymph node metastasis (LNM), which is the most important prognostic factor in OSCC. To identify genomic correlates of LNM, we compared exome sequences and copy number variation data of blood and tumor DNA from highly contrasting subgroups of patients to reduce false inferences-(i) patients with LNM and (ii) patients with late stage disease but without LNM. We found that LNM is associated with (i) specific hotspot somatic mutations in TP53 and CASP8; (ii) rare nonsilent germline mutations in BRCA2 and FAT1; (iii) mutations in mito-G2/M and nonhomologous end joining (NHEJ) pathways; (iv) recurrent deletion of genes for DNA repair by homologous recombination; and (v) chromosomal instability. LN+ patients with NHEJ pathway mutations have longer disease-free survival. Five genomic features have a high predictive value of LNM.
Collapse
Affiliation(s)
- Nidhan K Biswas
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium, Kalyani, West Bengal, India
| | - Chitrarpita Das
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium, Kalyani, West Bengal, India
| | - Subrata Das
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium, Kalyani, West Bengal, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium, Kalyani, West Bengal, India
| | - Sudhir Nair
- Tata Memorial Center, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Tejpal Gupta
- Tata Memorial Center, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Anil K D'Cruz
- Tata Memorial Center, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Rajiv Sarin
- Tata Memorial Center, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium, Kalyani, West Bengal, India
| |
Collapse
|
20
|
Yu B, Cao W, Zhang C, Xia R, Liu J, Yan M, Chen W. Prediction of lymph node metastasis in oral squamous cell carcinoma based on protein profile. Expert Rev Proteomics 2019; 16:363-373. [PMID: 30779878 DOI: 10.1080/14789450.2019.1584039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Lymph node metastasis leads to high mortality rates of oral squamous cell carcinoma (OSCC). However, it is still controversial to define clinically negative neck (cN0) and positive neck (cN1-3). METHODS We retrieved candidate biomarkers identified by proteomic analysis in OSCC from published works of literature. In training stage, immunohistochemistry (IHC) analysis was used to determine the expression of proteins and logistic regression models with stepwise variable selection were used to identify potential factors that might affect lymph node metastasis and life status. Furthermore, the prediction model was validated in validating stage. RESULTS We screened eight highly expressed proteins related to lymph node metastasis in OSCC and found that the expression levels of SOD2, BST2, CAD, ITGB6, and PRDX4 were significantly elevated in patients with lymph node metastasis compared to the patients without lymph node metastasis. Furthermore, in training and validating stages, the prediction model base on the combination of CAD, SOD2 expression levels, and histopathologic grade was developed and validated in patients with OSCC. CONCLUSIONS Our findings showed that the developed model well predicts the lymph node metastasis and life status in patients with OSCC, independent of TNM stage.
Collapse
Affiliation(s)
- Binbin Yu
- a Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
- b National Clinical Research Center of Stomatology , Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , Shanghai , China
| | - Wei Cao
- a Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
- b National Clinical Research Center of Stomatology , Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , Shanghai , China
| | - Chenping Zhang
- a Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
- b National Clinical Research Center of Stomatology , Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , Shanghai , China
| | - Ronghui Xia
- b National Clinical Research Center of Stomatology , Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , Shanghai , China
- c Department of Oral Pathology, Shanghai Ninth People's Hospital & College of Stomatology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jinlin Liu
- b National Clinical Research Center of Stomatology , Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , Shanghai , China
| | - Ming Yan
- a Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
- b National Clinical Research Center of Stomatology , Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , Shanghai , China
| | - Wantao Chen
- a Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital & College of Stomatology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
- b National Clinical Research Center of Stomatology , Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , Shanghai , China
| |
Collapse
|
21
|
Zhang X, Zhang L, Tan X, Lin Y, Han X, Wang H, Ming H, Li Q, Liu K, Feng G. Systematic analysis of genes involved in oral cancer metastasis to lymph nodes. Cell Mol Biol Lett 2018; 23:53. [PMID: 30459815 PMCID: PMC6237046 DOI: 10.1186/s11658-018-0120-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/02/2018] [Indexed: 01/12/2023] Open
Abstract
Oral cancer remains a deadly disease worldwide. Lymph node metastasis and invasion is one of the causes of death from oral cancer. Elucidating the mechanism of oral cancer lymph node metastasis and identifying critical regulatory genes are important for the treatment of this disease. This study aimed to identify differentially expressed genes (gene signature) and pathways that contribute to oral cancer metastasis to lymph nodes. The GSE70604-associated study compared gene profiles in lymph nodes with metastasis of oral cancer to those of normal lymph nodes. The GSE2280-associated study compared gene profiles in primary tumor of oral cancer with lymph node metastasis to those in tumors without lymph node metastasis. There are 28 common differentially expressed genes (DEGs) showing consistent changes in both datasets in overlapping analysis. GO biological process and KEGG pathway analysis of these 28 DEGs identified the gene signature CCND1, JUN and SPP1, which are categorized as key regulatory genes involved in the focal adhesion pathway. Silencing expression of CCND1, JUN and SPP1 in the human oral cancer cell line OECM-1 confirmed that those genes play essential roles in oral cancer cell invasion. Analysis of clinical samples of oral cancer found a strong correlation of these genes with short survival, especially JUN expression associated with metastasis. Our study identified a unique gene signature - CCND1, JUN and SPP1 - which may be involved in oral cancer lymph node metastasis.
Collapse
Affiliation(s)
- Xing'an Zhang
- 1Department of Stomatology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China.,2Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, No. 95, People's south Road, Shunqing District, Nanchong, Sichuan 637000 People's Republic of China
| | - Lanfang Zhang
- 3Department of Burn and Plastic Surgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Xiaoyao Tan
- 1Department of Stomatology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Ying Lin
- 4Department of Science and Education, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Xinsheng Han
- 1Department of Stomatology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Huadong Wang
- 1Department of Stomatology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Huawei Ming
- 1Department of Stomatology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000 People's Republic of China
| | - Qiujiang Li
- 2Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, No. 95, People's south Road, Shunqing District, Nanchong, Sichuan 637000 People's Republic of China
| | - Kang Liu
- 2Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, No. 95, People's south Road, Shunqing District, Nanchong, Sichuan 637000 People's Republic of China
| | - Gang Feng
- 2Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, No. 95, People's south Road, Shunqing District, Nanchong, Sichuan 637000 People's Republic of China
| |
Collapse
|
22
|
Zevallos JP, Mazul AL, Walter V, Hayes DN. Gene Expression Subtype Predicts Nodal Metastasis and Survival in Human Papillomavirus-Negative Head and Neck Cancer. Laryngoscope 2018; 129:154-161. [PMID: 30247749 DOI: 10.1002/lary.27340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 11/12/2022]
Abstract
OBJECTIVES/HYPOTHESIS Gene expression analyses of head and neck cancer have revealed four molecular subtypes: basal (BA), mesenchymal (MS), atypical (AT), and classical (CL). We evaluate whether gene expression subtypes in oral cavity squamous cell carcinoma (OCSCC) and laryngeal squamous cell carcinoma (LSCC) can be used to predict nodal metastasis and prognosticate survival. STUDY DESIGN Retrospective cohort study and genomic analysis. METHODS OCSCC and LSCC cases were identified from the The Cancer Genome Atlas (TCGA) head and neck cancer cohort. RNA-seq by expected maximization (RSEM) was used to quantify gene expression levels from TCGA RNA-seq data and to assign each case to one of four subtypes. Descriptive statistics were used to describe patient, disease, and treatment characteristics in each subtype. Cox regression and Kaplan-Meier analyses were used to determine associations with survival. RESULTS OCSCC cases were comprised primarily of the MS and BA subtypes, whereas LSCC was comprised primarily of CL and AT subtypes. In OCSCC, the MS subtype was significantly associated with higher risk of nodal metastasis. In a subset analysis of clinically T1-2N0M0 OCSCC, we demonstrate that the MS subtype was predictive of occult nodal metastasis (relative risk = 3.38, 95% confidence interval [CI]: 1.08-10.69). In LSCC, the CL subtype was associated with significantly worse overall survival (hazard ratio = 4.32, 95% CI: 1.77-10.54, P = .001). CONCLUSIONS Gene expression analysis reveals potential novel markers of nodal metastasis and survival in human papillomavirus-negative head and neck cancer. Future studies will continue to refine and validate these markers, with the goal of providing molecular risk assessments that guide therapy and improve patient outcomes. LEVEL OF EVIDENCE 2b Laryngoscope, 129:154-161, 2019.
Collapse
Affiliation(s)
- Jose P Zevallos
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Angela L Mazul
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Vonn Walter
- Penn State Hershey Institute for Personalized Medicine, Hershey, Pennsylvania
| | - David Neil Hayes
- Department of Medical Oncology, University of Tennessee Health Sciences West Cancer Center, Memphis, Tennessee, U.S.A
| |
Collapse
|
23
|
Ding Y, Liu P, Zhang S, Tao L, Han J. Screening pathogenic genes in oral squamous cell carcinoma based on the mRNA expression microarray data. Int J Mol Med 2018; 41:3597-3603. [PMID: 29512771 DOI: 10.3892/ijmm.2018.3514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 01/22/2018] [Indexed: 11/05/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies and its survival rate has barely improved over the past few decades. The purpose of this study was to screen pathogenic genes of OSCC via microarray analysis. The mRNA expression microarray datasets (GSE2280 and GSE3524) were downloaded from the Gene Expression Omnibus (GEO) database. In GSE2280, there were 22 OSCC samples without metastasis and 5 OSCC samples with lymph node metastasis. In GSE3524, there were 16 OSCC samples and 4 normal tissue samples. The differentially expressed genes (DEGs) in OSCC samples with lymph node metastasis compared with those without metastasis (named as DEGs-1), and the DEGs in OSCC samples compared with normal tissue samples (named as DEGs-2), were obtained via limma package. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to perform the functional enrichment analyses of DEGs-1 and DEGs-2. The miRNA-gene pairs of overlaps among DEGs were screened out with the TargetScan database, and the miRNA-gene regulated network was constructed by Cytoscape software. A total of 233 and 410 DEGs were identified in the sets of DEGs-1 and DEGs-2, respectively. DEGs-1 were enriched in 188 Gene Ontology (GO) terms and 8 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and DEGs-2 were enriched in 228 GO terms and 6 KEGG pathways. In total, 126 nodes and 135 regulated pairs were involved in the miRNA-gene regulated network. Our study indicated that transglutaminase 2 (TGM2) and Islet 1 (ISL1) may be biomarkers of OSCC and their metastases. Moreover, it provided some potential pathogenic genes (e.g. P2RY2 and RAPGEFL1) in OSCC.
Collapse
Affiliation(s)
- Yang Ding
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Pengfei Liu
- Department of Lymphoma, Sino-US Center of Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Lin Tao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Jianmin Han
- Dental Materials Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| |
Collapse
|
24
|
Yang X, Wu K, Li S, Hu L, Han J, Zhu D, Tian X, Liu W, Tian Z, Zhong L, Yan M, Zhang C, Zhang Z. MFAP5 and TNNC1: Potential markers for predicting occult cervical lymphatic metastasis and prognosis in early stage tongue cancer. Oncotarget 2018; 8:2525-2535. [PMID: 27713166 PMCID: PMC5356821 DOI: 10.18632/oncotarget.12446] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022] Open
Abstract
The purpose of this study is to identify candidate genes that could predict prognosis of early-stage tongue squamous cell carcinoma (TSCC) and its occult cervical lymphatic metastasis by large-scale gene expression profiling. Tumor tissue and matched normal mucosa samples were collected from patients with TSCC and analyzed with Affymetrix HTA2.0 high-density oligonucleotide array. Differentially expressed genes in TSCC with cervical lymph node metastasis (CLNM) were further analyzed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes for their functions and related pathways. A total of 107 differentially expressed genes (p < 0.05) were identified by microarray in TSCC samples with CLNM (n = 6) compared to those without CLNM (n = 6). Genes involved in the cell-matrix adherens junction and migration function including MFAP5, TNNC1, MGP, FBFBP1 and FBXO32 were selected and validated by RT-PCR in TSCC samples (n = 32). Of the five genes, MFAP5 and TNCC1 expressions were further validated by immohistochemistry (n = 61). The significant positive correlation between MFAP5 and TNNC1 expression (p<0.001) was observed. Notably, over-expression of MFAP5 and TNNC1 were correlated with CLNM, metastasis relapse-free survival and overall survival. Our findings indicated that MFAP5 and TNNC1 may be potential markers for predicting occult cervical lymphatic metastasis and prognosis of oral tongue carcinoma.
Collapse
Affiliation(s)
- Xi Yang
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Kailiu Wu
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Siyi Li
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Longwei Hu
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Jing Han
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Dongwang Zhu
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Xuerui Tian
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Wei Liu
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Laiping Zhong
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Ming Yan
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Chenping Zhang
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Zhang
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
25
|
Gencer S, Oleinik N, Kim J, Panneer Selvam S, De Palma R, Dany M, Nganga R, Thomas RJ, Senkal CE, Howe PH, Ogretmen B. TGF-β receptor I/II trafficking and signaling at primary cilia are inhibited by ceramide to attenuate cell migration and tumor metastasis. Sci Signal 2017; 10:eaam7464. [PMID: 29066540 PMCID: PMC5818989 DOI: 10.1126/scisignal.aam7464] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Signaling by the transforming growth factor-β (TGF-β) receptors I and II (TβRI/II) and the primary cilia-localized sonic hedgehog (Shh) pathway promote cell migration and, consequently, tumor metastasis. In contrast, the sphingolipid ceramide inhibits cell proliferation and tumor metastasis. We investigated whether ceramide metabolism inhibited TβRI/II trafficking to primary cilia to attenuate cross-talk between TβRI/II and the Shh pathway. We found that ceramide synthase 4 (CerS4)-generated ceramide stabilized the association between TβRI and the inhibitory factor Smad7, which limited the trafficking of TβRI/II to primary cilia. Expression of a mutant TβRI that signals but does not interact with Smad7 prevented the CerS4-mediated inhibition of migration in various cancer cells. Genetic deletion or knockdown of CerS4 prevented the formation of the Smad7-TβRI inhibitory complex and increased the association between TβRI and the transporter Arl6 through a previously unknown cilia-targeting signal (Ala31Thr32Ala33Leu34Gln35) in TβRI. Mutating the cilia-targeting signal abolished the trafficking of TβRI to the primary cilia. Localization of TβRI to primary cilia activated a key mediator of Shh signaling, Smoothened (Smo), which stimulated cellular migration and invasion. TβRI-Smo cross-talk at the cilia in CerS4-deficient 4T1 mammary cancer cells induced liver metastasis from orthotopic allografts in both wild-type and CerS4-deficient mice, which was prevented by overexpression of Smad7 or knockdown of intraflagellar transport protein 88 (IFT88). Overall, these data reveal a ceramide-dependent mechanism that suppresses cell migration and invasion by restricting TβRI/II-Shh signaling selectively at the plasma membrane of the primary cilium.
Collapse
Affiliation(s)
- Salih Gencer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Jisun Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shanmugam Panneer Selvam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ryan De Palma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Rose Nganga
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Raquela J Thomas
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 125 Ashley Avenue, Charleston, SC 29425, USA.
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| |
Collapse
|
26
|
Protein S drives oral squamous cell carcinoma tumorigenicity through regulation of AXL. Oncotarget 2017; 8:13986-14002. [PMID: 28118606 PMCID: PMC5355156 DOI: 10.18632/oncotarget.14753] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
The TAM family of proto-oncogenic receptor protein tyrosine kinases, comprising of TYRO3, AXL, and MERTK, is implicated in many human cancers. Their activation leads to cancer cell proliferation, enhanced migration, invasion, and drug resistance; however how TAMs are activated in cancers is less understood. We previously showed that Protein S (PROS1) is a ligand of the TAM receptors. Here we identify PROS1 as a mediator of Oral Squamous Cell Carcinoma (OSCC) in proliferation, cell survival and migration. We demonstrate that excess PROS1 induces OSCC proliferation and migration. Conversely, blocking endogenous PROS1 expression using shRNA significantly inhibits cell proliferation and migration in culture. This inhibition was rescued by the addition of purified PROS1. Moreover, PROS1 knockdown reduced anchorage-independent growth in-vitro, reduced tumor xenograft growth in nude mice and altered their differentiation profile. Mechanistically, we identify the downregulation of AXL transcripts and protein following PROS1 knockdown. Re-introducing PROS1 rescues AXL expression both at the protein and transcriptional levels. The anti-proliferative effect of the AXL inhibitor R428 was significantly reduced following PROS1 inhibition, indicating the functional significance of PROS1-mediated regulation of AXL in OSCC. Taken together, we identify PROS1 as a driver of OSCC tumor growth and a modulator of AXL expression. Our results point to PROS1 as a potential novel anti-cancer therapeutic target.
Collapse
|
27
|
Mazzoccoli G, Castellana S, Carella M, Palumbo O, Tiberio C, Fusilli C, Capocefalo D, Biagini T, Mazza T, Lo Muzio L. A primary tumor gene expression signature identifies a crucial role played by tumor stroma myofibroblasts in lymph node involvement in oral squamous cell carcinoma. Oncotarget 2017; 8:104913-104927. [PMID: 29285222 PMCID: PMC5739609 DOI: 10.18632/oncotarget.20645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common oral and pharyngeal cancer, and is responsible of approximately 3% of cancers in men and 2% in women in the Western World, with increasing incidence rates in developing countries. Early detection by screening is necessary to prevent fatal disease because early, curable lesions are rarely symptomatic. The overall 5-yr survival rate is approximately 50% when surgery, radiation, or both are employed as treatment options, but lymph node involvement greatly influences this estimate, by decreasing the survival rate by about 50%. Here, we aimed at finding genetic signatures associated with lymph node metastasis in OSCC patients. We addressed this issue by whole transcriptome analysis through microarray expression profiling of a set of OSSC specimens of patients without lymph node involvement (10 patients, mean age ± SD 61.2±13.8, male 7, female 3) and with lymph node involvement (11 patients, mean age ± SD 62.1±15.1, male 8, female 3). We evidenced a gene expression signature associated to muscle contraction-related genes in specimens obtained from OSCC patients with lymph node involvement. This gene signature suggests the presence of myofibroblasts in tumor stoma of patients with lymph node involvement and emphasizes the decisive role played by myofibroblasts probably through their secretome in determining OSCC invasiveness.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Massimo Carella
- Medical Genetics, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Orazio Palumbo
- Medical Genetics, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Cristiana Tiberio
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Caterina Fusilli
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Daniele Capocefalo
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Tommaso Biagini
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo (FG), Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
28
|
Nagarajan S, Bedi U, Budida A, Hamdan FH, Mishra VK, Najafova Z, Xie W, Alawi M, Indenbirken D, Knapp S, Chiang CM, Grundhoff A, Kari V, Scheel CH, Wegwitz F, Johnsen SA. BRD4 promotes p63 and GRHL3 expression downstream of FOXO in mammary epithelial cells. Nucleic Acids Res 2017; 45:3130-3145. [PMID: 27980063 PMCID: PMC5389510 DOI: 10.1093/nar/gkw1276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4) is a member of the bromo- and extraterminal (BET) domain-containing family of epigenetic readers which is under intensive investigation as a target for anti-tumor therapy. BRD4 plays a central role in promoting the expression of select subsets of genes including many driven by oncogenic transcription factors and signaling pathways. However, the role of BRD4 and the effects of BET inhibitors in non-transformed cells remain mostly unclear. We demonstrate that BRD4 is required for the maintenance of a basal epithelial phenotype by regulating the expression of epithelial-specific genes including TP63 and Grainy Head-like transcription factor-3 (GRHL3) in non-transformed basal-like mammary epithelial cells. Moreover, BRD4 occupancy correlates with enhancer activity and enhancer RNA (eRNA) transcription. Motif analyses of cell context-specific BRD4-enriched regions predicted the involvement of FOXO transcription factors. Consistently, activation of FOXO1 function via inhibition of EGFR-AKT signaling promoted the expression of TP63 and GRHL3. Moreover, activation of Src kinase signaling and FOXO1 inhibition decreased the expression of FOXO/BRD4 target genes. Together, our findings support a function for BRD4 in promoting basal mammary cell epithelial differentiation, at least in part, by regulating FOXO factor function on enhancers to activate TP63 and GRHL3 expression.
Collapse
Affiliation(s)
- Sankari Nagarajan
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Upasana Bedi
- Institute of Molecular Oncology, University Medical Center Göttingen, 37077 Göttingen, Germany.,Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anusha Budida
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Feda H Hamdan
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Vivek Kumar Mishra
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Wanhua Xie
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK.,Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK.,Institute for Pharmaceutical Chemistry, Goethe University Frankfurt 60323, Germany
| | - Cheng-Ming Chiang
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Dallas, TX 75235, USA
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Christina H Scheel
- Institute of Stem Cell Research, Helmholtz Center for Health and Environmental Research Munich, 85764 Neuherberg, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Shih CH, Chang YJ, Huang WC, Jang TH, Kung HJ, Wang WC, Yang MH, Lin MC, Huang SF, Chou SW, Chang E, Chiu H, Shieh TY, Chen YJ, Wang LH, Chen L. EZH2-mediated upregulation of ROS1 oncogene promotes oral cancer metastasis. Oncogene 2017; 36:6542-6554. [PMID: 28759046 PMCID: PMC5702718 DOI: 10.1038/onc.2017.262] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 12/28/2022]
Abstract
Current anti-epidermal growth factor receptor (EGFR) therapy for oral cancer does not provide satisfactory efficacy due to drug resistance or reduced EGFR level. As an alternative candidate target for therapy, here we identified an oncogene, ROS1, as an important driver for oral squamous cell carcinoma (OSCC) metastasis. Among tumors from 188 oral cancer patients, upregulated ROS1 expression strongly correlated with metastasis to lung and lymph nodes. Mechanistic studies uncover that the activated ROS1 results from highly expressed ROS1 gene instead of gene rearrangement, a phenomenon distinct from other cancers. Our data further reveal a novel mechanism that reduced histone methyltransferase EZH2 leads to a lower trimethylation of histone H3 lysine 27 suppressive modification, relaxes chromatin, and promotes the accessibility of the transcription factor STAT1 to the enhancer and the intron regions of ROS1 target genes, CXCL1 and GLI1, for upregulating their expressions. Down-regulation of ROS1 in highly invasive OSCC cells, nevertheless, reduces cell proliferation and inhibits metastasis to lung in the tail-vein injection and the oral cavity xenograft models. Our findings highlight ROS1 as a candidate biomarker and therapeutic target for OSCC. Finally, we demonstrate that co-targeting of ROS1 and EGFR could potentially offer an effective oral cancer therapy.
Collapse
Affiliation(s)
- C-H Shih
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Y-J Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - W-C Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - T-H Jang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - H-J Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan, ROC.,School of Medicine, University of California-Davis, Sacramento, CA, USA
| | - W-C Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - M-H Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - M-C Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - S-F Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - S-W Chou
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - E Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - H Chiu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - T-Y Shieh
- Department of Oral Hygiene, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Y-J Chen
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - L-H Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - L Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, ROC.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
30
|
Prediction of biomarkers of oral squamous cell carcinoma using microarray technology. Sci Rep 2017; 7:42105. [PMID: 28176846 PMCID: PMC5296717 DOI: 10.1038/srep42105] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
Microarray data is used to screen the genes of oral squamous cell carcinoma (OSCC). Microarray data of OSCC and normal tissues were downloaded from GEO database and analyzed with Benjamini-Hochberg (BH) method. Differentially expressed genes (DEGs) were then uploaded on DAVID database to process enrichment analysis. Target genes were finally chosen for verification experiment in vitro and in vivo. 78 DEGs were selected from 54676 genes, including 46 up- and 32 down- regulation. GO term showed that these genes were related to epidermal growth (biological processes), extracellular region (cellular components) and cytokines activity (molecular function). Protein network interaction demonstrated that OSCC was closely allied to the five key genes including CXCL10, IFI6, IFI27, ADAMTS2 and COL5A1, which was consistent with the RT-PCR data. High-expressed gene CXCL10 was chosen for further cell experiment, and the results indicated that CXCL10 can promote the proliferation, migration and invasion of normal cells and inhibited the cancer cells after si-RNA transfection. Moreover, it has been proven that CXCL10 was possibly related to the occurrence and development of OSCC. Understanding the regulation of OSCC expression will shed light on the screening of cancer biomarker.
Collapse
|
31
|
Shen CJ, Chan SH, Lee CT, Huang WC, Tsai JP, Chen BK. Oleic acid-induced ANGPTL4 enhances head and neck squamous cell carcinoma anoikis resistance and metastasis via up-regulation of fibronectin. Cancer Lett 2016; 386:110-122. [PMID: 27865799 DOI: 10.1016/j.canlet.2016.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023]
Abstract
Obese patients have higher levels of free fatty acids (FFAs) in their plasma and a higher risk of cancer than their non-obese counterparts. However, the mechanisms involved in the regulation of cancer metastasis by FFAs remain unclear. In this study, we found that oleic acid (OA) induced angiopoietin-like 4 (ANGPTL4) protein expression and secretion and conferred anoikis resistance to head and neck squamous cell carcinomas (HNSCCs). The autocrine production of OA-induced ANGPTL4 further promoted HNSCC migration and invasion. In addition, the expression of peroxisome proliferator-activated receptor (PPAR) was essential for the OA-induced ANGPTL4 expression and invasion. The levels of OA-induced epithelial-mesenchymal transition markers, such as vimentin, MMP-9, and fibronectin and its downstream effectors Rac1/Cdc42, were significantly reduced in ANGPTL4-depleted cells. Knocking down fibronectin inhibited the expression of MMP-9 and repressed OA- and recombinant ANGPTL4-induced HNSCC invasion. On the other hand, ANGPTL4 siRNA inhibited OA-induced MMP-9 expression, which was reversed in fibronectin-overexpressing cells. Furthermore, the depletion of ANGPTL4 impeded the OA-primed metastatic seeding of tumor cells in the lungs. These results demonstrate that OA enhances HNSCC metastasis through the ANGPTL4/fibronectin/Rac1/Cdc42 and ANGPTL4/fibronectin/MMP-9 signaling axes.
Collapse
Affiliation(s)
- Chih-Jie Shen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, ROC; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Shih-Hung Chan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, Tainan 701, Taiwan, ROC
| | - Wan-Chen Huang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, ROC; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Jhih-Peng Tsai
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Ben-Kuen Chen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, ROC; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, ROC; Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC.
| |
Collapse
|
32
|
Si H, Lu H, Yang X, Mattox A, Jang M, Bian Y, Sano E, Viadiu H, Yan B, Yau C, Ng S, Lee SK, Romano RA, Davis S, Walker RL, Xiao W, Sun H, Wei L, Sinha S, Benz CC, Stuart JM, Meltzer PS, Van Waes C, Chen Z. TNF-α modulates genome-wide redistribution of ΔNp63α/TAp73 and NF-κB cREL interactive binding on TP53 and AP-1 motifs to promote an oncogenic gene program in squamous cancer. Oncogene 2016; 35:5781-5794. [PMID: 27132513 PMCID: PMC5093089 DOI: 10.1038/onc.2016.112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/11/2022]
Abstract
The Cancer Genome Atlas (TCGA) network study of 12 cancer types (PanCancer 12) revealed frequent mutation of TP53, and amplification and expression of related TP63 isoform ΔNp63 in squamous cancers. Further, aberrant expression of inflammatory genes and TP53/p63/p73 targets were detected in the PanCancer 12 project, reminiscent of gene programs comodulated by cREL/ΔNp63/TAp73 transcription factors we uncovered in head and neck squamous cell carcinomas (HNSCCs). However, how inflammatory gene signatures and cREL/p63/p73 targets are comodulated genome wide is unclear. Here, we examined how the inflammatory factor tumor necrosis factor-α (TNF-α) broadly modulates redistribution of cREL with ΔNp63α/TAp73 complexes and signatures genome wide in the HNSCC model UM-SCC46 using chromatin immunoprecipitation sequencing (ChIP-seq). TNF-α enhanced genome-wide co-occupancy of cREL with ΔNp63α on TP53/p63 sites, while unexpectedly promoting redistribution of TAp73 from TP53 to activator protein-1 (AP-1) sites. cREL, ΔNp63α and TAp73 binding and oligomerization on NF-κB-, TP53- or AP-1-specific sequences were independently validated by ChIP-qPCR (quantitative PCR), oligonucleotide-binding assays and analytical ultracentrifugation. Function of the binding activity was confirmed using TP53-, AP-1- and NF-κB-specific REs or p21, SERPINE1 and IL-6 promoter luciferase reporter activities. Concurrently, TNF-α regulated a broad gene network with cobinding activities for cREL, ΔNp63α and TAp73 observed upon array profiling and reverse transcription-PCR. Overlapping target gene signatures were observed in squamous cancer subsets and in inflamed skin of transgenic mice overexpressing ΔNp63α. Furthermore, multiple target genes identified in this study were linked to TP63 and TP73 activity and increased gene expression in large squamous cancer samples from PanCancer 12 TCGA by CircleMap. PARADIGM inferred pathway analysis revealed the network connection of TP63 and NF-κB complexes through an AP-1 hub, further supporting our findings. Thus, inflammatory cytokine TNF-α mediates genome-wide redistribution of the cREL/p63/p73, and AP-1 interactome, to diminish TAp73 tumor suppressor function and reciprocally activate NF-κB and AP-1 gene programs implicated in malignancy.
Collapse
Affiliation(s)
- Han Si
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Hai Lu
- Orthopaedic Center, Zhujiang Hospital Guangzhou, Guangdong,
China
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Austin Mattox
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Minyoung Jang
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Yansong Bian
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Eleanor Sano
- Department of Chemistry and Biochemistry, University of
California, San Diego, La Jolla, CA
| | - Hector Viadiu
- Instituto de Química, Universidad Nacional
Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria,
Mexico City, D.F. 04510, MÉXICO
| | - Bin Yan
- LKS Faculty of Medicine and School of Biomedical Sciences,
LKS Faculty of Medicine and Center of Genome Sciences, The University of Hong Kong,
Hong Kong, China
| | | | - Sam Ng
- Department of Biomolecular Engineering, Center for
Biomolecular Sciences and Engineering, University of California, Santa Cruz, Santa
Cruz, CA
| | - Steven K. Lee
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Rose-Anne Romano
- Department of Biochemistry, State University of New York at
Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New
York, USA
| | - Sean Davis
- Cancer Genetics Branch, National Cancer Institute,
Bethesda, Maryland, USA
| | - Robert L. Walker
- Cancer Genetics Branch, National Cancer Institute,
Bethesda, Maryland, USA
| | - Wenming Xiao
- Division of Bioinformatics and Biostatistics, National
Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson,
Arkansas
| | - Hongwei Sun
- Biodata Mining and Discovery Section, National Institute
of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Lai Wei
- Clinical Immunology Section, National Eye Institute, NIH,
Bethesda, Maryland, USA
- State Key Laboratory of Ophthalmology, Zhongshan
Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at
Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New
York, USA
| | | | - Joshua M. Stuart
- Department of Biomolecular Engineering, Center for
Biomolecular Sciences and Engineering, University of California, Santa Cruz, Santa
Cruz, CA
| | - Paul S. Meltzer
- Cancer Genetics Branch, National Cancer Institute,
Bethesda, Maryland, USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| |
Collapse
|
33
|
Yen YC, Hsiao JR, Jiang SS, Chang JS, Wang SH, Shen YY, Chen CH, Chang IS, Chang JY, Chen YW. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget 2016; 6:41837-55. [PMID: 26540630 PMCID: PMC4747192 DOI: 10.18632/oncotarget.5995] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022] Open
Abstract
Frequent metastasis to the cervical lymph nodes leads to poor survival of patients with oral squamous cell carcinoma (OSCC). To understand the underlying mechanisms of lymph node metastasis, two sublines were successfully isolated from cervical lymph nodes of nude mice through in vivo selection, and identified as originating from poorly metastatic parental cells. These two sublines specifically metastasized to cervical lymph nodes in 83% of mice, whereas OEC-M1 cells did not metastasize after injection into the oral cavity. After gene expression analysis, we identified insulin-like growth factor binding protein 3 (IGFBP3) as one of the significantly up-regulated genes in the sublines in comparison with their parental cells. Consistently, meta-analysis of the public microarray datasets and IGFBP3 immunohistochemical analysis revealed increased both levels of IGFBP3 mRNA and protein in human OSCC tissues when compared to normal oral or adjacent nontumorous tissues. Interestingly, the up-regulated IGFBP3 mRNA expression was significantly associated with OSCC patients with lymph node metastasis. IGFBP3 knockdown in the sublines impaired and ectopic IGFBP3 expression in the parental cells promoted migration, transendothelial migration and lymph node metastasis of orthotopic transplantation. Additionally, ectopic expression of IGFBP3 with an IGF-binding defect sustained the IGFBP3-enhanced biological functions. Results indicated that IGFBP3 regulates metastasis-related functions of OSCC cells through an IGF-independent mechanism. Furthermore, exogenous IGFBP3 was sufficient to induce cell motility and extracellular signal-regulated kinase (ERK) activation. The silencing of integrin β1 was able to impair exogenous IGFBP3-mediated migration and ERK phosphorylation, suggesting a critical role of integrin β1 in IGFBP3-enchanced functions.
Collapse
Affiliation(s)
- Yi-Chen Yen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jeffrey S Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ssu-Han Wang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ying-Ying Shen
- Pathology Core Laboratory, National Health Research Institutes, Miaoli, Taiwan
| | - Chung-Hsing Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Jang-Yang Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, Tainan, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Lee CW, Chang KP, Chen YY, Liang Y, Hsueh C, Yu JS, Chang YS, Yu CJ. Overexpressed tryptophanyl-tRNA synthetase, an angiostatic protein, enhances oral cancer cell invasiveness. Oncotarget 2016; 6:21979-92. [PMID: 26110569 PMCID: PMC4673140 DOI: 10.18632/oncotarget.4273] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common neoplasms worldwide. Previously, we identified the angiostatic agent tryptophanyl-tRNA synthetase (TrpRS) as a dysregulated protein in OSCC based on a proteomics approach. Herein, we show that TrpRS is overexpressed in OSCC tissues (139/146, 95.2%) compared with adjacent normal tissues and that TrpRS expression positively correlates with tumor stage, overall TNM stage, perineural invasion and tumor depth. Importantly, the TrpRS levels were significantly higher in tumor cells from metastatic lymph nodes than in corresponding primary tumor cells. TrpRS knockdown or treatment with conditioned media obtained from TrpRS-knockdown cells significantly reduced oral cancer cell viability and invasiveness. TrpRS overexpression promoted cell migration and invasion. In addition, the extracellular addition of TrpRS rescued the invasion ability of TrpRS-knockdown cells. Subcellular fractionation and immunofluorescence staining further revealed that TrpRS was distributed on the cell surface, suggesting that secreted TrpRS promotes OSCC progression via an extrinsic pathway. Collectively, our results demonstrated the clinical significance and a novel role of TrpRS in OSCC.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan
| | - Yan-Yu Chen
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Ying Liang
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuen Hsueh
- Department of Pathology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan.,Pathology Core, Chang Gung University, Tao-Yuan, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
35
|
Hassan CE, Webster TJ. The effect of red-allotrope selenium nanoparticles on head and neck squamous cell viability and growth. Int J Nanomedicine 2016; 11:3641-54. [PMID: 27536104 PMCID: PMC4975150 DOI: 10.2147/ijn.s105173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Given their low toxicity and natural presence in the human diet, selenium nanoparticles have been established as potential candidates for the treatment of numerous cancers. Red-allotrope selenium nanoparticles (rSeNPs) were synthesized and characterized in this study. Head and neck squamous cell carcinoma (HNSCC) and human dermal fibroblast (HDF) cells were cultured and exposed to rSeNPs at concentrations ranging from 0.01 to 100 μg rSeNP/mL media for 1–3 days. The toxicity of rSeNP toward HNSCC and HDFs was analyzed. Results indicated that the particles were approximately four times as cytotoxic toward HNSCC compared to HDFs, with their respective IC50 values at 19.22 and 59.61 μg rSeNP/mL media. Using statistical analysis, an effective dosage range for killing HNSCC cells while simultaneously minimizing damage to HDFs over a 3-day incubation period was established at 20–55 μg rSeNP/mL media. Observations showed that doses of rSeNP <5 μg rSeNP/mL media resulted in cell proliferation. Transmission electron microscopy images of HNSCC and HDF cells, both treated with rSeNPs, revealed that the rSeNPs became localized in the cytoplasm near the lysosomes and mitochondria. Analysis of cell morphology showed that the rSeNPs primarily induced HNSCC apoptosis. Collectively, these results indicated that rSeNPs are a promising option for treating HNSCC without adversely affecting healthy cells and without resorting to the use of harmful chemotherapeutics.
Collapse
Affiliation(s)
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA; Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Melchers LJ, Clausen MJAM, Mastik MF, Slagter-Menkema L, van der Wal JE, Wisman GBA, Roodenburg JLN, Schuuring E. Identification of methylation markers for the prediction of nodal metastasis in oral and oropharyngeal squamous cell carcinoma. Epigenetics 2016. [PMID: 26213212 DOI: 10.1080/15592294.2015.1075689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypermethylation is an important mechanism for the dynamic regulation of gene expression, necessary for metastasizing tumour cells. Our aim is to identify methylation tumour markers that have a predictive value for the presence of regional lymph node metastases in patients with oral and oropharyngeal squamous cell carcinoma (OOSCC). Significantly differentially expressed genes were retrieved from four reported microarray expression profiles comparing pN0 and pN+ head-neck tumours, and one expression array identifying functionally hypermethylated genes. Additional metastasis-associated genes were included from the literature. Thus genes were selected that influence the development of nodal metastases and might be regulated by methylation. Methylation-specific PCR (MSP) primers were designed and tested on 8 head-neck squamous cell carcinoma cell lines and technically validated on 10 formalin-fixed paraffin-embedded (FFPE) OOSCC cases. Predictive value was assessed in a clinical series of 70 FFPE OOSCC with pathologically determined nodal status. Five out of 28 methylation markers (OCLN, CDKN2A, MGMT, MLH1 and DAPK1) were frequently differentially methylated in OOSCC. Of these, MGMT methylation was associated with pN0 status (P = 0.02) and with lower immunoexpression (P = 0.02). DAPK1 methylation was associated with pN+ status (P = 0.008) but did not associate with protein expression. In conclusion, out of 28 candidate genes, two (7%) showed a predictive value for the pN status. Both genes, DAPK1 and MGMT, have predictive value for nodal metastasis in a clinical group of OOSCC. Therefore DNA methylation markers are capable of contributing to diagnosis and treatment selection in OOSCC. To efficiently identify additional new methylation markers, genome-wide methods are needed.
Collapse
Affiliation(s)
- L J Melchers
- a Dept. of Oral & Maxillofacial Surgery ; University of Groningen; University Medical Center Groningen ; Groningen , The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mes SW, Leemans CR, Brakenhoff RH. Applications of molecular diagnostics for personalized treatment of head and neck cancer: state of the art. Expert Rev Mol Diagn 2016; 16:205-21. [PMID: 26620464 DOI: 10.1586/14737159.2016.1126512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Squamous cell carcinomas of the head and neck are the sixth most frequent tumors worldwide. Risk factors are carcinogenic exposure, infection with the human papillomavirus (HPV) and genetic predisposition. Lymph node metastasis in the neck and HPV status are major prognostic factors. There are several important clinical challenges that determine the research agenda in head and neck cancer. The first is more accurate staging, particularly of occult metastatic lymph nodes in the neck. A second challenge is the lack of biomarkers for personalized therapy. There are a number of treatment modalities that can be employed both single and in combination, but at present only site and stage of the tumor are used for treatment planning. Provided here is an overview of the successes and failures of molecular diagnostic approaches that have been and are being evaluated to address these clinical challenges.
Collapse
Affiliation(s)
- Steven W Mes
- a Department of Otolaryngology-Head and Neck Surgery , VU University Medical Center , Amsterdam , The Netherlands
| | - C René Leemans
- a Department of Otolaryngology-Head and Neck Surgery , VU University Medical Center , Amsterdam , The Netherlands
| | - Ruud H Brakenhoff
- a Department of Otolaryngology-Head and Neck Surgery , VU University Medical Center , Amsterdam , The Netherlands
| |
Collapse
|
38
|
Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer. Br J Cancer 2015; 112:1665-74. [PMID: 25965298 PMCID: PMC4430711 DOI: 10.1038/bjc.2014.665] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022] Open
Abstract
Background: Transcriptome profiling has helped characterise nodal spread. The interpretation of these data, however, is not without ambiguities. Methods: We profiled the transcriptomes of papillary thyroid cancer nodal metastases, associated primary tumours and primary tumours from N0 patients. We also included patient-matched non-cancerous thyroid and lymph node samples as controls to address some limits of previous studies. Results: The transcriptomes of patient-matched primary tumours and metastases were more similar than those of unrelated metastases/primary pairs, as previously reported in other organ systems. This similarity partly reflected patient background. Lymphoid tissues in the metastases confounded the comparison of patient-matched primary tumours and metastases. We circumvented this with an original data adjustment, revealing a differential expression of stroma-related gene signatures also regulated in other organs. The comparison of N0 vs N+ primary tumours uncovered a signal irreproducible across independent data sets. This signal was also detectable when comparing the non-cancerous thyroid tissues adjacent to N0 and N+ tumours, suggesting a cohort-specific bias also likely present in previous similarly sized studies. Classification of N0 vs N+ yielded an accuracy of 63%, but additional statistical controls absent in previous studies revealed that this is explainable by chance alone. We used large data sets from The Cancer Genome Atlas: N0 vs N+ classification was not better than random for most cancers. Yet, it was significant, but of limited accuracy (<70%) for thyroid, breast and head and neck cancers. Conclusions: The clinical potential of gene expression to predict nodal metastases seems limited for most cancers.
Collapse
|
39
|
Randhawa V, Acharya V. Integrated network analysis and logistic regression modeling identify stage-specific genes in Oral Squamous Cell Carcinoma. BMC Med Genomics 2015; 8:39. [PMID: 26179909 PMCID: PMC4502639 DOI: 10.1186/s12920-015-0114-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/06/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is associated with substantial mortality and morbidity but, OSCC can be difficult to detect at its earliest stage due to its molecular complexity and clinical behavior. Therefore, identification of key gene signatures at an early stage will be highly helpful. METHODS The aim of this study was to identify key genes associated with progression of OSCC stages. Gene expression profiles were classified into cancer stage-related modules, i.e., groups of genes that are significantly related to a clinical stage. For prioritizing the candidate genes, analysis was further restricted to genes with high connectivity and a significant association with a stage. To assess predictive power of these genes, a classification model was also developed and tested by 5-fold cross validation and on an independent dataset. RESULTS The identified genes were enriched for significant processes and functional pathways, and various genes were found to be directly implicated in OSCC. Forward and stepwise, multivariate logistic regression analyses identified 13 key genes whose expression discriminated early- and late-stage OSCC with predictive accuracy (area under curve; AUC) of ~0.81 in a 5-fold cross-validation strategy. CONCLUSIONS The proposed network-driven integrative analytical approach can identify multiple genes significantly related to an OSCC stage; the classification model that is developed with these genes may help to distinguish cancer stages. The proposed genes and model hold promise for monitoring of OSCC stage progression, and our findings may facilitate cancer detection at an earlier stage, resulting in improved treatment outcomes.
Collapse
Affiliation(s)
- Vinay Randhawa
- Functional Genomics and Complex Systems Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| | - Vishal Acharya
- Functional Genomics and Complex Systems Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
40
|
Low-molecular-mass secretome profiling identifies HMGA2 and MIF as prognostic biomarkers for oral cavity squamous cell carcinoma. Sci Rep 2015; 5:11689. [PMID: 26138061 PMCID: PMC4650660 DOI: 10.1038/srep11689] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
The profiling of cancer cell secretomes is considered to be a good strategy for identifying cancer-related biomarkers, but few studies have focused on identifying low-molecular-mass (LMr) proteins (<15 kDa) in cancer cell secretomes. Here, we used tricine-SDS-gel-assisted fractionation and LC-MS/MS to systemically identify LMr proteins in the secretomes of five oral cavity squamous cell carcinoma (OSCC) cell lines. Cross-matching of these results with nine OSCC tissue transcriptome datasets allowed us to identify 33 LMr genes/proteins that were highly upregulated in OSCC tissues and secreted/released from OSCC cells. Immunohistochemistry and quantitative real-time PCR were used to verify the overexpression of two candidates, HMGA2 and MIF, in OSCC tissues. The overexpressions of both proteins were associated with cervical metastasis, perineural invasion, deeper tumor invasion, higher overall stage, and a poorer prognosis for post-treatment survival. Functional assays further revealed that both proteins promoted the migration and invasion of OSCC cell lines in vitro. Collectively, our data indicate that the tricine-SDS-gel/LC-MS/MS approach can be used to efficiently identify LMr proteins from OSCC cell secretomes, and suggest that HMGA2 and MIF could be potential tissue biomarkers for OSCC.
Collapse
|
41
|
Cheng CW, Hsiao JR, Fan CC, Lo YK, Tzen CY, Wu LW, Fang WY, Cheng AJ, Chen CH, Chang IS, Jiang SS, Chang JY, Lee AYL. Loss of GDF10/BMP3b as a prognostic marker collaborates with TGFBR3 to enhance chemotherapy resistance and epithelial-mesenchymal transition in oral squamous cell carcinoma. Mol Carcinog 2015; 55:499-513. [PMID: 25728212 DOI: 10.1002/mc.22297] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/18/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Growth differentiation factor-10 (GDF10), commonly referred as BMP3b, is a member of the transforming growth factor-β (TGF-β) superfamily. GDF10/BMP3b has been considered as a tumor suppressor, however, little is known about the molecular mechanism of its roles in tumor suppression in oral cancer. Clinical significance of GDF10 downregulation in oral squamous cell carcinoma (OSCC) was evaluated using three independent cohorts of OSCC patients. The molecular mechanisms of GDF10 in the suppression of cell survival, cell migration/invasion and epithelial-mesenchymal transition (EMT) were investigated by using oral cancer cell lines. The present study shows that GDF10 is downregulated during oral carcinogenesis, and GDF10 expression is also an independent risk factor for overall survival of OSCC patients. Overexpression of GDF10 attenuates cell proliferation, transformation, migration/invasion, and EMT. GDF10-inhibited EMT is mediated by ERK signaling but not by typical TGF-β signaling. In addition, overexpression of GDF10 promotes DNA damage-induced apoptosis and sensitizes the response to all-trans retinoic acid (ATRA) and camptothecin (CPT). Intriguingly, the expression of GDF10 is induced by type III TGF-β receptor (TGFBR3) through TGF-β-SMAD2/3 signaling. Our findings suggest that TGFBR3 is an upstream activator of GDF10 expression and they share the same signaling to inhibit EMT and migration/invasion. These results support that GDF10 acts as a hinge to collaborate with TGFBR3 in the transition of EMT-MET program. Taken together, we illustrated the clinical significance and the molecular mechanisms of tumor-suppressive GDF10 in OSCC.
Collapse
Affiliation(s)
- Chieh-Wen Cheng
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Fan
- Department of Physiology, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Yu-Kang Lo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chi-Yuan Tzen
- Department of Pathology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Fang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
42
|
Chalivendra V, Kanchi KL, Onken MD, Winkler AE, Mardis E, Uppaluri R. Genomic analysis to define molecular basis of aggressiveness in a mouse model of oral cancer. GENOMICS DATA 2015; 3:61-62. [PMID: 25729643 PMCID: PMC4340082 DOI: 10.1016/j.gdata.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To investigate the molecular basis underlying aggressive behavior in oral squamous cell carcinoma (OSCC), our laboratory developed a carcinogen-induced mouse oral cancer (MOC) cell line model that encompasses the growth and metastasis spectrum of its human counterpart. We performed next-generation sequencing (NGS) and gene expression microarray profiles to explore the genomic and transcriptional backgrounds of the differential MOC line phenotypes, as well as, the cross-species relevance of the model. Here we describe the comparative analysis of NGS (www.ncbi.nlm.nih.gov/biosample?LinkName=bioproject_biosample_all&from_uid=247825) and expression microarray (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50041) data from the MOC lines and corresponding human data, as described in our recent publication [1].
Collapse
Affiliation(s)
- Varun Chalivendra
- Department of Otolaryngology and The Genome Institute, Washington University in Saint Louis School of Medicine, Department of Otolaryngology
| | - Krishna Latha Kanchi
- Department of Otolaryngology and The Genome Institute, Washington University in Saint Louis School of Medicine, Department of Otolaryngology
| | - Michael D Onken
- Department of Otolaryngology and The Genome Institute, Washington University in Saint Louis School of Medicine, Department of Otolaryngology
| | - Ashley E Winkler
- Department of Otolaryngology and The Genome Institute, Washington University in Saint Louis School of Medicine, Department of Otolaryngology
| | - Elaine Mardis
- Department of Otolaryngology and The Genome Institute, Washington University in Saint Louis School of Medicine, Department of Otolaryngology
| | - Ravindra Uppaluri
- Department of Otolaryngology and The Genome Institute, Washington University in Saint Louis School of Medicine, Department of Otolaryngology
| |
Collapse
|
43
|
Kawahara R, Granato DC, Carnielli CM, Cervigne NK, Oliveria CE, Martinez CAR, Yokoo S, Fonseca FP, Lopes M, Santos-Silva AR, Graner E, Coletta RD, Leme AFP. Agrin and perlecan mediate tumorigenic processes in oral squamous cell carcinoma. PLoS One 2014; 9:e115004. [PMID: 25506919 PMCID: PMC4266612 DOI: 10.1371/journal.pone.0115004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/17/2014] [Indexed: 01/03/2023] Open
Abstract
Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Daniela C. Granato
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Carolina M. Carnielli
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Nilva K. Cervigne
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | - Carine E. Oliveria
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | - César A. R. Martinez
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Sami Yokoo
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Felipe P. Fonseca
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | - Marcio Lopes
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | - Alan R. Santos-Silva
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | - Edgard Graner
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | - Ricardo D. Coletta
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | - Adriana Franco Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
- * E-mail:
| |
Collapse
|
44
|
Dhanda J, Triantafyllou A, Liloglou T, Kalirai H, Lloyd B, Hanlon R, Shaw RJ, Sibson DR, Risk JM. SERPINE1 and SMA expression at the invasive front predict extracapsular spread and survival in oral squamous cell carcinoma. Br J Cancer 2014; 111:2114-21. [PMID: 25268377 PMCID: PMC4260028 DOI: 10.1038/bjc.2014.500] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Extracapsular spread (ECS) in cervical lymph nodes is the single-most prognostic clinical variable in oral squamous cell carcinoma (OSCC), but diagnosis is possible only after histopathological examination. A promising biomarker in the primary tumour, alpha smooth muscle actin (SMA) has been shown to be highly prognostic, however, validated biomarkers to predict ECS prior to primary treatment are not yet available. METHODS In 102 OSCC cases, conventional imaging was compared with pTNM staging. SERPINE1, identified from expression microarray of primary tumours as a potential biomarker for ECS, was validated through mRNA expression, and by immunohistochemistry (IHC) on a tissue microarray from the same cohort. Similarly, expression of SMA was also compared with its association with ECS and survival. Expression was analysed separately in the tumour centre and advancing front; and prognostic capability determined using Kaplan-Meier survival analysis. RESULTS Immunohistochemistry indicated that both SERPINE1 and SMA expression at the tumour-advancing front were significantly associated with ECS (P<0.001). ECS was associated with expression of either or both proteins in all cases. SMA+/SERPINE1+ expression in combination was highly significantly associated with poor survival (P<0.001). MRI showed poor sensitivity for detection of nodal metastasis (56%) and ECS (7%). Both separately, and in combination, SERPINE1 and SMA were superior to MRI for the detection of ECS (sensitivity: SERPINE1: 95%; SMA: 82%; combination: 81%). CONCLUSION A combination of SMA and SERPINE1 IHC offer potential as prognostic biomarkers in OSCC. Our findings suggest that biomarkers at the invasive front are likely to be necessary in prediction of ECS or in therapeutic stratification.
Collapse
Affiliation(s)
- J Dhanda
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - A Triantafyllou
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Regional Oral and Maxillofacial Unit, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
| | - T Liloglou
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - H Kalirai
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - B Lloyd
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - R Hanlon
- Regional Oral and Maxillofacial Unit, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
| | - R J Shaw
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Regional Oral and Maxillofacial Unit, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
| | - D R Sibson
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - J M Risk
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
45
|
Benaich N, Woodhouse S, Goldie SJ, Mishra A, Quist SR, Watt FM. Rewiring of an epithelial differentiation factor, miR-203, to inhibit human squamous cell carcinoma metastasis. Cell Rep 2014; 9:104-117. [PMID: 25284788 PMCID: PMC4536294 DOI: 10.1016/j.celrep.2014.08.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 08/05/2014] [Accepted: 08/25/2014] [Indexed: 01/19/2023] Open
Abstract
Metastatic colonization of distant organs underpins the majority of human-cancer-related deaths, including deaths from head and neck squamous cell carcinoma (HNSCC). We report that miR-203, a miRNA that triggers differentiation in multilayered epithelia, inhibits multiple postextravasation events during HNSCC lung metastasis. Inducible reactivation of miR-203 in already established lung metastases reduces the overall metastatic burden. Using an integrated approach, we reveal that miR-203 inhibits metastasis independently of its effects on differentiation. In vivo genetic reconstitution experiments show that miR-203 inhibits lung metastasis by suppressing the prometastatic activities of three factors involved in cytoskeletal dynamics (LASP1), extracellular matrix remodeling (SPARC), and cell metabolism (NUAK1). Expression of miR-203 and its downstream effectors correlates with HNSCC overall survival outcomes, indicating the therapeutic potential of targeting this signaling axis.
Collapse
Affiliation(s)
- Nathan Benaich
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Centre for Stem Cells and Regenerative Medicine, King's College London, 28(th) Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Samuel Woodhouse
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28(th) Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Stephen J Goldie
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ajay Mishra
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28(th) Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Sven R Quist
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Clinic of Dermatology and Venereology, Otto-von-Guericke University, Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28(th) Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
46
|
Jerhammar F, Johansson AC, Ceder R, Welander J, Jansson A, Grafström RC, Söderkvist P, Roberg K. YAP1 is a potential biomarker for cetuximab resistance in head and neck cancer. Oral Oncol 2014; 50:832-9. [PMID: 24993889 DOI: 10.1016/j.oraloncology.2014.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/22/2014] [Accepted: 06/09/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Targeted therapy against the epidermal growth factor receptor (EGFR) only variably represents a therapeutic advance in head and neck squamous cell carcinoma (HNSCC). This study addresses the need of biomarkers of treatment response to the EGFR-targeting antibody cetuximab (Erbitux®). MATERIALS AND METHODS The intrinsic cetuximab sensitivity of HNSCC cell lines was assessed by a crystal violet assay. Gene copy number analysis of five resistant and five sensitive cell lines was performed using the Affymetrix SNP 6.0 platform. Quantitative real-time PCR was used for verification of selected copy number alterations and assessment of mRNA expression. The functional importance of the findings on the gene and mRNA level was investigated employing siRNA technology. The data was statistically evaluated using Mann-Whitney U-test and Spearman's correlation test. RESULTS Analysis of the intrinsic cetuximab sensitivity of 32 HNSCC cell lines characterized five and nine lines as cetuximab sensitive or resistant, respectively. Gene copy number analysis of five resistant versus five sensitive cell lines identified 39 amplified protein-coding genes, including YAP1, in the genomic regions 11q22.1 or 5p13-15. Assessment using qPCR verified that YAP1 amplification associated with cetuximab resistance. Amplification of YAP1 correlated to higher mRNA levels, and RNA knockdown resulted in increased cetuximab sensitivity. Assessment of several independent clinical data sets in the public domain confirmed YAP1 amplifications in multiple tumor types including HNSCC, along with highly differential expression in a subset of HNSCC patients. CONCLUSION Taken together, we provide evidence that YAP1 could represent a novel biomarker gene of cetuximab resistance in HNSCC cell lines.
Collapse
Affiliation(s)
- Fredrik Jerhammar
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Ann-Charlotte Johansson
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Rebecca Ceder
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Welander
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Agneta Jansson
- Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Roland C Grafström
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| | - Peter Söderkvist
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Karin Roberg
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Department of ENT-Head and Neck Surgery UHL, County Council of Östergötland, Linköping, Sweden
| |
Collapse
|
47
|
Onken MD, Winkler AE, Kanchi KL, Chalivendra V, Law JH, Rickert CG, Kallogjeri D, Judd NP, Dunn GP, Piccirillo JF, Lewis JS, Mardis ER, Uppaluri R. A surprising cross-species conservation in the genomic landscape of mouse and human oral cancer identifies a transcriptional signature predicting metastatic disease. Clin Cancer Res 2014; 20:2873-84. [PMID: 24668645 PMCID: PMC4096804 DOI: 10.1158/1078-0432.ccr-14-0205] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Improved understanding of the molecular basis underlying oral squamous cell carcinoma (OSCC) aggressive growth has significant clinical implications. Herein, cross-species genomic comparison of carcinogen-induced murine and human OSCCs with indolent or metastatic growth yielded results with surprising translational relevance. EXPERIMENTAL DESIGN Murine OSCC cell lines were subjected to next-generation sequencing (NGS) to define their mutational landscape, to define novel candidate cancer genes, and to assess for parallels with known drivers in human OSCC. Expression arrays identified a mouse metastasis signature, and we assessed its representation in four independent human datasets comprising 324 patients using weighted voting and gene set enrichment analysis. Kaplan-Meier analysis and multivariate Cox proportional hazards modeling were used to stratify outcomes. A quantitative real-time PCR assay based on the mouse signature coupled to a machine-learning algorithm was developed and used to stratify an independent set of 31 patients with respect to metastatic lymphadenopathy. RESULTS NGS revealed conservation of human driver pathway mutations in mouse OSCC, including in Trp53, mitogen-activated protein kinase, phosphoinositide 3-kinase, NOTCH, JAK/STAT, and Fat1-4. Moreover, comparative analysis between The Cancer Genome Atlas and mouse samples defined AKAP9, MED12L, and MYH6 as novel putative cancer genes. Expression analysis identified a transcriptional signature predicting aggressiveness and clinical outcomes, which were validated in four independent human OSCC datasets. Finally, we harnessed the translational potential of this signature by creating a clinically feasible assay that stratified patients with OSCC with a 93.5% accuracy. CONCLUSIONS These data demonstrate surprising cross-species genomic conservation that has translational relevance for human oral squamous cell cancer. Clin Cancer Res; 20(11); 2873-84. ©2014 AACR.
Collapse
Affiliation(s)
- Michael D Onken
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - Ashley E Winkler
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - Krishna-Latha Kanchi
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - Varun Chalivendra
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - Jonathan H Law
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - Charles G Rickert
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - Dorina Kallogjeri
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - Nancy P Judd
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - Gavin P Dunn
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - Jay F Piccirillo
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - James S Lewis
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, MissouriAuthors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - Elaine R Mardis
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, MissouriAuthors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| | - Ravindra Uppaluri
- Authors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, MissouriAuthors' Affiliations: Departments of Cell Biology and Physiology, Otolaryngology, Genetics, Pathology and Immunology, and Neurosurgery; The Genome Institute, Washington University School of Medicine; and John Cochran VA Medical Center, St. Louis, Missouri
| |
Collapse
|
48
|
Fang KH, Kao HK, Chi LM, Liang Y, Liu SC, Hseuh C, Liao CT, Yen TC, Yu JS, Chang KP. Overexpression of BST2 is associated with nodal metastasis and poorer prognosis in oral cavity cancer. Laryngoscope 2014; 124:E354-60. [PMID: 24706327 DOI: 10.1002/lary.24700] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/02/2014] [Accepted: 04/02/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVES/HYPOTHESIS Bone marrow stromal cell antigen 2 (BST2) was one of the proteins that were found to be related to tumor metastasis in our previous proteomic study. Now we examine its clinical role on the oral cavity squamous cell carcinoma (OSCC). STUDY DESIGN Individual retrospective cohort study and basic research. METHODS Immunohistochemical analysis, Western blotting, and quantitative real-time polymerase chain reaction were used to demonstrate the expression levels of BST2 on 159 OSCC tumors. RNA interference was utilized for cell migration and proliferation study in vitro. RESULTS BST2 expression was significantly higher in OSCC cells of metastatic lymph nodes and primary tumor cells, compared to adjacent normal epithelia. Higher BST2 expression was associated with positive N stage, advanced overall stage, perineural invasion, and tumor depth (P = .049, .015, .021, and .010, respectively). OSCC patients with higher BST2 expression had poorer prognosis for disease-specific and disease-free survival (P = .009 and .001, respectively). Multivariate analyses also demonstrated that higher BST2 expression is an independent prognostic factor of disease-specific and disease-free survival (P = .047 and .013, respectively). In vitro suppression of BST2 expression in OEC-M1 cells showed that BST2 contributes to tumor migration of OSCC cells. CONCLUSIONS The findings in this study indicate that BST2 expression in OSCC tumors is an independent prognostic factor of patient survival and associated with tumor metastasis.
Collapse
Affiliation(s)
- Ku-Hao Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Clinical relevance of breast cancer-related genes as potential biomarkers for oral squamous cell carcinoma. BMC Cancer 2014; 14:324. [PMID: 24885002 PMCID: PMC4031971 DOI: 10.1186/1471-2407-14-324] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/29/2014] [Indexed: 02/07/2023] Open
Abstract
Background Squamous cell carcinoma of the oral cavity (OSCC) is a common cancer form with relatively low 5-year survival rates, due partially to late detection and lack of complementary molecular markers as targets for treatment. Molecular profiling of head and neck cancer has revealed biological similarities with basal-like breast and lung carcinoma. Recently, we showed that 16 genes were consistently altered in invasive breast tumors displaying varying degrees of aggressiveness. Methods To extend our findings from breast cancer to another cancer type with similar characteristics, we performed an integrative analysis of transcriptomic and proteomic data to evaluate the prognostic significance of the 16 putative breast cancer-related biomarkers in OSCC using independent microarray datasets and immunohistochemistry. Predictive models for disease-specific (DSS) and/or overall survival (OS) were calculated for each marker using Cox proportional hazards models. Results We found that CBX2, SCUBE2, and STK32B protein expression were associated with important clinicopathological features for OSCC (peritumoral inflammatory infiltration, metastatic spread to the cervical lymph nodes, and tumor size). Consequently, SCUBE2 and STK32B are involved in the hedgehog signaling pathway which plays a pivotal role in metastasis and angiogenesis in cancer. In addition, CNTNAP2 and S100A8 protein expression were correlated with DSS and OS, respectively. Conclusions Taken together, these candidates and the hedgehog signaling pathway may be putative targets for drug development and clinical management of OSCC patients.
Collapse
|
50
|
Affiliation(s)
- Mark R Wick
- Departments of Pathology, University of Virginia Health System, Charlottesville, VA.
| | | | | |
Collapse
|