1
|
Marrero-Rodríguez D, Moscona-Nissan A, Sidauy-Adissi J, Haidenberg-David F, Jonguitud-Zumaya E, de Jesus Chávez-Vera L, Martinez-Mendoza F, Taniguchi-Ponciano K, Mercado M. The molecular biology of sporadic acromegaly. Best Pract Res Clin Endocrinol Metab 2024; 38:101895. [PMID: 38641464 DOI: 10.1016/j.beem.2024.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
GH-secreting tumors represent 15 % to 20 % of all pituitary neuroendocrine tumors (pitNETs), of which 95 % occur in a sporadic context, without an identifiable inherited cause. Recent multi-omic approaches have characterized the epigenomic, genomic, transcriptomic, proteomic and kynomic landscape of pituitary tumors. Transcriptomic analysis has allowed us to discover specific transcription factors driving the differentiation of pituitary tumors and gene expression patterns. GH-secreting, along with PRL- and TSH-secreting pitNETs are driven by POU1F1; ACTH-secreting tumors are determined by TBX19; and non-functioning tumors, which are predominantly of gonadotrope differentiation are conditioned by NR5A1. Upregulation of certain miRNAs, such as miR-107, is associated with tumor progression, while downregulation of others, like miR-15a and miR-16-1, correlates with tumor size reduction. Additionally, miRNA expression profiles are linked to treatment resistance and clinical outcomes, providing insights into potential therapeutic targets. Specific somatic mutations in GNAS, PTTG1, GIPR, HGMA2, MAST and somatic variants associated with cAMP, calcium signaling, and ATP pathways have also been associated with the development of acromegaly. This review focuses on the oncogenic mechanisms by which sporadic acromegaly can develop, covering a complex series of molecular alterations that ultimately alter the balance between proliferation and apoptosis, and dysregulated hormonal secretion.
Collapse
Affiliation(s)
- Daniel Marrero-Rodríguez
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Alberto Moscona-Nissan
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Jessica Sidauy-Adissi
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Fabian Haidenberg-David
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Esbeydi Jonguitud-Zumaya
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Leonel de Jesus Chávez-Vera
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Florencia Martinez-Mendoza
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico
| | - Keiko Taniguchi-Ponciano
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico.
| | - Moises Mercado
- Endocrine Research Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico 06720, Mexico.
| |
Collapse
|
2
|
Ma S, Han J, Li Z, Xiao S, Zhang J, Yan J, Tang T, Barr T, Kraft AS, Caligiuri MA, Yu J. An XBP1s-PIM-2 positive feedback loop controls IL-15-mediated survival of natural killer cells. Sci Immunol 2023; 8:eabn7993. [PMID: 36897958 DOI: 10.1126/sciimmunol.abn7993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Spliced X-box-binding protein 1 (XBP1s) is an essential transcription factor downstream of interleukin-15 (IL-15) and AKT signaling, which controls cell survival and effector functions of human natural killer (NK) cells. However, the precise mechanisms, especially the downstream targets of XBP1s, remain unknown. In this study, by using XBP1 conditional knockout mice, we found that XBP1s is critical for IL-15-mediated NK cell survival but not proliferation in vitro and in vivo. Mechanistically, XBP1s regulates homeostatic NK cell survival by targeting PIM-2, a critical anti-apoptotic gene, which in turn stabilizes XBP1s protein by phosphorylating it at Thr58. In addition, XBP1s enhances the effector functions and antitumor immunity of NK cells by recruiting T-bet to the promoter region of Ifng. Collectively, our findings identify a previously unknown mechanism by which IL-15-XBP1s signaling regulates the survival and effector functions of NK cells.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jingjing Han
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jiazhuo Yan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Tingting Tang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| |
Collapse
|
3
|
Preclinical Models of Neuroendocrine Neoplasia. Cancers (Basel) 2022; 14:cancers14225646. [PMID: 36428741 PMCID: PMC9688518 DOI: 10.3390/cancers14225646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.
Collapse
|
4
|
Biagetti B, Simò R. Molecular Pathways in Prolactinomas: Translational and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms222011247. [PMID: 34681905 PMCID: PMC8538771 DOI: 10.3390/ijms222011247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Prolactinoma has the highest incidence rate among patients with functional pituitary tumours. Although mostly benign, there is a subgroup that can be aggressive. Some clinical, radiological and pathology features have been associated with a poor prognostic. Therefore, it can be considered as a group of heterogeneous tumours. The aim of this paper is to give an overview of the molecular pathways involved in the behaviour of prolactinoma in order to improve our approach and gain deeper insight into the better understanding of tumour development and its management. This is essential for identifying patients harbouring aggressive prolactinoma and to establish personalised therapeutics options.
Collapse
|
5
|
De Martino M, Esposito F, Fusco A. Critical role of the high mobility group A proteins in hematological malignancies. Hematol Oncol 2021; 40:2-10. [PMID: 34637548 PMCID: PMC9293314 DOI: 10.1002/hon.2934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022]
Abstract
The high mobility group A (HMGA) protein family is composed of three non‐histone chromatin remodeling proteins that act as architectural transcriptional factors. Indeed, although HMGA proteins lack transcriptional activity per se, they bind the minor groove of DNA at AT‐rich sequences, and, interacting with the transcription machinery, are able to modify chromatin modeling, thus regulating the expression of several genes. HMGA proteins have been deeply involved in embryogenesis process, and a large volume of studies has pointed out their key role in human cancer. Here, we review the studies on the role of the HMGA proteins in human hematological malignancies: they are overexpressed in most of the cases and their expression correlates with a reduced survival. In some cases, such as in acute lymphoblastic leukemia and acute myelogenous leukemia, HMGA2 gene rearrangements have been also described. Finally, recent studies evidence a synergism between HMGA and EZH2 in diffuse B‐cell lymphomas, suggesting an innovative therapy for this disease based on the inhibition of the function of both these proteins.
Collapse
Affiliation(s)
- Marco De Martino
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy.,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesco Esposito
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy
| | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy
| |
Collapse
|
6
|
Matsubara K, Matsubara Y, Uchikura Y, Takagi K, Yano A, Sugiyama T. HMGA1 Is a Potential Driver of Preeclampsia Pathogenesis by Interference with Extravillous Trophoblasts Invasion. Biomolecules 2021; 11:biom11060822. [PMID: 34072941 PMCID: PMC8227282 DOI: 10.3390/biom11060822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia (PE) is a serious disease that can be fatal for the mother and fetus. The two-stage theory has been proposed as its cause, with the first stage comprising poor placentation associated with the failure of fertilized egg implantation. Successful implantation and placentation require maternal immunotolerance of the fertilized egg as a semi-allograft and appropriate extravillous trophoblast (EVT) invasion of the decidua and myometrium. The disturbance of EVT invasion during implantation in PE results in impaired spiral artery remodeling. PE is thought to be caused by hypoxia during remodeling failure-derived poor placentation, which results in chronic inflammation. High-mobility group protein A (HMGA) is involved in the growth and invasion of cancer cells and likely in the growth and invasion of trophoblasts. Its mechanism of action is associated with immunotolerance. Thus, HMGA is thought to play a pivotal role in successful pregnancy, and its dysfunction may be related to the pathogenesis of PE. The evaluation of HMGA function and its changes in PE might confirm that it is a reliable biomarker of PE and provide prospects for PE treatment through the induction of EVT proliferation and invasion during the implantation.
Collapse
Affiliation(s)
- Keiichi Matsubara
- Department of Regional Pediatrics and Perinatology, Graduate School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan
- Correspondence:
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Yuka Uchikura
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Katsuko Takagi
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Akiko Yano
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| |
Collapse
|
7
|
Ghatnatti V, Vastrad B, Patil S, Vastrad C, Kotturshetti I. Identification of potential and novel target genes in pituitary prolactinoma by bioinformatics analysis. AIMS Neurosci 2021; 8:254-283. [PMID: 33709028 PMCID: PMC7940115 DOI: 10.3934/neuroscience.2021014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Pituitary prolactinoma is one of the most complicated and fatally pathogenic pituitary adenomas. Therefore, there is an urgent need to improve our understanding of the underlying molecular mechanism that drives the initiation, progression, and metastasis of pituitary prolactinoma. The aim of the present study was to identify the key genes and signaling pathways associated with pituitary prolactinoma using bioinformatics analysis. Transcriptome microarray dataset GSE119063 was downloaded from Gene Expression Omnibus (GEO) database. Limma package in R software was used to screen DEGs. Pathway and Gene ontology (GO) enrichment analysis were conducted to identify the biological role of DEGs. A protein-protein interaction (PPI) network was constructed and analyzed by using HIPPIE database and Cytoscape software. Module analyses was performed. In addition, a target gene-miRNA regulatory network and target gene-TF regulatory network were constructed by using NetworkAnalyst and Cytoscape software. Finally, validation of hub genes by receiver operating characteristic (ROC) curve analysis. A total of 989 DEGs were identified, including 461 up regulated genes and 528 down regulated genes. Pathway enrichment analysis showed that the DEGs were significantly enriched in the retinoate biosynthesis II, signaling pathways regulating pluripotency of stem cells, ALK2 signaling events, vitamin D3 biosynthesis, cell cycle and aurora B signaling. Gene Ontology (GO) enrichment analysis showed that the DEGs were significantly enriched in the sensory organ morphogenesis, extracellular matrix, hormone activity, nuclear division, condensed chromosome and microtubule binding. In the PPI network and modules, SOX2, PRSS45, CLTC, PLK1, B4GALT6, RUNX1 and GTSE1 were considered as hub genes. In the target gene-miRNA regulatory network and target gene-TF regulatory network, LINC00598, SOX4, IRX1 and UNC13A were considered as hub genes. Using integrated bioinformatics analysis, we identified candidate genes in pituitary prolactinoma, which might improve our understanding of the molecular mechanisms of pituitary prolactinoma.
Collapse
Affiliation(s)
- Vikrant Ghatnatti
- Department of Endocrinology, J N Medical College, Belagavi and KLE Academy of Higher Education & Research 590010, Karnataka, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India
| | - Swetha Patil
- Department of Obstetrics and Gynaecology, J N Medical College, Belagavi and KLE Academy of Higher Education & Research 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society's Ayurvedic Medical College, Ron 562209, Karanataka, India
| |
Collapse
|
8
|
Asa SL, Mete O, Ezzat S. Genomics and Epigenomics of Pituitary Tumors: What Do Pathologists Need to Know? Endocr Pathol 2021; 32:3-16. [PMID: 33433883 DOI: 10.1007/s12022-021-09663-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Molecular pathology has advanced our understanding of many tumors and offers opportunities to identify novel therapies. In the pituitary, the field has uncovered several genetic mutations that predispose to pituitary neuroendocrine tumor (PitNET) development, including MEN1, CDKN1B, PRKRIα, AIP, GPR101, and other more rare events; however, these genes are only rarely mutated in sporadic PitNETs. Recurrent genetic events in sporadic PitNETs include GNAS mutations in a subset of somatotroph tumors and ubiquitin-specific peptidase mutations (e.g., USP8, USP48) in some corticotroph tumors; to date, neither of these has resulted in altered management, and instead, the prognosis and management of PitNETs still rely more on cell type and subtype as well as local growth that determines surgical resectability. In contrast, craniopharyngiomas have either CTNNB1 or BRAFV600E mutations that correlate with adamantinomatous or papillary morphology, respectively; the latter offers the opportunity for targeted therapy. DICER1 mutations are found in patients with pituitary blastoma. Epigenetic changes are implicated in the pathogenesis of the more common sporadic pituitary neoplasms including the majority of PitNETs and tumors of pituicytes.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
- Department of Pathology, University Health Network, Toronto, ON, Canada.
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shereen Ezzat
- Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Jung Y, Lee HS, Ha JM, Jin SY, Kum HJ, Vafaeinik F, Ha HK, Song SH, Kim CD, Bae SS. Modulation of Vascular Smooth Muscle Cell Phenotype by High Mobility Group AT-Hook 1. J Lipid Atheroscler 2021; 10:99-110. [PMID: 33537257 PMCID: PMC7838509 DOI: 10.12997/jla.2021.10.1.99] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022] Open
Abstract
Objective The purpose of this study is to examine the effect of high mobility group AT-hook 1 (HMGA1) on the phenotyptic change of vascular smooth muscle cells (VSMCs). Methods Gene silencing and overexpression of HMGA1 were introduced to evaluate the effect of HMGA1 expression on the phenotypic change of VSMCs. Marker gene expression of VSMCs was measured by promoter assay, quantitative polymerase chain reaction, and western blot analysis. Common left carotid artery ligation model was used to establish in vivo neointima formation. Results HMGA1 was expressed strongly in the synthetic type of VSMCs and significantly downregulated during the differentiation of VSMCs. Silencing of HMGA1 in the synthetic type of VSMCs enhanced the expression of contractile marker genes thereby enhanced angiotensin II (Ang II)-dependent contraction, however, significantly suppressed proliferation and migration. Stimulation of contractile VSMCs with platelet-derived growth factor (PDGF) enhanced HMGA1 expression concomitant with the downregulation of marker gene expression which was blocked significantly by the silencing of HMGA1. Silencing of HMGA1 retained the Ang II-dependent contractile function, which was curtailed by PDGF stimulation, however, overexpression of HMGA1 in the contractile type of VSMCs suppressed marker gene expression. Proliferation and migration were enhanced significantly by the overexpression of HMGA1. Furthermore, the Ang II-dependent contraction was reduced significantly by the overexpression of HMGA1. Finally, the expression of HMGA1 was enhanced significantly in the ligated artery, especially in the neointima area. Conclusion HMGA1 plays an essential role in the phenotypic modulation of VSMCs. Therefore, paracrine factors such as PDGF may affect vascular remodeling through the regulation of HMGA1.
Collapse
Affiliation(s)
- Yoojin Jung
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hae Sun Lee
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Jung Min Ha
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Seo Yeon Jin
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hye Jin Kum
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Farzaneh Vafaeinik
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hong Koo Ha
- Department of Urology, Pusan National University Hospital, Busan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Chi Dae Kim
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Sun Sik Bae
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
10
|
Meireles Da Costa N, Palumbo A, De Martino M, Fusco A, Ribeiro Pinto LF, Nasciutti LE. Interplay between HMGA and TP53 in cell cycle control along tumor progression. Cell Mol Life Sci 2021; 78:817-831. [PMID: 32920697 PMCID: PMC11071717 DOI: 10.1007/s00018-020-03634-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Li G, Luo W, Wang B, Qian C, Ye Y, Li Y, Zhang S. HMGA1 Induction of miR-103/107 Forms a Negative Feedback Loop to Regulate Autophagy in MPTP Model of Parkinson's Disease. Front Cell Neurosci 2021; 14:620020. [PMID: 33536877 PMCID: PMC7847849 DOI: 10.3389/fncel.2020.620020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Autophagy dysfunction has been directly linked with the onset and progression of Parkinson’s disease (PD), but the underlying mechanisms are not well understood. High-mobility group A1 (HMGA1), well-known chromatin remodeling proteins, play pivotal roles in diverse biological processes and diseases. Their function in neural cell death in PD, however, have not yet been fully elucidated. Here, we report that HMGA1 is highly induced during dopaminergic cell death in vitro and mice models of PD in vivo. Functional studies using genetic knockdown of endogenous HMGA1 show that HMGA1 signaling inhibition accelerates neural cell death, at least partially through aggravating MPP+-induced autophagic flux reduction resulting from partial block in autophagic flux at the terminal stages, indicating a novel potential neuroprotective role for HMGA1 in dopaminergic neurons death. MicroRNA-103/107 (miR-103/107) family, which is highly expressed in neuron, coordinately ensures proper end-stage autophagy. We further illustrate that MPP+/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced HMGA1 elevation counterparts the effect of miR-103/107 downregulation by directly binding to their promoters, respectively, sustaining their expression in MPP+-damaged MN9D cells and modulates autophagy through CDK5R1/CDK5 signaling pathway. We also find that HMGA1 is a direct target of miR-103/107 family. Thus, our results suggest that HMGA1 forms a negative feedback loop with miR-103/107-CDK5R1/CDK5 signaling to regulate the MPP+/MPTP-induced autophagy impairment and neural cell death. Collectively, we identify a paradigm for compensatory neuroprotective HMGA1 signaling in dopaminergic neurons that could have important therapeutic implications for PD.
Collapse
Affiliation(s)
- Gehui Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baoyan Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Qian
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyi Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuantao Li
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Shizhong Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Armagan DM, Akdemir AS, Ozkaya HM, Korkmaz OP, Gazioglu N, Kadioglu P, Tanriover N, Dagistanli KF, Dirican A, Ozturk M. SNPs of miR-23b, miR-107 and HMGA2 and their Relations with the Response to Medical Treatment in Acromegaly Patients. Exp Clin Endocrinol Diabetes 2020; 129:593-600. [PMID: 32838437 DOI: 10.1055/a-1185-9121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Acromegaly is a chronic disease of increased growth hormone (GH) secretion and elevated insulin-like growth factor-I (IGF-I) levels induced by a pituitary adenoma. HMGA2 (high mobility group A2) and AIP (aryl hydrocarbon receptor-interacting protein) expression levels are related to GH-secreting adenomas, and also a response to Somatostatin Analogs (SSAs). We studied SNPs in miR-107 and miR-23b that related with AIP and HMGA2 genes respectively and control their expression, and also SNP in the 3'UTR of HMGA2 gene. Our aim was to investigate genotype distributions of the studied SNPs, as well as the possible relationship between disease and/or response to SSAs treatment in patients with acromegaly. MATERIAL AND METHODS Genotypes were determined by qRT-PCR method from DNA materials obtained blood samples of acromegaly patients (141) and healthy individuals (99). The genotype distributions of patients and healthy groups, as well as the relationship between the clinical data of the disease and genotypes were statistically compared. RESULTS In acromegaly patients with T-allele, p53 expression (p=0.049) was significantly higher. In patients with CT+TT genotype and T-allele who were responder to SSA-treatment Ki-67 index (respectively p=0.019, p=0.020 respectively) was higher. We did not observe the genotypes for miR-23b and miR-107 polymorphisms in the patients and control group of Turkish population. CONCLUSION The genetic variations of the miRNAs genes related with HMGA2 and AIP genes were not seen in our study. Although there is no relationship between HMGA2-rs1351394 polymorphism and acromegaly disease, T allele was associated with some clinical features related to adenoma in patients with acromegaly.
Collapse
Affiliation(s)
- Derya Metin Armagan
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayse Seda Akdemir
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hande Mefkure Ozkaya
- Department of Endocrinology and Metabolism, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozge Polat Korkmaz
- Department of Endocrinology and Metabolism, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nurperi Gazioglu
- Department of Neurosurgery, Faculty of Medicine, T.C Demiroglu Bilim University, Istanbul, Turkey
| | - Pinar Kadioglu
- Department of Endocrinology and Metabolism, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Pituitary Center, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Necmettin Tanriover
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Pituitary Center, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kaya-Fatma Dagistanli
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Dirican
- Department of Biostatistic, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Melek Ozturk
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
13
|
Minervini A, Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. HMGA Proteins in Hematological Malignancies. Cancers (Basel) 2020; 12:E1456. [PMID: 32503270 PMCID: PMC7353061 DOI: 10.3390/cancers12061456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The high mobility group AT-Hook (HMGA) proteins are a family of nonhistone chromatin remodeling proteins known as "architectural transcriptional factors". By binding the minor groove of AT-rich DNA sequences, they interact with the transcription apparatus, altering the chromatin modeling and regulating gene expression by either enhancing or suppressing the binding of the more usual transcriptional activators and repressors, although they do not themselves have any transcriptional activity. Their involvement in both benign and malignant neoplasias is well-known and supported by a large volume of studies. In this review, we focus on the role of the HMGA proteins in hematological malignancies, exploring the mechanisms through which they enhance neoplastic transformation and how this knowledge could be exploited to devise tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (A.M.); (N.C.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
14
|
HMGA1-Regulating microRNAs Let-7a and miR-26a are Downregulated in Human Seminomas. Int J Mol Sci 2020; 21:ijms21083014. [PMID: 32344629 PMCID: PMC7215726 DOI: 10.3390/ijms21083014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Recent studies have underlined HMGA protein’s key role in the onset of testicular germ cell tumors, where HMGA1 is differently expressed with respect to the state of differentiation, suggesting its fine regulation as master regulator in testicular tumorigenesis. Several studies have highlighted that the HMGA1 transcript is strictly regulated by a set of inhibitory microRNAs. Thus, the aim of this study is to test whether HMGA1 overexpression in human seminomas may be induced by the deregulation of miR-26a and Let-7a—two HMGA1-targeting microRNAs. Methods: HMGA1 mRNA and Let-7a and miR-26a levels were measured in a seminoma dataset available in the Cancer Genome Atlas database and confirmed in a subset of seminomas by qRT-PCR and western blot. A TCam-2 seminoma cell line was then transfected with Let-7a and miR-26a and tested for proliferation and motility abilities. Results: an inverse correlation was found between the expression of miR-26a and Let-7a and HMGA1 expression levels in seminomas samples, suggesting a critical role of these microRNAs in HMGA1 levels regulation. Accordingly, functional studies showed that miR-26a and Let-7a inhibited the proliferation, migration and invasion capabilities of the human seminoma derived cell line TCam-2. Conclusions: these data strongly support that the upregulation of HMGA1 levels occurring in seminoma is—at least in part—due to the downregulation of HMGA1-targeting microRNAs.
Collapse
|
15
|
D’Angelo D, Arra C, Fusco A. RPSAP52 lncRNA Inhibits p21Waf1/CIP Expression by Interacting With the RNA Binding Protein HuR. Oncol Res 2020; 28:191-201. [PMID: 31831098 PMCID: PMC7851518 DOI: 10.3727/096504019x15761465603129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNAs have been recently demonstrated to have an important role in fundamental biological processes, and their deregulated expression has been found in several human neoplasias. Our group has recently reported a drastic overexpression of the long noncoding RNA (lncRNA) RPSAP52 (ribosomal protein SA pseudogene 52) in pituitary adenomas. We have shown that this lncRNA increased cell proliferation by upregulating the expression of the chromatinic proteins HMGA1 and HMGA2, functioning as a competing endogenous RNA (ceRNA) through competitively binding to microRNA-15a (miR-15a), miR-15b, and miR-16. The aim of this work was to identify further mechanisms by which RPSAP52 overexpression could contribute to the development of pituitary adenomas. We investigated the involvement of RPSAP52 in the modulation of the expression of cell cycle-related genes, such as p21Waf1/CIP, whose deregulation plays a critical role in pituitary cell transformation. We report that RPSAP52, interacting with the RNA binding protein HuR (human antigen R), favors the delocalization of miR-15a, miR-15b, and miR-16 on the cyclin-dependent kinase inhibitor p21Waf1/CIP1 that, accordingly, results in downregulation in pituitary adenomas. A RNA immunoprecipitation sequencing (RIPseq) analysis performed on cells overexpressing RPSAP52 identified 40 messenger RNAs (mRNAs) enriched in Argonaute 2 (AGO2) immunoprecipitated samples. Among them, we focused on GAS8 (growth arrest-specific protein 8) gene. Consistently, GAS8 expression was downregulated in all the analyzed pituitary adenomas with respect to normal pituitary and in RPSAP52-overepressing cells, supporting the role of RPSAP52 in addressing genes involved in growth inhibition and cell cycle arrest to miRNA-induced degradation. This study unveils another RPSAP52-mediated molecular mechanism in pituitary tumorigenesis.
Collapse
Affiliation(s)
- Daniela D’Angelo
- *Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore,” Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II,”Naples, Italy
| | - Claudio Arra
- †Animal Facility Unit, Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Alfredo Fusco
- *Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore,” Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II,”Naples, Italy
| |
Collapse
|
16
|
Chang M, Yang C, Bao X, Wang R. Genetic and Epigenetic Causes of Pituitary Adenomas. Front Endocrinol (Lausanne) 2020; 11:596554. [PMID: 33574795 PMCID: PMC7870789 DOI: 10.3389/fendo.2020.596554] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/23/2020] [Indexed: 01/30/2023] Open
Abstract
Pituitary adenomas (PAs) can be classified as non-secreting adenomas, somatotroph adenomas, corticotroph adenomas, lactotroph adenomas, and thyrotroph adenomas. Substantial advances have been made in our knowledge of the pathobiology of PAs. To obtain a comprehensive understanding of the molecular biological characteristics of different types of PAs, we reviewed the important advances that have been made involving genetic and epigenetic variation, comprising genetic mutations, chromosome number variations, DNA methylation, microRNA regulation, and transcription factor regulation. Classical tumor predisposition syndromes include multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4) syndromes, Carney complex, and X-LAG syndromes. PAs have also been described in association with succinate dehydrogenase-related familial PA, neurofibromatosis type 1, and von Hippel-Lindau, DICER1, and Lynch syndromes. Patients with aryl hydrocarbon receptor-interacting protein (AIP) mutations often present with pituitary gigantism, either in familial or sporadic adenomas. In contrast, guanine nucleotide-binding protein G(s) subunit alpha (GNAS) and G protein-coupled receptor 101 (GPR101) mutations can lead to excess growth hormone. Moreover, the deubiquitinase gene USP8, USP48, and BRAF mutations are associated with adrenocorticotropic hormone production. In this review, we describe the genetic and epigenetic landscape of PAs and summarize novel insights into the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
| | | | - Xinjie Bao
- *Correspondence: Xinjie Bao, ; Renzhi Wang,
| | | |
Collapse
|
17
|
Xu X, Zou H, Luo L, Wang X, Wang G. MicroRNA-9 exerts antitumor effects on hepatocellular carcinoma progression by targeting HMGA2. FEBS Open Bio 2019; 9:1784-1797. [PMID: 31408273 PMCID: PMC6768112 DOI: 10.1002/2211-5463.12716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has demonstrated that the aberrant expression of microRNAs (miRs or miRNAs) may contribute to the initiation and progression of various types of human cancer and may also constitute biomarkers for cancer diagnosis and therapy. However, the specific function of miR‐9 in hepatocellular carcinoma (HCC) remains unclear, and the mechanisms that underlie HCC are incompletely understood. Here, we report that miR‐9 expression was significantly decreased in clinical tumor tissue samples, as well as in a cohort of HCC cell lines. In addition, it was demonstrated that overexpression of miR‐9 suppressed the proliferative and migratory capacity of HCC cells and impaired cell cycle progression. Furthermore, high mobility group AT‐hook 2 (HMGA2) was verified as a downstream target gene of miR‐9 using a luciferase reporter assay. Quantitative RT‐PCR and western blotting implicated HMGA2 in the miR‐9‐mediated reduction of HCC cell growth. In vivo, transfection with miR‐9 mimics down‐regulated the expression of HMGA2, thus leading to a dramatic reduction in tumor growth in a mouse xenograft model. These results suggest that miR‐9 may exert critical antitumor effects on HCC by directly targeting HMGA2, and the miR9/HMGA2 signaling pathway may be of use for the diagnosis and prognosis of patients with HCC.
Collapse
Affiliation(s)
- Xiangang Xu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Haibo Zou
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Lanyun Luo
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiankui Wang
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Guan Wang
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
18
|
D'Angelo D, De Martino M, Arra C, Fusco A. Emerging Role of USP8, HMGA, and Non-Coding RNAs in Pituitary Tumorigenesis. Cancers (Basel) 2019; 11:E1302. [PMID: 31487906 PMCID: PMC6770943 DOI: 10.3390/cancers11091302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/22/2023] Open
Abstract
Two novel molecular mechanisms with a driver role in pituitary tumorigenesis have been recently identified. They are (a) mutations in the Ubiquitin-Specific Protease 8 (USP8) gene in corticotroph tumors and (b) overexpression of the HMGA1 and HMGA2 genes in most of the pituitary tumors. Moreover, deregulated expression of the non-coding RNAs has been very frequently observed in this neoplasia. The aim of this review is to better elucidate the role, the mechanisms, and the possible clinical impact of these novel alterations in the development of pituitary neoplasia.
Collapse
Affiliation(s)
- Daniela D'Angelo
- Istituto di Endocrinologia ed Oncologia Sperimentale-Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale-Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
- Dipartimento di Psicologia, Università della Campania, 81100 Caserta, Italy
| | - Claudio Arra
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale-Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
| |
Collapse
|
19
|
HMGA1 Modulates Gene Transcription Sustaining a Tumor Signalling Pathway Acting on the Epigenetic Status of Triple-Negative Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11081105. [PMID: 31382504 PMCID: PMC6721465 DOI: 10.3390/cancers11081105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 01/17/2023] Open
Abstract
Chromatin accessibility plays a critical factor in regulating gene expression in cancer cells. Several factors, including the High Mobility Group A (HMGA) family members, are known to participate directly in chromatin relaxation and transcriptional activation. The HMGA1 oncogene encodes an architectural chromatin transcription factor that alters DNA structure and interacts with transcription factors favouring their landing onto transcription regulatory sequences. Here, we provide evidence of an additional mechanism exploited by HMGA1 to modulate transcription. We demonstrate that, in a triple-negative breast cancer cellular model, HMGA1 sustains the action of epigenetic modifiers and in particular it positively influences both histone H3S10 phosphorylation by ribosomal protein S6 kinase alpha-3 (RSK2) and histone H2BK5 acetylation by CREB-binding protein (CBP). HMGA1, RSK2, and CBP control the expression of a set of genes involved in tumor progression and epithelial to mesenchymal transition. These results suggest that HMGA1 has an effect on the epigenetic status of cancer cells and that it could be exploited as a responsiveness predictor for epigenetic therapies in triple-negative breast cancers.
Collapse
|
20
|
Portovedo S, Gaido N, de Almeida Nunes B, Nascimento AG, Rocha A, Magalhães M, Nascimento GC, Pires de Carvalho D, Soares P, Takiya C, Faria MDS, Miranda-Alves L. Differential Expression of HMGA1 and HMGA2 in pituitary neuroendocrine tumors. Mol Cell Endocrinol 2019; 490:80-87. [PMID: 30999005 DOI: 10.1016/j.mce.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Defining biomarkers for invasive pituitary neuroendocrine tumors (PitNETs) is highly desirable. The high mobility group A (HMGA) proteins are among the most widely expressed cancer-associated proteins. Indeed, their overexpression is a frequent feature of human malignancies, including PitNETs. We show that nonfunctioning PitNETs (NF-PitNETs) express significantly higher levels of HMGA1 than somatotropinomas (GHs) and corticotropinomas (ACTHs). Furthermore, HMGA2 expression was detected only in NF-PitNETs and was significantly higher in larger tumors than in smaller tumors. HMGA expression analysis generally focuses on nuclear staining. Here, cytoplasmic HMGA staining was also found. PitNETs displayed strong nuclear HMGA1 and strong cytoplasmic HMGA2 immunoreactivity. Interestingly, the HMGA1 and HMGA2 nuclear expression levels were significantly higher in invasive adenomas than in noninvasive adenomas. The highest levels of nuclear HMGA2 were found in GHs. In conclusion, we show that overexpression of nuclear HMGA proteins could be a potential biomarker of invasive PitNETs, particularly HMGA2 for GHs. HMGA2 might be a reliable biomarker for NF-PitNETs.
Collapse
Affiliation(s)
- Sérgio Portovedo
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Nadja Gaido
- Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Bruno de Almeida Nunes
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Ana Giselia Nascimento
- Service of Pathology, President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Allysson Rocha
- Department of Radiology and Diagnostic Imaging, President Dutra Hospital, Federal University of Maranhão, Brazil
| | - Marcelo Magalhães
- Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Gilvan Cortes Nascimento
- Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Denise Pires de Carvalho
- Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil; Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Paula Soares
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil; Institute for Research and Innovation in Health (I3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) - Cancer Signaling & Metabolism, Portugal; Department of Pathology, Faculty of Medicine, University of Porto, Portugal
| | - Christina Takiya
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Manuel Dos Santos Faria
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil; Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
RPSAP52 lncRNA is overexpressed in pituitary tumors and promotes cell proliferation by acting as miRNA sponge for HMGA proteins. J Mol Med (Berl) 2019; 97:1019-1032. [DOI: 10.1007/s00109-019-01789-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/28/2022]
|
22
|
Wang Y, Hu L, Zheng Y, Guo L. HMGA1 in cancer: Cancer classification by location. J Cell Mol Med 2019; 23:2293-2302. [PMID: 30614613 PMCID: PMC6433663 DOI: 10.1111/jcmm.14082] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/19/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
The high mobility group A1 (HMGA1) gene plays an important role in numerous malignant cancers. HMGA1 is an oncofoetal gene, and we have a certain understanding of the biological function of HMGA1 based on its activities in various neoplasms. As an architectural transcription factor, HMGA1 remodels the chromatin structure and promotes the interaction between transcriptional regulatory proteins and DNA in different cancers. Through analysis of the molecular mechanism of HMGA1 and clinical studies, emerging evidence indicates that HMGA1 promotes the occurrence and metastasis of cancer. Within a similar location or the same genetic background, the function and role of HMGA1 may have certain similarities. In this paper, to characterize HMGA1 comprehensively, research on various types of tumours is discussed to further understanding of the function and mechanism of HMGA1. The findings provide a more reliable basis for classifying HMGA1 function according to the tumour location. In this review, we summarize recent studies related to HMGA1, including its structure and oncogenic properties, its major functions in each cancer, its upstream and downstream regulation associated with the tumourigenesis and metastasis of cancer, and its potential as a biomarker for clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Yuhong Wang
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yushuang Zheng
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lingchuan Guo
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| |
Collapse
|
23
|
Olarescu NC, Perez-Rivas LG, Gatto F, Cuny T, Tichomirowa MA, Tamagno G, Gahete MD. Aggressive and Malignant Prolactinomas. Neuroendocrinology 2019; 109:57-69. [PMID: 30677777 DOI: 10.1159/000497205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/24/2019] [Indexed: 11/19/2022]
Abstract
Prolactin-secreting tumors (prolactinomas) represent the most common pituitary tumor type, accounting for 47-66% of functional pituitary tumors. Prolactinomas are usually benign and controllable tumors as they express abundant levels of dopamine type 2 receptor (D2), and can be treated with dopaminergic drugs, effectively reducing prolactin levels and tumor volume. However, a proportion of prolactinomas exhibit aggressive features (including invasiveness, relevant growth despite adequate dopamine agonist treatment, and recurrence potential) and few may exhibit metastasizing potential (carcinomas). In this context, the clinical, pathological, and molecular definitions of malignant and aggressive prolactinomas remain to be clearly defined, as primary prolactin-secreting carcinomas are similar to aggressive adenomas until the presence of metastases is detected. Indeed, standard molecular and histological analyses do not reflect differences between carcinomas and adenomas at a first glance and have limitations in prediction of the aggressive progression of prolactinomas, wherein the causes underlying the aggressive behavior remain unknown. Herein we present a comprehensive, multidisciplinary review of the most relevant epidemiological, clinical, pathological, genetic, biochemical, and molecular aspects of aggressive and malignant prolactinomas.
Collapse
Affiliation(s)
- Nicoleta Cristina Olarescu
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Luis G Perez-Rivas
- Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Federico Gatto
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Thomas Cuny
- Service d'Endocrinologie, Hôpital de la Conception, Inserm U1251, Marseille Medical Genetics, APHM, Aix-Marseille University, Marseille, France
| | - Maria A Tichomirowa
- Service d'Endocrinologie, Centre Hospitalier du Nord, Ettelbruck, Luxembourg
| | - Gianluca Tamagno
- Department of Endocrinology/Diabetes Mellitus, Mater Misericordiae University Hospital, Dublin, Ireland
- Department of Medicine, Wexford General Hospital, Wexford, Ireland
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain,
- Universidad de Córdoba, Cordoba, Spain,
- Reina Sofia University Hospital, Cordoba, Spain,
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain,
| |
Collapse
|
24
|
Gahete MD, Jimenez-Vacas JM, Alors-Perez E, Herrero-Aguayo V, Fuentes-Fayos AC, Pedraza-Arevalo S, Castaño JP, Luque RM. Mouse models in endocrine tumors. J Endocrinol 2018; 240:JOE-18-0571.R1. [PMID: 30475226 DOI: 10.1530/joe-18-0571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Endocrine and neuroendocrine tumors comprise a highly heterogeneous group of neoplasms that can arise from (neuro)endocrine cells, either from endocrine glands or from the widespread diffuse neuroendocrine system, and, consequently, are widely distributed throughout the body. Due to their diversity, heterogeneity and limited incidence, studying in detail the molecular and genetic alterations that underlie their development and progression is still a highly elusive task. This, in turn, hinders the discovery of novel therapeutic options for these tumors. To circumvent these limitations, numerous mouse models of endocrine and neuroendocrine tumors have been developed, characterized and used in pre-clinical, co-clinical (implemented in mouse models and patients simultaneously) and post-clinical studies, for they represent powerful and necessary tools in basic and translational tumor biology research. Indeed, different in vivo mouse models, including cell line-based xenografts (CDXs), patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs), have been used to delineate the development, progression and behavior of human tumors. Results gained with these in vivo models have facilitated the clinical application in patients of diverse breakthrough discoveries made in this field. Herein, we review the generation, characterization and translatability of the most prominent mouse models of endocrine and neuroendocrine tumors reported to date, as well as the most relevant clinical implications obtained for each endocrine and neuroendocrine tumor type.
Collapse
Affiliation(s)
- Manuel D Gahete
- M Gahete, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, 14011, Spain
| | - Juan M Jimenez-Vacas
- J Jimenez-Vacas, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Emilia Alors-Perez
- E Alors-Perez, Department of Cell Biology, Physiology and Inmunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC) / University of Cordoba, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- V Herrero-Aguayo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- A Fuentes-Fayos, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- S Pedraza-Arevalo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- J Castaño, Dpt. of Cell Biology-University of Córdoba, IMIBIC-Maimonides Biomedical Research Institute of Cordoba, Cordoba, E-14004, Spain
| | - Raul M Luque
- R Luque, Dept of Cell Biology, Phisiology and Inmunology, Section of Cell Biology, University of Cordoba, Cordoba, Spain, Cordoba, 14014, Spain
| |
Collapse
|
25
|
Histone Citrullination Represses MicroRNA Expression, Resulting in Increased Oncogene mRNAs in Somatolactotrope Cells. Mol Cell Biol 2018; 38:MCB.00084-18. [PMID: 29987187 DOI: 10.1128/mcb.00084-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
Peptidylarginine deiminase (PAD) enzymes convert histone arginine residues into citrulline to modulate chromatin organization and gene expression. Although PADs are expressed in anterior pituitary gland cells, their functional role and expression in pituitary adenomas are unknown. To begin to address these issues, we first examined normal human pituitaries and pituitary adenomas and found that PAD2, PAD4, and citrullinated histones are highest in prolactinomas and somatoprolactinomas. In the somatoprolactinoma-derived GH3 cell line, PADs citrullinate histone H3, which is attenuated by a pan-PAD inhibitor. RNA sequencing and chromatin immunoprecipitation (ChIP) studies show that the expression of microRNAs (miRNAs) let-7c-2, 23b, and 29c is suppressed by histone citrullination. Our studies demonstrate that these miRNAs directly target the mRNA of the oncogenes encoding HMGA, insulin-like growth factor 1 (IGF-1), and N-MYC, which are highly implicated in human prolactinoma/somatoprolactinoma pathogenesis. Our results are the first to define a direct role for PAD-catalyzed histone citrullination in miRNA expression, which may underlie the etiology of prolactinoma and somatoprolactinoma tumors through regulation of oncogene expression.
Collapse
|
26
|
Ohe K, Miyajima S, Abe I, Tanaka T, Hamaguchi Y, Harada Y, Horita Y, Beppu Y, Ito F, Yamasaki T, Terai H, Mori M, Murata Y, Tanabe M, Ashida K, Kobayashi K, Enjoji M, Yanase T, Harada N, Utsumi T, Mayeda A. HMGA1a induces alternative splicing of estrogen receptor alpha in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol 2018; 182:21-26. [PMID: 29678492 DOI: 10.1016/j.jsbmb.2018.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/23/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
The high-mobility group A protein 1a (HMGA1a) protein is known as an oncogene whose expression level in cancer tissue correlates with the malignant potential, and known as a component of senescence-related structures connecting it to tumor suppressor networks in fibroblasts. HMGA1 protein binds to DNA, but recent studies have shown it exerts novel functions through RNA-binding. Our previous studies have shown that sequence-specific RNA-binding of HMGA1a induces exon-skipping of Presenilin-2 exon 5 in sporadic Alzheimer disease. Here we show that HMGA1a induced exon-skipping of the estrogen receptor alpha (ERα) gene and increased ERα46 mRNA expression in MCF-7 breast cancer cells. An RNA-decoy of HMGA1a efficiently blocked this event and reduced ERα46 protein expression. Blockage of HMGA1a RNA-binding property consequently induced cell growth through reduced ERα46 expression in MCF-7 cells and increased sensitivity to tamoxifen in the tamoxifen-resistant cell line, MCF-7/TAMR1. Stable expression of an HMGA1a RNA-decoy in MCF-7 cells exhibited decreased ERα46 protein expression and increased estrogen-dependent tumor growth when these cells were implanted in nude mice. These results show HMGA1a is involved in alternative splicing of the ERα gene and related to estrogen-related growth as well as tamoxifen sensitivity in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan.
| | - Shinsuke Miyajima
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Ichiro Abe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino city, 818-8502, Japan
| | - Tomoko Tanaka
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yuriko Hamaguchi
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yoshihiro Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yuta Horita
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yuki Beppu
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Fumiaki Ito
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Takafumi Yamasaki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Hiroki Terai
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino city, 818-8502, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Nobuhiro Harada
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Toshiaki Utsumi
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Aichi, Toyoake, 470-1192, Japan
| |
Collapse
|
27
|
Fu F, Wang T, Wu Z, Feng Y, Wang W, Zhou S, Ma X, Wang S. HMGA1 exacerbates tumor growth through regulating the cell cycle and accelerates migration/invasion via targeting miR-221/222 in cervical cancer. Cell Death Dis 2018; 9:594. [PMID: 29789601 PMCID: PMC5964147 DOI: 10.1038/s41419-018-0683-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/11/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
Abstract
High-mobility group AT-hook1 (HMGA1, formerly HMG-I/Y), an architectural transcription factor, participates in a number of tumor biological processes. However, its effect on cervical cancer remains largely indistinct. In this study, we found that HMGA1 was generally overexpressed in cervical cancer tissues and was positively correlated with lymph node metastasis and advanced clinical stage. Via exogenously increasing or decreasing the expression of HMGA1, we showed that HMGA1 affected the proliferation, colony formation, migration and invasion of cervical cancer cells in vitro. Rescue experiments suggested that miR-221/222 could partly reverse HMGA1-mediated migration and invasion processes. Mechanistically, we discovered that HMGA1 accelerated the G1/S phase transition by regulating the expression of cyclin D1 and cyclin E1, which was consistent with the results of the in vivo experiment. Furthermore, we found that HMGA1 regulated the expression of the miR-221/222 cluster at the transcriptional level and that miR-221/222 targeted the 3'UTR of tissue inhibitor of metalloproteinases 3(TIMP3). We propose a fresh perspective that HMGA1 participates in the migration and invasion process via the miR-221/222-TIMP3-MMP2/MMP9 axis in cervical cancer. In summary, our study identified a critical role played by HMGA1 in the progression of cervical cancer and the potential mechanisms by which exerts its effects, suggesting that targeting HMGA1-related pathways could be conducive to the therapies for cervical cancer.
Collapse
Affiliation(s)
- Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zhangying Wu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, 55000, Guiyang, Guizhou, China
| | - Yourong Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
28
|
Resar L, Chia L, Xian L. Lessons from the Crypt: HMGA1-Amping up Wnt for Stem Cells and Tumor Progression. Cancer Res 2018; 78:1890-1897. [PMID: 29618461 DOI: 10.1158/0008-5472.can-17-3045] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
High mobility group A1 (HMGA1) chromatin remodeling proteins are enriched in aggressive cancers and stem cells, although their common function in these settings has remained elusive until now. Recent work in murine intestinal stem cells (ISC) revealed a novel role for Hmga1 in enhancing self-renewal by amplifying Wnt signaling, both by inducing genes expressing Wnt agonist receptors and Wnt effectors. Surprisingly, Hmga1 also "builds" a stem cell niche by upregulating Sox9, a factor required for differentiation to Paneth cells; these cells constitute an epithelial niche by secreting Wnt and other factors to support ISCs. HMGA1 is also highly upregulated in colon cancer compared with nonmalignant epithelium and SOX9 becomes overexpressed during colon carcinogenesis. Intriguingly, HMGA1 is overexpressed in diverse cancers with poor outcomes, where it regulates developmental genes. Similarly, HMGA1 induces genes responsible for pluripotency and self-renewal in embryonic stem cells. These findings demonstrate that HMGA1 maintains Wnt and other developmental transcriptional networks and suggest that HMGA1 overexpression fosters carcinogenesis and tumor progression through dysregulation of these pathways. Studies are now needed to determine more precisely how HMGA1 modulates chromatin structure to amplify developmental genes and how to disrupt this process in cancer therapy. Cancer Res; 78(8); 1890-7. ©2018 AACR.
Collapse
Affiliation(s)
- Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Departments of Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Pathobiology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lionel Chia
- Pathobiology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lingling Xian
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
29
|
Fedele M, Paciello O, De Biase D, Monaco M, Chiappetta G, Vitiello M, Barbieri A, Rea D, Luciano A, Papparella S, Arra C, Fusco A. HMGA2 cooperates with either p27 kip1 deficiency or Cdk4 R24C mutation in pituitary tumorigenesis. Cell Cycle 2018; 17:580-588. [PMID: 29157111 DOI: 10.1080/15384101.2017.1403682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have previously reported a critical role of HMGA proteins in pituitary tumorigenesis since either the Hmga1 or Hmga2 gene overexpression/activation induces the development of mixed growth hormone/prolactin cell pituitary adenomas by activating the E2F transcription factor 1, and then enhancing the G1/S transition of the cell cycle. Consistently, amplification and overexpression of the HMGA2 gene was found in human pituitary prolactinomas. Since impairment of the cell cycle control represents a feature of experimental and human pituitary adenomas, we have investigated the possible synergism between the alterations of other cell cycle regulators, such as p27 deficiency or Cdk4R24C mutation, with Hmga2 overexpression in pituitary tumorigenesis. Therefore, we crossed the Hmga2/T mice, overexpressing the truncated/active form of the Hmga2 gene, either with the knockout mice for p27kip1, or with the knockin mice for the Cdk4R24C mutation, both developing pituitary adenomas. Increased incidence and decreased latency in the development of pituitary lesions appeared in double mutant Hmga2/T;Cdk4R24C mice, and increased features of invasiveness and atypia were observed in pituitary tumors of both Hmga2/T;p27-ko and Hmga2/T;Cdk4R24C double mutant mice as compared with single mutant compounds. Interestingly, most of these mice develop pituitary adenomas with high Ki67 index, extrasellar expansion and brain tissue infiltration, representing good mouse models for human aggressive pituitary adenomas. Taken together, the results reported here indicate a cooperation between HMGA2 overexpression and either p27kip1 or CDK4 impairment in promoting pituitary tumor development and progression.
Collapse
Affiliation(s)
- Monica Fedele
- a CNR - Institute of Experimental Endocrinology and Oncology - c/o Department of Molecular Medicine and Medical Biotechnologies , University of Naples "Federico II" , Naples , Italy
| | - Orlando Paciello
- b Department of Veterinary Medicine and animal production , University of Naples "Federico II" , Naples , Italy
| | - Davide De Biase
- b Department of Veterinary Medicine and animal production , University of Naples "Federico II" , Naples , Italy
| | - Mario Monaco
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Gennaro Chiappetta
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Michela Vitiello
- a CNR - Institute of Experimental Endocrinology and Oncology - c/o Department of Molecular Medicine and Medical Biotechnologies , University of Naples "Federico II" , Naples , Italy
| | - Antonio Barbieri
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Domenica Rea
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Antonio Luciano
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Serenella Papparella
- b Department of Veterinary Medicine and animal production , University of Naples "Federico II" , Naples , Italy
| | - Claudio Arra
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Alfredo Fusco
- a CNR - Institute of Experimental Endocrinology and Oncology - c/o Department of Molecular Medicine and Medical Biotechnologies , University of Naples "Federico II" , Naples , Italy
| |
Collapse
|
30
|
Yang C, Wu D, Gao L, Liu X, Jin Y, Wang D, Wang T, Li X. Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives. Oncotarget 2017; 7:13479-90. [PMID: 26872371 PMCID: PMC4924655 DOI: 10.18632/oncotarget.7266] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/31/2016] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNAs represent a majority of the human transcriptome. However, less is known about the functions and regulatory mechanisms of most non-coding species. Moreover, little is known about the potential non-coding functions of coding RNAs. The competing endogenous RNAs (ceRNAs) hypothesis is proposed recently. This hypothesis describes potential communication networks among all transcript RNA species mediated by miRNAs and miRNA-recognizing elements (MREs) within RNA transcripts. Here we review the evolution of the ceRNA hypothesis, summarize the validation experiments and discusses the significance and perspectives of this hypothesis in human cancer.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Di Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Xi Liu
- Department of Cardiovascular Disease, Inner Mongolia People's Hospital, Hohhot, China
| | - Yinji Jin
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Wierinckx A, Roche M, Legras-Lachuer C, Trouillas J, Raverot G, Lachuer J. MicroRNAs in pituitary tumors. Mol Cell Endocrinol 2017; 456:51-61. [PMID: 28089822 DOI: 10.1016/j.mce.2017.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
Since the presence of microRNAs was first observed in normal pituitary, the majority of scientific publications addressing their role and the function of microRNAs in the pituitary have been based on pituitary tumor studies. In this review, we briefly describe the involvement of microRNAs in the synthesis of pituitary hormones and we present a comprehensive inventory of microRNA suppressors and inducers of pituitary tumors. Finally, we summarize the functional role of microRNAs in tumorigenesis, progression and aggressiveness of pituitary tumors, mechanisms contributing to the regulation (transcription factors, genomic modifications or epigenetic) or modulation (pharmacological treatment) of microRNAs in these tumors, and the interest of thoroughly studying the expression of miRNAs in body fluids.
Collapse
Affiliation(s)
- Anne Wierinckx
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France.
| | | | - Catherine Legras-Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France; ViroScan3D, F-01600 Trévoux, France; UMR CNRS 5557 UCBL USC INRA 1193 ENVL, Dynamique Microbienne et Transmission Virale, F-69100 Villeurbanne Cedex, France
| | - Jacqueline Trouillas
- Université Lyon 1, Université de Lyon, Lyon, France; Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron F-69677, France
| | - Gérald Raverot
- Université Lyon 1, Université de Lyon, Lyon, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, F-69677, France Université Lyon 1, Université de Lyon, Lyon, France
| | - Joël Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France
| |
Collapse
|
32
|
Chandrasekaran KS, Sathyanarayanan A, Karunagaran D. miR-214 activates TP53 but suppresses the expression of RELA, CTNNB1, and STAT3 in human cervical and colorectal cancer cells. Cell Biochem Funct 2017; 35:464-471. [PMID: 29023799 DOI: 10.1002/cbf.3304] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/16/2017] [Accepted: 09/17/2017] [Indexed: 12/19/2022]
Abstract
High Mobility Group AT-hook 1 (HMGA1) was identified as a target of miR-214 in human cervical and colorectal cancers (CaCx and CRC) in a previous study. While the expression of miR-214 remains suppressed, HMGA1 behaves as a potent oncogene and plays crucial roles in several aberrant signalling pathways by interacting with intermediates like RELA, CTNNB1, STAT3, and TP53 in CaCx and CRC. Hypothetically, miR-214 should be able to regulate the stabilization of some of these intermediates through the regulation of HMGA1. This was assessed by ectopically expressing miR-214 or complementarily, by inhibiting the expression of HMGA1. In promoter luciferase assays, miR-214 inhibited NF-κB and Wnt activities but elevated TP53 activity in cancer cells. Further, miR-214 suppressed the expression of HMGA1, RELA, CTNNB1, and STAT3 while elevating TP53 levels, similar to when small interfering RNA (siRNA) against HMGA1 was used, as revealed by Western blotting. It is suggested that poor expression of miR-214, commonly reported in CaCx and CRC tissues, may not only result in the sustained expression of HMGA1 but also that of RELA, CTNNB1, and STAT3, and a congruent suppression of TP53 during cancer initiation/progression. These several states are, however, reversed when miR-214 is reintroduced and could explain the tumour suppressive functions observed in earlier studies. Further studies are, however, required to reveal how microRNA-mediated regulation of HMGA1 expression may affect individual signalling pathways in CaCx and CRC. Current results reveal that miR-214 is not only able to regulate the expression of its direct target, HMGA1, but also that of a few signalling intermediates like TP53, RELA, CTNNB1, and STAT3, with which HMGA1 interacts. These intermediates play crucial roles in signalling pathways commonly deregulated in human CaCx and CRC. Hence, it is proposed that miR-214 might act as a tumour suppressor by regulating several aberrant signalling pathways through HMGA1. This knowledge has the potential to help design novel therapeutic strategies in CaCx and CRC.
Collapse
Affiliation(s)
- Karthik Subramanian Chandrasekaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Anusha Sathyanarayanan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
33
|
Conte A, Paladino S, Bianco G, Fasano D, Gerlini R, Tornincasa M, Renna M, Fusco A, Tramontano D, Pierantoni GM. High mobility group A1 protein modulates autophagy in cancer cells. Cell Death Differ 2017; 24:1948-1962. [PMID: 28777374 PMCID: PMC5635219 DOI: 10.1038/cdd.2017.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/01/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
High Mobility Group A1 (HMGA1) is an architectural chromatin protein whose overexpression is a feature of malignant neoplasias with a causal role in cancer initiation and progression. HMGA1 promotes tumor growth by several mechanisms, including increase of cell proliferation and survival, impairment of DNA repair and induction of chromosome instability. Autophagy is a self-degradative process that, by providing energy sources and removing damaged organelles and misfolded proteins, allows cell survival under stress conditions. On the other hand, hyper-activated autophagy can lead to non-apoptotic programmed cell death. Autophagy deregulation is a common feature of cancer cells in which has a complex role, showing either an oncogenic or tumor suppressor activity, depending on cellular context and tumor stage. Here, we report that depletion of HMGA1 perturbs autophagy by different mechanisms. HMGA1-knockdown increases autophagosome formation by constraining the activity of the mTOR pathway, a major regulator of autophagy, and transcriptionally upregulating the autophagy-initiating kinase Unc-51-like kinase 1 (ULK1). Consistently, functional experiments demonstrate that HMGA1 binds ULK1 promoter region and negatively regulates its transcription. On the other hand, the increase in autophagosomes is not associated to a proportionate increase in their maturation. Overall, the effects of HMGA1 depletion on autophagy are associated to a decrease in cell proliferation and ultimately impact on cancer cells viability. Importantly, silencing of ULK1 prevents the effects of HMGA1-knockdown on cellular proliferation, viability and autophagic activity, highlighting how these effects are, at least in part, mediated by ULK1. Interestingly, this phenomenon is not restricted to skin cancer cells, as similar results have been observed also in HeLa cells silenced for HMGA1. Taken together, these results clearly indicate HMGA1 as a key regulator of the autophagic pathway in cancer cells, thus suggesting a novel mechanism through which HMGA1 can contribute to cancer progression.
Collapse
Affiliation(s)
- Andrea Conte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Gaia Bianco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Raffaele Gerlini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Mara Tornincasa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Maurizio Renna
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| |
Collapse
|
34
|
Critical role of HMGA proteins in cancer cell chemoresistance. JOURNAL OF MOLECULAR MEDICINE (BERLIN, GERMANY) 2017. [PMID: 28293697 DOI: 10.1007/s00109‐017‐1520‐x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The high-mobility group A (HMGA) proteins are frequently overexpressed in human malignancies and correlate with the presence of metastases and reduced patient survival. Here, we highlight the main studies evidencing a critical role of HMGA in chemoresistance, mainly by activating Akt signaling, impairing p53 activity, and regulating the expression of microRNAs that target genes involved in the susceptibility of cancer cells to antineoplastic agents. Therefore, these studies account for the association of HMGA overexpression with patient poor outcome, indicating the impairment of HMGA as a fascinating perspective for effectively improving cancer therapy.
Collapse
|
35
|
D’Angelo D, Mussnich P, Arra C, Battista S, Fusco A. Critical role of HMGA proteins in cancer cell chemoresistance. J Mol Med (Berl) 2017; 95:353-360. [DOI: 10.1007/s00109-017-1520-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 02/07/2017] [Indexed: 02/03/2023]
|
36
|
Sumter TF, Xian L, Huso T, Koo M, Chang YT, Almasri TN, Chia L, Inglis C, Reid D, Resar LMS. The High Mobility Group A1 (HMGA1) Transcriptome in Cancer and Development. Curr Mol Med 2016; 16:353-93. [PMID: 26980699 DOI: 10.2174/1566524016666160316152147] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/15/2016] [Accepted: 03/10/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND & OBJECTIVES Chromatin structure is the single most important feature that distinguishes a cancer cell from a normal cell histologically. Chromatin remodeling proteins regulate chromatin structure and high mobility group A (HMGA1) proteins are among the most abundant, nonhistone chromatin remodeling proteins found in cancer cells. These proteins include HMGA1a/HMGA1b isoforms, which result from alternatively spliced mRNA. The HMGA1 gene is overexpressed in cancer and high levels portend a poor prognosis in diverse tumors. HMGA1 is also highly expressed during embryogenesis and postnatally in adult stem cells. Overexpression of HMGA1 drives neoplastic transformation in cultured cells, while inhibiting HMGA1 blocks oncogenic and cancer stem cell properties. Hmga1 transgenic mice succumb to aggressive tumors, demonstrating that dysregulated expression of HMGA1 causes cancer in vivo. HMGA1 is also required for reprogramming somatic cells into induced pluripotent stem cells. HMGA1 proteins function as ancillary transcription factors that bend chromatin and recruit other transcription factors to DNA. They induce oncogenic transformation by activating or repressing specific genes involved in this process and an HMGA1 "transcriptome" is emerging. Although prior studies reveal potent oncogenic properties of HMGA1, we are only beginning to understand the molecular mechanisms through which HMGA1 functions. In this review, we summarize the list of putative downstream transcriptional targets regulated by HMGA1. We also briefly discuss studies linking HMGA1 to Alzheimer's disease and type-2 diabetes. CONCLUSION Further elucidation of HMGA1 function should lead to novel therapeutic strategies for cancer and possibly for other diseases associated with aberrant HMGA1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - L M S Resar
- Department of Medicine, Faculty of the Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, MD 21205-2109, USA.
| |
Collapse
|
37
|
Fan J, Zhang C, Chen Q, Zhou J, Franc JL, Chen Q, Tong Y. Genomic analyses identify agents regulating somatotroph and lactotroph functions. Funct Integr Genomics 2016; 16:693-704. [PMID: 27709372 DOI: 10.1007/s10142-016-0518-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/21/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
Abstract
Isolated hormone deficiency might be caused by loss of a specific type of endocrine cells, and regenerating these missing cells may provide a new option for future treatment. It is known that POU1F1 lineage cells can differentiate into thyrotroph, somatotroph, and lactotroph. However, there is no effective way of controlling pituitary stem/progenitor cells to differentiate into a specific type of endocrine cell. We thereby analyzed multiple genomic publications related to POU1F1 and pituitary development in this study to identify genes and agents regulating POU1F1 lineage cell differentiation. ANOVA analyses were performed to obtain differentially expressed genes. Ingenuity pathway analyses were performed to obtain signaling pathways, interaction networks, and upstream regulators. Venn diagram was used to determine the overlapping information between studies. Summary statistics was performed to rank genes according to their frequency of occurrence in these studies. The results from upstream analyses indicated that 326 agents may regulate pituitary cell differentiation. These agents can be categorized into 12 groups, including hormones and related pathways, PKA-cAMP pathways, p53/DNA damaging/cell cycle pathways, immune/inflammation regulators, growth factor and downstream pathways, retinoic/RAR pathways, ROS pathways, histone modifications, CCAAT/enhancer binding protein family, neuron development/degeneration pathways, calcium related and fat acid, and glucose pathways. Additional experiments demonstrated that H2O2 and catalase differentially regulate growth hormone and prolactin expression in somatolactotroph cells, confirming potential roles of ROS pathway on regulating somatotroph and lactotroph functions.
Collapse
Affiliation(s)
- Jun Fan
- Basic Medical College, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Cui Zhang
- Basic Medical College, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Qi Chen
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Jin Zhou
- Division of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jean-Louis Franc
- Aix-Marseille Université, CNRS, UMR7286, CRN2M, Faculté de Médecine Nord, Marseille, France
| | - Qing Chen
- School of Pharmaceutical Science, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Yunguang Tong
- Basic Medical College, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
38
|
Asa SL, Ezzat S. Gonadotrope Tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:187-210. [PMID: 27697203 DOI: 10.1016/bs.pmbts.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gonadotrope tumors arise from the gonadotropes of the adenohypophysis. These cells rarely give rise to hyperplasia, usually only in the setting of long-standing premature gonadal failure. In contrast, gonadotrope tumors represent one of the most frequent types of pituitary tumors. Despite their relatively common occurrence, the pathogenesis of gonadotrope tumors remains unknown. Effective nonsurgical therapies remain out of reach. We review the pituitary gonadotrope from the morphologic and functional perspectives to better understand its involvement as the cell of origin of a frequent type of pituitary tumor.
Collapse
Affiliation(s)
- S L Asa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
| | - S Ezzat
- Department of Medicine, University of Toronto, Endocrine Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
39
|
Mishra A, La Perle K, Kwiatkowski S, Sullivan LA, Sams GH, Johns J, Curphey DP, Wen J, McConnell K, Qi J, Wong H, Russo G, Zhang J, Marcucci G, Bradner JE, Porcu P, Caligiuri MA. Mechanism, Consequences, and Therapeutic Targeting of Abnormal IL15 Signaling in Cutaneous T-cell Lymphoma. Cancer Discov 2016; 6:986-1005. [PMID: 27422033 DOI: 10.1158/2159-8290.cd-15-1297] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Cutaneous T-cell lymphoma (CTCL) is the most common type of primary cutaneous lymphoma. Here, we report that patients with CTCL show increased IL15 in a clinical stage-dependent manner. Mechanistically, we show that ZEB1 is a transcriptional repressor of IL15 in T cells and that hypermethylation of the ZEB1 binding region within the IL15 promoter, as seen in patients with CTCL, prevents ZEB1 binding and causes increased transcription of IL15 Using a transgenic mouse model of IL15, we provide evidence that overexpression of IL15 induces a spontaneous CTCL that mimics the human neoplasm. Excessive autocrine production of IL15 in T cells inhibits an HDAC1-mediated negative autoregulatory loop, resulting in the upregulation of HDAC1 and HDAC6 and transcriptional induction of the onco-miR-21. Interruption of IL15 downstream signaling with isotype-specific HDAC inhibitors halts (HDAC1) or significantly delays (HDAC6) the progression of CTCL in vivo and provides preclinical evidence supporting a hierarchical model of oncogenic signaling in CTCL. SIGNIFICANCE To date, CTCL pathogenesis remains unknown, and there are no curative therapies. Our findings not only demonstrate a critical role for IL15-mediated inflammation in cutaneous T-cell lymphomagenesis, but also uncover a new oncogenic regulatory loop in CTCL involving IL15, HDAC1, HDAC6, and miR-21 that shows differential sensitivity to isotype-specific HDAC inhibitors. Cancer Discov; 6(9); 986-1005. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.
Collapse
Affiliation(s)
- Anjali Mishra
- Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio.
| | - Krista La Perle
- Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio. Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Sonya Kwiatkowski
- Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Laura A Sullivan
- Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Gregory H Sams
- Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Jessica Johns
- Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Douglas P Curphey
- Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Jing Wen
- Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Kathleen McConnell
- Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Henry Wong
- Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio. Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Giandomenico Russo
- Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Jianying Zhang
- Centers for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Guido Marcucci
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, Norbert Gehr and Family Leukemia Center, City of Hope Medical Center, Duarte, California
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Pierluigi Porcu
- Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio. Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.
| | - Michael A Caligiuri
- Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio. Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
40
|
Deregulation of HMGA1 expression induces chromosome instability through regulation of spindle assembly checkpoint genes. Oncotarget 2016; 6:17342-53. [PMID: 26009897 PMCID: PMC4627312 DOI: 10.18632/oncotarget.3944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/05/2015] [Indexed: 02/05/2023] Open
Abstract
The mitotic spindle assembly checkpoint (SAC) is an essential control system of the cell cycle that contributes to mantain the genomic stability of eukaryotic cells. SAC genes expression is often deregulated in cancer cells, leading to checkpoint impairment and chromosome instability. The mechanisms responsible for the transcriptional regulation and deregulation of these genes are still largely unknown. Herein we identify the nonhistone architectural nuclear proteins High Mobility Group A1 (HMGA1), whose overexpression is a feature of several human malignancies and has a key role in cancer progression, as transcriptional regulators of SAC genes expression. In particular, we show that HMGA1 proteins are able to increase the expression of the SAC genes Ttk, Mad2l1, Bub1 and Bub1b, binding to their promoter regions. Consistently, HMGA1-depletion induces SAC genes downregulation associated to several mitotic defects. In particular, we observed a high number of unaligned chromosomes in metaphase, a reduction of prometaphase time, a delay of anaphase, a higher cytokinesis time and a higher percentage of cytokinesis failure by using live-cell microscopy. Finally, a significant direct correlation between HMGA1 and SAC genes expression was detected in human colon carcinomas indicating a novel mechanism by which HMGA1 contributes to cancer progression.
Collapse
|
41
|
Lines KE, Stevenson M, Thakker RV. Animal models of pituitary neoplasia. Mol Cell Endocrinol 2016; 421:68-81. [PMID: 26320859 PMCID: PMC4721536 DOI: 10.1016/j.mce.2015.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 01/21/2023]
Abstract
Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼ 30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies.
Collapse
Affiliation(s)
- K E Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - M Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - R V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| |
Collapse
|
42
|
Kitchen MO, Yacqub-Usman K, Emes RD, Richardson A, Clayton RN, Farrell WE. Epidrug mediated re-expression of miRNA targeting the HMGA transcripts in pituitary cells. Pituitary 2015; 18:674-84. [PMID: 25557289 DOI: 10.1007/s11102-014-0630-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Transgenic mice overexpressing the high mobility group A (HMGA) genes, Hmga1 or Hmga2 develop pituitary tumours and their overexpression is also a frequent finding in human pituitary adenomas. In some cases, increased expression of HMGA2 but not that of HMGA1 is consequent to genetic perturbations. However, recent studies show that down-regulation of microRNA (miRNA), that contemporaneously target the HMGA1 and HMGA2 transcripts, are associated with their overexpression. RESULTS In a cohort of primary pituitary adenoma we determine the impact of epigenetic modifications on the expression of HMGA-targeting miRNA. For these miRNAs, chromatin immunoprecipitations showed that transcript down-regulation is correlated with histone tail modifications associated with condensed silenced genes. The functional impact of epigenetic modification on miRNA expression was determined in the rodent pituitary cell line, GH3. In these cells, histone tail, miRNA-associated, modifications were similar to those apparent in human adenoma and likely account for their repression. Indeed, challenge of GH3 cells with the epidrugs, zebularine and TSA, led to enrichment of the histone modification, H3K9Ac, associated with active genes, and depletion of the modification, H3K27me3, associated with silent genes and re-expression of HMGA-targeting miRNA. Moreover, epidrugs challenges were also associated with a concomitant decrease in hmga1 transcript and protein levels and concurrent increase in bmp-4 expression. CONCLUSIONS These findings show that the inverse relationship between HMGA expression and targeting miRNA is reversible through epidrug interventions. In addition to showing a mechanistic link between epigenetic modifications and miRNA expression these findings underscore their potential as therapeutic targets in this and other diseases.
Collapse
Affiliation(s)
- Mark O Kitchen
- Human Disease and Genomics Group, Institute of Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | | | | | | | | | | |
Collapse
|
43
|
HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance. Sci Rep 2015; 5:14487. [PMID: 26411793 PMCID: PMC4585969 DOI: 10.1038/srep14487] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/12/2015] [Indexed: 01/14/2023] Open
Abstract
High-Mobility-Group-A1 (HMGA1) proteins are non-histone proteins that regulate chromatin structure and gene expression during embryogenesis, tumourigenesis and immune responses. In vitro studies suggest that HMGA1 proteins may be required to regulate adipogenesis. To examine the role of HMGA1 in vivo, we generated transgenic mice overexpressing HMGA1 in adipose tissues. HMGA1 transgenic mice showed a marked reduction in white and brown adipose tissue mass that was associated with downregulation of genes involved in adipogenesis and concomitant upregulation of preadipocyte markers. Reduced adipogenesis and decreased fat mass were not associated with altered glucose homeostasis since HMGA1 transgenic mice fed a regular-chow diet exhibited normal glucose tolerance and insulin sensitivity. However, when fed a high-fat diet, overexpression of HMGA1 resulted in decreased body-weight gain, reduced fat mass, but improved insulin sensitivity and glucose tolerance. Although HMGA1 transgenic mice exhibited impaired glucose uptake in adipose tissue due to impaired adipogenesis, the increased glucose uptake observed in skeletal muscle may account for the improved glucose homeostasis. Our results indicate that HMGA1 plays an important function in the regulation of white and brown adipogenesis in vivo and suggests that impaired adipocyte differentiation and decreased fat mass is not always associated with impaired whole-body glucose homeostasis.
Collapse
|
44
|
Esposito F, De Martino M, Forzati F, Fusco A. HMGA1-pseudogene overexpression contributes to cancer progression. Cell Cycle 2015; 13:3636-9. [PMID: 25483074 DOI: 10.4161/15384101.2014.974440] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Two pseudogenes for HMGA1, whose overexpression has a critical role in cancer progression, have been identified. They act as decoy for miRNAs that are able to target the HMGA1 gene then enhancing cell proliferation and migration. Moreover, these pseudogenes contain sequences that are potential target sites for cancer-related miRNAs. Interestingly, HMGA1 pseudogenes are highly expressed in human anaplastic thyroid carcinomas, that is one of the most aggressive tumor in mankind, but almost undetectable in well differentiated thyroid carcinomas.
Collapse
Affiliation(s)
- Francesco Esposito
- a Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli ; Università degli Studi di Napoli "Federico II," ; Naples , Italy
| | | | | | | |
Collapse
|
45
|
Müssnich P, Raverot G, Jaffrain-Rea ML, Fraggetta F, Wierinckx A, Trouillas J, Fusco A, D'Angelo D. Downregulation of miR-410 targeting the cyclin B1 gene plays a role in pituitary gonadotroph tumors. Cell Cycle 2015; 14:2590-7. [PMID: 26125663 DOI: 10.1080/15384101.2015.1064207] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as posttranscriptional regulators of gene expression, and are frequently altered in human neoplasias. Here, we have analyzed the miRNA expression profile of human gonadotroph adenomas versus normal pituitary tissue using a miRNACHIP microarray. We demonstrate that miRNA-410 is downregulated in gonadotroph adenomas when compared with normal pituitary gland. We validate CCNB1 as target of miRNA-410 since its overexpression reduces CCNB1 at protein and mRNA levels, decreasing cell proliferation. In conclusion, our study suggess that the downregulation of miRNA-410 plays a role in the behavior of gonadotroph tumors.
Collapse
Affiliation(s)
- Paula Müssnich
- a Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche ; Scuola di Medicina e Chirurgia di Napoli; Università degli Studi di Napoli "Federico II" ; Naples , Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Leone V, Langella C, Esposito F, Arra C, Palma G, Rea D, Paciello O, Merolla F, De Biase D, Papparella S, Celetti A, Fusco A. Ccdc6 knock-in mice develop thyroid hyperplasia associated to an enhanced CREB1 activity. Oncotarget 2015; 6:15628-38. [PMID: 25970781 PMCID: PMC4558175 DOI: 10.18632/oncotarget.3858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
CCDC6 was originally identified upon rearrangement with RET in human thyroid papillary carcinomas generating the RET/PTC1 oncogene. We have previously reported that CCDC6 interacts with CREB1 and represses its transcriptional activity. Since the function of at least one allele of CCDC6 is lost following RET/PTC1 rearrangements, we aimed at the generation of mice, carrying a CCDC6 mutant gene. Previous studies suggested that the coiled-coil domain of CCDC6, mainly encoded by human exon 2, is required for the protein function. Therefore, we engineered a murine Ccdc6 construct, carrying a deletion of the exon 2, that was able to exert only a mild repression on CREB1 transcriptional activity, with respect to the wild type Ccdc6. Subsequently, we generated Ccdc6-ex2 knock-in mice. These mice developed thyroid hyperplasia associated with an enhanced CREB1 activity and an increased expression of the CREB-1 regulated genes. These results strongly support a CCDC6 promoting role, ascribed to its functional impairment, in the development of thyroid papillary carcinomas harboring the RET/PTC1 oncogene.
Collapse
Affiliation(s)
- Vincenza Leone
- Istituto per l'Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Concetta Langella
- Istituto per l'Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Francesco Esposito
- Istituto per l'Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Arra
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Giuseppe Palma
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Domenica Rea
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Orlando Paciello
- Department of Pathology and Animal Health, University of Naples "Federico II", Naples, Italy
| | - Francesco Merolla
- Istituto per l'Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Davide De Biase
- Department of Pathology and Animal Health, University of Naples "Federico II", Naples, Italy
| | - Serenella Papparella
- Department of Pathology and Animal Health, University of Naples "Federico II", Naples, Italy
| | - Angela Celetti
- Istituto per l'Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto per l'Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
- Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, Rio de Janeiro, CEP RJ, Brazil
| |
Collapse
|
47
|
D'Angelo D, Esposito F, Fusco A. Epigenetic Mechanisms Leading to Overexpression of HMGA Proteins in Human Pituitary Adenomas. Front Med (Lausanne) 2015; 2:39. [PMID: 26137461 PMCID: PMC4469109 DOI: 10.3389/fmed.2015.00039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/23/2015] [Indexed: 01/06/2023] Open
Abstract
Overexpression of the high-mobility group A (HMGA)1 and HMGA2 proteins is a feature of all human pituitary adenoma (PAs) subtypes. However, amplification and/or rearrangement of the HMGA2 have been described in human prolactinomas, but rarely in other pituitary subtypes, and no genomic amplification of HMGA1 was detected in PAs. Here, we summarize the functional role of HMGA proteins in pituitary tumorigenesis and the epigenetic mechanisms contributing to HMGA overexpression in these tumors focusing on recent studies indicating a critical role of non-coding RNAs in modulating HMGA protein levels.
Collapse
Affiliation(s)
- Daniela D'Angelo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Francesco Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Alfredo Fusco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy ; Instituto Nacional de Câncer - INCA , Rio de Janeiro, Rio de Janeiro , Brazil
| |
Collapse
|
48
|
Pallante P, Sepe R, Puca F, Fusco A. High mobility group a proteins as tumor markers. Front Med (Lausanne) 2015; 2:15. [PMID: 25859543 PMCID: PMC4373383 DOI: 10.3389/fmed.2015.00015] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/07/2015] [Indexed: 01/24/2023] Open
Abstract
Almost 30 years ago, overexpression of HMGA proteins was associated with malignant phenotype of rat thyroid cells transformed with murine retroviruses. Thereafter, several studies have analyzed HMGA expression in a wide range of human neoplasias. Here, we summarize all these results that, in the large majority of the cases, confirm the association of HMGA overexpression with high malignant phenotype as outlined by chemoresistance, spreading of metastases, and a global poor survival. Even though HMGA proteins’ overexpression indicates a poor prognosis in almost all malignancies, their detection may be particularly useful in determining the prognosis of breast, lung, and colon carcinomas, suggesting for the treatment a more aggressive therapy. In particular, the expression of HMGA2 in lung carcinomas is frequently associated with the presence of metastases. Moreover, recent data revealed that often the cause for the high HMGA proteins levels detected in human malignancies is a deregulated expression of non-coding RNA. Therefore, the HMGA proteins represent tumor markers whose detection can be a valid tool for the diagnosis and prognosis of neoplastic diseases.
Collapse
Affiliation(s)
- Pierlorenzo Pallante
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Naples , Italy
| | - Romina Sepe
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Naples , Italy
| | - Francesca Puca
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Naples , Italy
| | - Alfredo Fusco
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Naples , Italy ; Instituto Nacional de Câncer , Rio de Janeiro , Brazil
| |
Collapse
|
49
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 731] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
50
|
FUKUOKA H, TAKAHASHI Y. The role of genetic and epigenetic changes in pituitary tumorigenesis. Neurol Med Chir (Tokyo) 2014; 54:943-57. [PMID: 25446387 PMCID: PMC4533359 DOI: 10.2176/nmc.ra.2014-0184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/01/2014] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenomas are one of the most common intracranial tumors. Despite their benign nature, dysregulation of hormone secretion causes systemic metabolic deterioration, resulting in high mortality and an impaired quality of life. Tumorigenic pathogenesis of pituitary adenomas is mainly investigated by performing genetic analyses of somatic mutations in the tumor or germline mutations in patients. Genetically modified mouse models, which develop pituitary adenomas, are also used. Genetic analysis in rare familial pituitary adenomas, including multiple endocrine neoplasia type 1 and type 4, Carney complex, familial isolated pituitary adenomas, and succinate dehydrogenases (SDHs)-mediated paraganglioma syndrome, revealed several causal germline mutations and sporadic somatic mutations in these genes. The analysis of genetically modified mouse models exhibiting pituitary adenomas has revealed the underlying mechanisms, where cell cycle regulatory molecules, tumor suppressors, and growth factor signaling are involved in pituitary tumorigenesis. Furthermore, accumulating evidence suggests that epigenetic changes, including deoxyribonucleic acid (DNA) methylation, histone modification, micro ribonucleic acids (RNAs), and long noncoding RNAs play a pivotal role. The elucidation of precise mechanisms of pituitary tumorigenesis can contribute to the development of novel targeted therapy for pituitary adenomas.
Collapse
Affiliation(s)
- Hidenori FUKUOKA
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Hyogo
| | - Yutaka TAKAHASHI
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Hyogo
| |
Collapse
|