1
|
Van den Bossche V, Vignau J, Vigneron E, Rizzi I, Zaryouh H, Wouters A, Ambroise J, Van Laere S, Beyaert S, Helaers R, van Marcke C, Mignion L, Lepicard EY, Jordan BF, Guilbaud C, Lowyck O, Dahou H, Mendola A, Desgres M, Aubert L, Gerin I, Bommer GT, Boidot R, Vermonden P, Warnant A, Larondelle Y, Machiels JP, Feron O, Schmitz S, Corbet C. PPARα-mediated lipid metabolism reprogramming supports anti-EGFR therapy resistance in head and neck squamous cell carcinoma. Nat Commun 2025; 16:1237. [PMID: 39890801 PMCID: PMC11785796 DOI: 10.1038/s41467-025-56675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
Anti-epidermal growth factor receptor (EGFR) therapy (cetuximab) shows a limited clinical benefit for patients with locally advanced or recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), due to the frequent occurrence of secondary resistance mechanisms. Here we report that cetuximab-resistant HNSCC cells display a peroxisome proliferator-activated receptor alpha (PPARα)-mediated lipid metabolism reprogramming, with increased fatty acid uptake and oxidation capacities, while glycolysis is not modified. This metabolic shift makes cetuximab-resistant HNSCC cells particularly sensitive to a pharmacological inhibition of either carnitine palmitoyltransferase 1A (CPT1A) or PPARα in 3D spheroids and tumor xenografts in mice. Importantly, the PPARα-related gene signature, in human clinical datasets, correlates with lower response to anti-EGFR therapy and poor survival in HNSCC patients, thereby validating its clinical relevance. This study points out lipid metabolism rewiring as a non-genetic resistance-causing mechanism in HNSCC that may be therapeutically targeted to overcome acquired resistance to anti-EGFR therapy.
Collapse
Affiliation(s)
- Valentin Van den Bossche
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Julie Vignau
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Engy Vigneron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Isabella Rizzi
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Jérôme Ambroise
- Centre des Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 54, B-1200, Brussels, Belgium
| | - Steven Van Laere
- Translational Cancer Research Unit (TCRU), GZA Ziekenhuizen, Antwerp, Belgium
| | - Simon Beyaert
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
- Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Raphaël Helaers
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Cédric van Marcke
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Lionel Mignion
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Elise Y Lepicard
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Céline Guilbaud
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Olivier Lowyck
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Hajar Dahou
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Antonella Mendola
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
| | - Manon Desgres
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Léo Aubert
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Isabelle Gerin
- Metabolic Research Group, de Duve Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Guido T Bommer
- Metabolic Research Group, de Duve Institute, UCLouvain, B-1200, Brussels, Belgium
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges‑François Leclerc Cancer Center‑UNICANCER, 21079, Dijon, France
- ICMUB UMR CNRS 6302, 21079, Dijon, France
| | - Perrine Vermonden
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Aurélien Warnant
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Jean-Pascal Machiels
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
- Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
- WEL Research Institute, Avenue Pasteur 6, B-1300, Wavre, Belgium
| | - Sandra Schmitz
- King Albert II Cancer Institute, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B-1200, Brussels, Belgium
- Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium.
- WEL Research Institute, Avenue Pasteur 6, B-1300, Wavre, Belgium.
| |
Collapse
|
2
|
Zhang J, Yao M, Xia S, Zeng F, Liu Q. Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer. Cell Mol Biol Lett 2025; 30:2. [PMID: 39757165 DOI: 10.1186/s11658-024-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes. Thus, the review delves into the mechanisms by which HIF-1 maintains its stability under normoxia including but not limited to giving insights into transcriptional, translational, as well as posttranslational regulation to underscore the pivotal role of HIF-1 in cellular adaptation and malignancy. Moreover, HIF-1 is extensively involved in cancer and cardiovascular diseases and potentially serves as a bridge between them. An overview of HIF-1-related drugs that are approved or in clinical trials is summarized, highlighting their potential capacity for targeting HIF-1 in cancer and cardiovascular toxicity related to cancer treatment. The review provides a comprehensive insight into HIF-1's regulatory mechanism and paves the way for future research and therapeutic development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Mingxuan Yao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shiting Xia
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Richiardone E, Al Roumi R, Lardinois F, Giolito MV, Ambroise J, Boidot R, Drotleff B, Ghesquière B, Bellahcène A, Bardelli A, Arena S, Corbet C. MCT1-dependent lactate recycling is a metabolic vulnerability in colorectal cancer cells upon acquired resistance to anti-EGFR targeted therapy. Cancer Lett 2024; 598:217091. [PMID: 38964730 DOI: 10.1016/j.canlet.2024.217091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Despite the implementation of personalized medicine, patients with metastatic CRC (mCRC) still have a dismal overall survival due to the frequent occurrence of acquired resistance mechanisms thereby leading to clinical relapse. Understanding molecular mechanisms that support acquired resistance to anti-EGFR targeted therapy in mCRC is therefore clinically relevant and key to improving patient outcomes. Here, we observe distinct metabolic changes between cetuximab-resistant CRC cell populations, with in particular an increased glycolytic activity in KRAS-mutant cetuximab-resistant CRC cells (LIM1215 and OXCO2) but not in KRAS-amplified resistant DiFi cells. We show that cetuximab-resistant LIM1215 and OXCO2 cells have the capacity to recycle glycolysis-derived lactate to sustain their growth capacity. This is associated with an upregulation of the lactate importer MCT1 at both transcript and protein levels. Pharmacological inhibition of MCT1, with AR-C155858, reduces the uptake and oxidation of lactate and impairs growth capacity in cetuximab-resistant LIM1215 cells both in vitro and in vivo. This study identifies MCT1-dependent lactate utilization as a clinically actionable, metabolic vulnerability to overcome KRAS-mutant-mediated acquired resistance to anti-EGFR therapy in CRC.
Collapse
Affiliation(s)
- Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Rim Al Roumi
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Fanny Lardinois
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Maria Virginia Giolito
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Jérôme Ambroise
- Centre des Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 54, B-1200, Brussels, Belgium
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-François Leclerc Cancer Center-UNICANCER, 21079, Dijon, France
| | | | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sabrina Arena
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium.
| |
Collapse
|
4
|
Ma Y, Chen Q, Zhang Y, Xue J, Liu Q, Zhao Y, Yang Y, Huang Y, Fang W, Hou Z, Li S, Wang J, Zhang L, Zhao H. Pharmacokinetics, safety, tolerability, and feasibility of apatinib in combination with gefitinib in stage IIIB-IV EGFR-mutated non-squamous NSCLC: a drug-drug interaction study. Cancer Chemother Pharmacol 2023; 92:411-418. [PMID: 37518060 DOI: 10.1007/s00280-023-04563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE Apatinib combined with gefitinib was proven to benefit advanced EGFR-mutant NSCLC patients in first-line treatment. This study aimed to evaluate the drug-drug interaction of gefitinib and apatinib when coadministered in EGFR-mutated NSCLC patients. METHODS In this phase 1b, multi-center, open-label, fixed-sequence study, the drug-drug interaction of gefitinib and apatinib was evaluated when coadministered in EGFR-mutated NSCLC patients. Patients received single-agent apatinib 500 mg QD on days 1-4. Gefitinib 250 mg QD was given on days 5-15 and combined with apatinib 500 mg QD on days 12-15. Serial blood samples were drawn on days 4 and 15. The plasma concentrations and other pharmacokinetics parameters were measured for apatinib with and without gefitinib. RESULTS The study enrolled 22 patients and 20 were analyzed for pharmacokinetics. There were no distinct differences in apatinib Cmax and AUC0-τ with versus without gefitinib (geometric LSM ratio, 0.96 [90% CI 0.84-1.10] for Cmax and 1.12 [90% CI 0.96-1.30] for AUC0-τ). Similar PFS and grade of treatment-emergent adverse events (TEAEs) were found between different Cmax and AUC0-τ of apatinib and gefitinib at 500 mg apatinib and 250 mg gefitinib dose levels. CONCLUSIONS Apatinib pharmacokinetics parameters were not significantly changed when coadministered with gefitinib. All TEAEs were manageable, and there was no need to change the dose level when combining apatinib and gefitinib (ClinicalTrials.gov identifier: NCT04390984, May 18, 2020).
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangdong, 510060, Guangzhou, China
| | - Qun Chen
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangdong, 510060, Guangzhou, China
| | - Yang Zhang
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangdong, 510060, Guangzhou, China
| | - Jinhui Xue
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangdong, 510060, Guangzhou, China
| | - Qianwen Liu
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangdong, 510060, Guangzhou, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangdong, 510060, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangdong, 510060, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangdong, 510060, Guangzhou, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangdong, 510060, Guangzhou, China
| | - Zhiguo Hou
- Department of Medical Affairs, Jiangsu Hengrui Pharmaceuticals Co., Ltd., No.1288 Haike Road, Pudong New Area, Shanghai, 200120, China
| | - Shaorong Li
- Department of Clinical Pharmacology, Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., No. 1288 Haike Road, Pudong New Area, Shanghai, China
| | - Jing Wang
- Department of Clinical Pharmacology, Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., No. 1288 Haike Road, Pudong New Area, Shanghai, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangdong, 510060, Guangzhou, China.
| | - Hongyun Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangdong, 510060, Guangzhou, China.
| |
Collapse
|
5
|
Okuyama K, Naruse T, Yanamoto S. Tumor microenvironmental modification by the current target therapy for head and neck squamous cell carcinoma. J Exp Clin Cancer Res 2023; 42:114. [PMID: 37143088 PMCID: PMC10161653 DOI: 10.1186/s13046-023-02691-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Current clinical and observational evidence supports the EXTREME regimen as one of the standards of care for patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) followed by the administration of immune checkpoint inhibitors (ICIs). In addition to the inhibition of the epidermal growth factor receptor (EGFR) pathway, cetuximab-mediated EGFR blockade has been shown to modulate tumor microenvironment (TME) characteristics, such as antibody-dependent cellular cytotoxicity (ADCC) activity, cytotoxic T-lymphocyte (CTL) infiltration into the tumor, anti-angiogenesis activity, and cytokine secretion via associated natural killer (NK) cells, etc.. On the other hand, there are reports that nivolumab affects the TME via Programmed cell death 1 (PD-1) inhibition, Interleukin-10 upregulation via T-cells, myeloid-derived suppressor cell-mediated immune escape induction, and tumor vessel perfusion by promoting CD8 + T-cell accumulation and Interferon-γ production in treatment-sensitive tumor cells. Actually, nivolumab administration can give T cells in the TME both immune superiority and inferiority. HNSCC treatment using cetuximab increases the frequency of FoxP3 + intratumoral effector regulatory T cells (Tregs) expressing CTL associated antigen (CTLA)-4, and targeting CTLA-4 + Tregs using ipilimumab restores the cytolytic function of NK cells, which mediate ADCC activity. Treg-mediated immune suppression also contributes to clinical response to cetuximab treatment, suggesting the possibility of the addition of ipilimumab or the use of other Treg ablation strategies to promote antitumor immunity. Moreover, also in hyper progression disease (HPD), intratumoral frequency of FoxP3 + effector Tregs expressing CTLA-4 is increased. Therefore, combination treatment with cetuximab plus anti-CTLA-4 antibody ipilimumab for HNSCC and this combination therapy after nivolumab administration for HPD may be expected to result in a higher tumor-control response. Based on the above evidence, we here suggest the efficacy of using these therapeutic strategies for patients with local-advanced, recurrent, and metastatic HNSCC and patients who do not respond well to nivolumab administration.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Periodontics and Oral Medicine, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48105, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Tomofumi Naruse
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Aghbash PS, Hemmat N, Fathi H, Baghi HB. Monoclonal antibodies in cervical malignancy-related HPV. Front Oncol 2022; 12:904790. [PMID: 36276117 PMCID: PMC9582116 DOI: 10.3389/fonc.2022.904790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Despite many efforts to treat HPV infection, cervical cancer survival is still poor for several reasons, including resistance to chemotherapy and relapse. Numerous treatments such as surgery, radiation therapy, immune cell-based therapies, siRNA combined with various drugs, and immunotherapy are being studied and performed to provide the best treatment. Depending on the stage and size of the tumor, methods such as radical hysterectomy, pelvic lymphadenectomy, or chemotherapy can be utilized to treat cervical cancer. While accepted, these treatments lead to interruptions in cellular pathways and immune system homeostasis. In addition to a low survival rate, cervical neoplasm incidence has been rising significantly. However, new strategies have been proposed to increase patient survival while reducing the toxicity of chemotherapy, including targeted therapy and monoclonal antibodies. In this article, we discuss the types and potential therapeutic roles of monoclonal antibodies in cervical cancer.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Fathi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
ACACB is a novel metabolism-related biomarker in the prediction of response to cetuximab therapy inmetastatic colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1671-1683. [PMID: 36111743 PMCID: PMC9828296 DOI: 10.3724/abbs.2022121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cetuximab is one of the most valuable targeted therapy monoclonal antibodies in the treatment of metastatic colorectal cancer (CRC). However, the mechanisms affecting cetuximab resistance in CRC treatment remain unclear. Metabolism, especially fatty acid metabolism, has been reported to play an important role in tumor treatment. The correlation between cetuximab resistance and metabolism and whether it can be a new biomarker to evaluate the sensitivity of cetuximab in CRC treatment still need to be further explored. In this study, we perform a comprehensive analysis to confirm the relationship between fatty acid metabolism and cetuximab resistance, and the differentially expressed genes (DEGs) related to cetuximab drug resistance in CRC are screened by bioinformatics technology. We find that acetyl-CoA carboxylase beta (ACACB), ADH1C, CES1, MGLL, FMO5, and GPT are the hub DEGs, and ACACB is the most important biomarker among them. In addition, we systematically analyze the role of ACACB in the tumorigenesis of CRC, including tissue expression, CRC cell growth, cetuximab sensitivity, and potential downstream pathways, by using bioinformatics techniques, in vitro experiments and clinical cohort validation. Our results confirm that cetuximab resistance is correlated with metabolism. ACACB can lead to decreased sensitivity to cetuximab in CRC, and its mechanism may be related to EGFR phosphorylation, which could affect the activation of the mTOR/Akt signaling pathway and regulation of CDT1-, cyclin D1-, and p21-related cell cycle modulation.
Collapse
|
8
|
Nilsson MB, Robichaux J, Herynk MH, Cascone T, Le X, Elamin Y, Patel S, Zhang F, Xu L, Hu L, Diao L, Shen L, He J, Yu X, Nikolinakos P, Saintigny P, Fang B, Girard L, Wang J, Minna JD, Wistuba II, Heymach JV. Altered Regulation of HIF-1α in Naive- and Drug-Resistant EGFR-Mutant NSCLC: Implications for a Vascular Endothelial Growth Factor-Dependent Phenotype. J Thorac Oncol 2020; 16:439-451. [PMID: 33309987 DOI: 10.1016/j.jtho.2020.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/26/2020] [Accepted: 11/20/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The treatment of patients with EGFR-mutant NSCLC with vascular endothelial growth factor (VEGF) inhibitors in combination with EGFR inhibitors provides a greater benefit than EGFR inhibition alone, suggesting that EGFR mutation status may define a patient subgroup with greater benefit from VEGF blockade. The mechanisms driving this potentially enhanced VEGF dependence are unknown. METHODS We analyzed the effect of EGFR inhibition on VEGF and HIF-1α in NSCLC models in vitro and in vivo. We determined the efficacy of VEGF inhibition in xenografts and analyzed the impact of acquired EGFR inhibitor resistance on VEGF and HIF-1α. RESULTS NSCLC cells with EGFR-activating mutations exhibited altered regulation of VEGF compared with EGFR wild-type cells. In EGFR-mutant cells, EGFR, not hypoxia, was the dominant regulator of HIF-1α and VEGF. NSCLC tumor models bearing classical or exon 20 EGFR mutations were more sensitive to VEGF inhibition than EGFR wild-type tumors, and a combination of VEGF and EGFR inhibition delayed tumor progression. In models of acquired EGFR inhibitor resistance, whereas VEGF remained overexpressed, the hypoxia-independent expression of HIF-1α was delinked from EGFR signaling, and EGFR inhibition no longer diminished HIF-1α or VEGF expression. CONCLUSIONS In EGFR-mutant NSCLC, EGFR signaling is the dominant regulator of HIF-1α and VEGF in a hypoxia-independent manner, hijacking an important cellular response regulating tumor aggressiveness. Cells with acquired EGFR inhibitor resistance retained elevated expression of HIF-1α and VEGF, and the pathways were no longer EGFR-regulated. This supports VEGF targeting in EGFR-mutant tumors in the EGFR inhibitor-naive and refractory settings.
Collapse
Affiliation(s)
- Monique B Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jacqulyne Robichaux
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew H Herynk
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasir Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sonia Patel
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fahao Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Xu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Limei Hu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junqin He
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoxing Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Petros Nikolinakos
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pierre Saintigny
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Institut National de la Santé et de la Recherche Médicale 1052, Centre National de la Recherche Scientifique 5286, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Bingliang Fang
- Department of Thoracic and Cardio Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ignacio I Wistuba
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
9
|
Patel U, Pandey M, Kannan S, Samant TA, Gera P, Mittal N, Rane S, Patil A, Noronha V, Joshi A, Patil VM, Prabhash K, Mahimkar MB. Prognostic and predictive significance of nuclear HIF1α expression in locally advanced HNSCC patients treated with chemoradiation with or without nimotuzumab. Br J Cancer 2020; 123:1757-1766. [PMID: 32939054 PMCID: PMC7722894 DOI: 10.1038/s41416-020-01064-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Anti-EGFR-based therapies have limited success in HNSCC patients. Predictive biomarkers are greatly needed to identify the patients likely to be benefited from these targeted therapies. Here, we present the prognostic and predictive association of biomarkers in HPV-negative locally advanced (LA) HNSCC patients. METHODS Treatment-naive tumour tissue samples of 404 patients, a subset of randomised Phase 3 trial comparing cisplatin radiation (CRT) versus nimotuzumab plus cisplatin radiation (NCRT) were analysed to evaluate the expression of HIF1α, EGFR and pEGFR by immunohistochemistry and EGFR gene copy change by FISH. Progression-free survival (PFS), locoregional control (LRC) and overall survival (OS) were estimated by Kaplan-Meier method. Hazard ratios were estimated by Cox proportional hazard models. RESULTS Baseline characteristics of the patients were balanced between two treatment groups (CRT vs NCRT) and were representative of the trial cohort. The median follow-up was of 39.13 months. Low HIF1α was associated with better PFS [HR (95% CI) = 0.62 (0.42-0.93)], LRC [HR (95% CI) = 0.56 (0.37-0.86)] and OS [HR (95% CI) = 0.63 (0.43-0.93)] in the CRT group. Multivariable analysis revealed HIF1α as an independent negative prognostic biomarker. For patients with high HIF1α, NCRT significantly improved the outcomes [PFS:HR (95% CI) = 0.55 (0.37-0.82), LRC:HR (95% CI) = 0.55 (0.36-0.85) and OS:HR (95% CI) = 0.54 (0.36-0.81)] compared to CRT. While in patients with low HIF1α, no difference in the clinical outcomes was observed between treatments. Interaction test suggested a predictive value of HIF1α for OS (P = 0.008). CONCLUSIONS High HIF1α expression is a predictor of poor clinical response to CRT in HPV-negative LA-HNSCC patients. These patients with high HIF1α significantly benefited with the addition of nimotuzumab to CRT. CLINICAL TRIAL REGISTRATION Registered with the Clinical Trial Registry of India (Trial registration identifier-CTRI/2014/09/004980).
Collapse
Affiliation(s)
- Usha Patel
- Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Manish Pandey
- Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Sadhana Kannan
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Biostatistician, Clinical Research Secretariat, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Tanuja A Samant
- Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Poonam Gera
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Neha Mittal
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Swapnil Rane
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Asawari Patil
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Vanita Noronha
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Amit Joshi
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Vijay M Patil
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Kumar Prabhash
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Manoj B Mahimkar
- Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.
| |
Collapse
|
10
|
Duan L, Tao J, Yang X, Ye L, Wu Y, He Q, Duan Y, Chen L, Zhu J. HVEM/HIF-1α promoted proliferation and inhibited apoptosis of ovarian cancer cells under hypoxic microenvironment conditions. J Ovarian Res 2020; 13:40. [PMID: 32312328 PMCID: PMC7168979 DOI: 10.1186/s13048-020-00646-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Our previous studies showed the expression of herpes virus entry mediator (HVEM) is high in ovarian cancer samples and correlated to the patient clinic pathological features. As we all know, the hypoxic environment is the main feature of tumor. In this work, we explored the role of HVEM in hypoxic ovarian cancer cells and its effects on HIF-1α, a transcription factor responding to hypoxia. Methods The expression of HVEM, HIF-1α and apoptosis-related genes was detected by qRT-PCR and western blot. The proliferation and apoptosis of the ovarian cancer cells were determined with the Cell Counting Kit-8 assay and AnnexinV-FITC/PI-stained flow cytometry assay, respectively. Results The expression of HVEM was positively correlated to that of HIF-1α. The expression of HVEM and HIF-1α under hypoxic conditions was higher than that under normoxic conditions, which suggested that the level of HVEM and HIF-1α correlates with prolonged periods of hypoxia in ovarian cancer. The overexpression of HVEM promoted cell proliferation and inhibited cell apoptosis under hypoxic condition. HVEM overexpression elevated the expression of HIF-1α and Bcl-2 (anti-apoptotic protein), and reduced the expression of Bax (pro-apoptotic protein). In addition, overexpression of HVEM activated the AKT/mTOR signaling. Moreover, knockdown of HVEM had the completely opposite effects. Conclusion These data indicated that HVEM signaling might promote HIF-1α activity via AKT/mTOR signaling pathway and thus to regulate tumor growth in ovarian cancer under the hypoxic conditions. Furthermore, these findings indicate that this molecular mechanism could represent a therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Liyan Duan
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Tao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoqian Yang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Ye
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yueqian Wu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qizhi He
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingchun Duan
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, No. 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Li Chen
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, No. 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Jianlong Zhu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China. .,Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, No. 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China.
| |
Collapse
|
11
|
Hakozaki T, Okuma Y, Hashimoto K, Hosomi Y. Correlation between the qualification for bevacizumab use and the survival of patients with non-small cell lung cancer harboring the epidermal growth factor receptor mutation: a retrospective analysis. J Cancer Res Clin Oncol 2019; 145:2555-2564. [PMID: 31350622 DOI: 10.1007/s00432-019-02985-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Previously, the combination of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and bevacizumab (BEV) was investigated. A subgroup analysis of the IMpower150 trial, which investigated the combination of atezolizumab, carboplatin, paclitaxel, and bevacizumab (ABCP), demonstrated the benefit of ABCP in patients harboring EGFR mutations. This study aims to assess the prognostic significance of the qualification for BEV use and the proportion of patients who potentially benefit from BEV-containing combination therapy before and after initial EGFR-TKI treatment. METHODS We retrospectively analyzed the data of 297 patients with advanced or recurrent non-squamous non-small cell lung cancer (NSCLC) harboring EGFR mutations who had received EGFR-TKIs. We performed statistical analyses using the Kaplan-Meier method and the Cox regression adjusted for risk factors. RESULTS Of the 297 patients, 203 (68%) were eligible to receive BEV ("BEV fit") at the time of EGFR-TKI initiation. Among the "BEV unfit" patients at baseline (n = 70), 14 (20%) became eligible to receive ABCP ("ABCP fit") at the time of EGFR-TKI failure. The median overall survival (OS) of the "BEV fit" and "BEV unfit" patients was 26.2 [95% confidence interval (CI) 23.7-31.2] and 19.1 (95% CI 15.0-25.1) months, respectively (P < 0.001). The multivariate analysis revealed a marked correlation between survival and the qualification for BEV use. CONCLUSIONS The qualification for BEV use at baseline is independently related to the OS. Some patients harboring EGFR mutations, including those who were "BEV unfit" at baseline, could be eligible for the ABCP regimen after EGFR-TKI treatment.
Collapse
Affiliation(s)
- Taiki Hakozaki
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo, Tokyo, 113-8677, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo, Tokyo, 105-0045, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo, Tokyo, 113-8677, Japan.
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo, Tokyo, 105-0045, Japan.
| | - Kana Hashimoto
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo, Tokyo, 113-8677, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo, Tokyo, 113-8677, Japan
| |
Collapse
|
12
|
Li C, Zheng J, Xue Y. Effects of vascular endothelial growth factor and epidermal growth factor on biological properties of gastric cancer cells. Arch Med Sci 2019; 15:1498-1509. [PMID: 31749879 PMCID: PMC6855150 DOI: 10.5114/aoms.2019.88443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/05/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The exfoliation of exfoliative cells from gastric serosa into the peritoneum is the main cause of peritoneal metastasis, which is the most common form of postoperative recurrence in gastric cancer. This study investigates the effects of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) on the biological properties of gastric cancer cells. MATERIAL AND METHODS mRNA expression of VEGF and EGF in gastric cancer tissues from 80 patients suffering from serosa-infiltrated gastric cancer (T3) was examined. The differences of proliferation, movement, adhesion and invasion among 4 gastric cancer cell lines were analysed. The mRNA expression of EGF, EGFR, VEGF and VEGFR in the gastric cancer cell lines was examined before and after adding endostatin (Endostar) or cetuximab (Erbitux) to observe changes of gastric cancer cells. RESULTS mRNA levels of EGF and VEGF in positive exfoliative cytology cases were significantly higher than negative cases (p < 0.05). The biological properties were reduced sequentially in MGC803, HGC27, BGC823 and SGC7901 (p < 0.05). The mRNA expression of EGF, EGFR, VEGF and VEGFR was the strongest in MGC803, but was attenuated significantly after treatment (p < 0.05). CONCLUSIONS Lower survival was related to positive exfoliative cytology, lymphatic node metastasis, serosa-infiltrated and poorly differentiated gastric cancer. The expression of VEGF and EGF was correlated with the properties of gastric cancer cells. Specific inhibition of VEGF and EGF may impair the biological properties of gastric cancer cells in vitro.
Collapse
Affiliation(s)
- Chunfeng Li
- Department of Gastroenterology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Zheng
- Department of Gastroenterology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingwei Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics 2019; 13:33-51. [PMID: 31118560 PMCID: PMC6503308 DOI: 10.2147/btt.s166310] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) have become a cornerstone in the therapeutic guidelines of a wide range of solid tumors. The targeted nature of these biotherapeutics has improved treatment outcomes by offering enhanced specificity to reduce severe side effects experienced with conventional chemotherapy. Notwithstanding, poor tumor tissue penetration and the heterogeneous distribution achieved therein are prominent drawbacks that hamper the clinical efficacy of therapeutic antibodies. Failure to deliver efficacious doses throughout the tumor can lead to treatment failure and the development of acquired resistance mechanisms. Comprehending the morphological and physiological characteristics of solid tumors and their microenvironment that affect tumor penetration and distribution is a key requirement to improve clinical outcomes and realize the full potential of monoclonal antibodies in oncology. This review summarizes the essential architectural characteristics of solid tumors that obstruct macromolecule penetration into the targeted tissue following systemic delivery. It further describes mechanisms of resistance elucidated for blockbuster antibodies for which extensive clinical data exists, as a way to illustrate various modes in which cancer cells can overcome the anticancer activity of therapeutic antibodies. Thereafter, it describes novel strategies designed to improve clinical outcomes of mAbs by increasing potency and/or improving tumor delivery; focusing on the recent clinical success and growing clinical pipeline of antibody-drug conjugates, immune checkpoint inhibitors and nanoparticle-based delivery systems.
Collapse
Affiliation(s)
- Esteban Cruz
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Veysel Kayser
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Low HIF-1α and low EGFR mRNA Expression Significantly Associate with Poor Survival in Soft Tissue Sarcoma Patients; the Proteins React Differently. Int J Mol Sci 2018; 19:ijms19123842. [PMID: 30513863 PMCID: PMC6321736 DOI: 10.3390/ijms19123842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
In various tumors, the hypoxia inducible factor-1α (HIF-1α) and the epidermal growth factor-receptor (EGFR) have an impact on survival. Nevertheless, the prognostic impact of both markers for soft tissue sarcoma (STS) is not well studied. We examined 114 frozen tumor samples from adult soft tissue sarcoma patients and 19 frozen normal tissue samples. The mRNA levels of HIF-1α, EGFR, and the reference gene hypoxanthine phosphoribosyltransferase (HPRT) were quantified using a multiplex qPCR technique. In addition, levels of EGFR or HIF-1α protein were determined from 74 corresponding protein samples using ELISA techniques. Our analysis showed that a low level of HIF-1α or EGFR mRNA (respectively, relative risk (RR) = 2.8; p = 0.001 and RR = 1.9; p = 0.04; multivariate Cox´s regression analysis) is significantly associated with a poor prognosis in STS patients. The combination of both mRNAs in a multivariate Cox’s regression analysis resulted in an increased risk of early tumor-specific death of patients (RR = 3.1, p = 0.003) when both mRNA levels in the tumors were low. The EGFR protein level had no association with the survival of the patient’s cohort studied, and a higher level of HIF-1α protein associated only with a trend to significance (multivariate Cox’s regression analysis) to a poor prognosis in STS patients (RR = 1.9, p = 0.09). However, patients with low levels of HIF-1α protein and a high content of EGFR protein in the tumor had a three-fold better survival compared to patients without such constellation regarding the protein level of HIF-1α and EGFR. In a bivariate two-sided Spearman’s rank correlation, a significant correlation between the expression of HIF-1α mRNA and expression of EGFR mRNA (p < 0.001) or EGFR protein (p = 0.001) was found, additionally, EGFR mRNA correlated with EGFR protein level (p < 0.001). Our results show that low levels of HIF-1α mRNA or EGFR mRNA are negative independent prognostic markers for STS patients, especially after combination of both parameters. The protein levels showed a different effect on the prognosis. In addition, our analysis suggests a possible association between HIF-1α and EGFR expression in STS.
Collapse
|
15
|
Taniguchi H, Baba Y, Sagiya Y, Gotou M, Nakamura K, Sawada H, Yamanaka K, Sakakibara Y, Mori I, Hikichi Y, Soeda J, Baba H. Biologic Response of Colorectal Cancer Xenograft Tumors to Sequential Treatment with Panitumumab and Bevacizumab. Neoplasia 2018; 20:668-677. [PMID: 29802988 PMCID: PMC6030230 DOI: 10.1016/j.neo.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023] Open
Abstract
Recent studies in RAS wild-type (WT) metastatic colorectal cancer (mCRC) suggest that the survival benefits of therapy using anti-epidermal growth factor receptor (anti-EGFR) and anti-vascular endothelial growth factor (anti-VEGF) antibodies combined with chemotherapy are maximized when the anti-EGFR antibody is given as first-line, followed by subsequent anti-VEGF antibody therapy. We report reverse-translational research using LIM1215 xenografts of RAS WT mCRC to elucidate the biologic mechanisms underlying this clinical observation. Sequential administration of panitumumab then bevacizumab (PB) demonstrated a stronger tendency to inhibit tumor growth than bevacizumab then panitumumab (BP). Cell proliferation was reduced significantly with PB (P < .01) but not with BP based on Ki-67 index. Phosphoproteomic analysis demonstrated reduced phosphorylation of EGFR and EPHA2 with PB and BP compared with control. Western blotting showed reduced EPHA2 expression and S897-phosphorylation with PB; RSK phosphorylation was largely unaffected by PB but increased significantly with BP. In quantitative real-time PCR analyses, PB significantly reduced the expression of both lipogenic (FASN, MVD) and hypoxia-related (CA9, TGFBI) genes versus control. These results suggest that numerous mechanisms at the levels of gene expression, protein expression, and protein phosphorylation may explain the improved clinical activity of PB over BP in patients with RAS WT mCRC.
Collapse
Affiliation(s)
- Hiroya Taniguchi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Yuji Baba
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoji Sagiya
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Masamitsu Gotou
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuhide Nakamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroshi Sawada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazunori Yamanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Sakakibara
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Ikuo Mori
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Yukiko Hikichi
- Product Information Group, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan
| | - Junpei Soeda
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo 103-8668, Japan.
| | - Hideo Baba
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
16
|
De Pauw I, Lardon F, Van den Bossche J, Baysal H, Fransen E, Deschoolmeester V, Pauwels P, Peeters M, Vermorken JB, Wouters A. Simultaneous targeting of EGFR, HER2, and HER4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines. Mol Oncol 2018; 12:830-854. [PMID: 29603584 PMCID: PMC5983215 DOI: 10.1002/1878-0261.12197] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/24/2018] [Accepted: 03/15/2018] [Indexed: 01/30/2023] Open
Abstract
The epidermal growth factor receptor (EGFR, HER1) is a therapeutic target in head and neck squamous cell carcinoma (HNSCC). After initial promising results with EGFR-targeted therapies such as cetuximab, therapeutic resistance has become a major clinical problem, and new treatment options are therefore necessary. Moreover, the relationship between HER receptors, anti-EGFR therapies, and the human papillomavirus (HPV) status in HNSCC is not fully understood. In contrast to first-generation EGFR inhibitors, afatinib irreversibly inhibits multiple HER receptors simultaneously. Therefore, treatment with afatinib might result in a more pronounced therapeutic benefit, even in patients experiencing cetuximab resistance. In this study, the cytotoxic effect of afatinib as single agent and in combination with cisplatin was investigated in cetuximab-sensitive, intrinsically cetuximab-resistant, and acquired cetuximab-resistant HNSCC cell lines with different HPV status under normoxia and hypoxia. Furthermore, the influence of cetuximab resistance, HPV, and hypoxia on the expression of HER receptors was investigated. Our results demonstrated that afatinib was able to establish cytotoxicity in cetuximab-sensitive, intrinsically cetuximab-resistant, and acquired cetuximab-resistant HNSCC cell lines, independent of the HPV status. However, cross-resistance between cetuximab and afatinib might be possible. Treatment with afatinib caused a G0 /G1 cell cycle arrest as well as induction of apoptotic cell death. Additive to antagonistic interactions between afatinib and cisplatin could be observed. Neither cetuximab resistance nor HPV status significantly influenced the expression of HER receptors in HNSCC cell lines. In contrast, the expression of EGFR, HER2, and HER3 was significantly altered under hypoxia. Oxygen deficiency is a common characteristic of HNSCC tumors, and these hypoxic tumor regions often contain cells that are more resistant to treatment. However, we observed that afatinib maintained its cytotoxic effect under hypoxia. In conclusion, our preclinical data support the hypothesis that afatinib might be a promising therapeutic strategy to treat patients with HNSCC experiencing intrinsic or acquired cetuximab resistance.
Collapse
Affiliation(s)
- Ines De Pauw
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | | | - Hasan Baysal
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Belgium
| | - Vanessa Deschoolmeester
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
17
|
Lee DH, Lee MY, Seo Y, Hong HJ, An HJ, Kang JS, Kim HM. Multi-paratopic VEGF decoy receptor have superior anti-tumor effects through anti-EGFRs and targeted anti-angiogenic activities. Biomaterials 2018; 171:34-45. [PMID: 29679794 DOI: 10.1016/j.biomaterials.2018.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/09/2018] [Accepted: 04/14/2018] [Indexed: 12/27/2022]
Abstract
Limitation of current anti-Vascular Endothelial Growth Factor (VEGF) cancer therapy is transitory responses, inevitable relapses and its insufficient tumor-targeting. Thus, multifaceted approaches, including the development of bispecific antibodies and combination strategies targeting different pathways have been proposed as an alternative. Here, we developed a novel multi-paratopic VEGF decoy receptor, Cetuximab-VEGF-Grab and Trastuzumab-VEGF-Grab, by genetically fusing VEGF decoy receptor (VEGF-Grab) to a single chain Fv of anti-Epidermal Growth Factor Receptor (EGFR) antibody (Cetuximab and Trastuzumab). These multi-paratopic VEGF decoy receptor, which recognize VEGF and EGFR family (EGFR or HER2), effectively suppressed both VEGF and EGFR pathways in vitro, to levels similar to those of the parental VEGF-Grab and anti-EGFR antibodies. In addition, the concurrent binding of multi-paratopic VEGF decoy receptor to VEGF and EGFR family enabled their specific localization to EGFR + tumor in vitro and in vivo. Furthermore, Cetuximab-VEGF-Grab and Trastuzumab-VEGF-Grab exhibited the enhanced anti-tumor activities compared to VEGF-Grab in EGFR + tumor xenograft mouse model via anti-EGFR and the targeted anti-angiogenic activities. These results indicate that multi-paratopic VEGF decoy receptor can be a promising agent, combining tumor-targeted anti-angiogenic therapy with efficient blockade of proliferative signals mediated by EGFR family.
Collapse
Affiliation(s)
- Dae Hee Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Myeong Youl Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Cheongju, Chungbuk, 28116, South Korea
| | - Youngsuk Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyo Jeong Hong
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, South Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Cheongju, Chungbuk, 28116, South Korea.
| | - Ho Min Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea; Graduate School of Medical Science & Engineering, KAIST, Daejeon, 34141, South Korea.
| |
Collapse
|
18
|
Nan X, Xie C, Yu X, Liu J. EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer. Oncotarget 2017; 8:75712-75726. [PMID: 29088904 PMCID: PMC5650459 DOI: 10.18632/oncotarget.20095] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/26/2017] [Indexed: 12/25/2022] Open
Abstract
After the discovery of activating mutations in EGFR, EGFR tyrosine kinase inhibitors (TKIs) have been introduced into the first-line treatment of non-small-cell lung cancer (NSCLC). A series of studies have shown that EGFR TKI monotherapy as first-line treatment can benefit NSCLC patients harbouring EGFR mutations. Besides, combination strategies based on EGFR TKIs in the first line treatment have also been proved to delay the occurrence of resistance. In this review, we summarize the scientific literature and evidence of EGFR TKIs as first-line therapy from the first-generation EGFR TKIs to conceptually proposed fourth-generation EGFR TKI, and also recommend the application of monotherapy and combination therapies of the EGFR-based targeted therapy with other agents such as chemotherapy, anti-angiogenic drugs and immunecheckpoint inhibitors.
Collapse
Affiliation(s)
- Xueli Nan
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Shandong, China.,Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong, China
| | - Chao Xie
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong, China
| | - Xueyan Yu
- Department of Oncology, Shandong Provincial Chest Hospital, Shandong, China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong, China.,Shandong Academy of Medical Sciences, Shandong, China
| |
Collapse
|
19
|
Hypoxia Mediates Differential Response to Anti-EGFR Therapy in HNSCC Cells. Int J Mol Sci 2017; 18:ijms18050943. [PMID: 28468237 PMCID: PMC5454856 DOI: 10.3390/ijms18050943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 01/01/2023] Open
Abstract
Despite advances in the head and neck squamous cell carcinoma (HNSCC) treatment modalities, drug resistance and cancer recurrence are often reported. Hypoxia signaling through hypoxia-inducible factor 1 (HIF-1) promotes angiogenesis and metastasis by inducing epithelial-mesenchymal-transition (EMT). The aim of this study was to evaluate the impact of hypoxia on response to therapy as well as EMT and expression of stem cell markers in HNSCC cells. Five HNSCC cell lines (UT-SCC-2, UT-SCC-14, LK0412, LK0827, and LK0923) were selected for this study. The treatment sensitivity for radiation, cisplatin, cetuximab, and dasatinib was assessed by crystal violet assay. Gene expression of EMT and cancer stem cell (CSC) markers as well as protein level of EGFR signaling molecules were analyzed by qPCR and western blotting, respectively. Unlike UT-SCC-14 and LK0827, the LK0412 cell line became significantly more sensitive to cetuximab in hypoxic conditions. This cetuximab sensitivity was efficiently reversed after suppression of HIF-1α with siRNA. Additionally, hypoxia-induced EMT and expression of stem cell markers in HNSCC cells was partially revoked by treatment with cetuximab or knockdown of HIF-1α. In summary, our study shows that hypoxia might have a positive influence on the anti-EGFR therapy effectiveness in HNSCC. However, due to heterogeneity of HNSCC lesions, targeting HIF-1α may not be sufficient to mediate such a response. Further studies identifying a trait of hypoxia-specific response to cetuximab in HNSCC are advisable.
Collapse
|
20
|
Luo J, Hong Y, Lu Y, Qiu S, Chaganty BKR, Zhang L, Wang X, Li Q, Fan Z. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. Cancer Lett 2016; 384:39-49. [PMID: 27693630 DOI: 10.1016/j.canlet.2016.09.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Cetuximab inhibits HIF-1-regulated glycolysis in cancer cells, thereby reversing the Warburg effect and leading to inhibition of cancer cell metabolism. AMP-activated protein kinase (AMPK) is activated after cetuximab treatment, and a sustained AMPK activity is a mechanism contributing to cetuximab resistance. Here, we investigated how acetyl-CoA carboxylase (ACC), a downstream target of AMPK, rewires cancer metabolism in response to cetuximab treatment. We found that introduction of experimental ACC mutants lacking the AMPK phosphorylation sites (ACC1_S79A and ACC2_S212A) into head and neck squamous cell carcinoma (HNSCC) cells protected HNSCC cells from cetuximab-induced growth inhibition. HNSCC cells with acquired cetuximab resistance contained not only high levels of T172-phosphorylated AMPK and S79-phosphorylated ACC1 but also an increased level of total ACC. These findings were corroborated in tumor specimens of HNSCC patients treated with cetuximab. Cetuximab plus TOFA (an allosteric inhibitor of ACC) achieved remarkable growth inhibition of cetuximab-resistant HNSCC xenografts. Our data suggest a novel paradigm in which cetuximab-mediated activation of AMPK and subsequent phosphorylation and inhibition of ACC is followed by a compensatory increase in total ACC, which rewires cancer metabolism from glycolysis-dependent to lipogenesis-dependent.
Collapse
Affiliation(s)
- Jingtao Luo
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun Hong
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Songbo Qiu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat K R Chaganty
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lun Zhang
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Xudong Wang
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Qiang Li
- Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Li X, Lu Y, Lu H, Luo J, Hong Y, Fan Z. AMPK-mediated energy homeostasis and associated metabolic effects on cancer cell response and resistance to cetuximab. Oncotarget 2016; 6:11507-18. [PMID: 25871473 PMCID: PMC4484472 DOI: 10.18632/oncotarget.3432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022] Open
Abstract
We previously reported that cetuximab, an EGFR-blocking antibody, inhibits cancer metabolism via downregulation of HIF-1α and reverses the Warburg effect in cancer cells. Here, we report that inhibition of HIF-1 transcriptional activity by cetuximab does not necessarily lead to successful inhibition of cell proliferation. In several head and neck squamous cell carcinoma (HNSCC) cell lines, we observed a pattern of oscillating decrease and increase of intracellular ATP level after cetuximab treatment, and the magnitude and kinetics of which varied by cell line and appeared to be linked to the extent of cellular response to cetuximab. In HNSCC cells with low basal level of AMPK activity and that responded to cetuximab-induced growth inhibition, there was a transient, LKB1-dependent activation of AMPK. In contrast, HNSCC cells that had a high basal level of AMPK activity were less sensitive to cetuximab-induced growth inhibition despite effective inhibition of EGFR downstream signaling by cetuximab. Knockdown or inhibition of AMPK markedly enhanced response to cetuximab via induction of apoptosis. These findings indicate that a transient activation of AMPK is an early metabolic marker of cellular response to cetuximab and that high and sustained AMPK activity is an important mechanism by which cancer cells survive cetuximab treatment.
Collapse
Affiliation(s)
- Xinqun Li
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiquan Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingtao Luo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yun Hong
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism. Cancer Lett 2016; 373:36-44. [PMID: 26801746 DOI: 10.1016/j.canlet.2016.01.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/23/2023]
Abstract
Cisplatin is currently one of the most effective chemotherapeutic drugs used for treating ovarian cancer; however, resistance to cisplatin is common. In this study, we explored an experimental strategy for overcoming cisplatin resistance of human ovarian cancer from the new perspective of cancer cell metabolism. By using two pairs of genetically matched cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines, we tested the hypothesis that downregulating hypoxia-inducible factor-1 (HIF-1), which regulates metabolic enzymes involved in glycolysis, is a promising strategy for overcoming cisplatin resistance of human ovarian cancer cells. We found that cisplatin downregulated the level of the regulatable α subunit of HIF-1, HIF-1α, in cisplatin-sensitive ovarian cancer cells through enhancing HIF-1α degradation but did not downregulate HIF-1α in their cisplatin-resistant counterparts. Overexpression of a degradation-resistant HIF-1α (HIF-1α ΔODD) reduced cisplatin-induced apoptosis in cisplatin-sensitive cells, whereas genetic knockdown of HIF-1α or pharmacological promotion of HIF-1α degradation enhanced response to cisplatin in both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. We further demonstrated that knockdown of HIF-1α improved the response of cisplatin-resistant ovarian cancer cells to cisplatin by redirecting the aerobic glycolysis in the resistant cancer cells toward mitochondrial oxidative phosphorylation, leading to cell death through overproduction of reactive oxygen species. Our findings suggest that the HIF-1α-regulated cancer metabolism pathway could be a novel target for overcoming cisplatin resistance in ovarian cancer.
Collapse
|
23
|
Broekgaarden M, Weijer R, van Gulik TM, Hamblin MR, Heger M. Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev 2015; 34:643-90. [PMID: 26516076 PMCID: PMC4661210 DOI: 10.1007/s10555-015-9588-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) has emerged as a promising alternative to conventional cancer therapies such as surgery, chemotherapy, and radiotherapy. PDT comprises the administration of a photosensitizer, its accumulation in tumor tissue, and subsequent irradiation of the photosensitizer-loaded tumor, leading to the localized photoproduction of reactive oxygen species (ROS). The resulting oxidative damage ultimately culminates in tumor cell death, vascular shutdown, induction of an antitumor immune response, and the consequent destruction of the tumor. However, the ROS produced by PDT also triggers a stress response that, as part of a cell survival mechanism, helps cancer cells to cope with the PDT-induced oxidative stress and cell damage. These survival pathways are mediated by the transcription factors activator protein 1 (AP-1), nuclear factor E2-related factor 2 (NRF2), hypoxia-inducible factor 1 (HIF-1), nuclear factor κB (NF-κB), and those that mediate the proteotoxic stress response. The survival pathways are believed to render some types of cancer recalcitrant to PDT and alter the tumor microenvironment in favor of tumor survival. In this review, the molecular mechanisms are elucidated that occur post-PDT to mediate cancer cell survival, on the basis of which pharmacological interventions are proposed. Specifically, pharmaceutical inhibitors of the molecular regulators of each survival pathway are addressed. The ultimate aim is to facilitate the development of adjuvant intervention strategies to improve PDT efficacy in recalcitrant solid tumors.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ruud Weijer
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Rollin J, Payancé A, Gouilleux-Gruart V, Boisdron-Celle M, Azzopardi N, Morel A, Gruel Y, Paintaud G, Gamelin E, Watier H, Lecomte T. Significant effect of VEGFA polymorphisms on the clinical outcome of metastatic colorectal cancer patients treated with FOLFIRI-cetuximab. Pharmacogenomics 2015; 16:2035-43. [PMID: 26615857 DOI: 10.2217/pgs.15.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM The efficacy of a cetuximab-based regimen used to treat metastatic colorectal cancer (mCRC) could be influenced by VEGFA polymorphisms. MATERIALS & METHODS We studied the effects of five polymorphisms in the VEGFA gene (-2549D/I, -1154G/A, -460T/C, +405G/C and +936C/T) on the outcome of 98 mCRC patients treated with FOLFIRI plus cetuximab. RESULTS Patients homozygous for the -2549D, -1154G and -460T alleles did exhibit higher response rates to treatment and longer progression-free survival compared with others. In addition, the DGTGC and IGCGC haplotypes were significantly associated with a lower risk of disease progression. CONCLUSION These findings suggest that VEGFA genetic variations might influence response/resistance of FOLFIRI plus cetuximab treatment in mCRC patients.
Collapse
Affiliation(s)
- Jérôme Rollin
- CNRS, UMR 7292, GICC & Université Francois-Rabelais, Tours, France.,CHRU de Tours, service d'Hématologie-Hémostase, Tours, France
| | - Audrey Payancé
- CNRS, UMR 7292, GICC & Université Francois-Rabelais, Tours, France.,CHRU de Tours, service d'Hématologie-Hémostase, Tours, France.,CHRU de Tours, service d'Hépato-Gastroenterologie, Tours, France
| | - Valérie Gouilleux-Gruart
- CNRS, UMR 7292, GICC & Université Francois-Rabelais, Tours, France.,CHRU de Tours, service d'Immunologie, Tours, France
| | | | | | - Alain Morel
- INSERM U892 & service d'Oncopharmacologie et Pharmacogénétique, CRCNA, Angers, France
| | - Yves Gruel
- CNRS, UMR 7292, GICC & Université Francois-Rabelais, Tours, France.,CHRU de Tours, service d'Hématologie-Hémostase, Tours, France
| | - Gilles Paintaud
- CNRS, UMR 7292, GICC & Université Francois-Rabelais, Tours, France.,CHRU de Tours, service de Pharmacologie-Toxicologie, Tours, France
| | - Erick Gamelin
- INSERM U892 & service d'Oncopharmacologie et Pharmacogénétique, CRCNA, Angers, France
| | - Hervé Watier
- CNRS, UMR 7292, GICC & Université Francois-Rabelais, Tours, France.,CHRU de Tours, service d'Immunologie, Tours, France
| | - Thierry Lecomte
- CNRS, UMR 7292, GICC & Université Francois-Rabelais, Tours, France.,CHRU de Tours, service d'Hépato-Gastroenterologie, Tours, France
| |
Collapse
|
25
|
Boeckx C, Van den Bossche J, De Pauw I, Peeters M, Lardon F, Baay M, Wouters A. The hypoxic tumor microenvironment and drug resistance against EGFR inhibitors: preclinical study in cetuximab-sensitive head and neck squamous cell carcinoma cell lines. BMC Res Notes 2015; 8:203. [PMID: 26032726 PMCID: PMC4467624 DOI: 10.1186/s13104-015-1197-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background Increased expression of the epidermal growth factor receptor (EGFR) is observed in more than 90% of all head and neck squamous cell carcinomas (HNSCC). Therefore, EGFR has emerged as a promising therapeutic target. Nevertheless, drug resistance remains a major challenge and an important potential mechanism of drug resistance involves the hypoxic tumor microenvironment. Therefore, we investigated the cytotoxic effect of the EGFR-targeting agents cetuximab and erlotinib under normoxia versus hypoxia. Findings Three cetuximab-sensitive HNSCC cell lines (SC263, LICR-HN2 and LICR-HN5) were treated with either cetuximab or erlotinib. Cells were incubated under normal or reduced oxygen conditions (<0.1% O2) for 24 or 72 h immediately after drug addition. Cell survival was assessed with the sulforhodamine B assay. Cetuximab and erlotinib established a dose-dependent growth inhibition under both normal and prolonged reduced oxygen conditions in all three HNSCC cell lines. However, a significantly increased sensitivity to cetuximab was observed in SC263 cells exposed to hypoxia for 72 h (p = 0.05), with IC50 values of 2.38 ± 0.59 nM, 0.64 ± 0.38 nM, and 0.10 ± 0.05 nM under normoxia, hypoxia for 24 h and hypoxia for 72 h, respectively. LICR-HN5 cells showed an increased sensitivity towards erlotinib when cells were incubated under hypoxia for 24 h (p = 0.05). Conclusions Our results suggest that both EGFR-inhibitors cetuximab and erlotinib maintain their growth inhibitory effect under hypoxia. These results suggest that resistance to anti-EGFR therapy in HNSCC is probably not the result of hypoxic regions within the tumor and other mechanisms are involved.
Collapse
Affiliation(s)
- Carolien Boeckx
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Jolien Van den Bossche
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Ines De Pauw
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Marc Peeters
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium. .,Department of Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Marc Baay
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - An Wouters
- Center for Oncological Research (CORE) Antwerp, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
26
|
Dynamic contrast-enhanced computed tomography to assess early activity of cetuximab in squamous cell carcinoma of the head and neck. Radiol Oncol 2015; 49:17-25. [PMID: 25810697 PMCID: PMC4362602 DOI: 10.2478/raon-2014-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 05/23/2013] [Indexed: 01/15/2023] Open
Abstract
Background Cetuximab, a monoclonal antibody targeting the Epidermal Growth Factor Receptor (EGFR), has demonstrated activity in various tumor types. Using dynamic contrast-enhanced computed tomography (DCE-CT), we investigated the early activity of cetuximab monotherapy in previously untreated patients with squamous cell carcinoma of the head and neck (SCCHN). Methods Treatment-naïve patients with SCCHN received cetuximab for 2 weeks before curative surgery. Treatment activity was evaluated by DCE-CT at baseline and before surgery. Tumor vascular and interstitial characteristics were evaluated using the Brix two-compartment kinetic model. Modifications of the perfusion parameters (blood flow Fp, extravascular space ve, vascular space vp, and transfer constant PS) were assessed between both time points. DCE data were compared to FDG-PET and histopathological examination obtained simultaneously. Plasmatic vascular markers were investigated at different time points. Results Fourteen patients had evaluable DCE-CT parameters at both time points. A significant increase in the extravascular extracellular space ve accessible to the tracer was observed but no significant differences were found for the other kinetic parameters (Fp, vp or PS). Significant correlations were found between DCE parameters and the other two modalities. Plasmatic VEGF, PDGF-BB and IL-8 decreased as early as 2 hours after cetuximab infusion. Conclusions Early activity of cetuximab on tumor interstitial characteristics was detected by DCE-CT. Modifications of plasmatic vascular markers are not sufficient to confirm anti-angiogenic cetuximab activity in vivo. Further investigation is warranted to determine to what extent DCE-CT parameters are modified and to evaluate whether they are able to predict treatment outcome.
Collapse
|
27
|
Li X, Truty MA, Kang Y, Chopin-Laly X, Zhang R, Roife D, Chatterjee D, Lin E, Thomas RM, Wang H, Katz MH, Fleming JB. Extracellular lumican inhibits pancreatic cancer cell growth and is associated with prolonged survival after surgery. Clin Cancer Res 2014; 20:6529-40. [PMID: 25336691 PMCID: PMC4268437 DOI: 10.1158/1078-0432.ccr-14-0970] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To evaluate the relevance between lumican expression patterns and the clinical course of patients with pancreatic ductal adenocarcinoma (PDAC), and to investigate the role of lumican in PDAC progression. EXPERIMENTAL DESIGN One hundred thirty-one patient tumors were chosen for tissue microarray staining, and Cox regression analysis was used to test the associations between lumican expression and clinical, pathologic, and oncologic outcomes in all patients. Primary PDAC cells and recombinant human lumican protein were used to establish a working model to mimic the in vivo interactions between stromal lumican and PDAC cells. Using this model, we tested the effects of lumican on EGFR signaling via Akt and hypoxia-inducible factor-1α (HIF1α) and its subsequent influence on glucose consumption, lactate production, intracellular ATP, and apoptotic cell death. RESULTS Lumican was present in the stroma surrounding PDAC cells in roughly one-half of primary tumors and the direct xenografts. Patients with stromal lumican were associated with a profound reduction in metastatic recurrence after surgery and 3-fold longer survival than patients without stromal lumican. In PDAC cells, extracellular lumican reduced EGFR expression and phosphorylation through enhanced dimerization and internalization of EGFR and the resultant inhibition of Akt kinase activity. Lumican also reduced HIF1α expression and activity via Akt. PDAC cells with enhanced HIF1α activity were resistant to lumican-induced inhibition of glucose consumption, lactate production, intracellular ATP, and apoptosis. CONCLUSIONS There is a positive association between stromal lumican in primary PDAC tumors and prolonged survival after tumor resection. Lumican plays a restrictive role in EGFR-expressing pancreatic cancer progression.
Collapse
Affiliation(s)
- Xinqun Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark A Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xavier Chopin-Laly
- Department of Hepato-Biliary and Pancreatic Surgery, Edouard Herriot Hospital, HCL, Lyon, France
| | - Ran Zhang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Roife
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Deyali Chatterjee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - E Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ryan M Thomas
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
28
|
Wouters A, Pauwels B, Burrows N, Baay M, Deschoolmeester V, Vu TN, Laukens K, Meijnders P, Van Gestel D, Williams KJ, Van den Weyngaert D, Vermorken JB, Pauwels P, Peeters M, Lardon F. The radiosensitising effect of gemcitabine and its main metabolite dFdU under low oxygen conditions is in vitro not dependent on functional HIF-1 protein. BMC Cancer 2014; 14:594. [PMID: 25128202 PMCID: PMC4152599 DOI: 10.1186/1471-2407-14-594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/05/2014] [Indexed: 12/02/2022] Open
Abstract
Background Regions within solid tumours often experience oxygen deprivation, which is associated with resistance to chemotherapy and irradiation. The aim of this study was to evaluate the radiosensitising effect of gemcitabine and its main metabolite dFdU under normoxia versus hypoxia and to determine whether hypoxia-inducible factor 1 (HIF-1) is involved in the radiosensitising mechanism. Methods Stable expression of dominant negative HIF-1α (dnHIF) in MDA-MB-231 breast cancer cells, that ablated endogenous HIF-1 transcriptional activity, was validated by western blot and functionality was assessed by HIF-1α activity assay. Cells were exposed to varying oxygen environments and treated with gemcitabine or dFdU for 24 h, followed by irradiation. Clonogenicity was then assessed. Using radiosensitising conditions, cells were collected for cell cycle analysis. Results HIF-1 activity was significantly inhibited in cells stably expressing dnHIF. A clear radiosensitising effect under normoxia and hypoxia was observed for both gemcitabine and dFdU. No significant difference in radiobiological parameters between HIF-1 proficient and HIF-1 deficient MDA-MB-231 cells was demonstrated. Conclusions For the first time, radiosensitisation by dFdU, the main metabolite of gemcitabine, was demonstrated under low oxygen conditions. No major role for functional HIF-1 protein in radiosensitisation by gemcitabine or dFdU could be shown.
Collapse
Affiliation(s)
- An Wouters
- Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Secades P, de Santa-María IS, Merlo A, Suarez C, Chiara MD. In vitro study of normoxic epidermal growth factor receptor-induced hypoxia-inducible factor-1-alpha, vascular endothelial growth factor, and BNIP3 expression in head and neck squamous cell carcinoma cell lines: Implications for anti-epidermal growth factor receptor therapy. Head Neck 2014; 37:1150-62. [PMID: 24798801 DOI: 10.1002/hed.23733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/26/2014] [Accepted: 04/28/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We previously showed that activation of epidermal growth factor receptor (EGFR) induces hypoxia inducible factor-1α (HIF-1α) in head and neck squamous cell carcinoma (HNSCC) cells. In this study, we have furthered this by investigating the mechanism of HIF-1α activation by epidermal growth factor (EGF) and its association with the sensitivity to gefitinib. METHODS EGFR/HIF-1α signaling was tested by immunoblot, polymerase chain reaction (PCR), cell proliferation, and apoptosis assays. RESULTS HIF-1α accumulated in cells overexpressing EGF and phosphorylated epidermal growth factor receptor (pEGFR), phosphatidylinositol-3-kinase (pPI3K), and mitogen-activated protein kinase (pMAPK). EGF-induced expression of HIF-1α and its targets, vascular endothelial growth factor (VEGF) and BNIP3, were blocked by gefitinib and PI3K-inhibitors and MAPK-inhibitors. HIF-1α-siRNAs abrogated EGF-induced BNIP3 but not VEGF expression. Gefitinib inhibited cell proliferation and induced apoptosis more strongly in cells with constitutively active EGFR/HIF-1α signaling than in cells lacking activation of these pathways. HIF-1α-siRNA treatment reduced sensitivity to gefitinib. CONCLUSION The search for molecular predictors of sensitivity to gefitinib in HNSCC should be extended to the activation status of EGFR-downstream pathways, phosphorylated protein kinase B, pMAPK, and HIF-1α.
Collapse
Affiliation(s)
- Pablo Secades
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Inés Saenz de Santa-María
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Anna Merlo
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Carlos Suarez
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - María-Dolores Chiara
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
30
|
Canonical and new generation anticancer drugs also target energy metabolism. Arch Toxicol 2014; 88:1327-50. [PMID: 24792321 DOI: 10.1007/s00204-014-1246-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 01/05/2023]
Abstract
Significant efforts have been made for the development of new anticancer drugs (protein kinase or proteasome inhibitors, monoclonal humanized antibodies) with presumably low or negligible side effects and high specificity. However, an in-depth analysis of the side effects of several currently used canonical (platin-based drugs, taxanes, anthracyclines, etoposides, antimetabolites) and new generation anticancer drugs as the first line of clinical treatment reveals significant perturbation of glycolysis and oxidative phosphorylation. Canonical and new generation drug side effects include decreased (1) intracellular ATP levels, (2) glycolytic/mitochondrial enzyme/transporter activities and/or (3) mitochondrial electrical membrane potentials. Furthermore, the anti-proliferative effects of these drugs are markedly attenuated in tumor rho (0) cells, in which functional mitochondria are absent; in addition, several anticancer drugs directly interact with isolated mitochondria affecting their functions. Therefore, several anticancer drugs also target the energy metabolism, and hence, the documented inhibitory effect of anticancer drugs on cancer growth should also be linked to the blocking of ATP supply pathways. These often overlooked effects of canonical and new generation anticancer drugs emphasize the role of energy metabolism in maintaining cancer cells viable and its targeting as a complementary and successful strategy for cancer treatment.
Collapse
|
31
|
Deberne M, Levy A, Mondini M, Dessen P, Vivet S, Supiramaniam A, Vozenin MC, Deutsch E. The combination of the antiviral agent cidofovir and anti-EGFR antibody cetuximab exerts an antiproliferative effect on HPV-positive cervical cancer cell lines' in-vitro and in-vivo xenografts. Anticancer Drugs 2013; 24:599-608. [PMID: 23698251 DOI: 10.1097/cad.0b013e3283612a71] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cervical carcinoma remains a leading cause of female mortality worldwide and over 90% of these tumors contain the human papillomavirus (HPV) genome. Cross-talk between the epidermal growth factor receptor and HPV has been reported and is implicated in tumor progression. The combination of the antiviral compound cidofovir (Cd) with the monoclonal antibody antiepidermal growth factor receptor cetuximab (Cx) was evaluated. HPV-positive (HeLa and Me180) and HPV-negative (C33A, H460 and A549) human cancer cell lines were incubated with Cd (1-10 μg/ml) and/or Cx (10 or 50 μg/ml). The antitumor effect of the combination was assessed in vitro using a clonogenic survival assay, cell cycle analysis, and phospho-H2AX level. Tumor growth delay was assayed in vivo using xenograft models. A pan-genomic analysis was carried out to identify the genes expressed differentially in untreated HeLa HPV-positive cells versus cells treated by the Cd-Cx combination. The Cd-Cx combination inhibited proliferation in all the cell lines tested. The association of Cd and Cx exerted a synergistic activity on HPV-positive but not on HPV-negative cell lines. The combination delayed tumor growth of HPV-positive tumors in vivo; however, no efficacy was reported on HPV-negative C33A xenografts nor on cell lines treated by single-drug therapy. The combination induced an S-phase arrest associated with an enhanced level of the double-strand break in Me180 and HeLa cell lines. Gene profiling assays showed a significant differential modulation of genes in HeLa cell lines treated with the combination involving the EGR-1 transcription factor. The current data support a synergistic antiproliferative action of the Cd-Cx combination on HPV-related cervical tumors.
Collapse
Affiliation(s)
- Mélanie Deberne
- INSERM U1030, Molecular Radiotherapy, Paris XI University, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu H, Li X, Luo Z, Liu J, Fan Z. Cetuximab reverses the Warburg effect by inhibiting HIF-1-regulated LDH-A. Mol Cancer Ther 2013; 12:2187-99. [PMID: 23920275 DOI: 10.1158/1535-7163.mct-12-1245] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) plays a critical role in reprogramming cancer metabolism toward aerobic glycolysis (i.e., the Warburg effect), which is critical to supplying cancer cells with the biomass needed for proliferation. Previous studies have shown that cetuximab, an EGF receptor-blocking monoclonal antibody, downregulates the alpha subunit of HIF-1 (HIF-1α) through the inhibition of EGF receptor downstream cell signaling and that downregulation of HIF-1α is required for cetuximab-induced antiproliferative effects. However, the mechanism underlying these actions has yet to be identified. In this study, we used the Seahorse XF96 extracellular flux analyzer to assess the effect of cetuximab treatment on changes in glycolysis and mitochondrial respiration, the two major energy-producing pathways, in live cells. We found that cetuximab downregulated lactate dehydrogenase A (LDH-A) and inhibited glycolysis in cetuximab-sensitive head and neck squamous cell carcinoma (HNSCC) cells in an HIF-1α downregulation-dependent manner. HNSCC cells with acquired cetuximab resistance expressed a high level of HIF-1α and were highly glycolytic. Overexpression of a HIF-1α mutant (HIF-1α/ΔODD) conferred resistance to cetuximab-induced G1 phase cell-cycle arrest, which could be overcome by knockdown of LDH-A expression. Inhibition of LDH-A activity with oxamate enhanced the response of cetuximab-resistant cells to cetuximab. Cetuximab had no noticeable inhibitory effect on glycolysis in nontransformed cells. These findings provide novel mechanistic insights into cetuximab-induced cell-cycle arrest from the perspective of cancer metabolism and suggest novel strategies for enhancing cetuximab response.
Collapse
Affiliation(s)
- Haiquan Lu
- Corresponding Author: Zhen Fan, Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030.
| | | | | | | | | |
Collapse
|
33
|
Hu Y, Liu J, Huang H. Recent agents targeting HIF-1α for cancer therapy. J Cell Biochem 2013; 114:498-509. [PMID: 22961911 DOI: 10.1002/jcb.24390] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/30/2012] [Indexed: 12/11/2022]
Abstract
The discovery of hypoxia-inducible factor-1 (HIF-1) has led to an increasing understanding of the mechanism of tumor hypoxia in the past two decades. As a key transcriptional regulator, HIF-1 plays a central role in the adaptation of tumor cells to hypoxia by activating the transcription of targeting genes, which regulate several biological processes including angiogenesis, cell proliferation, survival, glucose metabolism and migration. The inhibitors of HIF-1 in cancer have provided us a new clue for the targeting cancer therapy. This review will introduce the general knowledge of the biology characteristic of HIF-1 and mechanism of O(2)-dependent regulation. Moreover, a number of chemical inhibitors plus protein and nucleic acid inhibitors are included and classified mainly based on their different mechanism of inhibiting action. We also prefer to discuss the advantages of protein and nucleic acid inhibitors compared with chemical inhibitors.
Collapse
Affiliation(s)
- Yaozhong Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | |
Collapse
|
34
|
Sceneay J, Liu MCP, Chen A, Wong CSF, Bowtell DDL, Möller A. The antioxidant N-acetylcysteine prevents HIF-1 stabilization under hypoxia in vitro but does not affect tumorigenesis in multiple breast cancer models in vivo. PLoS One 2013; 8:e66388. [PMID: 23840457 PMCID: PMC3688768 DOI: 10.1371/journal.pone.0066388] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 05/05/2013] [Indexed: 12/13/2022] Open
Abstract
Intratumoral hypoxia is a poor prognostic factor associated with reduced disease-free survival in many cancer types, including breast cancer. Hypoxia encourages tumor cell proliferation, stimulates angiogenesis and lymphangiogenesis, and promotes epithelial-mesenchymal transition and metastasis. Tumor cells respond to a hypoxic state by stabilizing the Hif-1α subunit of the Hypoxia-Inducible Factor (HIF) transcription factor to promote expression of various tumor- and metastasis-promoting hypoxic response genes. The antioxidant N-acetylcysteine (NAC) was recently shown to prevent Hif-1α stabilization under hypoxia, and has been identified as a potential alternative method to target the hypoxic response in tumors. We utilized three orthotopic syngeneic murine models of breast cancer, the PyMT, EO771 and 4T1.2 models, to investigate the ability of NAC to modulate the hypoxic response in vitro and in vivo. While NAC prevented Hif-1α stabilization under hypoxia in vitro and increased levels of glutathione in the blood of mice in vivo, this did not translate to a difference in tumor growth or the hypoxic state of the tumor compared to untreated control mice. In addition, NAC treatment actually increased metastatic burden in an experimental metastasis model. This work raises questions regarding the validity of NAC as an anti-tumorigenic agent in breast cancer, and highlights the need to further investigate its properties in vivo in different cancer models.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Carcinogenesis
- Cell Hypoxia
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Epithelial-Mesenchymal Transition
- Female
- Glutathione/blood
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasm Transplantation
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Phenotype
- Protein Stability
- Tumor Burden/drug effects
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Jaclyn Sceneay
- Cancer Genomics and Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Tumour Microenvironment Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Mira C. P. Liu
- Cancer Genomics and Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Anna Chen
- Cancer Genomics and Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christina S. F. Wong
- Tumour Microenvironment Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - David D. L. Bowtell
- Cancer Genomics and Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
35
|
Monoclonal antibody therapy of pancreatic cancer with cetuximab: potential for immune modulation. J Immunother 2013; 35:367-73. [PMID: 22576341 DOI: 10.1097/cji.0b013e3182562d76] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pancreatic cancer is a devastating disease, with a median survival of around 6 months for patients with stage IV disease. The epidermal growth factor receptor (EGFR, or HER1) belongs to the erbB receptor tyrosine kinase family. HER1-mediated cell signaling has been shown to play a major role in promoting tumor proliferation, angiogenesis, metastasis, and evasion of apoptosis. Over-expression of HER1 is observed in multiple human malignancies, including colorectal, lung, breast and pancreatic cancers. In pancreatic carcinoma, over-expression of HER1 is observed in greater than 70% of patients and is associated with a poor prognosis and a significant decrease in survival. Cetuximab (Erbitux) is a chimeric monoclonal antibody (mAb) that binds to the extracellular domain of the HER1 molecule preventing ligand binding and promoting internalization and subsequent degradation of the HER1 receptor. Cetuximab has shown anti-tumor activity either alone or in combination with other agents and is currently FDA approved for use in both squamous cell carcinoma of the head and neck (SCCHN) and colorectal carcinoma. Research efforts continue to elucidate a possible role for cetuximab in the treatment of pancreatic cancer. Despite promising preclinical work, phase II and phase III clinical trials have failed to consistently show efficacy of cetuximab treatment in advanced pancreatic cancer either alone or in combination with cytotoxic agents. Alternative approaches to HER1 blockade and mAbs including immune modulation with cytokines might be necessary in order to improve the efficacy of mAbs in pancreatic cancer therapy.
Collapse
|
36
|
Weyergang A, Selbo PK, Berg K. Sustained EKR inhibition by EGFR targeting therapies is a predictive factor for synergistic cytotoxicity with PDT as neoadjuvant therapy. Biochim Biophys Acta Gen Subj 2013; 1830:2659-70. [DOI: 10.1016/j.bbagen.2012.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
van der Groep P, van Diest PJ, Smolders YHCM, Ausems MGEM, van der Luijt RB, Menko FH, Bart J, de Vries EGE, van der Wall E. HIF-1α overexpression in ductal carcinoma in situ of the breast in BRCA1 and BRCA2 mutation carriers. PLoS One 2013; 8:e56055. [PMID: 23409121 PMCID: PMC3568038 DOI: 10.1371/journal.pone.0056055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/05/2013] [Indexed: 11/18/2022] Open
Abstract
Recent studies have revealed that BRCA1 and BRCA2 germline mutation-related breast cancers show frequent overexpression of hypoxia inducible factor-1α (HIF-1α), the key regulator of the hypoxia response. However, the question remained whether hypoxia is a late stage bystander or a true carcinogenetic event in patients with hereditary predisposition. We therefore studied HIF-1α overexpression in ductal carcinoma in situ (DCIS), an established precursor of invasive breast cancer. We used immunohistochemistry to examine the expression of the hypoxia markers HIF-1α, CAIX and Glut-1 in DCIS and available invasive carcinoma lesions of 32 BRCA1, 16 BRCA2 and 77 non-BRCA mutation-related cases. HIF-1α expression was detected in 63% of BRCA1 and 62% of BRCA2 as compared to 34% of non-BRCA mutation-related DCIS cases (p = 0.005). CAIX overexpression was present in 56% of BRCA1 and 44% of BRCA2 as compared to 6% of non-BRCA mutation-related DCIS cases (p = 0.000). Glut-1 overexpression was observed in 59% of BRCA1, 75% of BRCA2 and 67% of non-BRCA mutation-related DCIS cases (p = 0.527). Overall, HIF-1α, CAIX and Glut-1 expression in BRCA mutation-related DCIS matched the expression in the accompanying invasive cancers in 60% or more of cases. In non-BRCA mutation-related cases the expression of the hypoxia markers in DCIS matched the expression in the invasive part in 46% or more of the cases. Although BRCA1 and BRCA2 germline mutation-related invasive breast cancers are different in many ways, the hypoxia-related proteins HIF-1α, CAIX and Glut-1 are expressed in both DCIS and invasive lesions of BRCA1 and BRCA2 mutation carriers. This suggests that hypoxia may already play a role in the DCIS stage of BRCA1 and BRCA2 germline mutation related breast carcinogenesis, and may also drive cancer progression. Hypoxia-related proteins are therefore putative targets for therapy and molecular imaging for early detection and monitoring therapy response in BRCA mutation patients.
Collapse
Affiliation(s)
- Petra van der Groep
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Semenza GL. Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene 2012; 32:4057-63. [PMID: 23222717 DOI: 10.1038/onc.2012.578] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022]
Abstract
Interactions between cancer cells and stromal cells, including blood vessel endothelial cells (BECs), lymphatic vessel endothelial cells (LECs), bone marrow-derived angiogenic cells (BMDACs) and other bone marrow-derived cells (BMDCs) play important roles in cancer progression. Intratumoral hypoxia, which affects both cancer and stromal cells, is associated with a significantly increased risk of metastasis and mortality in many human cancers. Recent studies have begun to delineate the molecular mechanisms underlying the effect of intratumoral hypoxia on cancer progression. Reduced O2 availability induces the activity of hypoxia-inducible factors (HIFs), which activate the transcription of target genes encoding proteins that play important roles in many critical aspects of cancer biology. Included among these are secreted factors, including angiopoietin 2, angiopoietin-like 4, placental growth factor, platelet-derived growth factor B, stem cell factor (kit ligand), stromal-derived factor 1, and vascular endothelial growth factor. These factors are produced by hypoxic cancer cells and directly mediate functional interactions with BECs, LECs, BMDACs and other BMDCs that promote angiogenesis, lymphangiogenesis, and metastasis. In addition, lysyl oxidase (LOX) and LOX-like proteins, which are secreted by hypoxic breast cancer cells, remodel extracellular matrix in the lungs, which leads to BMDC recruitment and metastatic niche formation.
Collapse
Affiliation(s)
- G L Semenza
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
39
|
Qu WS, Tian DS, Guo ZB, Fang J, Zhang Q, Yu ZY, Xie MJ, Zhang HQ, Lü JG, Wang W. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J Neuroinflammation 2012; 9:178. [PMID: 22824323 PMCID: PMC3418570 DOI: 10.1186/1742-2094-9-178] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/02/2012] [Indexed: 02/08/2023] Open
Abstract
Background Emerging evidence indicates that reactive microglia-initiated inflammatory responses are responsible for secondary damage after primary traumatic spinal cord injury (SCI); epidermal growth factor receptor (EGFR) signaling may be involved in cell activation. In this report, we investigate the influence of EGFR signaling inhibition on microglia activation, proinflammatory cytokine production, and the neuronal microenvironment after SCI. Methods Lipopolysaccharide-treated primary microglia/BV2 line cells and SCI rats were used as model systems. Both C225 and AG1478 were used to inhibit EGFR signaling activation. Cell activation and EGFR phosphorylation were observed after fluorescent staining and western blot. Production of interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNFα) was tested by reverse transcription PCR and ELISA. Western blot was performed to semi-quantify the expression of EGFR/phospho-EGFR, and phosphorylation of Erk, JNK and p38 mitogen-activated protein kinases (MAPK). Wet-dry weight was compared to show tissue edema. Finally, axonal tracing and functional scoring were performed to show recovery of rats. Results EGFR phosphorylation was found to parallel microglia activation, while EGFR blockade inhibited activation-associated cell morphological changes and production of IL-1β and TNFα. EGFR blockade significantly downregulated the elevated MAPK activation after cell activation; selective MAPK inhibitors depressed production of cytokines to a certain degree, suggesting that MAPK mediates the depression of microglia activation brought about by EGFR inhibitors. Subsequently, seven-day continual infusion of C225 or AG1478 in rats: reduced the expression of phospho-EGFR, phosphorylation of Erk and p38 MAPK, and production of IL-1β and TNFα; lessened neuroinflammation-associated secondary damage, like microglia/astrocyte activation, tissue edema and glial scar/cavity formation; and enhanced axonal outgrowth and functional recovery. Conclusions These findings indicate that inhibition of EGFR/MAPK suppresses microglia activation and associated cytokine production; reduces neuroinflammation-associated secondary damage, thus provides neuroprotection to SCI rats, suggesting that EGFR may be a therapeutic target, and C225 and AG1478 have potential for use in SCI treatment.
Collapse
Affiliation(s)
- Wen-Sheng Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
INTRODUCTION VEGF and EGFR are validated pathways for targeted therapy in non-small cell lung cancer (NSCLC). Once considered to be separate targets, VEGF and EGFR are now shown to have interconnected downstream pathways, potentiating the effectiveness of their dual signaling inhibition in cancer therapy. Molecules such as vandetanib that inhibit VEGFR and EGFR have also been reported to inhibit other receptors, including RET and additional kinases, and may be beneficial in treating patients with solid tumors. AREAS COVERED This review covers the significance of targeting VEGF and EGFR in the treatment of NSCLC and the rationale behind their dual inhibition. Clinical trials that evaluate the use of vandetanib in the setting of refractory NSCLC are also explored. EXPERT OPINION Vandetanib is currently not approved in the setting of NSCLC. However, its approval for medullary thyroid cancer makes it promising for identifying markers and potentially a NSCLC patient population who will benefit from the treatment.
Collapse
Affiliation(s)
- Caleb T Chu
- The University of Texas MD Anderson Cancer Center, Department of Thoracic/Head and Neck Medical Oncology, 1515 Holcombe Boulevard, Box 432, Houston, TX 77030, USA
| | | | | |
Collapse
|
41
|
Onishi H, Morifuji Y, Kai M, Suyama K, Iwasaki H, Katano M. Hedgehog inhibitor decreases chemosensitivity to 5-fluorouracil and gemcitabine under hypoxic conditions in pancreatic cancer. Cancer Sci 2012; 103:1272-9. [PMID: 22486854 DOI: 10.1111/j.1349-7006.2012.02297.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/04/2012] [Accepted: 04/04/2012] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the deadliest types of cancer. Previously, we showed that hypoxia increases invasiveness through upregulation of Smoothened (Smo) transcription in pancreatic ductal adenocarcinoma (PDAC) cells. Here, we first evaluated whether hypoxia-induced increase in Smo contributes to the proliferation of PDAC cells. We showed that Smo, but not Gli1, inhibition decreases proliferation significantly under hypoxic conditions. To further investigate the effects of Smo on PDAC growth, cell cycle analysis was carried out. Inhibition of Smo under hypoxia led to G(0) /G(1) arrest and decreased S phase. As 5-fluorouracil (5-FU) and gemcitabine, which are first-line drugs for pancreatic cancer, are sensitive to S phase, we then evaluated whether cyclopamine-induced decreased S phase under hypoxia affected the chemosensitivity of 5-FU and gemcitabine in PDAC cells. Cyclopamine treatment under hypoxia significantly decreased chemosensitivity to 5-FU and gemcitabine under hypoxia in both in vitro and in vivo models. In contrast, cis-diamminedichloroplatinum, which is cell cycle-independent, showed significant synergistic effects. These results suggest that hypoxia-induced increase of Smo directly contributes to the proliferation of PDAC cells through a hedgehog/Gli1-independent pathway, and that decreased S phase due to the use of Smo inhibitor under hypoxia leads to chemoresistance in S phase-sensitive anticancer drugs. Our results could be very important clinically because a clinical trial using Smo inhibitors and chemotherapy drugs will begin in the near future.
Collapse
Affiliation(s)
- Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Yu H, Li Q, Kolosov VP, Perelman JM, Zhou X. Regulation of cigarette smoke-mediated mucin expression by hypoxia-inducible factor-1α via epidermal growth factor receptor-mediated signaling pathways. J Appl Toxicol 2012; 32:282-92. [PMID: 21544845 DOI: 10.1002/jat.1679] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 01/04/2011] [Accepted: 02/04/2011] [Indexed: 02/03/2023]
Abstract
Cigarette smoking is strongly implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Mucus hypersecretion is the key manifestation in patients with COPD and mucin 5AC (MUC5AC) is a major component of airway mucus. Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor which can be stimulated to bind to the MUC5AC promoter and induce MUC5AC promoter activation. Previous studies have reported that activation of HIF-1α pathways by cigarette smoke contributes to the development of COPD. We hypothesize that cigarette smoke up-regulates HIF-1α production and HIF-1 activity through epidermal growth factor receptor (EGFR)-activated signal cascades pathways, leading to mucin production in human airway epithelial cells (16HBE). We show that cigarette smoke increases HIF-1α production, HIF-1 activity and MUC5AC expression. These effects are prevented by small interfering RNA (siRNA) for HIF-1α, indicating that cigarette smoke-induced mucin production is HIF-1α-dependent. Cigarette smoke activates extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3K) signal pathways, both of which are inhibited by gefitinib (an inhibitor of EGFR), suggesting that cigarette smoke-activated signal pathways are mediated by EGFR in 16HBE cells. Furthermore, pretreatment with gefitinib and the pharmacological inhibitors of PI3K (LY294002) and ERK1/2 (PD98059) prevented cigarette smoke-mediated Akt and ERK1/2 phosphorylation responses, HIF-1α production, HIF-1 activity and MUC5AC expression. These observations demonstrate an important role for EGFR-mediated signaling pathways in regulating cigarette smoke-induced HIF-1 activation and MUC5AC expression. Our results suggest that cigarette smoke activates EGFR-mediated signaling pathways, leading to HIF-1α production and HIF-1 activation, resulting in mucin expression in human airway epithelial cells.
Collapse
Affiliation(s)
- Hongmei Yu
- Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Lu H, Liang K, Lu Y, Fan Z. The anti-EGFR antibody cetuximab sensitizes human head and neck squamous cell carcinoma cells to radiation in part through inhibiting radiation-induced upregulation of HIF-1α. Cancer Lett 2012; 322:78-85. [PMID: 22348829 DOI: 10.1016/j.canlet.2012.02.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 12/27/2022]
Abstract
In this study, we investigated the mechanisms underlying cetuximab-mediated radiosensitization of HNSCC. Irradiation of HNSCC cells upregulated hypoxia-inducible factor-1 alpha (HIF-1α) via a mechanism involving de novo synthesis of HIF-1α protein. Radiation-induced upregulation of HIF-1α was completely abolished by concurrent treatment of HNSCC cells with cetuximab. Experimental elevation of constitutively expressed HIF-1α abolished cetuximab-mediated radiosensitization in HNSCC cells, whereas downregulation of HIF-1α by siRNA or a small molecule inhibitor enhanced responses of cetuximab-resistant HNSCC cells to cetuximab plus radiation. Our data suggest that cetuximab sensitizes cancer cells to ionizing radiation in part through inhibition of radiation-induced upregulation of HIF-1α.
Collapse
Affiliation(s)
- Haiquan Lu
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, 77030, USA
| | | | | | | |
Collapse
|
45
|
Rodríguez-Jiménez FJ, Moreno-Manzano V. Modulation of hypoxia-inducible factors (HIF) from an integrative pharmacological perspective. Cell Mol Life Sci 2012; 69:519-34. [PMID: 21984597 PMCID: PMC11115032 DOI: 10.1007/s00018-011-0813-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/17/2011] [Accepted: 09/01/2011] [Indexed: 12/11/2022]
Abstract
Oxygen homeostasis determines the activity and expression of a multitude of cellular proteins and the interplay of pathways that affect crucial cellular processes for development, physiology, and pathophysiology. Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment and drives cellular adaptation to such conditions. Selective gene expression under hypoxic conditions is the result of an exquisite regulation of HIF, from the pre-transcriptional stage of the HIF gene to the final transcriptional activity of HIF protein. We provide a dissected analysis of HIF modulation with special focus on hypoxic conditions and HIF pharmacological interventions that can guide the application of any future HIF-mediated therapy.
Collapse
|
46
|
El Guerrab A, Zegrour R, Nemlin CC, Vigier F, Cayre A, Penault-Llorca F, Rossignol F, Bignon YJ. Differential impact of EGFR-targeted therapies on hypoxia responses: implications for treatment sensitivity in triple-negative metastatic breast cancer. PLoS One 2011; 6:e25080. [PMID: 21966417 PMCID: PMC3178587 DOI: 10.1371/journal.pone.0025080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/24/2011] [Indexed: 12/27/2022] Open
Abstract
Background In solid tumors, such as breast cancer, cells are exposed to hypoxia. Cancer cells adapt their metabolism by activating hypoxia-inducible factors (HIFs) that promote the transcription of genes involved in processes such as cell survival, drug resistance and metastasis. HIF-1 is also induced in an oxygen-independent manner through the activation of epidermal growth factor receptor tyrosine kinase (EGFR-TK). Triple-negative breast cancer (TNBC) is a subtype of invasive breast cancer characterized by negative expression of hormonal and HER2 receptors, and this subtype generally overexpresses EGFR. Sensitivity to three EGFR inhibitors (cetuximab, gefitinib and lapatinib, an HER2/EGFR-TK inhibitor) was evaluated in a metastatic TNBC cell model (MDA-MB-231), and the impact of these drugs on the activity and stability of HIF was assessed. Methodology/Principal Findings MDA-MB-231 cells were genetically modified to stably express an enhanced green fluorescent protein (EGFP) induced by hypoxia; the Ca9-GFP cell model reports HIF activity, whereas GFP-P564 reports HIF stability. The reporter signal was monitored by flow cytometry. HIF-1 DNA-binding activity, cell migration and viability were also evaluated in response to EGFR inhibitors. Cell fluorescence signals strongly increased under hypoxic conditions (> 30-fold). Cetuximab and lapatinib did not affect the signal induced by hypoxia, whereas gefitinib sharply reduced its intensity in both cell models and also diminished HIF-1 alpha levels and HIF-1 DNA-binding activity in MDA-MB-231 cells. This gefitinib feature was associated with its ability to inhibit MDA-MB-231 cell migration and to induce cell mortality in a dose-dependent manner. Cetuximab and lapatinib had no effect on cell migration or cell viability. Conclusion Resistance to cetuximab and lapatinib and sensitivity to gefitinib were associated with their ability to modulate HIF activity and stability. In conclusion, downregulation of HIF-1 through EGFR signaling seems to be required for the induction of a positive response to EGFR-targeted therapies in TNBC.
Collapse
Affiliation(s)
- Abderrahim El Guerrab
- Department of Oncogenetic, Centre Jean Perrin, Clermont-Ferrand, France
- ADELBIO, Faculty of Medicine, Centre Biomédical de Recherche et Valorisation, Clermont-Ferrand, France
| | - Rabah Zegrour
- ADELBIO, Faculty of Medicine, Centre Biomédical de Recherche et Valorisation, Clermont-Ferrand, France
| | - Carine-Christiane Nemlin
- ADELBIO, Faculty of Medicine, Centre Biomédical de Recherche et Valorisation, Clermont-Ferrand, France
| | - Flavie Vigier
- ADELBIO, Faculty of Medicine, Centre Biomédical de Recherche et Valorisation, Clermont-Ferrand, France
| | - Anne Cayre
- Department of Pathology, Centre Jean Perrin, Clermont-Ferrand, France
| | | | - Fabrice Rossignol
- ADELBIO, Faculty of Medicine, Centre Biomédical de Recherche et Valorisation, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetic, Centre Jean Perrin, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
47
|
Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther 2011; 131:80-90. [DOI: 10.1016/j.pharmthera.2011.03.012] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 01/15/2023]
|
48
|
Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo. PLoS One 2011; 6:e20347. [PMID: 21738572 PMCID: PMC3124468 DOI: 10.1371/journal.pone.0020347] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/30/2011] [Indexed: 01/30/2023] Open
Abstract
Background Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells. Gold nanoparticles (GNPs) are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography). The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells. Methodology/Principal Findings The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent) on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor), all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer. Conclusion Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1) targeting agent to nanoparticle ratio 2) availability of reactive surface area on the nanoparticle 3) ability of the nanoconjugate to bind the target and 4) hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle conjugates.
Collapse
|
49
|
Martin SK, Diamond P, Gronthos S, Peet DJ, Zannettino ACW. The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia 2011; 25:1533-42. [PMID: 21637285 DOI: 10.1038/leu.2011.122] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypoxia is an imbalance between oxygen supply and demand, which deprives cells or tissues of sufficient oxygen. It is well-established that hypoxia triggers adaptive responses, which contribute to short- and long-term pathologies such as inflammation, cardiovascular disease and cancer. Induced by both microenvironmental hypoxia and genetic mutations, the elevated expression of the hypoxia-inducible transcription factor-1 (HIF-1) and HIF-2 is a key feature of many human cancers and has been shown to promote cellular processes, which facilitate tumor progression. In this review, we discuss the emerging role of hypoxia and the HIFs in the pathogenesis of multiple myeloma (MM), an incurable hematological malignancy of BM PCs, which reside within the hypoxic BM microenvironment. The need for current and future therapeutic interventions to target HIF-1 and HIF-2 in myeloma will also be discussed.
Collapse
Affiliation(s)
- S K Martin
- Division of Haematology, Centre for Cancer Biology, SA Pathology, CSCR, University of Adelaide, Adelaide, South Australia
| | | | | | | | | |
Collapse
|
50
|
Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 2011; 14:191-201. [PMID: 21466972 DOI: 10.1016/j.drup.2011.03.001] [Citation(s) in RCA: 473] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 12/23/2022]
Abstract
Resistance towards chemotherapy, either primary or acquired, represents a major obstacle in clinical oncology. Three basic categories underlie most cases of chemotherapy failure: Inadequate pharmacokinetic properties of the drug, tumor cell intrinsic factors such as the expression of drug efflux pumps and tumor cell extrinsic conditions present in the tumor microenvironment, characterized by such hostile conditions as hypoxia, acidosis, nutrient starvation and increased interstitial pressure. Tumor hypoxia has been known to negatively affect therapy outcome for decades. Hypoxia inhibits tumor cell proliferation and induces cell cycle arrest, ultimately conferring chemoresistance since anticancer drugs preferentially target rapidly proliferating cells. However, this knowledge has been largely neglected while screening for anti-proliferative substances in vitro, resulting in hypoxia-mediated failure of most newly identified substances in vivo. To achieve a tangible therapeutic benefit from this knowledge, the mechanisms that drive tumoral responses to hypoxia need to be identified and exploited for their validity as innovative therapy targets. The HIF family of hypoxia-inducible transcription factors represents the main mediator of the hypoxic response and is widely upregulated in human cancers. HIF-1α and to a lesser extent HIF-2α, the oxygen-regulated HIF isoforms, have been associated with chemotherapy failure and interference with HIF function holds great promise to improve future anticancer therapy. In this review we summarize recent findings on the molecular mechanisms that underlie the role of the HIFs in drug resistance. Specifically, we will highlight the multifaceted interaction of HIF with apoptosis, senescence, autophagy, p53 and mitochondrial activity and outline how these are at the heart of HIF-mediated therapy failure.
Collapse
Affiliation(s)
- Nadine Rohwer
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | |
Collapse
|