1
|
Suzuki S, Tanaka K, Kamegawa A, Nishikawa K, Suzuki H, Oshima A, Fujiyoshi Y. Structural insights into the engagement of lysophosphatidic acid receptor 1 with different G proteins. J Struct Biol 2025; 217:108164. [PMID: 39725093 DOI: 10.1016/j.jsb.2024.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes. The basis for the G-protein coupling selectivity of EDG receptors, however, remains unknown. Here, we present cryo-electron microscopy structures of LPA-activated LPA1 in complexes with Gi, Gq, and G13 heterotrimers. Comparison of the three LPA1-G protein structures shows clearly different conformations of intracellular loop 2 (ICL2) and ICL3 that are likely induced by the different Gα protein interfaces. Interestingly, this G-protein interface interaction is a common feature of LPA and S1P receptors. Our findings provide clues to understanding the promiscuity of G-protein coupling in the endothelial differentiation gene family.
Collapse
Affiliation(s)
- Shota Suzuki
- Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan
| | - Kotaro Tanaka
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 461-8601, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 461-8601, Japan
| | - Akiko Kamegawa
- Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan
| | - Kouki Nishikawa
- Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan
| | - Hiroshi Suzuki
- Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan
| | - Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 461-8601, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 461-8601, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 461-8601, Japan; Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 461-8601, Japan; Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 461-8601, Japan
| | - Yoshinori Fujiyoshi
- Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan.
| |
Collapse
|
2
|
McDuffie EL, Panettieri RA, Scott CP. G 12/13 signaling in asthma. Respir Res 2024; 25:295. [PMID: 39095798 PMCID: PMC11297630 DOI: 10.1186/s12931-024-02920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood. Our review of the literature suggests that pro-contractile G protein coupled receptors likely signal through G12/13 to activate RhoA and mediate calcium sensitization. This hypothesis is consistent with the effects of pro-contractile agonists on RhoA and Rho kinase activation, actin polymerization and myosin light chain phosphorylation. Recognizing the likely role of G12/13 signaling in the pathophysiology of asthma rationalizes the effects of pro-contractile stimuli on airway hyperresponsiveness, immune activation and airway remodeling, and suggests new approaches for asthma treatment.
Collapse
Affiliation(s)
- Elizabeth L McDuffie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Charles P Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Wu D, Casey PJ. GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer. Int J Mol Sci 2024; 25:7162. [PMID: 39000269 PMCID: PMC11241654 DOI: 10.3390/ijms25137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Gα13 and Gα12, encoded by the GNA13 and GNA12 genes, respectively, are members of the G12 family of Gα proteins that, along with their associated Gβγ subunits, mediate signaling from specific G protein-coupled receptors (GPCRs). Advanced prostate cancers have increased expression of GPCRs such as CXC Motif Chemokine Receptor 4 (CXCR4), lysophosphatidic acid receptor (LPAR), and protease activated receptor 1 (PAR-1). These GPCRs signal through either the G12 family, or through Gα13 exclusively, often in addition to other G proteins. The effect of Gα13 can be distinct from that of Gα12, and the role of Gα13 in prostate cancer initiation and progression is largely unexplored. The oncogenic effect of Gα13 on cell migration and invasion in prostate cancer has been characterized, but little is known about other biological processes such as mitochondrial function and oxidative stress. Current knowledge on the link between Gα13 and oxidative stress is based on animal studies in which GPCR-Gα13 signaling decreased superoxide levels, and the overexpression of constitutively active Gα13 promoted antioxidant gene activation. In human samples, mitochondrial superoxide dismutase 2 (SOD2) correlates with prostate cancer risk and prognostic Gleason grade. However, overexpression of SOD2 in prostate cancer cells yielded conflicting results on cell growth and survival under basal versus oxidative stress conditions. Hence, it is necessary to explore the effect of Gα13 on prostate cancer tumorigenesis, as well as the effect of Gα13 on SOD2 in prostate cancer cell growth under oxidative stress conditions.
Collapse
Affiliation(s)
- Di Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Patrick J. Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
4
|
Wang Y, Shen N, Yang Y, Xia Y, Zhang W, Lu Y, Wang Z, Yang Z, Wang Z. ZDHHC5-mediated S-palmitoylation of FAK promotes its membrane localization and epithelial-mesenchymal transition in glioma. Cell Commun Signal 2024; 22:46. [PMID: 38233791 PMCID: PMC10795333 DOI: 10.1186/s12964-023-01366-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/26/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Abnormal activation of FAK is associated with tumor development and metastasis. Through interactions with other intracellular signalling molecules, FAK influences cytoskeletal remodelling, modulation of adhesion signalling, and activation of transcription factors, promoting migration and invasion of tumor cells. However, the exact mechanism that regulates these processes remains unresolved. Herein, our findings indicate that the S-palmitoylation of FAK is crucial for both its membrane localization and activation. METHODS The palmitoylation of FAK in U251 and T98G cells was assessed by an acyl-PEG exchange (APE) assay and a metabolic incorporation assay. Cellular palmitoylation was inhibited using 2-bromopalmitate, and the palmitoylation status and cellular localization of FAK were determined. A metabolic incorporation assay was used to identify the potential palmitoyl acyltransferase and the palmitoylation site of FAK. Cell Counting Kit-8 (CCK8) assays, colony formation assays, and Transwell assays were conducted to assess the impact of ZDHHC5 in GBM. Additionally, intracranial GBM xenografts were utilized to investigate the effects of genetically silencing ZDHHC5 on tumor growth. RESULTS Inhibiting FAK palmitoylation leads to its redistribution from the membrane to the cytoplasm and a decrease in its phosphorylation. Moreover, ZDHHC5, a protein-acyl-transferase (PAT), catalyzes this key modification of FAK at C456. Knockdown of ZDHHC5 abrogates the S-palmitoylation and membrane distribution of FAK and impairs cell proliferation, invasion, and epithelial-mesenchymal transition (EMT). Taken together, our research reveals the crucial role of ZDHHC5 as a PAT responsible for FAK S-palmitoylation, membrane localization, and activation. CONCLUSIONS These results imply that targeting the ZDHHC5/FAK axis has the potential to be a promising strategy for therapeutic interventions for glioblastoma (GBM). Video Abstract.
Collapse
Affiliation(s)
- Yang Wang
- Center for Clinical Medical Research, the Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Na Shen
- Center for Clinical Medical Research, the Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yang Yang
- Department of Pediatric Surgery, the Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yuan Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu Lu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233099, China
| | - Zhicheng Wang
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233099, China
| | - Ze Yang
- Department of Pediatric Surgery, the Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Zhangjie Wang
- Center for Clinical Medical Research, the Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
Olianas MC, Dedoni S, Onali P. Differential targeting of lysophosphatidic acid LPA 1, LPA 2, and LPA 3 receptor signalling by tricyclic and tetracyclic antidepressants. Eur J Pharmacol 2023; 959:176064. [PMID: 37758013 DOI: 10.1016/j.ejphar.2023.176064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
We previously reported that in different cell types antidepressant drugs activate lysophosphatidic acid (LPA) LPA1 receptor to induce proliferative and prosurvival responses. Here, we further characterize this unique action of antidepressants by examining their effects on two additional LPA receptor family members, LPA2 and LPA3. Human LPA1-3 receptors were stably expressed in HEK-293 cells (HEK-LPA1, -LPA2 and -LPA3 cells) and their functional activity was determined by Western blot and immunofluorescence. LPA effectively stimulated the phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in HEK-LPA1, -LPA2, and -LPA3 cells. The tricyclic antidepressants amitriptyline, clomipramine, imipramine and desipramine increased phospho-ERK1/2 levels in HEK-LPA1 and -LPA3 cells but were relatively poor agonists in LPA2-expressing cells. The tetracyclic antidepressants mianserin and mirtazapine were active at all three LPA receptors. When combined with LPA, both amitriptyline and mianserin potentiated Gi/o-mediated phosphorylation of ERK1/2 induced by LPA in HEK-LPA1, -LPA2 and -LPA3 cells, CHO-K1 fibroblasts and HT22 hippocampal neuroblasts. This potentiation was associated with enhanced phosphorylation of CREB and S6 ribosomal protein, two molecular targets of activated ERK1/2. The antidepressants also potentiated LPA-induced Gq/11-mediated phosphorylation of AMP-activated protein kinase in HEK-LPA1 and -LPA3 cells. Conversely, amitriptyline and mianserin were found to inhibit LPA-induced Rho activation in HEK-LPA1 and LPA2 cells. These results indicate that tricyclic and tetracyclic antidepressants can act on LPA1, LPA2 and LPA3 receptor subtypes and exert differential effects on LPA signalling through these receptors.
Collapse
Affiliation(s)
- Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, (CA), Italy
| | - Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, (CA), Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, (CA), Italy.
| |
Collapse
|
6
|
Yagi H, Onoyama I, Asanoma K, Kawakami M, Maenohara S, Kodama K, Matsumura Y, Hamada N, Hori E, Hachisuga K, Yasunaga M, Ohgami T, Okugawa K, Yahata H, Kato K. Tumor-derived ARHGAP35 mutations enhance the Gα 13-Rho signaling axis in human endometrial cancer. Cancer Gene Ther 2023; 30:313-323. [PMID: 36257976 DOI: 10.1038/s41417-022-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
Dysregulated G protein-coupled receptor signaling is involved in the formation and progression of human cancers. The heterotrimeric G protein Gα13 is highly expressed in various cancers and regulates diverse cancer-related transcriptional networks and cellular functions by activating Rho. Herein, we demonstrate that increased expression of Gα13 promotes cell proliferation through activation of Rho and the transcription factor AP-1 in human endometrial cancer. Of interest, the RhoGTPase activating protein (RhoGAP), ARHGAP35 is frequently mutated in human endometrial cancers. Among the 509 endometrial cancer samples in The Cancer Genome Atlas database, 108 harbor 152 mutations at 126 different positions within ARHGAP35, representing a somatic mutation frequency of 20.2%. We evaluated the effect of 124 tumor-derived ARHGAP35 mutations on Gα13-mediated Rho and AP-1 activation. The RhoGAP activity of ARHGAP35 was impaired by 55 of 124 tumor-derived mutations, comprised of 23 nonsense, 15 frame-shift, 15 missense mutations, and two in-frame deletions. Considering that ARHGAP35 is mutated in >2% of all tumors, it ranks among the top 30 most significantly mutated genes in human cancer. Our data suggest potential roles of ARHGAP35 as an oncogenic driver gene, providing novel therapeutic opportunities for endometrial cancer.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minoru Kawakami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoji Maenohara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Kodama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Matsumura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Hamada
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhisa Hachisuga
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Yasunaga
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Okugawa
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Lysophosphatidylinositol Induced Morphological Changes and Stress Fiber Formation through the GPR55-RhoA-ROCK Pathway. Int J Mol Sci 2022; 23:ijms231810932. [PMID: 36142844 PMCID: PMC9504244 DOI: 10.3390/ijms231810932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
We previously reported that lysophosphatidylinositol (LPI) functions as an endogenous agonist of GPR55, a novel cannabinoid receptor. However, the physiological roles of LPI-GPR55 have not yet been elucidated in detail. In the present study, we found that LPI induced morphological changes in GPR55-expressing HEK293 cells. LPI induced the cell rounding of GPR55-expressing HEK293 cells but not of empty-vector-transfected cells. LPI also induced the activation of small GTP-binding protein RhoA and increased stress fiber formation in GPR55-expressing HEK293 cells. The inhibition of RhoA and Rho kinase ROCK by the C3 exoenzyme and the ROCK inhibitor reduced LPI-induced cell rounding and stress fiber formation. These results clearly indicated that the LPI-induced morphological changes and the assembly of the cytoskeletons were mediated through the GPR55-RhoA-ROCK pathway.
Collapse
|
8
|
Wang S, Chen J, Guo XZ. KAI1/CD82 gene and autotaxin-lysophosphatidic acid axis in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:1388-1405. [PMID: 36160748 PMCID: PMC9412925 DOI: 10.4251/wjgo.v14.i8.1388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
The KAI1/CD82 gene inhibits the metastasis of most tumors and is remarkably correlated with tumor invasion and prognosis. Cell metabolism dysregulation is an important cause of tumor occurrence, development, and metastasis. As one of the important characteristics of tumors, cell metabolism dysregulation is attracting increasing research attention. Phospholipids are an indispensable substance in the metabolism in various tumor cells. Phospholipid metabolites have become important cell signaling molecules. The pathological role of lysophosphatidic acid (LPA) in tumors was identified in the early 1990s. Currently, LPA inhibitors have entered clinical trials but are not yet used in clinical treatment. Autotaxin (ATX) has lysophospholipase D (lysoPLD) activity and can regulate LPA levels in vivo. The LPA receptor family and ATX/lysoPLD are abnormally expressed in various gastrointestinal tumors. According to our recent pre-experimental results, KAI1/CD82 might inhibit the migration and metastasis of cancer cells by regulating the ATX-LPA axis. However, no relevant research has been reported. Clarifying the mechanism of ATX-LPA in the inhibition of cancer metastasis by KAI1/CD82 will provide an important theoretical basis for targeted cancer therapy. In this paper, the molecular compositions of the KAI1/CD82 gene and the ATX-LPA axis, their physiological functions in tumors, and their roles in gastrointestinal cancers and target therapy are reviewed.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Jiang Chen
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| |
Collapse
|
9
|
Liao Y, Liu L, Yang J, Shi Z. ATX/LPA axis regulates FAK activation, cell proliferation, apoptosis, and motility in human pancreatic cancer cells. In Vitro Cell Dev Biol Anim 2022; 58:307-315. [PMID: 35426066 DOI: 10.1007/s11626-022-00660-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Previous studies implicated ATX/LPA axis as a potential driver of tumorigenesis and progression in pancreatic cancer. This study aimed to determine the existence of the autocrine pathway of ATX/LPA action in pancreatic cancer cells, and to elucidate its influence on focal adhesion kinase (FAK) activation, cellular proliferation, apoptosis, and migration. Firstly, we identified the lysophosphatidic acid (LPA) concentrations in cultured cell supernatant by ELISA and observed the effect of the autotaxin (ATX)-specific inhibitor S32826 on LPA concentrations. We found the existence of a certain concentration of LPA in cellular supernatant, which was significantly decreased by S32826 in a dose- and time-dependent manner. A maximum response was observed at 50 μM for 72 h. Secondly, the effect of S32826 on the protein expression and intracellular sublocalization of total FAK and phosphorylated FAK (pY397 FAK) was determined by Western blot and immunofluorescence staining. It was found that the expression of total FAK and pY397 FAK and their distribution along the cell membrane where adhesion structures are located were significantly decreased by S32826. Finally, we observed the influence of S32826 on cell proliferation, apoptosis, and migration by CCK-8 assay, flow cytometric analysis, and transwell migration assay. Results showed that cell viability and migration were significantly declined, and the proportions of apoptotic cells were significantly increased by S32826. This study verified the existence of autocrine regulation of LPA secretion via producing ATX by pancreatic cancer cells in vitro and the important role of LPA/ATX axis on FAK activation, cell proliferation, apoptosis, and motility.
Collapse
Affiliation(s)
- Yan Liao
- Department of Gastroenterology, Wuhan No.1 Hospital (Wuhan Integrated TCM and Western Medicine Hospital), No. 215, Zhongshan Road, Wuhan, 430022, Hubei, China
| | - Lei Liu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiayao Yang
- Department of Gastroenterology, Wuhan No.1 Hospital (Wuhan Integrated TCM and Western Medicine Hospital), No. 215, Zhongshan Road, Wuhan, 430022, Hubei, China
| | - Zhaohong Shi
- Department of Gastroenterology, Wuhan No.1 Hospital (Wuhan Integrated TCM and Western Medicine Hospital), No. 215, Zhongshan Road, Wuhan, 430022, Hubei, China.
| |
Collapse
|
10
|
Sphingosine 1-Phosphate Receptor 5 (S1P5) Deficiency Promotes Proliferation and Immortalization of Mouse Embryonic Fibroblasts. Cancers (Basel) 2022; 14:cancers14071661. [PMID: 35406433 PMCID: PMC8996878 DOI: 10.3390/cancers14071661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Sphingosine 1-phosphate (S1P) is a lipid metabolite involved in cell proliferation, survival or migration. S1P is a ligand for five high-affinity G protein-coupled receptors (S1P1-5), which differ in their tissue distribution, and the specific effects of S1P depend on the suite of S1P receptor subtypes expressed. To date, information regarding the role of S1P5 in cell proliferation is limited and ambiguous. Our results suggest that, unlike other S1P receptors, the S1P5 receptor has an anti-proliferative function. We found that S1P5 deficiency promotes cell immortalization and proliferation by controlling the spatial activation of ERK. Abstract Sphingosine 1-phosphate (S1P), a bioactive lipid, interacts with five widely expressed G protein-coupled receptors (S1P1-5), regulating a variety of downstream signaling pathways with overlapping but also opposing functions. To date, data regarding the role of S1P5 in cell proliferation are ambiguous, and its role in controlling the growth of untransformed cells remains to be fully elucidated. In this study, we examined the effects of S1P5 deficiency on mouse embryonic fibroblasts (MEFs). Our results indicate that lack of S1P5 expression profoundly affects cell morphology and proliferation. First, S1P5 deficiency reduces cellular senescence and promotes MEF immortalization. Second, it decreases cell size and leads to cell elongation, which is accompanied by decreased cell spreading and migration. Third, it increases proliferation rate, a phenotype rescued by the reintroduction of exogenous S1P5. Mechanistically, S1P5 promotes the activation of FAK, controlling cell spreading and adhesion while the anti-proliferative function of the S1P/S1P5 signaling is associated with reduced nuclear accumulation of activated ERK. Our results suggest that S1P5 opposes the growth-promoting function of S1P1-3 through spatial control of ERK activation and provides new insights into the anti-proliferative function of S1P5.
Collapse
|
11
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
12
|
Rasheed SAK, Subramanyan LV, Lim WK, Udayappan UK, Wang M, Casey PJ. The emerging roles of Gα12/13 proteins on the hallmarks of cancer in solid tumors. Oncogene 2022; 41:147-158. [PMID: 34689178 PMCID: PMC8732267 DOI: 10.1038/s41388-021-02069-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023]
Abstract
G12 proteins comprise a subfamily of G-alpha subunits of heterotrimeric GTP-binding proteins (G proteins) that link specific cell surface G protein-coupled receptors (GPCRs) to downstream signaling molecules and play important roles in human physiology. The G12 subfamily contains two family members: Gα12 and Gα13 (encoded by the GNA12 and GNA13 genes, respectively) and, as with all G proteins, their activity is regulated by their ability to bind to guanine nucleotides. Increased expression of both Gα12 and Gα13, and their enhanced signaling, has been associated with tumorigenesis and tumor progression of multiple cancer types over the past decade. Despite these strong associations, Gα12/13 proteins are underappreciated in the field of cancer. As our understanding of G protein involvement in oncogenic signaling has evolved, it has become clear that Gα12/13 signaling is pleotropic and activates specific downstream effectors in different tumor types. Further, the expression of Gα12/13 proteins is regulated through a series of transcriptional and post-transcriptional mechanisms, several of which are frequently deregulated in cancer. With the ever-increasing understanding of tumorigenic processes driven by Gα12/13 proteins, it is becoming clear that targeting Gα12/13 signaling in a context-specific manner could provide a new strategy to improve therapeutic outcomes in a number of solid tumors. In this review, we detail how Gα12/13 proteins, which were first discovered as proto-oncogenes, are now known to drive several "classical" hallmarks, and also play important roles in the "emerging" hallmarks, of cancer.
Collapse
Affiliation(s)
| | | | - Wei Kiang Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Udhaya Kumari Udayappan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.
- Dept. of Pharmacology and Cancer Biology, Duke Univ. Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
13
|
Roy A, Sarkar T, Datta S, Maiti A, Chakrabarti M, Mondal T, Mondal C, Banerjee A, Roy S, Mukherjee S, Muley P, Chakraborty S, Banerjee M, Kundu M, Roy KK. Structure-based discovery of (S)-2-amino-6-(4-fluorobenzyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione as low nanomolar, orally bioavailable autotaxin inhibitor. Chem Biol Drug Des 2021; 99:496-503. [PMID: 34951520 DOI: 10.1111/cbdd.14017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/06/2023]
Abstract
Inhibition of extracellular secreted enzyme autotaxin (ATX) represents an attractive strategy for the development of new therapeutics to treat various diseases and a few inhibitors entered in clinical trials. We herein describe structure-based design, synthesis, and biological investigations revealing a potent and orally bioavailable ATX inhibitor 1. During the molecular docking and scoring studies within the ATX enzyme (PDB-ID: 4ZGA), the S-enantiomer (Gscore = -13.168 kcal/mol) of the bound ligand PAT-494 scored better than its R-enantiomer (Gscore = -9.562 kcal/mol) which corroborated with the reported observation and analysis of the results suggested the scope of manipulation of the hydantoin substructure in PAT-494. Accordingly, the docking-based screening of a focused library of 10 compounds resulted in compound 1 as a better candidate for pharmacological studies. Compound 1 was synthesized from L-tryptophan and evaluated against ATX enzymatic activities with an IC50 of 7.6 and 24.6 nM in biochemical and functional assays, respectively. Further, ADME-PK studies divulged compound 1 as non-cytotoxic (19.02% cell growth inhibition at 20 μM in human embryonic kidney cells), metabolically stable against human liver microsomes (CLint = 15.6 μl/min/mg; T1/2 = 113.2 min) with solubility of 4.82 μM and orally bioavailable, demonstrating its potential to be used for in vivo experiments.
Collapse
Affiliation(s)
- Ashis Roy
- TCG Lifesciences Pvt. Ltd., Kolkata, India
| | | | | | - Arup Maiti
- TCG Lifesciences Pvt. Ltd., Kolkata, India
| | | | | | | | | | | | | | | | | | | | | | - Kuldeep K Roy
- Department of Pharmaceutical Sciences, School of Health Sciences, UPES, Dehradun, India
| |
Collapse
|
14
|
Bettegazzi B, Bellani S, Cattaneo S, Codazzi F, Grohovaz F, Zacchetti D. Gα13 Contributes to LPS-Induced Morphological Alterations and Affects Migration of Microglia. Mol Neurobiol 2021; 58:6397-6414. [PMID: 34529232 DOI: 10.1007/s12035-021-02553-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022]
Abstract
Microglia are the resident immune cells of the CNS that are activated in response to a variety of stimuli. This phenotypical change is aimed to maintain the local homeostasis, also by containing the insults and repair the damages. All these processes are tightly regulated and coordinated and a failure in restoring homeostasis by microglia can result in the development of neuroinflammation that can facilitate the progression of pathological conditions. Indeed, chronic microglia activation is commonly recognized as a hallmark of many neurological disorders, especially at an early stage. Many complex pathways, including cytoskeletal remodeling, are involved in the control of the microglial phenotypical and morphological changes that occur during activation. In this work, we focused on the small GTPase Gα13 and its role at the crossroad between RhoA and Rac1 signaling when microglia is exposed to pro-inflammatory stimulation. We propose the direct involvement of Gα13 in the cytoskeletal rearrangements mediated by FAK, LIMK/cofilin, and Rac1 during microglia activation. In fact, we show that Gα13 knockdown significantly inhibited LPS-induced microglial cell activation, in terms of both changes in morphology and migration, through the modulation of FAK and one of its downstream effectors, Rac1. In conclusion, we propose Gα13 as a critical factor in the regulation of morphological and functional properties of microglia during activation, which might become a target of intervention for the control of microglia inflammation.
Collapse
Affiliation(s)
- Barbara Bettegazzi
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy.
| | - Serena Bellani
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Stefano Cattaneo
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
| | - Franca Codazzi
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
| | - Fabio Grohovaz
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
| | - Daniele Zacchetti
- IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
15
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
16
|
Chang CW, Cheng N, Bai Y, Skidgel RA, Du X. Gα 13 Mediates Transendothelial Migration of Neutrophils by Promoting Integrin-Dependent Motility without Affecting Directionality. THE JOURNAL OF IMMUNOLOGY 2021; 207:3038-3049. [PMID: 34799423 DOI: 10.4049/jimmunol.2001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022]
Abstract
Neutrophil migration requires β2 integrins and chemoattractant receptor signaling for motility and directionality. G protein subunit Gα13 can facilitate cell migration by mediating RhoA activation induced by G protein-coupled receptors. However, the possible role of Gα13-integrin interaction in migration is unclear. In this study, we show that Gα13 -/- neutrophils are deficient in transendothelial migration and migration on β2 integrin ligand ICAM-1. However, unlike G protein-coupled receptors and integrin inside-out signaling pathways, Gα13 is important in migration velocity and neutrophil spreading but not in directionality nor cell adhesion. Importantly, neutrophil recruitment in vivo was also inhibited in Gα13 -/- mice, suggesting the importance of Gα13 in transendothelial migration of neutrophils in vitro and in vivo. Furthermore, a synthetic peptide (MB2mP6) derived from the Gα13 binding site of β2 inhibited Gα13-β2 interaction and Gα13-mediated transient RhoA inhibition in neutrophils, suggesting that this peptide inhibited integrin outside-in signaling. MB2mP6 inhibited migration of control neutrophils through endothelial cell monolayers or ICAM-1-coated filters, but was without further effect on Gα13 -/- neutrophils. It also inhibited integrin-dependent neutrophil migration velocity without affecting directionality. In vivo, MB2mP6 markedly inhibited neutrophil infiltration into the cardiac tissues induced by ischemia/reperfusion injury. Thus, Gα13-dependent outside-in signaling enables integrin-dependent neutrophil motility without affecting directionality and may be a new therapeutic target for inhibiting neutrophil trafficking but not adhesion.
Collapse
Affiliation(s)
- Claire W Chang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL; and
| | - Ni Cheng
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Yanyan Bai
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | | | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL;
| |
Collapse
|
17
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Abstract
As basic research into GPCR signaling and its association with disease has come into fruition, greater clarity has emerged with regards to how these receptors may be amenable to therapeutic intervention. As a diverse group of receptor proteins, which regulate a variety of intracellular signaling pathways, research in this area has been slow to yield tangible therapeutic agents for the treatment of a number of diseases including cancer. However, recently such research has gained momentum based on a series of studies that have sought to define GPCR proteins dynamics through the elucidation of their crystal structures. In this chapter, we define the approaches that have been adopted in developing better therapeutics directed against the specific parts of the receptor proteins, such as the extracellular and the intracellular domains, including the ligands and auxiliary proteins that bind them. Finally, we also briefly outline how GPCR-derived signaling transduction pathways hold great potential as additional targets.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
19
|
Lim WK, Chai X, Ghosh S, Ray D, Wang M, Rasheed SAK, Casey PJ. Gα-13 induces C XC motif chemokine ligand 5 expression in prostate cancer cells by transactivating NF-κB. J Biol Chem 2019; 294:18192-18206. [PMID: 31636124 PMCID: PMC6885619 DOI: 10.1074/jbc.ra119.010018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
GNA13, the α subunit of a heterotrimeric G protein, mediates signaling through G-protein-coupled receptors (GPCRs). GNA13 is up-regulated in many solid tumors, including prostate cancer, where it contributes to tumor initiation, drug resistance, and metastasis. To better understand how GNA13 contributes to tumorigenesis and tumor progression, we compared the entire transcriptome of PC3 prostate cancer cells with those cells in which GNA13 expression had been silenced. This analysis revealed that GNA13 levels affected multiple CXC-family chemokines. Further investigation in three different prostate cancer cell lines singled out pro-tumorigenic CXC motif chemokine ligand 5 (CXCL5) as a target of GNA13 signaling. Elevation of GNA13 levels consistently induced CXCL5 RNA and protein expression in all three cell lines. Analysis of the CXCL5 promoter revealed that the -505/+62 region was both highly active and influenced by GNA13, and a single NF-κB site within this region of the promoter was critical for GNA13-dependent promoter activity. ChIP experiments revealed that, upon induction of GNA13 expression, occupancy at the CXCL5 promoter was significantly enriched for the p65 component of NF-κB. GNA13 knockdown suppressed both p65 phosphorylation and the activity of a specific NF-κB reporter, and p65 silencing impaired the GNA13-enhanced expression of CXCL5. Finally, blockade of Rho GTPase activity eliminated the impact of GNA13 on NF-κB transcriptional activity and CXCL5 expression. Together, these findings suggest that GNA13 drives CXCL5 expression by transactivating NF-κB in a Rho-dependent manner in prostate cancer cells.
Collapse
Affiliation(s)
- Wei Kiang Lim
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | - Xiaoran Chai
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857 Singapore
| | - Sujoy Ghosh
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857 Singapore
| | - Debleena Ray
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | - Mei Wang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | | | - Patrick J Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
20
|
Chen L, Chao Y, Cheng P, Li N, Zheng H, Yang Y. UPLC-QTOF/MS-Based Metabolomics Reveals the Protective Mechanism of Hydrogen on Mice with Ischemic Stroke. Neurochem Res 2019; 44:1950-1963. [PMID: 31236794 DOI: 10.1007/s11064-019-02829-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/11/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
As a reductive gas, hydrogen plays an antioxidant role by selectively scavenging oxygen free radicals. It has been reported that hydrogen has protective effects against nerve damage caused by ischemia-reperfusion in stroke, but the specific mechanism is still unclear. Therefore, this study aims to investigate the protective effects of hydrogen on stroke-induced ischemia-reperfusion injury and its detailed mechanism. Two weeks after the inhalation of high concentrations (66.7%) of hydrogen, middle cerebral artery occlusion (MCAO) was induced in mice using the thread occlusion technique to establish an animal model of the focal cerebral ischemia-reperfusion. Then, a metabolomics analysis of mouse cerebral cortex tissues was first performed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) to study the metabolic changes and protective mechanisms of hydrogen on stroke ischemia-reperfusion injury. According to the metabolomic profiling of cortex tissues, 29 different endogenous metabolites were screened, including palmitoyl-L-carnitine, citric acid, glutathione, taurine, acetyl-L-carnitine, N-acetylaspartylglutamic acid (NAAG), L-aspartic acid, lysophosphatidylcholine (LysoPC) and lysophosphatidylethanolamine (LysoPE). Through pathway analysis, the metabolic pathways were concentrate on the glutathione pathway and the taurine pathway, mitochondrial energy metabolism and phospholipid metabolism that related to the oxidative stress process. This result reveals that hydrogen may protect against ischemic stroke by reducing oxidative stress during ischemia-reperfusion, thereby protecting nerve cells from reactive oxygen species(ROS).
Collapse
Affiliation(s)
- Lilin Chen
- College of Basic Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yufan Chao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Pengchao Cheng
- College of Basic Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Na Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Hongnan Zheng
- Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Yajuan Yang
- Department of Nursing, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
21
|
LPA Induces Keratinocyte Differentiation and Promotes Skin Barrier Function through the LPAR1/LPAR5-RHO-ROCK-SRF Axis. J Invest Dermatol 2019; 139:1010-1022. [DOI: 10.1016/j.jid.2018.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022]
|
22
|
Banu A, Liu KJ, Lax AJ, Grigoriadis AE. G-Alpha Subunit Abundance and Activity Differentially Regulate β-Catenin Signaling. Mol Cell Biol 2019; 39:MCB.00422-18. [PMID: 30559307 PMCID: PMC6379582 DOI: 10.1128/mcb.00422-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022] Open
Abstract
Heterotrimeric G proteins are signal transduction proteins involved in regulating numerous signaling events. In particular, previous studies have demonstrated a role for G-proteins in regulating β-catenin signaling. However, the link between G-proteins and β-catenin signaling is controversial and appears to depend on G-protein specificity. We describe a detailed analysis of a link between specific G-alpha subunits and β-catenin using G-alpha subunit genetic knockout and knockdown approaches. The Pasteurella multocida toxin was utilized as a unique tool to activate G-proteins, with LiCl treatment serving as a β-catenin signaling agonist. The results show that Pasteurella multocida toxin (PMT) significantly enhanced LiCl-induced active β-catenin levels in HEK293T cells and mouse embryo fibroblasts. Evaluation of the effect of specific G-alpha proteins on the regulation of β-catenin showed that Gq/11 and G12/13 knockout cells had significantly higher levels of active and total β-catenin than wild-type cells. The stimulation of active β-catenin by PMT and LiCl was lost upon both constitutive and transient knockdown of G12 and G13 but not Gq Based on our results, we conclude that endogenous G-alpha proteins are negative regulators of active β-catenin; however, PMT-activated G-alpha subunits positively regulate LiCl-induced β-catenin expression in a G12/13-dependent manner. Hence, G-alpha subunit regulation of β-catenin is context dependent.
Collapse
Affiliation(s)
- Arshiya Banu
- Department of Microbiology, King's College London, Guy's Hospital, London, United Kingdom
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Alistair J Lax
- Department of Microbiology, King's College London, Guy's Hospital, London, United Kingdom
| | - Agamemnon E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
23
|
Chai H, Cheng X, Zhou B, Zhao L, Lin X, Huang D, Lu W, Lv H, Tang F, Zhang Q, Huang W, Li Y, Yang H. Structure-Based Discovery of a Subtype-Selective Inhibitor Targeting a Transient Receptor Potential Vanilloid Channel. J Med Chem 2019; 62:1373-1384. [PMID: 30620187 DOI: 10.1021/acs.jmedchem.8b01496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Discovery of potent selective inhibitors targeting a protein from a highly conserved family is challenging. Using a strategy combining structural and evolutionary information, we discovered transient receptor potential (TRP) subtype-selective inhibitors (transient receptor potential vanilloid type 2 (TRPV2) inhibitors). We unveiled three ligand-binding sites of TRPV2 and compounds that bind to these sites. Structural optimization of the best-hit compound provided a potent selective TRPV2 inhibitor, SET2. The molecular basis and subtype-selective inhibition mechanism were quantitatively characterized and experimentally verified. Then, as an effective chemical probe, SET2 was used to investigate the function role of TRPV2. SET2-induced inhibition of TRPV2 reduced prostate cancer migration, which indicated TRPV2 as an antimetastasis therapeutic target. In addition, functional assays suggested that TRPV2 was coupled to a validated metastasis mediator, LPAR1. The discovery of the potent selective inhibitor potentially leads to novel avenues for pharmacological applications and therapeutic development targeting the TRPV2 channel.
Collapse
Affiliation(s)
- Hao Chai
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Xi Cheng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Bin Zhou
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Lifen Zhao
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Xianhua Lin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Dongping Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Hao Lv
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Feng Tang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Wei Huang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Yang Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| |
Collapse
|
24
|
Toro-Tapia G, Villaseca S, Beyer A, Roycroft A, Marcellini S, Mayor R, Torrejón M. The Ric-8A/Gα13/FAK signalling cascade controls focal adhesion formation during neural crest cell migration in Xenopus. Development 2018; 145:dev.164269. [PMID: 30297374 DOI: 10.1242/dev.164269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022]
Abstract
Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.
Collapse
Affiliation(s)
- Gabriela Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Soraya Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Andrea Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Alice Roycroft
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Sylvain Marcellini
- Departamento de Biología Cellular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| |
Collapse
|
25
|
Eino D, Tsukada Y, Naito H, Kanemura Y, Iba T, Wakabayashi T, Muramatsu F, Kidoya H, Arita H, Kagawa N, Fujimoto Y, Takara K, Kishima H, Takakura N. LPA4-Mediated Vascular Network Formation Increases the Efficacy of Anti-PD-1 Therapy against Brain Tumors. Cancer Res 2018; 78:6607-6620. [PMID: 30301839 DOI: 10.1158/0008-5472.can-18-0498] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/22/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022]
Abstract
: The structure and function of tumor blood vessels profoundly affects the tumor microenvironment. Signals mediated through the lysophosphatidic acid receptor 4 (LPA4) promote vascular network formation to restore normal vascular barrier function in subcutaneous tumors and thus improve drug delivery. However, the characteristics of the vasculature vary by organ and tumor types, and how drug delivery and leukocyte trafficking are affected by modification of vascular function by LPA in different cancers is unclear. Here, we show that LPA4 activation promotes the formation of fine vascular structures in brain tumors. RhoA/ROCK signaling contributed to LPA-induced endothelial cell-cell adhesion, and RhoA/ROCK activity following LPA4 stimulation regulated expression of VCAM-1. This resulted in increased lymphocyte infiltration into the tumor. LPA improved delivery of exogenous IgG into brain tumors and enhanced the anticancer effect of anti-programmed cell death-1 antibody therapy. These results indicate the effects of LPA on vascular structure and function apply not only to chemotherapy but also to immunotherapy. SIGNIFICANCE: These findings demonstrate that lysophosphatidic acid, a lipid mediator, promotes development of a fine capillary network in brain tumors by inducing tightening of endothelial cell-to-cell adhesion, facilitating improved drug delivery, and lymphocyte penetration.
Collapse
Affiliation(s)
- Daisuke Eino
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yohei Tsukada
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, Japan
| | - Tomohiro Iba
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Taku Wakabayashi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasunori Fujimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiro Takara
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Research Unit/Frontier Therapeutic Sciences Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Aoba-ku, Yokohama, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
26
|
Chen C, Shenoy AK, Padia R, Fang D, Jing Q, Yang P, Su SB, Huang S. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2', 4'-Tetrahydroxychalcone. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:243. [PMID: 30285892 PMCID: PMC6171243 DOI: 10.1186/s13046-018-0902-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/03/2018] [Indexed: 02/03/2023]
Abstract
Background Licorice is an herb extensively used for both culinary and medicinal purposes. Various constituents of licorice have been shown to exhibit anti-tumorigenic effect in diverse cancer types. However, majority of these studies focus on the aspect of their growth-suppressive role. In this study, we systematically analyzed known licorice’s constituents on the goal of identifying component(s) that can effectively suppress both cell migration and growth. Methods Effect of licorice’s constituents on cell growth was evaluated by MTT assay while cell migration was assessed by both wound-healing and Transwell assays. Cytoskeleton reorganization and focal adhesion assembly were visualized by immunofluorescence staining with labeled phalloidin and anti-paxillin antibody. Activity of Src in cells was judged by western blot using phosphor-Src416 antibody while Src kinase activity was measured using Promega Src kinase assay system. Anti-tumorigenic capabilities of isoliquiritigenin (ISL) and 2, 4, 2′, 4’-Tetrahydroxychalcone (THC) were investigated using lung cancer xenograft model. Results Using a panel of lung cancer cell lines, ISL was identified as the only licorice’s constituent capable of inhibiting both cell migration and growth. ISL-led inhibition in cell migration resulted from impaired cytoskeleton reorganization and focal adhesion assembly. Assessing the phosphorylation of 141 cytoskeleton dynamics-associated proteins revealed that ISL reduced the abundance of Tyr421-phosphorylation of cortactin, Tyr925- and Tyr861-phosphorylation of FAK, indicating the involvement of Src because these sites are known to be phosphorylated by Src. Enigmatically, ISL inhibited Src in cells while displayed no effect on Src activity in cell-free system. The discrepancy was explained by the observation that THC, one of the major ISL metabolite identified in lung cancer cells abrogated Src activity both in cells and cell-free system. Similar to ISL, THC deterred cell migration and abolished cytoskeleton reorganization/focal adhesion assembly. Furthermore, we showed both ISL and THC suppressed in vitro lung cancer cell invasion and in vivo tumor progression. Conclusion Our study suggests that ISL inhibits lung cancer cell migration and tumorigenesis by interfering with Src through its metabolite THC. As licorice is safely used for culinary purposes, our study suggests that ISL or THC may be safely used as a Src inhibitor. Electronic supplementary material The online version of this article (10.1186/s13046-018-0902-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changliang Chen
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Anitha K Shenoy
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.,Department of Pharmaceutics and Biomedical Sciences, California Health Sciences University, Clovis, CA, USA
| | - Ravi Padia
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Dongdong Fang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Jing
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ping Yang
- Instrumental Analysis Center, School of Pharmacy, Fudan University, Shanghai, China
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shuang Huang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China. .,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| |
Collapse
|
27
|
Fisher N, Edwards MG, Hemming R, Allin SM, Wallis JD, Bulman Page PC, Mckenzie MJ, Jones SM, Elsegood MRJ, King-Underwood J, Richardson A. Synthesis and Activity of a Novel Autotaxin Inhibitor-Icodextrin Conjugate. J Med Chem 2018; 61:7942-7951. [PMID: 30059212 DOI: 10.1021/acs.jmedchem.8b00935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autotaxin is an extracellular phospholipase D that catalyzes the hydrolysis of lysophosphatidyl choline (LPC) to generate the bioactive lipid lysophosphatidic acid (LPA). Autotaxin has been implicated in many pathological processes relevant to cancer. Intraperitoneal administration of an autotaxin inhibitor may benefit patients with ovarian cancer; however, low molecular mass compounds are known to be rapidly cleared from the peritoneal cavity. Icodextrin is a polymer that is already in clinical use because it is slowly eliminated from the peritoneal cavity. Herein we report conjugation of the autotaxin inhibitor HA155 to icodextrin. The conjugate inhibits autotaxin activity (IC50 = 0.86 ± 0.13 μg mL-1) and reduces cell migration. Conjugation of the inhibitor increased its solubility, decreased its membrane permeability, and improved its intraperitoneal retention in mice. These observations demonstrate the first application of icodextrin as a covalently-bonded drug delivery platform with potential use in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Natalie Fisher
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K.,Keele Molecular Chemistry Group, Lennard-Jones Laboratories, School of Chemical and Physical Sciences , Keele University , Keele ST5 5BG , U.K
| | - Michael G Edwards
- Keele Molecular Chemistry Group, Lennard-Jones Laboratories, School of Chemical and Physical Sciences , Keele University , Keele ST5 5BG , U.K
| | - Ryan Hemming
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | - Steven M Allin
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | - John D Wallis
- School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
| | | | - Michael J Mckenzie
- Charnwood Molecular Ltd. , The Heritage Building, Prince William Road , Loughborough LE11 5DA , U.K
| | - Stefanie M Jones
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K
| | - Mark R J Elsegood
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , U.K
| | - John King-Underwood
- Computational Chemistry Resource , Old Cottage Hospital , Ledbury HR8 1ED , U.K
| | - Alan Richardson
- School of Pharmacy and Institute for Science and Technology in Medicine , Keele University , Keele ST5 5BG , U.K
| |
Collapse
|
28
|
Gresele P, Momi S, Malvestiti M, Sebastiano M. Platelet-targeted pharmacologic treatments as anti-cancer therapy. Cancer Metastasis Rev 2018; 36:331-355. [PMID: 28707198 DOI: 10.1007/s10555-017-9679-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets act as multifunctional cells participating in immune response, inflammation, allergy, tissue regeneration, and lymphoangiogenesis. Among the best-established aspects of a role of platelets in non-hemostatic or thrombotic disorders, there is their participation in cancer invasion and metastasis. The interaction of many different cancer cells with platelets leads to platelet activation, and on the other hand platelet activation is strongly instrumental to the pro-carcinogenic and pro-metastatic activities of platelets. It is thus obvious that over the last years a lot of interest has focused on the possible chemopreventive effect of platelet-targeted pharmacologic treatments. This article gives an overview of the platelet-targeted pharmacologic approaches that have been attempted in the prevention of cancer development, progression, and metastasis, including the application of anti-platelet drugs currently used for cardiovascular disease and of new and novel pharmacologic strategies. Despite the fact that very promising results have been obtained with some of these approaches in pre-clinical models, with the exclusion of aspirin, clinical evidence of a beneficial effect of anti-platelet agents in cancer is however still largely missing. Future studies with platelet-targeted drugs in cancer must carefully deal with design issues, and in particular with the careful selection of patients, and/or explore novel platelet targets in order to provide a solution to the critical issue of the risk/benefit profile of long-term anti-platelet therapy in the prevention of cancer progression and dissemination.
Collapse
Affiliation(s)
- P Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy.
| | - S Momi
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy
| | - M Malvestiti
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy
| | - M Sebastiano
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Via Enrico dal Pozzo, 06126, Perugia, Italy
| |
Collapse
|
29
|
Ha JH, Ward JD, Radhakrishnan R, Jayaraman M, Song YS, Dhanasekaran DN. Lysophosphatidic acid stimulates epithelial to mesenchymal transition marker Slug/Snail2 in ovarian cancer cells via Gαi2, Src, and HIF1α signaling nexus. Oncotarget 2018; 7:37664-37679. [PMID: 27166196 PMCID: PMC5122340 DOI: 10.18632/oncotarget.9224] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Recent studies have identified a critical role for lysophosphatidic acid (LPA) in the progression of ovarian cancer. Using a transcription factor activation reporter array, which analyzes 45 distinct transcription factors, it has been observed that LPA observed robustly activates the transcription factor hypoxia-induced factor-1α (HIF1α) in SKOV3.ip ovarian cancer cells. HIF1α showed 150-fold increase in its activation profile compared to the untreated control. Validation of the array analysis indicated that LPA stimulates a rapid increase in the levels of HIF1α in ovarian cancer cells, with an observed maximum level of HIF1α-induction by 4 hours. Our report demonstrates that LPA stimulates the increase in HIF1α levels via Gαi2. Consistent with the role of HIF1α in epithelial to mesenchymal transition (EMT) of cancer cells, LPA stimulates EMT and associated invasive cell migration along with an increase in the expression levels N-cadherin and Slug/Snail2. Using the expression of Slug/Snail2 as a marker for EMT, we demonstrate that the inhibition of Gαi2, HIF1α or Src attenuates this response. In line with the established role of EMT in promoting invasive cell migration, our data demonstrates that the inhibition of HIF1α with the clinically used HIF1α inhibitor, PX-478, drastically attenuates LPA-stimulates invasive migration of SKOV3.ip cells. Thus, our present study demonstrates that LPA utilizes a Gαi2-mediated signaling pathway via Src kinase to stimulate an increase in HIF1α levels and downstream EMT-specific factors such as Slug, leading to invasive migration of ovarian cancer cells.
Collapse
Affiliation(s)
- Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jeremy D Ward
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yong Sang Song
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
30
|
Ray U, Roy SS. Aberrant lipid metabolism in cancer cells - the role of oncolipid-activated signaling. FEBS J 2017; 285:432-443. [PMID: 28971574 DOI: 10.1111/febs.14281] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/25/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022]
Abstract
Metabolic activity of malignant cells is very different from that of their nontransformed equivalents, which establishes metabolic reprogramming as an important hallmark of every transformed cell. In particular, the current arena of research in this field aims to understand the regulatory effect of oncogenic signaling on metabolic rewiring in transformed cells in order to exploit this for therapeutic benefit. Alterations in lipid metabolism are one of the main aspects of metabolic rewiring of transformed cells. Up-regulation of several lipogenic enzymes has been reported to be a characteristic of various cancer types. Lysophosphatidic acid (LPA), a simple byproduct of the lipid biosynthesis pathway, has gained immense importance due to its elevated level in several cancers and associated growth-promoting activity. Importantly, a current study revealed its role in increased de novo lipid synthesis through up-regulation of sterol regulatory element-binding protein 1, a master regulator of lipid metabolism. This review summarizes the recent insights in the field of oncolipid LPA-mediated signaling in regard to lipid metabolism in cancers. Future work in this domain is required to understand the up-regulation of the de novo synthesis pathway and the role of its end products in malignant cells. This will open a new arena of research toward the development of specific metabolic inhibitors that can add to the pre-existing chemotherapeutics in order to increase the efficacy of clinical output in cancer patients.
Collapse
Affiliation(s)
- Upasana Ray
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| |
Collapse
|
31
|
Davies MR, Lee L, Feeley BT, Kim HT, Liu X. Lysophosphatidic acid-induced RhoA signaling and prolonged macrophage infiltration worsens fibrosis and fatty infiltration following rotator cuff tears. J Orthop Res 2017; 35:1539-1547. [PMID: 27505847 PMCID: PMC5502767 DOI: 10.1002/jor.23384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023]
Abstract
Previous studies have suggested that macrophage-mediated chronic inflammation is involved in the development of rotator cuff muscle atrophy and degeneration following massive tendon tears. Increased RhoA signaling has been reported in chronic muscle degeneration, such as muscular dystrophy. However, the role of RhoA signaling in macrophage infiltration and rotator muscle degeneration remains unknown. Using a previously established rat model of massive rotator cuff tears, we found RhoA signaling is upregulated in rotator cuff muscle following a massive tendon-nerve injury. This increase in RhoA expression is greatly potentiated by the administration of a potent RhoA activator, lysophosphatidic acid (LPA), and is accompanied by increased TNFα and TGF-β1 expression in rotator cuff muscle. Boosting RhoA signaling with LPA significantly worsened rotator cuff muscle atrophy, fibrosis, and fatty infiltration, accompanied with massive monocytic infiltration of rotator cuff muscles. Co-staining of RhoA and the tissue macrophage marker CD68 showed that CD68+ tissue macrophages are the dominant cell source of increased RhoA signaling in rotator cuff muscles after tendon tears. Taken together, our findings suggest that LPA-mediated RhoA signaling in injured muscle worsens the outcomes of atrophy, fibrosis, and fatty infiltration by increasing macrophage infiltraion in rotator cuff muscle. Clinically, inhibiting RhoA signaling may represent a future direction for developing new treatments to improve muscle quality following massive rotator cuff tears. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1539-1547, 2017.
Collapse
Affiliation(s)
- Michael R. Davies
- San Francisco Veterans Affairs Health Care System, Department of Veterans Affairs, 1700 Owens Street, Room 364 San Francisco, California 94153
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | - Lawrence Lee
- San Francisco Veterans Affairs Health Care System, Department of Veterans Affairs, 1700 Owens Street, Room 364 San Francisco, California 94153
| | - Brian T. Feeley
- San Francisco Veterans Affairs Health Care System, Department of Veterans Affairs, 1700 Owens Street, Room 364 San Francisco, California 94153
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | - Hubert T. Kim
- San Francisco Veterans Affairs Health Care System, Department of Veterans Affairs, 1700 Owens Street, Room 364 San Francisco, California 94153
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | - Xuhui Liu
- San Francisco Veterans Affairs Health Care System, Department of Veterans Affairs, 1700 Owens Street, Room 364 San Francisco, California 94153
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| |
Collapse
|
32
|
Ray U, Roy Chowdhury S, Vasudevan M, Bankar K, Roychoudhury S, Roy SS. Gene regulatory networking reveals the molecular cue to lysophosphatidic acid-induced metabolic adaptations in ovarian cancer cells. Mol Oncol 2017; 11:491-516. [PMID: 28236660 PMCID: PMC5527468 DOI: 10.1002/1878-0261.12046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Extravasation and metastatic progression are two main reasons for the high mortality rate associated with cancer. The metastatic potential of cancer cells depends on a plethora of metabolic challenges prevailing within the tumor microenvironment. To achieve higher rates of proliferation, cancer cells reprogram their metabolism, increasing glycolysis and biosynthetic activities. Just why this metabolic reprogramming predisposes cells towards increased oncogenesis remains elusive. The accumulation of myriad oncolipids in the tumor microenvironment has been shown to promote the invasiveness of cancer cells, with lysophosphatidic acid (LPA) being one such critical factor enriched in ovarian cancer patients. Cellular bioenergetic studies confirm that oxidative phosphorylation is suppressed and glycolysis is increased with long exposure to LPA in ovarian cancer cells compared with non‐transformed epithelial cells. We sought to uncover the regulatory complexity underlying this oncolipid‐induced metabolic perturbation. Gene regulatory networking using RNA‐Seq analysis identified the oncogene ETS‐1 as a critical mediator of LPA‐induced metabolic alterations for the maintenance of invasive phenotype. Moreover, LPA receptor‐2 specific PtdIns3K‐AKT signaling induces ETS‐1 and its target matrix metalloproteases. Abrogation of ETS‐1 restores cellular bioenergetics towards increased oxidative phosphorylation and reduced glycolysis, and this effect was reversed by the presence of LPA. Furthermore, the bioenergetic status of LPA‐treated ovarian cancer cells mimics hypoxia through induction of hypoxia‐inducible factor‐1α, which was found to transactivate ets‐1. Studies in primary tumors generated in syngeneic mice corroborated the in vitro findings. Thus, our study highlights the phenotypic changes induced by the pro‐metastatic factor ETS‐1 in ovarian cancer cells. The relationship between enhanced invasiveness and metabolic plasticity further illustrates the critical role of metabolic adaptation of cancer cells as a driver of tumor progression. These findings reveal oncolipid‐induced metabolic predisposition as a new mechanism of tumorigenesis and propose metabolic inhibitors as a potential approach for future management of aggressive ovarian cancer.
Collapse
Affiliation(s)
- Upasana Ray
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Shreya Roy Chowdhury
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | | | - Kiran Bankar
- Bionivid Technology Private Limited, Bangalore, India
| | | | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| |
Collapse
|
33
|
Shimizu Y, Nakayama M. Discovery of Novel Gq-Biased LPA1 Negative Allosteric Modulators. SLAS DISCOVERY 2017; 22:859-866. [PMID: 28346103 DOI: 10.1177/2472555217691719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lysophosphatidic acid (LPA) activates the G-protein-coupled receptor LPA1, which regulates various cellular processes, including cell proliferation and migration. Although LPA1 transduces cellular responses via Gq, Gi, and G12/13, associations between these signaling molecules and cellular phenotypes remain poorly characterized due to the lack of signal-specific pharmacological tools. Here, we characterized novel signal-biased modulators using multiple assays, including label-free impedance assays. LPA caused dramatic changes in cellular impedance in LPA1-expressing recombinant cells, which were susceptible to G-protein and protein kinase inhibitors. Subsequently, Gq-biased LPA1 negative allosteric modulators (NAMs) were identified using high-throughput screening, and a nonbiased antagonist differently affected the LPA-induced cellular impedance. These NAMs provide pharmacological tools for further investigations of the biology of LPA1.
Collapse
Affiliation(s)
- Yuji Shimizu
- 1 Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masaharu Nakayama
- 1 Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
34
|
Xu Y, Rong J, Duan S, Chen C, Li Y, Peng B, Yi B, Zheng Z, Gao Y, Wang K, Yun M, Weng H, Zhang J, Ye S. High expression of GNA13 is associated with poor prognosis in hepatocellular carcinoma. Sci Rep 2016; 6:35948. [PMID: 27883022 PMCID: PMC5121652 DOI: 10.1038/srep35948] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022] Open
Abstract
Guanine nucleotide binding protein alpha 13 (GNA13) has been found to play critical roles in the development of several human cancers. However, little is known about GNA13 expression and its clinical significance in hepatocellular carcinoma (HCC). In our study, GNA13 was reported to be significantly up-regulated in HCC tissues, and this was correlated with several clinicopathological parameters, including tumor multiplicity (P = 0.004), TNM stage (P = 0.002), and BCLC stage (P = 0.010). Further Cox regression analysis suggested that GNA13 expression was an independent prognostic factor for overall survival (P = 0.014) and disease-free survival (P = 0.005). Moreover, we found that overexpression of GNA13 couldn’t promote cell proliferation in vitro, but could significantly increase the invasion ability of HCC cells. Together, our study demonstrates GNA13 may be served as a prognostic biomarker for HCC patients after curative hepatectomy, in which high expression of GNA13 suggests poor prognosis of HCC patients.
Collapse
Affiliation(s)
- Yi Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Rong
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiyu Duan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Baogang Peng
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Yi
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ying Gao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kebing Wang
- Department of Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Miao Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Ultrasound, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Huiwen Weng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
35
|
Zuckerman V, Sokolov E, Swet JH, Ahrens WA, Showlater V, Iannitti DA, Mckillop IH. Expression and function of lysophosphatidic acid receptors (LPARs) 1 and 3 in human hepatic cancer progenitor cells. Oncotarget 2016; 7:2951-67. [PMID: 26701886 PMCID: PMC4823083 DOI: 10.18632/oncotarget.6696] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 01/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver and is characterized by rapid tumor expansion and metastasis. Lysophosphatidic acid (LPA) signaling, via LPA receptors 1–6 (LPARs1–6), regulates diverse cell functions including motility, migration, and proliferation, yet the role of LPARs in hepatic tumor pathology is poorly understood. We sought to determine the expression and function of endothelial differentiation gene (EDG) LPARs (LPAR1–3) in human HCC and complimentary in vitro models. Human HCC were characterized by significantly elevated LPAR1/LPAR3 expression in the microenvironment between the tumor and non-tumor liver (NTL), a finding mirrored in human SKHep1 cells. Analysis of human tissue and human hepatic tumor cells in vitro revealed cells that express LPAR3 (HCC-NTL margin in vivo and SKHep1 in vitro) also express cancer stem cell markers in the absence of hepatocyte markers. Treatment of SKHep1 cells with exogenous LPA led to significantly increased cell motility but not proliferation. Using pharmacological agents and cells transfected to knock-down LPAR1 or LPAR3 demonstrated LPA-dependent cell migration occurs via an LPAR3-Gi-ERK-pathway independent of LPAR1. These data suggest cells that stain positive for both LPAR3 and cancer stem cell markers are distinct from the tumor mass per se, and may mediate tumor invasiveness/expansion via LPA-LPAR3 signaling.
Collapse
Affiliation(s)
| | - Eugene Sokolov
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA 28203
| | - Jacob H Swet
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA 28203
| | - William A Ahrens
- Department of Pathology, Carolinas Medical Center, Charlotte, NC, USA 28203
| | - Victor Showlater
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA 28203
| | - David A Iannitti
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA 28203
| | - Iain H Mckillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA 28203
| |
Collapse
|
36
|
G Protein-Coupled Receptors in Cancer. Int J Mol Sci 2016; 17:ijms17081320. [PMID: 27529230 PMCID: PMC5000717 DOI: 10.3390/ijms17081320] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 12/12/2022] Open
Abstract
Despite the fact that G protein-coupled receptors (GPCRs) are the largest signal-conveying receptor family and mediate many physiological processes, their role in tumor biology is underappreciated. Numerous lines of evidence now associate GPCRs and their downstream signaling targets in cancer growth and development. Indeed, GPCRs control many features of tumorigenesis, including immune cell-mediated functions, proliferation, invasion and survival at the secondary site. Technological advances have further substantiated GPCR modifications in human tumors. Among these are point mutations, gene overexpression, GPCR silencing by promoter methylation and the number of gene copies. At this point, it is imperative to elucidate specific signaling pathways of “cancer driver” GPCRs. Emerging data on GPCR biology point to functional selectivity and “biased agonism”; hence, there is a diminishing enthusiasm for the concept of “one drug per GPCR target” and increasing interest in the identification of several drug options. Therefore, determining the appropriate context-dependent conformation of a functional GPCR as well as the contribution of GPCR alterations to cancer development remain significant challenges for the discovery of dominant cancer genes and the development of targeted therapeutics.
Collapse
|
37
|
Shen B, Estevez B, Xu Z, Kreutz B, Karginov A, Bai Y, Qian F, Norifumi U, Mosher D, Du X. The interaction of Gα13 with integrin β1 mediates cell migration by dynamic regulation of RhoA. Mol Biol Cell 2015; 26:3658-70. [PMID: 26310447 PMCID: PMC4603935 DOI: 10.1091/mbc.e15-05-0274] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022] Open
Abstract
Heterotrimeric G protein Gα13 is known to transmit G protein-coupled receptor (GPCR) signals leading to activation of RhoA and plays a role in cell migration. The mechanism underlying the role of Gα13 in cell migration, however, remains unclear. Recently we found that Gα13 interacts with the cytoplasmic domain of integrin β3 subunits in platelets via a conserved ExE motif. Here we show that a similar direct interaction between Gα13 and the cytoplasmic domain of the integrin β1 subunit plays a critical role in β1-dependent cell migration. Point mutation of either glutamic acid in the Gα13-binding (767)EKE motif in β1 or treatment with a peptide derived from the Gα13-binding sequence of β1 abolished Gα13-β1 interaction and inhibited β1 integrin-dependent cell spreading and migration. We further show that the Gα13-β1 interaction mediates β1 integrin-dependent Src activation and transient RhoA inhibition during initial cell adhesion, which is in contrast to the role of Gα13 in mediating GPCR-dependent RhoA activation. These data indicate that Gα13 plays dynamic roles in both stimulating RhoA via a GPCR pathway and inhibiting RhoA via an integrin signaling pathway. This dynamic regulation of RhoA activity is critical for cell migration on β1 integrin ligands.
Collapse
Affiliation(s)
- Bo Shen
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Brian Estevez
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Zheng Xu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Barry Kreutz
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Andrei Karginov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Yanyan Bai
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Feng Qian
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 Department of Internal Medicine, Section of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Ohio State University, Columbus, OH 43210
| | - Urao Norifumi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Deane Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, WI 53792
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
38
|
Hu Y, Xing J, Chen L, Zheng Y, Zhou Z. RGS22 inhibits pancreatic adenocarcinoma cell migration through the G12/13 α subunit/F-actin pathway. Oncol Rep 2015; 34:2507-14. [PMID: 26323264 DOI: 10.3892/or.2015.4209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/27/2015] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer is characterized by the potential for local invasion, allowing it to spread during the early developmental stages of the disease. Regulator of G protein signaling 22 (RGS22) localizes to the cytoplasm in pancreatic adenocarcinoma tissue. We overexpressed RGS22 in the human pancreatic cancer cell line BXPC-3. Cells that overexpressed RGS22 had much lower wound-healing rates and greatly reduced migration compared to the control cells. Conversely, cells in which RGS22 expression had been downregulated had higher wound-healing rates and migration than the control cells. These results confirmed that RGS22 expression suppresses pancreatic adenocarcinoma cell migration. Pull-down and coimmunoprecipitation assays revealed that RGS22 had specific interactions with the heterotrimeric G protein G12 α subunit (GNA12) and GNA13 in the cells. We also demonstrated that in the presence of higher RGS22 expression, the cell deformation and F-actin formation caused by lysophosphatidic acid treatment, is delayed. Constitutively active Gα subunits did not accelerate GTP hydrolysis to GDP. We did not investigate the function of RGS22 as a negative regulator of heterotrimeric G12/13 protein signaling. Our data demonstrate that RGS22 acts as a tumor suppressor, repressing human pancreatic adenocarcinoma cell migration by coupling to GNA12/13, which in turn leads to inhibition of stress fiber formation.
Collapse
Affiliation(s)
- Yanqiu Hu
- Reproductive Medicine Center, Subei People's Hospital, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jun Xing
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Ling Chen
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ying Zheng
- Department of Histology and Embryology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Zuomin Zhou
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
39
|
Abstract
The G12 family of heterotrimeric G proteins is defined by their α-subunits,
Gα12 and Gα13. These α-subunits
regulate cellular homeostasis, cell migration, and oncogenesis in a
context-specific manner primarily through their interactions with distinct
proteins partners that include diverse effector molecules and scaffold proteins.
With a focus on identifying any other novel regulatory protein(s) that can
directly interact with Gα13, we subjected Gα13
to tandem affinity purification-coupled mass spectrometric analysis. Our results
from such analysis indicate that Gα13 potently interacts with
mammalian Ric-8A. Our mass spectrometric analysis data also indicates that
Ric-8A, which was tandem affinity purified along with Gα13, is
phosphorylated at Ser-436, Thr-441, Thr-443 and Tyr-435. Using a serial deletion
approach, we have defined that the C-terminus of Gα13 containing
the guanine-ring interaction site is essential and sufficient for its
interaction with Ric-8A. Evaluation of Gα13-specific signaling
pathways in SKOV3 or HeyA8 ovarian cancer cell lines indicate that Ric-8A
potentiates Gα13-mediated activation of RhoA, Cdc42, and the
downstream p38MAPK. We also establish that the tyrosine phosphorylation of
Ric-8A, thus far unidentified, is potently stimulated by Gα13.
Our results also indicate that the stimulation of tyrosine-phosphorylation of
Ric-8A by Gα13 is partially sensitive to inhibitors of
Src-family of kinases, namely PP2 and SI. Furthermore, we demonstrate that
Gα13 promotes the translocation of Ric-8A to plasma membrane
and this translocation is attenuated by the Src-inhibitors, SI1 and PP2. Thus,
our results demonstrate for the first time that Gα13 stimulates
the tyrosine phosphorylation of Ric-8A and Gα13-mediated
tyrosine-phosphorylation plays a critical role in the translocation of Ric-8A to
plasma membrane.
Collapse
|
40
|
Gan CP, Patel V, Mikelis CM, Zain RB, Molinolo AA, Abraham MT, Teo SH, Abdul Rahman ZA, Gutkind JS, Cheong SC. Heterotrimeric G-protein alpha-12 (Gα12) subunit promotes oral cancer metastasis. Oncotarget 2015; 5:9626-40. [PMID: 25275299 PMCID: PMC4259425 DOI: 10.18632/oncotarget.2437] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) has a propensity to spread to the cervical lymph nodes (LN). The presence of cervical LN metastases severely impacts patient survival, whereby the two-year survival for oral cancer patients with involved LN is ~30% compared to over 80% in patients with non-involved LN. Elucidation of key molecular mechanisms underlying OSCC metastasis may afford an opportunity to target specific genes, to prevent the spread of OSCC and to improve patient survival. In this study, we demonstrated that expression of the heterotrimeric G-protein alpha-12 (Gα12) is highly up-regulated in primary tumors and LN of OSCC patients, as assessed by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). We also found that exogenous expression of the constitutively activated-form of Gα12 promoted cell migration and invasion in OSCC cell lines. Correspondingly, inhibition of Gα12 expression by shRNA consistently inhibited OSCC cell migration and invasion in vitro. Further, the inhibition of G12 signaling by regulator of G-protein signaling (RGS) inhibited Gα12-mediated RhoA activation, which in turn resulted in reduced LN metastases in a tongue-orthotopic xenograft mouse model of oral cancer. This study provides a rationale for future development and evaluation of drug candidates targeting Gα12-related pathways for metastasis prevention.
Collapse
Affiliation(s)
- Chai Phei Gan
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), Selangor, Malaysia
| | - Vyomesh Patel
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), Selangor, Malaysia. Oral and Pharyngeal Cancer Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Constantinos M Mikelis
- Oral and Pharyngeal Cancer Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Rosnah Binti Zain
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia. Oral Cancer Research and Coordinating Centre (OCRCC), University of Malaya, Kuala Lumpur, Malaysia
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Mannil Thomas Abraham
- Department of Oral and Maxillofacial Surgery, Tengku Ampuan Rahimah Hospital, Klang, Malaysia
| | - Soo-Hwang Teo
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), Selangor, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Sok Ching Cheong
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), Selangor, Malaysia. Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
42
|
Rasheed SAK, Teo CR, Beillard EJ, Voorhoeve PM, Zhou W, Ghosh S, Casey PJ. MicroRNA-31 controls G protein alpha-13 (GNA13) expression and cell invasion in breast cancer cells. Mol Cancer 2015; 14:67. [PMID: 25889182 PMCID: PMC4379695 DOI: 10.1186/s12943-015-0337-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gα13 (GNA13) is the α subunit of a heterotrimeric G protein that mediates signaling through specific G protein-coupled receptors (GPCRs). Our recent study showed that control of GNA13 expression by specific microRNAs (miRNAs or miRs) is important for prostate cancer cell invasion. However, little is known about the control of GNA13 expression in breast cancers. This project was carried out to determine (i) whether enhanced GNA13 expression is important for breast cancer cell invasion, and (ii) if so, the mechanism of deregulation of GNA13 expression in breast cancers. METHODS To determine the probable miRNAs regulating GNA13, online miRNA target prediction tool Targetscan and Luciferase assays with GNA13-3'-UTR were used. Effect of miRNAs on GNA13 mRNA, protein and invasion was studied using RT-PCR, western blotting and in vitro Boyden chamber assay respectively. Cell proliferation was done using MTT assays. RESULTS Overexpression of GNA13 in MCF-10a cells induced invasion, whereas knockdown of GNA13 expression in MDA-MB-231 cells inhibited invasion. Expression analysis of miRNAs predicted to bind the 3'-UTR of GNA13 revealed that miR-31 exhibited an inverse correlation to GNA13 protein expression in breast cancer cells. Ectopic expression of miR-31 in MDA-MB-231 cells significantly reduced GNA13 mRNA and protein levels, as well as GNA13-3'-UTR-reporter activity. Conversely, blocking miR-31 activity in MCF-10a cells induced GNA13 mRNA, protein and 3'-UTR reporter activity. Further, expression of miR-31 significantly inhibited MDA-MB-231 cell invasion, and this effect was partly rescued by ectopic expression of GNA13 in these cells. Examination of 48 human breast cancer tissues revealed that GNA13 mRNA levels were inversely correlated to miR-31 levels. CONCLUSIONS These data provide strong evidence that GNA13 expression in breast cancer cells is regulated by post-transcriptional mechanisms involving miR-31. Additionally our data shows that miR-31 regulates breast cancer cell invasion partially via targeting GNA13 expression in breast cancer cells. Loss of miR-31 expression and increased GNA13 expression could be used as biomarkers of breast cancer progression.
Collapse
Affiliation(s)
- Suhail Ahmed Kabeer Rasheed
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore.
| | - Cui Rong Teo
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore.
| | - Emmanuel Jean Beillard
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore.
| | - P Mathijs Voorhoeve
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore.
| | - Wei Zhou
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore.
| | - Sujoy Ghosh
- Centre for Computational Biology & Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 169857, Singapore, Singapore.
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore, Singapore.
| |
Collapse
|
43
|
Decreased peritoneal ovarian cancer growth in mice lacking expression of lipid phosphate phosphohydrolase 1. PLoS One 2015; 10:e0120071. [PMID: 25769037 PMCID: PMC4359083 DOI: 10.1371/journal.pone.0120071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/03/2015] [Indexed: 01/02/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid that enhances ovarian cancer cell proliferation, migration and invasion in vitro and stimulates peritoneal metastasis in vivo. LPA is generated through the action of autotaxin or phospholipases, and degradation begins with lipid phosphate phosphohydrolase (LPP)-dependent removal of the phosphate. While the effects of LPA on ovarian cancer progression are clear, the effects of LPA metabolism within the tumor microenvironment on peritoneal metastasis have not been reported. We examined the contribution of lipid phosphatase activity to ovarian cancer peritoneal metastasis using mice deficient in LPP1 expression. Homozygous deletion of LPP1 (LPP1 KO) results in elevated levels and decreased turnover of LPA in vivo. Within 2 weeks of intraperitoneal injection of syngeneic mouse ovarian cancer cells, we observed enhanced tumor seeding in the LPP1 KO mice compared to wild type. However, tumor growth plateaued in the LPP1 KO mice by 3 weeks while tumors continued to grow in wild type mice. The decreased tumor burden was accompanied by increased apoptosis and no change in proliferation or angiogenesis. Tumor growth was restored and apoptosis reversed with exogenous administration of LPA. Together, these observations demonstrate that the elevated levels of LPA per se in LPP1 KO mice do not inhibit tumor growth. Rather, the data support the notion that either elevated LPA concentration or altered LPA metabolism affects other growth-promoting contributions of the tumor microenvironment.
Collapse
|
44
|
Lecointre C, Desrues L, Joubert JE, Perzo N, Guichet PO, Le Joncour V, Brulé C, Chabbert M, Leduc R, Prézeau L, Laquerrière A, Proust F, Gandolfo P, Morin F, Castel H. Signaling switch of the urotensin II vasosactive peptide GPCR: prototypic chemotaxic mechanism in glioma. Oncogene 2015; 34:5080-94. [PMID: 25597409 DOI: 10.1038/onc.2014.433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Abstract
Multiform glioblastomas (GBM) are the most frequent and aggressive primary brain tumors in adults. The poor prognosis is due to neo-angiogenesis and cellular invasion, processes that require complex chemotaxic mechanisms involving motility, migration and adhesion. Understanding these different cellular events implies identifying receptors and transduction pathways that lead to and promote either migration or adhesion. Here we establish that glioma express the vasoactive peptide urotensin II (UII) and its receptor UT and that UT-mediated signaling cascades are involved in glioma cell migration and adhesion. Components of the urotensinergic systems, UII and UT, are widely expressed in patient-derived GBM tissue sections, glioma cell lines and fresh biopsy explants. Interestingly, gradient concentrations of UII produced chemoattracting migratory/motility effects in glioma as well as HEK293 cells expressing human UT. These effects mainly involved the G13/Rho/rho kinase pathway while partially requiring Gi/o/PI3K components. In contrast, we observed that homogeneous concentrations of UII drastically blocked cell motility and stimulated cell-matrix adhesions through a UT/Gi/o signaling cascade, partially involving phosphatidylinositol-3 kinase. Finally, we provide evidence that, in glioma cells, homogeneous concentration of UII allowed translocation of Gα13 to the UT receptor at the plasma membrane and increased actin stress fibers, lamellipodia formation and vinculin-stained focal adhesions. UII also provoked a re-localization of UT precoupled to Gαi in filipodia and initiated integrin-stained focal points. Altogether, these findings suggest that UT behaves as a chemotaxic receptor, relaying a signaling switch between directional migration and cell adhesion under gradient or homogeneous concentrations, thereby redefining sequential mechanisms affecting tumor cells during glioma invasion. Taken together, our results allow us to propose a model in order to improve the design of compounds that demonstrate signaling bias for therapies that target specifically the Gi/o signaling pathway.
Collapse
Affiliation(s)
- C Lecointre
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - L Desrues
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - J E Joubert
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - N Perzo
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France.,Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - P-O Guichet
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - V Le Joncour
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - C Brulé
- Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.,IGF, Institut of Functional Genomic, CNRS UMR 5203, Inserm U661, University of Montpellier 1 and 2, Montpellier, France
| | - M Chabbert
- UMR CNRS 6214, Inserm 1083, Faculté de Médecine 3, Angers, France
| | - R Leduc
- Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - L Prézeau
- IGF, Institut of Functional Genomic, CNRS UMR 5203, Inserm U661, University of Montpellier 1 and 2, Montpellier, France
| | - A Laquerrière
- Service of Anatomocytopathology, CHU of Rouen, ERI28 Inserm, IRIB, Rouen, France
| | - F Proust
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France.,Service of Neurosurgery, CHU of Rouen, Rouen, France
| | - P Gandolfo
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - F Morin
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - H Castel
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
45
|
Ward JD, Ha JH, Jayaraman M, Dhanasekaran DN. LPA-mediated migration of ovarian cancer cells involves translocalization of Gαi2 to invadopodia and association with Src and β-pix. Cancer Lett 2014; 356:382-91. [PMID: 25451317 DOI: 10.1016/j.canlet.2014.09.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 12/23/2022]
Abstract
Lysophosphatidic acid (LPA) plays a critical role in the migration and invasion of ovarian cancer cells. However, the downstream spatiotemporal signaling events involving specific G protein(s) underlying this process are largely unknown. In this report, we demonstrate that LPA signaling causes the translocation of Gαi2 into the invadopodia leading to its interaction with the tyrosine kinase Src and the Rac/CDC42-specific guanine nucleotide exchange factor, β-pix. Our results establish that Gαi2 activates Rac1 through a p130Cas-dependent pathway in ovarian cancer cells. Moreover, our report reveals that knockdown of Gαi2 leads to loss of β-pix and active-Rac association in the invadopodia. We also show that knockdown of Gαi2 leads to the complete loss of translocation to p130Cas to focal adhesions. Finally, when Gαi2 is knocked down, this led to the total distribution of Src being shifted primarily from invadopodia and the leading edge of the cells to the perinuclear region, suggesting that Src is inactive in the absence of Gαi2. Overall, our report provides tantalizing evidence that Gαi2 is a critical signaling component of a large signaling complex in the invadopodia that if disrupted could serve as an excellent target for therapy in ovarian and potentially other cancers.
Collapse
Affiliation(s)
- Jeremy D Ward
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Ji Hee Ha
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA.
| |
Collapse
|
46
|
Patel M, Kawano T, Suzuki N, Hamakubo T, Karginov AV, Kozasa T. Gα13/PDZ-RhoGEF/RhoA signaling is essential for gastrin-releasing peptide receptor-mediated colon cancer cell migration. Mol Pharmacol 2014; 86:252-62. [PMID: 24958816 PMCID: PMC4576495 DOI: 10.1124/mol.114.093914] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/13/2014] [Indexed: 12/25/2022] Open
Abstract
Gastrin-releasing peptide receptor (GRPR) is ectopically expressed in over 60% of colon cancers. GRPR expression has been correlated with increased colon cancer cell migration. However, the signaling pathway by which GRPR activation leads to increased cancer cell migration is not well understood. We set out to molecularly dissect the GRPR signaling pathways that control colon cancer cell migration through regulation of small GTPase RhoA. Our results show that GRP stimulation activates RhoA predominantly through G13 heterotrimeric G-protein signaling. We also demonstrate that postsynaptic density 95/disk-large/ZO-1 (PDZ)-RhoGEF (PRG), a member of regulator of G-protein signaling (RGS)-homology domain (RH) containing guanine nucleotide exchange factors (RH-RhoGEFs), is the predominant activator of RhoA downstream of GRPR. We found that PRG is required for GRP-stimulated colon cancer cell migration, through activation of RhoA-Rho-associated kinase (ROCK) signaling axis. In addition, PRG-RhoA-ROCK pathway also contributes to cyclo-oxygenase isoform 2 (Cox-2) expression. Increased Cox-2 expression is correlated with increased production of prostaglandin-E2 (PGE2), and Cox-2-PGE2 signaling contributes to total GRPR-mediated cancer cell migration. Our analysis reveals that PRG is overexpressed in colon cancer cell lines. Overall, our results have uncovered a key mechanism for GRPR-regulated colon cancer cell migration through the Gα13-PRG-RhoA-ROCK pathway.
Collapse
Affiliation(s)
- Maulik Patel
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, Illinois (M.P., A.V.K., T.Ko.); Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia (T. Ka.); and Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan (N.S., T.H., T.Ko.)
| | - Takeharu Kawano
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, Illinois (M.P., A.V.K., T.Ko.); Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia (T. Ka.); and Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan (N.S., T.H., T.Ko.)
| | - Nobuchika Suzuki
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, Illinois (M.P., A.V.K., T.Ko.); Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia (T. Ka.); and Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan (N.S., T.H., T.Ko.)
| | - Takao Hamakubo
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, Illinois (M.P., A.V.K., T.Ko.); Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia (T. Ka.); and Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan (N.S., T.H., T.Ko.)
| | - Andrei V Karginov
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, Illinois (M.P., A.V.K., T.Ko.); Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia (T. Ka.); and Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan (N.S., T.H., T.Ko.)
| | - Tohru Kozasa
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, Illinois (M.P., A.V.K., T.Ko.); Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia (T. Ka.); and Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan (N.S., T.H., T.Ko.).
| |
Collapse
|
47
|
Hax-1 is required for Rac1-Cortactin interaction and ovarian carcinoma cell migration. Genes Cancer 2014; 5:84-99. [PMID: 25053987 PMCID: PMC4091533 DOI: 10.18632/genesandcancer.8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/14/2014] [Indexed: 01/08/2023] Open
Abstract
Hax-1 is a multifunctional protein, which is involved in diverse cellular signaling pathways including tumor cell survival and migration. We have shown previously that cell migration stimulated by the oncogenic G protein, G13, requires Hax-1 for the formation of a functional complex involving Gα13, Rac1, and cortactin. However, the role of Hax-1 in cancer cell migration or its role in Rac1-cortactin complex formation, which is known to be required for such migration remains to be characterized. Results focused on resolving the role of Hax-1 in ovarian cancer pathophysiology indicate that Hax-1 is overexpressed in ovarian cancer cells and the silencing of Hax-1 inhibits lysophosphatidic acid (LPA)- or fetal bovine serum-stimulated migration of these cells. In addition, silencing of Hax-1 greatly reduces Rac1-cortactin interaction and their colocalization in SKOV3 cells. Mapping the structural domains of Hax-1 indicates that it interacts with cortactin via domains spanning amino acids 1 to 56 (Hax-D1) and amino acids 113 to 168 (Hax-D3). Much weaker interaction with cortactin was also observed with the region of Hax-1 spanning amino acids 169 – 224 (Hax-D4). Similar mapping of Hax-1 domains involved in Rac1 interaction indicates that it associates with Rac1 via two primary domains spanning amino acids 57 to 112 (Hax-D2) and 169 to 224 (Hax-D4). Furthermore, expression of either of these domains inhibits LPA-mediated migration of SKOV3 cells, possibly through their ability to exert competitive inhibition on endogenous Hax-1-Rac1 and/or Hax-1-cortactin interaction. More significantly, expression of Hax-D4 drastically reduces Rac1-cortactin colocalization in SKOV3 cells along with an attenuation of LPA-stimulated migration. Thus our results presented here describe for the first time that Hax-1 interaction is required for the association between Rac1 and cortactin and that these multiple interactions are required for the LPA-stimulated migration of SKOV3 ovarian cancer cells.
Collapse
|
48
|
Katakai T, Kondo N, Ueda Y, Kinashi T. Autotaxin produced by stromal cells promotes LFA-1-independent and Rho-dependent interstitial T cell motility in the lymph node paracortex. THE JOURNAL OF IMMUNOLOGY 2014; 193:617-26. [PMID: 24935929 DOI: 10.4049/jimmunol.1400565] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells exhibit high-speed migration within the paracortical T zone of lymph nodes (LNs) as they scan cognate Ags displayed by dendritic cells in the tissue microenvironment supported by the network of stromal cells. Although intranodal T cell migration is controlled in part by chemokines and LFA-1/ICAM-1, the mechanisms underlying their migratory activity independent of these factors remain to be elucidated. In this study, we show that LN stromal cells constitutively express autotaxin (ATX), an ectoenzyme that is important for the generation of lysophosphatidic acid (LPA). Importantly, CCL21(+) stromal cells in the T zone produced and immobilized ATX on their cell surface. Two-photon imaging using LN tissue slices revealed that pharmacological inhibition of ATX or LPA receptors significantly reduced T cell migration, and this was further exacerbated by blockage of Gαi signaling or LFA-1. Therefore, T cell motility mediated by the ATX-LPA axis was independent of Gαi and LFA-1. LPA induced slow intermittent movement of T cells in vitro in a LFA-1-independent manner and enhanced CCL21-induced migration. Moreover, LPA and CCL21 cooperatively augmented RhoA activity in T cells, which was necessary for efficient intranodal T cell migration via the downstream ROCK-myosin II pathway. Taken together, T zone stromal cells control optimal migratory behavior of T cells via multiple signaling cues mediated by chemokines and ATX/LPA.
Collapse
Affiliation(s)
- Tomoya Katakai
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yoshihiro Ueda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
49
|
Simo KA, Niemeyer DJ, Hanna EM, Swet JH, Thompson KJ, Sindram D, Iannitti DA, Eheim AL, Sokolov E, Zuckerman V, McKillop IH. Altered lysophosphatidic acid (LPA) receptor expression during hepatic regeneration in a mouse model of partial hepatectomy. HPB (Oxford) 2014; 16:534-42. [PMID: 24750398 PMCID: PMC4048075 DOI: 10.1111/hpb.12176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/28/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatic regeneration requires coordinated signal transduction for efficient restoration of functional liver mass. This study sought to determine changes in lysophosphatidic acid (LPA) and LPA receptor (LPAR) 1-6 expression in regenerating liver following two-thirds partial hepatectomy (PHx). METHODS Liver tissue and blood were collected from male C57BL/6 mice following PHx. Circulating LPA was measured by enzyme-linked immunosorbent assay (ELISA) and hepatic LPAR mRNA and protein expression were determined. RESULTS Circulating LPA increased 72 h after PHx and remained significantly elevated for up to 7 days post-PHx. Analysis of LPAR expression after PHx demonstrated significant increases in LPAR1, LPAR3 and LPAR6 mRNA and protein in a time-dependent manner for up to 7 days post-PHx. Conversely, LPAR2, LPAR4 and LPAR5 mRNA were barely detected in normal liver and did not significantly change after PHx. Changes in LPAR1 expression were confined to non-parenchymal cells following PHx. CONCLUSIONS Liver regeneration following PHx is associated with significant changes in circulating LPA and hepatic LPAR1, LPAR3 and LPAR6 expression in a time- and cell-dependent manner. Furthermore, changes in LPA-LPAR post-PHx occur after the first round of hepatocyte division is complete.
Collapse
Affiliation(s)
- Kerri A Simo
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang Y, Chen Y, Li Y, Lan T, Qian H. Type II cGMP‑dependent protein kinase inhibits RhoA activation in gastric cancer cells. Mol Med Rep 2014; 9:1444-52. [PMID: 24549567 DOI: 10.3892/mmr.2014.1960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/07/2014] [Indexed: 11/06/2022] Open
Abstract
Small GTPase RhoA is a key signaling component regulating cell migration and stress fiber formation. Previous studies have shown that RhoA activity is regulated by protein kinases, such as cAMP‑dependent protein kinase (PKA) and type I cGMP‑dependent protein kinase (PKGI), which phosphorylate the protein. This study was designed to investigate the effect of type II cGMP‑dependent protein kinase (PKGII) on RhoA activity. Cells of the human gastric cancer line AGS were infected with adenoviral constructs bearing the PKGII cDNA in order to increase its endogenous expression, and were treated with 8‑pCPT‑cGMP to activate the PKGII enzyme. A transwell assay was performed to measure the migratory activity of the treated cells, and immunofluorescent microscopy was used to observe the formation of stress fibers. The phosphorylation of RhoA was detected by western blotting, and the activity of RhoA was measured by a pull‑down assay. Co‑immunoprecipitation (co‑IP) was performed to detect binding of PKGII to RhoA. Glutathione S‑transferase (GST)‑fused fragments of RhoA and PKGII were expressed in Escherichia coli and used to investigate the domains required for the binding. The results showed that lysophosphatidic acid (LPA) treatment increased the migration and the formation of stress fibers in AGS cells and that this effect was RhoA‑dependent. An increase in PKGII activity, not only inhibited LPA‑induced migration and stress fiber formation, but also suppressed LPA‑induced activation of RhoA. PKGII caused serine 188 (Ser188) phosphorylation of RhoA, but not the phosphorylation of the mutant RhoA Ser188A, and therefore had no inhibitory effect on the activity of the mutant protein. Co‑IP results showed that there is direct binding of PKGII to RhoA. The GST pull‑down assay showed that the fragment containing RhoA amino acid residues 1‑44 and the N‑terminal fragment of PKGII containing amino acid residues 1‑176 are required for the binding between the two proteins. These results suggested that PKGII inhibits RhoA activity by binding to this small GTPase and causing phosphorylation at its Ser188 site.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yongchang Chen
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yueying Li
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ting Lan
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hai Qian
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|