1
|
Shen L, Wang J, Li Y, Sun C, Teng M, Ye X, Feng X. Transcription Factor STAT3-Activated LDHB Promotes Tumor Properties of Endometrial Cancer Cells by Inducing MDH2 Expression. Mol Biotechnol 2025; 67:562-574. [PMID: 38381377 DOI: 10.1007/s12033-024-01067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
The pathogenesis of endometrial cancer (EC) involves the regulation of lactate dehydrogenases. However, the role and mechanism of lactate dehydrogenase-B (LDHB) in EC progression have not been studied. The mRNA levels of LDHB and malate dehydrogenase 2 (MDH2) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blotting and immunohistochemistry assays. Cell proliferation, apoptosis, and invasion were analyzed by 5-Ethynyl-2'-deoxyuridine, transwell, and flow cytometry assay, respectively. Glycolysis was investigated using Glucose Assay Kit, CheKine™ Micro Lactate Assay Kit, and ADP/ATP ratio assay kit. An in vivo tumor formation assay was conducted to disclose the effect of LDHB on tumor growth in vivo. The associations among signal transducer and activator of transcription 3 (STAT3), LDHB, and MDH2 were predicted through JASPAR or GeneMANIA online database and identified by chromatin immunoprecipitation assay, dual-luciferase reporter assay, and co-immunoprecipitation assay. LDHB expression was increased in EC tissues and cells in comparison with normal endometrial tissues and human endometrial stromal cells. LDHB had the potential as a biomarker to predict the prognosis of EC patients. In addition, LDHB knockdown inhibited the proliferation, invasion, and glycolysis and promoted apoptosis of RL95-2 and Ishikawa cells. LDHB knockdown inhibited tumor property of Ishikawa cells in vivo. STAT3 bound to the promoter region of LDHB, and STAT3 silencing-induced effects were relieved after LDHB upregulation. LDHB interacted with and regulated MDH2 expression. Moreover, MDH2 overexpression rescued LDHB knockdown-induced effects on EC cell phenotypes. STAT3-activated LDHB promoted endometrial cancer cell malignancy by inducing MDH2 production.
Collapse
Affiliation(s)
- Li Shen
- Department of Obstetrics and Gynecology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Yanxia Li
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Cuizhen Sun
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Minjie Teng
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Xiaohe Ye
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Xiaomin Feng
- Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Road, East Lake Eco-Tourism Scenic Spot, Wuhan City, 430070, Hubei, China.
| |
Collapse
|
2
|
Ye Y, Yang F, Gu Z, Li W, Yuan Y, Liu S, Zhou L, Han B, Zheng R, Cao Z. Fibroblast growth factor pathway promotes glycolysis by activating LDHA and suppressing LDHB in a STAT1-dependent manner in prostate cancer. J Transl Med 2024; 22:474. [PMID: 38764020 PMCID: PMC11103983 DOI: 10.1186/s12967-024-05193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The initiation of fibroblast growth factor 1 (FGF1) expression coincident with the decrease of FGF2 expression is a well-documented event in prostate cancer (PCa) progression. Lactate dehydrogenase A (LDHA) and LDHB are essential metabolic products that promote tumor growth. However, the relationship between FGF1/FGF2 and LDHA/B-mediated glycolysis in PCa progression is not reported. Thus, we aimed to explore whether FGF1/2 could regulate LDHA and LDHB to promote glycolysis and explored the involved signaling pathway in PCa progression. METHODS In vitro studies used RT‒qPCR, Western blot, CCK-8 assays, and flow cytometry to analyze gene and protein expression, cell viability, apoptosis, and cell cycle in PCa cell lines. Glycolysis was assessed by measuring glucose consumption, lactate production, and extracellular acidification rate (ECAR). For in vivo studies, a xenograft mouse model of PCa was established and treated with an FGF pathway inhibitor, and tumor growth was monitored. RESULTS FGF1, FGF2, and LDHA were expressed at high levels in PCa cells, while LDHB expression was low. FGF1/2 positively modulated LDHA and negatively modulated LDHB in PCa cells. The depletion of FGF1, FGF2, or LDHA reduced cell proliferation, induced cell cycle arrest, and inhibited glycolysis. LDHB overexpression showed similar inhibitory effect on PCa cells. Mechanistically, we found that FGF1/2 positively regulated STAT1 and STAT1 transcriptionally activated LDHA expression while suppressed LDHB expression. Furthermore, the treatment of an FGF pathway inhibitor suppressed PCa tumor growth in mice. CONCLUSION The FGF pathway facilitates glycolysis by activating LDHA and suppressing LDHB in a STAT1-dependent manner in PCa.
Collapse
Affiliation(s)
- Yongkang Ye
- Department of Urology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
| | - Fukan Yang
- Department of Urology, Guangdong Medical University, Graduate School, 524002, Zhanjiang, China
| | - Zhanhao Gu
- Department of Urology, Guangdong Medical University, Graduate School, 524002, Zhanjiang, China
| | - Wenxuan Li
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
| | - Yinjiao Yuan
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, 510510, Guangzhou, China
| | - Shaoqian Liu
- Department of Urology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
| | - Le Zhou
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, 510510, Guangzhou, China
| | - Bo Han
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, 510510, Guangzhou, China
| | - Ruinian Zheng
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China.
- The First School of Clinical Medicine, Southern Medical University, 510510, Guangzhou, China.
| | - Zhengguo Cao
- Department of Urology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China.
| |
Collapse
|
3
|
Zhang P, Wan Y, Ma J, Gong J, Zhong Z, Cui Y, Zhang H, Da Y, Ma J, Li C, Liu L, Gong T, Tan Y, Zhang C. Epigenetic silencing of LDHB promotes hepatocellular carcinoma by remodeling the tumor microenvironment. Cancer Immunol Immunother 2024; 73:127. [PMID: 38739169 PMCID: PMC11091036 DOI: 10.1007/s00262-024-03717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Lactate dehydrogenase B (LDHB) reversibly catalyzes the conversion of pyruvate to lactate or lactate to pyruvate and expressed in various malignancies. However, the role of LDHB in modulating immune responses against hepatocellular carcinoma (HCC) remains largely unknown. Here, we found that down-regulation of lactate dehydrogenase B (LDHB) was coupled with the promoter hypermethylation and knocking down the DNA methyltransferase 3A (DNMT 3A) restored LDHB expression levels in HCC cell lines. Bioinformatics analysis of the HCC cohort from The Cancer Genome Atlas revealed a significant positive correlation between LDHB expression and immune regulatory signaling pathways and immune cell infiltrations. Moreover, immune checkpoint inhibitors (ICIs) have shown considerable promise for HCC treatment and patients with higher LDHB expression responded better to ICIs. Finally, we found that overexpression of LDHB suppressed HCC growth in immunocompetent but not in immunodeficient mice, suggesting that the host immune system was involved in the LDHB-medicated tumor suppression. Our findings indicate that DNMT3A-mediated epigenetic silencing of LDHB may contribute to HCC progression through remodeling the tumor immune microenvironment, and LDHB may become a potential prognostic biomarker and therapeutic target for HCC immunotherapy.
Collapse
Affiliation(s)
- Peng Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
| | - Yi Wan
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
| | - Jinrong Ma
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
| | - Jin Gong
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Ziwei Zhong
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
| | - Yuxin Cui
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Hongli Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
| | - Yanyan Da
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
| | - Junpeng Ma
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
| | - Chenxi Li
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
| | - Lijuan Liu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China
| | - Youwen Tan
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China
| | - Chengsheng Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China.
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China.
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China.
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China.
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China.
| |
Collapse
|
4
|
Kapnick SM, Martin CA, Jewell CM. Engineering metabolism to modulate immunity. Adv Drug Deliv Rev 2024; 204:115122. [PMID: 37935318 PMCID: PMC10843796 DOI: 10.1016/j.addr.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.
Collapse
Affiliation(s)
- Senta M Kapnick
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA
| | - Corinne A Martin
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene Street, Suite N9E17, Baltimore, MD, USA.
| |
Collapse
|
5
|
Wang Y, Ming G, Gao B. A potential prognostic prediction model for metastatic osteosarcoma based on bioinformatics analysis. Acta Orthop Belg 2023; 89:373-380. [PMID: 37935218 DOI: 10.52628/89.2.10491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Osteosarcoma (OS) is a malignant primary bone tumor with a high incidence. This study aims to construct a prognostic prediction model by screening the prognostic mRNA of metastatic OS. Data on four eligible expression profiles from the National Center for Biotechnology Information Gene Expression Omnibus repository were obtained based on inclusion criteria and defined as the training set or the validation set. The differentially expressed genres (DEGs) between meta- static and non-metastatic OS samples in the training set were first identified, and DEGs related to prognosis were screened by univariate Cox regression analysis. In total, 107 DEGs related to the prognosis of metastatic OS were identified. Then, 46 DEGs were isolated as the optimized prognostic gene signature, and a metastatic-OS discriminating classifier was constructed, which had a high accuracy in distinguishing metastatic from non-metastatic OS samples. Furthermore, four optimized prognostic gene signatures (ALOX5AP, COL21A1, HLA-DQB1, and LDHB) were further screened, and the prognostic prediction model for metastatic OS was constructed. This model possesses a relatively satisfying prediction ability both in the training set and validation set. The prognostic prediction model that was constructed based on the four prognostic mRNA signatures has a high predictive ability for the prognosis of metastatic OS.
Collapse
|
6
|
White BE, Liu Y, Hakonarson H, Buono RJ. RNA Sequencing in Hypoxia-Adapted T98G Glioblastoma Cells Provides Supportive Evidence for IRE1 as a Potential Therapeutic Target. Genes (Basel) 2023; 14:genes14040841. [PMID: 37107600 PMCID: PMC10138146 DOI: 10.3390/genes14040841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain cancer with a median survival time of 14.6 months after diagnosis. GBM cells have altered metabolism and exhibit the Warburg effect, preferentially producing lactate under aerobic conditions. After standard-of-care treatment for GBM, there is an almost 100% recurrence rate. Hypoxia-adapted, treatment-resistant GBM stem-like cells are thought to drive this high recurrence rate. We used human T98G GBM cells as a model to identify differential gene expression induced by hypoxia and to search for potential therapeutic targets of hypoxia adapted GBM cells. RNA sequencing (RNAseq) and bioinformatics were used to identify differentially expressed genes (DEGs) and cellular pathways affected by hypoxia. We also examined expression of lactate dehydrogenase (LDH) genes using qRT-PCR and zymography as LDH dysregulation is a feature of many cancers. We found 2630 DEGs significantly altered by hypoxia (p < 0.05), 1241 upregulated in hypoxia and 1389 upregulated in normoxia. Hypoxia DEGs were highest in pathways related to glycolysis, hypoxia response, cell adhesion and notably the endoplasmic reticulum, including the inositol-requiring enzyme 1 (IRE1)-mediated unfolded protein response (UPR). These results, paired with numerous published preclinical data, provide additional evidence that inhibition of the IRE1-mediated UPR may have therapeutic potential in treating GBM. We propose a possible drug repurposing strategy to simultaneously target IRE1 and the spleen tyrosine kinase (SYK) in patients with GBM.
Collapse
|
7
|
Wu Z, Wang J, Li Y, Liu J, Kang Z, Yan W. Characterization of a lactate metabolism-related signature for evaluation of immune features and prediction prognosis in glioma. Front Neurol 2023; 13:1064349. [PMID: 36698888 PMCID: PMC9868722 DOI: 10.3389/fneur.2022.1064349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background Glioma is one of the most typical tumors in the central nervous system with a poor prognosis, and the optimal management strategy remains controversial. Lactate in the tumor microenvironment is known to promote cancer progression, but its impact on clinical outcomes of glioma is largely unknown. Methods Glioma RNA-seq data were obtained from TCGA and GCGA databases. Lactate metabolism genes (LMGs) were then evaluated to construct an LMG model in glioma using Cox and LASSO regression. Immune cell infiltration, immune checkpoint gene expression, enriched pathways, genetic alteration, and drug sensitivity were compared within the risk subgroups. Based on the risk score and clinicopathological features, a nomogram was developed to predict prognosis in patients with glioma. Results Five genes (LDHA, LDHB, MRS2, SL16A1, and SL25A12) showed a good prognostic value and were used to construct an LMG-based risk score. This risk score was shown as an independent prognostic factor with good predictive power in both training and validation cohorts (p < 0.001). The LMG signature was found to be correlated with the expression of immune checkpoint genes and immune infiltration and could shape the tumor microenvironment. Genetic alteration, dysregulated metabolism, and tumorigenesis pathways could be the underlying contributing factors that affect LMG risk stratification. The patients with glioma in the LMG high-risk group showed high sensitivity to EGFR inhibitors. In addition, our nomogram model could effectively predict overall survival with an area under the curve value of 0.894. Conclusion We explored the characteristics of LMGs in glioma and proposed an LMG-based signature. This prognostic model could predict the survival of patients with glioma and help clinical oncologists plan more individualized and effective therapeutic regimens.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Musculoskeletal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yanan Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Jianmin Liu ✉
| | - Zijian Kang
- Department of Musculoskeletal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Department of Rheumatology and Immunology, Second Affiliated Hospital of Naval Medical University, Shanghai, China,Zijian Kang ✉
| | - Wangjun Yan
- Department of Musculoskeletal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Wangjun Yan ✉
| |
Collapse
|
8
|
Kocianova E, Piatrikova V, Golias T. Revisiting the Warburg Effect with Focus on Lactate. Cancers (Basel) 2022; 14:cancers14246028. [PMID: 36551514 PMCID: PMC9776395 DOI: 10.3390/cancers14246028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Rewired metabolism is acknowledged as one of the drivers of tumor growth. As a result, aerobic glycolysis, or the Warburg effect, is a feature of many cancers. Increased glucose uptake and glycolysis provide intermediates for anabolic reactions necessary for cancer cell proliferation while contributing sufficient energy. However, the accompanying increased lactate production, seemingly wasting glucose carbon, was originally explained only by the need to regenerate NAD+ for successive rounds of glycolysis by the lactate dehydrogenase (LDH) reaction in the cytosol. After the discovery of a mitochondrial LDH isoform, lactate oxidation entered the picture, and lactate was recognized as an important oxidative fuel. It has also been revealed that lactate serves a variety of signaling functions and helps cells adapt to the new environment. Here, we discuss recent findings on lactate metabolism and signaling in cancer while attempting to explain why the Warburg effect is adopted by cancer cells.
Collapse
Affiliation(s)
- Eva Kocianova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Viktoria Piatrikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Tereza Golias
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
9
|
Pouysségur J, Marchiq I, Parks SK, Durivault J, Ždralević M, Vucetic M. 'Warburg effect' controls tumor growth, bacterial, viral infections and immunity - Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol 2022; 86:334-346. [PMID: 35820598 DOI: 10.1016/j.semcancer.2022.07.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
The evolutionary pressure for life transitioning from extended periods of hypoxia to an increasingly oxygenated atmosphere initiated drastic selections for a variety of biochemical pathways supporting the robust life currently present on the planet. First, we discuss how fermentative glycolysis, a primitive metabolic pathway present at the emergence of life, is instrumental for the rapid growth of cancer, regenerating tissues, immune cells but also bacteria and viruses during infections. The 'Warburg effect', activated via Myc and HIF-1 in response to growth factors and hypoxia, is an essential metabolic and energetic pathway which satisfies nutritional and energetic demands required for rapid genome replication. Second, we present the key role of lactic acid, the end-product of fermentative glycolysis able to move across cell membranes in both directions via monocarboxylate transporting proteins (i.e., MCT1/4) contributing to cell-pH homeostasis but also to the complex immune response via acidosis of the tumor microenvironment. Importantly lactate is recycled in multiple organs as a major metabolic precursor of gluconeogenesis and energy source protecting cells and animals from harsh nutritional or oxygen restrictions. Third, we revisit the Warburg effect via CRISPR-Cas9 disruption of glucose-6-phosphate isomerase (GPI-KO) or lactate dehydrogenases (LDHA/B-DKO) in two aggressive tumors (melanoma B16-F10, human adenocarcinoma LS174T). Full suppression of lactic acid production reduces but does not suppress tumor growth due to reactivation of OXPHOS. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumor growth as a result of intracellular acidosis. Finally, we briefly discuss the current clinical developments of an MCT1 specific drug AZ3965, and the recent progress for a specific in vivo MCT4 inhibitor, two drugs of very high potential for future cancer clinical applications.
Collapse
Affiliation(s)
- J Pouysségur
- University Côte d'Azur, (IRCAN), CNRS, INSERM, Centre A, Lacassagne, 06189 Nice, France; Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco.
| | - I Marchiq
- University Côte d'Azur, (IRCAN), CNRS, INSERM, Centre A, Lacassagne, 06189 Nice, France.
| | - S K Parks
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco.
| | - J Durivault
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
| | - M Ždralević
- University Côte d'Azur, (IRCAN), CNRS, INSERM, Centre A, Lacassagne, 06189 Nice, France.
| | - M Vucetic
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
| |
Collapse
|
10
|
Abstract
High serum lactate dehydrogenase (LDH) levels are typically associated with a poor prognosis in many cancer types. Even the most effective drugs, which have radically improved outcomes in patients with melanoma over the past decade, provide only marginal benefit to those with high serum LDH levels. When viewed separately from the oncological, biochemical, biological and immunological perspectives, serum LDH is often interpreted in very different ways. Oncologists usually see high serum LDH only as a robust biomarker of a poor prognosis, and biochemists are aware of the complexity of the various LDH isoforms and of their key roles in cancer metabolism, whereas LDH is typically considered to be oncogenic and/or immunosuppressive by cancer biologists and immunologists. Integrating these various viewpoints shows that the regulation of the five LDH isoforms, and their enzymatic and non-enzymatic functions is closely related to key oncological processes. In this Review, we highlight that serum LDH is far more than a simple indicator of tumour burden; it is a complex biomarker associated with the activation of several oncogenic signalling pathways as well as with the metabolic activity, invasiveness and immunogenicity of many tumours, and constitutes an extremely attractive target for cancer therapy.
Collapse
|
11
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022; 7:305. [PMID: 36050306 PMCID: PMC9434547 DOI: 10.1038/s41392-022-01151-3] [Citation(s) in RCA: 519] [Impact Index Per Article: 173.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
The current understanding of lactate extends from its origins as a byproduct of glycolysis to its role in tumor metabolism, as identified by studies on the Warburg effect. The lactate shuttle hypothesis suggests that lactate plays an important role as a bridging signaling molecule that coordinates signaling among different cells, organs and tissues. Lactylation is a posttranslational modification initially reported by Professor Yingming Zhao’s research group in 2019. Subsequent studies confirmed that lactylation is a vital component of lactate function and is involved in tumor proliferation, neural excitation, inflammation and other biological processes. An indispensable substance for various physiological cellular functions, lactate plays a regulatory role in different aspects of energy metabolism and signal transduction. Therefore, a comprehensive review and summary of lactate is presented to clarify the role of lactate in disease and to provide a reference and direction for future research. This review offers a systematic overview of lactate homeostasis and its roles in physiological and pathological processes, as well as a comprehensive overview of the effects of lactylation in various diseases, particularly inflammation and cancer.
Collapse
Affiliation(s)
- Xiaolu Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaotong Lin
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Jian-Xun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
12
|
Sheng X, Qin JM. Clinical diagnosis and treatment strategies for sarcomatoid intrahepatic cholangiocarcinoma. Shijie Huaren Xiaohua Zazhi 2022; 30:614-622. [DOI: 10.11569/wcjd.v30.i14.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sarcomatoid intrahepatic cholangiocarcinoma (SiCCA) is a malignant tumor composed of mixed epithelial cells and mesenchymal cells derived from malignant bile duct cells. SiCCA has a low incidence and has no specific clinical manifestations and serological and imaging examinations. The diagnosis of SiCCA relies on histopathology and immunohistochemistry. The very high malignancy of SiCCA makes it prone to liver and other organ metastases. SiCCA has a poor prognosis because it has a low surgical resection rate, is easy to relapse shortly after surgery, and has no effective prevention and treatment measures. Comprehensive analysis integrating imaging, serum tumor markers, and histopathological examination technology is an important measure to improve the diagnosis of SiCCA and reduce the misdiagnosis rate. Early diagnosis, surgical treatment, and comprehensive postoperative treatment based on chemotherapy are the keys to improving the survival and prognosis of patients with SiCCA.
Collapse
Affiliation(s)
- Xia Sheng
- Department of Pathology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China
| | - Jian-Min Qin
- Department of General Surgery, The Third Hospital Affiliated to Naval Military Medical University, Shanghai 201805, China
| |
Collapse
|
13
|
Wei H, Sun Z, Ye X, Yu J, Ye Y, Wang Z. Establishment of a prediction model for disease progression within one year in newly diagnosed multiple myeloma patients. Hematology 2022; 27:575-582. [PMID: 35617129 DOI: 10.1080/16078454.2022.2067940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Multiple myeloma is still an incurable disease In the past decade, with the continuous progress of treatment methods, the progression-free survival of patients has been prolonged, but some patients still progress in the early stage of the disease. Our research analyses the clinical laboratory indicators of newly diagnosed multiple myeloma (NDMM) patients, to obtain the relevant factors of disease progression within one year in MM patients and to establish a prediction model. 108 MM patients treated in our hospital from January 2015 to January 2020 were retrospectively analyzed. After univariate and multivariate logistic regression analyses, the related factors of disease progression within one year in NDMM patients were obtained, and a prediction model was established. Treatment regimen containing at least two targeted drugs (OR = 0.226, 95% CI 0.068-0.753), increased lactate dehydrogenase(LDH, OR = 3.452, 95% CI 1.101-10.826) and increased serum corrected calcium(OR = 4.466, 95% CI 1.346-14.811) were identified as potential predictors by statistical analysis. The prediction model was obtained: x = -2.042-1.489 × treatment regimen (including at least two targeted drug assignment as 1, otherwise 0) + 1.239 ×LDH (U/L, lactate dehydrogenase elevation assignment as 1, normal as 0) +1.496 × serum corrected calcium (mmol/L, serum corrected calcium elevation assignment as 1, normal as 0). Receiver operating characteristic curve analysis showed that the model has good predictive performance. The possibility of disease progression within one year can be predicted by the prediction model. The model can be used as a reference for clinicians to make individualized treatment plans for patients so that patients can obtain better treatment effects.
Collapse
Affiliation(s)
- Huahua Wei
- Department of Hematology, Shangrao People's Hospital, Shangrao, People's Republic of China
| | - Zhihuang Sun
- Department of Orthopedics, Shangrao People's Hospital, Shangrao, People's Republic of China
| | - Xiaoying Ye
- Department of Hematology, Shangrao People's Hospital, Shangrao, People's Republic of China
| | - Jieni Yu
- Department of Hematology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People's Republic of China
| | - Yinhai Ye
- Department of Blood Transfusion, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Zifeng Wang
- Department of Hematology, Shangrao People's Hospital, Shangrao, People's Republic of China
| |
Collapse
|
14
|
Maeda M, Ko M, Mane MM, Cohen IJ, Shindo M, Vemuri K, Serganova I, Blasberg R. Genetic and Drug Inhibition of LDH-A: Effects on Murine Gliomas. Cancers (Basel) 2022; 14:2306. [PMID: 35565435 PMCID: PMC9105502 DOI: 10.3390/cancers14092306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
The effects of the LDH-A depletion via shRNA knockdown on three murine glioma cell lines and corresponding intracranial (i.c.) tumors were studied and compared to pharmacologic (GNE-R-140) inhibition of the LDH enzyme complex, and to shRNA scrambled control (NC) cell lines. The effects of genetic-shRNA LDH-A knockdown and LDH drug-targeted inhibition (GNE-R-140) on tumor-cell metabolism, tumor growth, and animal survival were similar. LDH-A KD and GNE-R-140 unexpectedly increased the aggressiveness of GL261 intracranial gliomas, but not CT2A and ALTS1C1 i.c. gliomas. Furthermore, the bioenergetic profiles (ECAR and OCR) of GL261 NC and LDH-A KD cells under different nutrient limitations showed that (a) exogenous pyruvate is not a major carbon source for metabolism through the TCA cycle of native GL261 cells; and (b) the unique upregulation of LDH-B that occurs in GL261 LDH-A KD cells results in these cells being better able to: (i) metabolize lactate as a primary carbon source through the TCA cycle, (ii) be a net consumer of lactate, and (iii) showed a significant increase in the proliferation rate following the addition of 10 mM lactate to the glucose-free media (only seen in GL261 KD cells). Our study suggests that inhibition of LDH-A/glycolysis may not be a general strategy to inhibit the i.c. growth of all gliomas, since the level of LDH-A expression and its interplay with LDH-B can lead to complex metabolic interactions between tumor cells and their environment. Metabolic-inhibition treatment strategies need to be carefully assessed, since the inhibition of glycolysis (e.g., inhibition of LDH-A) may lead to the unexpected development and activation of alternative metabolic pathways (e.g., upregulation of lipid metabolism and fatty-acid oxidation pathways), resulting in enhanced tumor-cell survival in a nutrient-limited environment and leading to increased tumor aggressiveness.
Collapse
Affiliation(s)
- Masatomo Maeda
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.M.); (M.K.); (M.M.M.); (M.S.); (K.V.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Department of Neurosurgery, Nozaki Tokushukai Hospital, Osaka 5740074, Japan
| | - Myat Ko
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.M.); (M.K.); (M.M.M.); (M.S.); (K.V.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mayuresh M. Mane
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.M.); (M.K.); (M.M.M.); (M.S.); (K.V.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ivan J. Cohen
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Masahiro Shindo
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.M.); (M.K.); (M.M.M.); (M.S.); (K.V.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Department of Neurosurgery, Nozaki Tokushukai Hospital, Osaka 5740074, Japan
- Department of Neurosurgery, Yukioka Hospital, Osaka 5740074, Japan
| | - Kiranmayi Vemuri
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.M.); (M.K.); (M.M.M.); (M.S.); (K.V.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Department of Genetics, Rutgers University, New Brunswick, NJ 08901, USA
| | - Inna Serganova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.M.); (M.K.); (M.M.M.); (M.S.); (K.V.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Weill Cornell Medicine, New York, NY 10021, USA
| | - Ronald Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.M.); (M.K.); (M.M.M.); (M.S.); (K.V.); (I.S.)
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
15
|
Sushentsev N, McLean MA, Warren AY, Benjamin AJV, Brodie C, Frary A, Gill AB, Jones J, Kaggie JD, Lamb BW, Locke MJ, Miller JL, Mills IG, Priest AN, Robb FJL, Shah N, Schulte RF, Graves MJ, Gnanapragasam VJ, Brindle KM, Barrett T, Gallagher FA. Hyperpolarised 13C-MRI identifies the emergence of a glycolytic cell population within intermediate-risk human prostate cancer. Nat Commun 2022; 13:466. [PMID: 35075123 PMCID: PMC8786834 DOI: 10.1038/s41467-022-28069-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperpolarised magnetic resonance imaging (HP 13C-MRI) is an emerging clinical technique to detect [1-13C]lactate production in prostate cancer (PCa) following intravenous injection of hyperpolarised [1-13C]pyruvate. Here we differentiate clinically significant PCa from indolent disease in a low/intermediate-risk population by correlating [1-13C]lactate labelling on MRI with the percentage of Gleason pattern 4 (%GP4) disease. Using immunohistochemistry and spatial transcriptomics, we show that HP 13C-MRI predominantly measures metabolism in the epithelial compartment of the tumour, rather than the stroma. MRI-derived tumour [1-13C]lactate labelling correlated with epithelial mRNA expression of the enzyme lactate dehydrogenase (LDHA and LDHB combined), and the ratio of lactate transporter expression between the epithelial and stromal compartments (epithelium-to-stroma MCT4). We observe similar changes in MCT4, LDHA, and LDHB between tumours with primary Gleason patterns 3 and 4 in an independent TCGA cohort. Therefore, HP 13C-MRI can metabolically phenotype clinically significant disease based on underlying metabolic differences in the epithelial and stromal tumour compartments.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arnold J V Benjamin
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Cara Brodie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Amy Frary
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Andrew B Gill
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Julia Jones
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Benjamin W Lamb
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- School of Allied Health, Anglia Ruskin University, Cambridge, UK
| | - Matthew J Locke
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Jodi L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Andrew N Priest
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | | | - Nimish Shah
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Martin J Graves
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Vincent J Gnanapragasam
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK.
| | - Ferdia A Gallagher
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
You HJ, You BC, Kim JK, Park JM, Song BS, Myung JK. Characterization of Proteins Regulated by Androgen and Protein Kinase a Signaling in VCaP Prostate Cancer Cells. Biomedicines 2021; 9:biomedicines9101404. [PMID: 34680521 PMCID: PMC8533394 DOI: 10.3390/biomedicines9101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen signaling via the androgen receptor (AR) is involved in normal prostate development and prostate cancer progression. In addition to androgen binding, a variety of protein kinases, including cyclic AMP-dependent protein kinase A (PKA), can activate the AR. Although hormone deprivation, especially that of androgen, continues to be an important strategy for treating prostate cancer patients, the disease ultimately progresses to castration-resistant prostate cancer (CRPC), despite a continuous hormone-deprived environment. To date, it remains unclear which pathways in this progression are active and targetable. Here, we performed a proteomic analysis of VCaP cells stimulated with androgen or forskolin to identify proteins specific for androgen-induced and androgen-bypassing signaling, respectively. Patterns of differentially expressed proteins were quantified, and eight proteins showing significant changes in expression were identified. Functional information, including a Gene Ontology analysis, revealed that most of these proteins are involved in metabolic processes and are associated with cancer. The mRNA and protein expression of selected proteins was validated, and functional correlations of identified proteins with signaling in VCaP cells were assessed by measuring metabolites related to each enzyme. These analyses offered new clues regarding effector molecules involved in prostate cancer development, insights that are supported by the demonstration of increased expression levels of the eight identified proteins in prostate cancer patients and assessments of the progression-free interval. Taken together, our findings show that aberrant levels of eight proteins reflect molecular changes that are significantly regulated by androgen and/or PKA signaling pathways, suggesting possible molecular mechanisms of CRPC.
Collapse
Affiliation(s)
- Hye-Jin You
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (H.-J.Y.); (B.-C.Y.)
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Byong-Chul You
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (H.-J.Y.); (B.-C.Y.)
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Jong-Kwang Kim
- Research Core Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea;
| | - Jae-Min Park
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Bo-Seul Song
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Jae-Kyung Myung
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
- Correspondence: ; Tel.: +82-31-920-2746
| |
Collapse
|
17
|
Wu H, Wang Y, Ying M, Jin C, Li J, Hu X. Lactate dehydrogenases amplify reactive oxygen species in cancer cells in response to oxidative stimuli. Signal Transduct Target Ther 2021; 6:242. [PMID: 34176927 PMCID: PMC8236487 DOI: 10.1038/s41392-021-00595-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Previous studies demonstrated that superoxide could initiate and amplify LDH-catalyzed hydrogen peroxide production in aqueous phase, but its physiological relevance is unknown. Here we showed that LDHA and LDHB both exhibited hydrogen peroxide-producing activity, which was significantly enhanced by the superoxide generated from the isolated mitochondria from HeLa cells and patients' cholangiocarcinoma specimen. After LDHA or LDHB were knocked out, hydrogen peroxide produced by Hela or 4T1 cancer cells were significantly reduced. Re-expression of LDHA in LDHA-knockout HeLa cells partially restored hydrogen peroxide production. In HeLa and 4T1 cells, LDHA or LDHB knockout or LDH inhibitor FX11 significantly decreased ROS induction by modulators of the mitochondrial electron transfer chain (antimycin, oligomycin, rotenone), hypoxia, and pharmacological ROS inducers piperlogumine (PL) and phenethyl isothiocyanate (PEITC). Moreover, the tumors formed by LDHA or LDHB knockout HeLa or 4T1 cells exhibited a significantly less oxidative state than those formed by control cells. Collectively, we provide a mechanistic understanding of a link between LDH and cellular hydrogen peroxide production or oxidative stress in cancer cells in vitro and in vivo.
Collapse
Grants
- This work has been supported in part by the China National 973 project (2013CB911303), China Natural Sciences Foundation projects (81470126), a key project (2018C03009) funded by Zhejiang Provincial Department of Sciences and Technologies, and the Fundamental Research Funds for the Central Universities (2017XZZX001-012019FZJD009), National Ministry of Education, China, to XH, and Zhejiang Provincial Natural Science Foundation of China (LY17H160036), the Fundamental Research Funds for the Central Universities (2017FZA7010) and China Natural Sciences Foundation project (81301707), to HW.
- Zhejiang Provincial Natural Science Foundation of China (LY17H160036), the Fundamental Research Funds for the Central Universities and China Natural Sciences Foundation project 2017FZA7010, to HW.
Collapse
Affiliation(s)
- Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqi Wang
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengmeng Jin
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangtao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Frank AC, Raue R, Fuhrmann DC, Sirait-Fischer E, Reuse C, Weigert A, Lütjohann D, Hiller K, Syed SN, Brüne B. Lactate dehydrogenase B regulates macrophage metabolism in the tumor microenvironment. Am J Cancer Res 2021; 11:7570-7588. [PMID: 34158867 PMCID: PMC8210612 DOI: 10.7150/thno.58380] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive. Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging. Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation. Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions.
Collapse
|
19
|
Hamadneh L, Al-Lakkis L, Alhusban AA, Tarawneh S, Abu-Irmaileh B, Albustanji S, Al-Bawab AQ. Changes in Lactate Production, Lactate Dehydrogenase Genes Expression and DNA Methylation in Response to Tamoxifen Resistance Development in MCF-7 Cell Line. Genes (Basel) 2021; 12:genes12050777. [PMID: 34069745 PMCID: PMC8160872 DOI: 10.3390/genes12050777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Lactate dehydrogenase (LDH) is a key enzyme in the last step of glycolysis, playing a role in the pyruvate-to-lactate reaction. It is associated with the prognosis and metastasis of many cancers, including breast cancer. In this study, we investigated the changes in LDH gene expression and lactate concentrations in the culture media during tamoxifen resistance development in the MCF-7 cell line, and examined LDHB promoter methylation levels. An upregulation of 2.9 times of LDHB gene expression was observed around the IC50 concentration of tamoxifen in treated cells, while fluctuation in LDHA gene expression levels was found. Furthermore, morphological changes in the cell shape accompanied the changes in gene expression. Bisulfate treatment followed by sequencing of the LDHB promoter was performed to track any change in methylation levels; hypomethylation of CpG areas was found, suggesting that gene expression upregulation could be due to methylation level changes. Changes in LDHA and LDHB gene expression were correlated with the increase in lactate concentration in the culture media of treated MCF-7 cells.
Collapse
Affiliation(s)
- Lama Hamadneh
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (L.A.-L.); (A.A.A.); (S.A.); (A.Q.A.-B.)
- Correspondence: ; Tel.: +96-277-777-1900
| | - Lara Al-Lakkis
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (L.A.-L.); (A.A.A.); (S.A.); (A.Q.A.-B.)
| | - Ala A. Alhusban
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (L.A.-L.); (A.A.A.); (S.A.); (A.Q.A.-B.)
| | - Shahd Tarawneh
- Faculty of Science, Mutah University, Karak 61710, Jordan;
| | - Bashaer Abu-Irmaileh
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan;
| | - Sokiyna Albustanji
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (L.A.-L.); (A.A.A.); (S.A.); (A.Q.A.-B.)
| | - Abdel Qader Al-Bawab
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (L.A.-L.); (A.A.A.); (S.A.); (A.Q.A.-B.)
| |
Collapse
|
20
|
Wang JM, Jiang JY, Zhang DL, Du X, Wu T, Du ZX. HYOU1 facilitates proliferation, invasion and glycolysis of papillary thyroid cancer via stabilizing LDHB mRNA. J Cell Mol Med 2021; 25:4814-4825. [PMID: 33792181 PMCID: PMC8107106 DOI: 10.1111/jcmm.16453] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/05/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
HYOU1 is upregulated in many kinds of cancer cells, and its high expression is associated with tumour invasiveness and poor prognosis. However, the role of HYOU1 in papillary thyroid cancer (PTC) development and progression remains to be elucidated. Here, we reported that HYOU1 was highly expressed in human PTC and associated with poor prognosis. HYOU1 silencing suppressed the proliferation, migration and invasion of PTC cells. Mechanistic analyses showed that HYOU1 silencing promoted oxidative phosphorylation while inhibited aerobic glycolysis via downregulating LDHB at the posttranscriptional level. We further confirmed that the 3'UTR of LDHB mRNA is the indirect target of HYOU1 silencing and HYOU1 silencing increased miR‐375‐3p levels. While LDHB overexpression significantly suppressed the inhibitory effects of HYOU1 silencing on aerobic glycolysis, proliferation, migration and invasion in PTC cells. Taken together, our findings suggest that HYOU1 promotes glycolysis and malignant progression in PTC cells via upregulating LDHB expression, providing a potential target for developing novel anticancer agents.
Collapse
Affiliation(s)
- Jia-Mei Wang
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China.,Clinical medical laboratory, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Da-Lin Zhang
- Department of Thyroid Surgery, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Xin Du
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Tong Wu
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhen-Xian Du
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Qing Y, Dong L, Gao L, Li C, Li Y, Han L, Prince E, Tan B, Deng X, Wetzel C, Shen C, Gao M, Chen Z, Li W, Zhang B, Braas D, Ten Hoeve J, Sanchez GJ, Chen H, Chan LN, Chen CW, Ann D, Jiang L, Müschen M, Marcucci G, Plas DR, Li Z, Su R, Chen J. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m 6A/PFKP/LDHB axis. Mol Cell 2021; 81:922-939.e9. [PMID: 33434505 PMCID: PMC7935770 DOI: 10.1016/j.molcel.2020.12.026] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/09/2020] [Accepted: 12/12/2020] [Indexed: 01/13/2023]
Abstract
R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.
Collapse
MESH Headings
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Female
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic
- Glutarates/pharmacology
- Glycolysis/drug effects
- Glycolysis/genetics
- HEK293 Cells
- Humans
- K562 Cells
- Lactate Dehydrogenases/antagonists & inhibitors
- Lactate Dehydrogenases/genetics
- Lactate Dehydrogenases/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oxidative Phosphorylation/drug effects
- Phosphofructokinase-1, Type C/antagonists & inhibitors
- Phosphofructokinase-1, Type C/genetics
- Phosphofructokinase-1, Type C/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Survival Analysis
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pathology and Genomic Medicine, Houston Methodist, Houston, TX 77030, USA
| | - Chenying Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Key Laboratory of Hematopoietic Malignancies, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 31003, China
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, China
| | - Emily Prince
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Collin Wetzel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Min Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineer (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - Daniel Braas
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerardo Javier Sanchez
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Huiying Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lai N Chan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Internal Medicine (Hematology) and Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - David Ann
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Lei Jiang
- Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Department of Internal Medicine (Hematology) and Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist, Houston, TX 77030, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
22
|
Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol 2021; 21:151-161. [PMID: 32839570 DOI: 10.1038/s41577-020-0406-2] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
The microenvironment in cancerous tissues is immunosuppressive and pro-tumorigenic, whereas the microenvironment of tissues affected by chronic inflammatory disease is pro-inflammatory and anti-resolution. Despite these opposing immunological states, the metabolic states in the tissue microenvironments of cancer and inflammatory diseases are similar: both are hypoxic, show elevated levels of lactate and other metabolic by-products and have low levels of nutrients. In this Review, we describe how the bioavailability of lactate differs in the microenvironments of tumours and inflammatory diseases compared with normal tissues, thus contributing to the establishment of specific immunological states in disease. A clear understanding of the metabolic signature of tumours and inflammatory diseases will enable therapeutic intervention aimed at resetting the bioavailability of metabolites and correcting the dysregulated immunological state, triggering beneficial cytotoxic, inflammatory responses in tumours and immunosuppressive responses in chronic inflammation.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Chin-Hsien Tsai
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne, Switzerland.
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
23
|
Fan S, Wu K, Zhao M, Yuan J, Ma S, Zhu E, Chen Y, Ding H, Yi L, Chen J. LDHB inhibition induces mitophagy and facilitates the progression of CSFV infection. Autophagy 2020; 17:2305-2324. [PMID: 32924761 DOI: 10.1080/15548627.2020.1823123] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cellular metabolism caters to the energy and metabolite needs of cells. Although the role of the terminal metabolic enzyme LDHB (lactate dehydrogenase B) in the glycolysis pathway has been widely studied in cancer cells, its role in viral infection is relatively unknown. In this study, we found that CSFV (classical swine fever virus) infection reduces pyruvate levels while promotes lactate release in pigs and in PK-15 cells. Moreover, using a yeast two-hybrid screening system, we identified LDHB as a novel interacting partner of CSFV non-structural protein NS3. These results were confirmed via co-immunoprecipitation, glutathione S-transferase and confocal assays. Furthermore, knockdown of LDHB via interfering RNA induced mitochondrial fission and mitophagy, as detected reduced mitochondrial mass. Upon inhibition of LDHB, expression of the mitophagy proteins TOMM20 and VDAC1 decreased and the ubiquitination of MFN2, a mitochondrial fusion mediator, was promoted. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of autophagosomes to lysosomes in LDHB inhibition cells. Furthermore, LDHB inhibition promoted NFKB signaling, which was regulated by mitophagy; meanwhile, infection with CSFV negated these NFKB anti-viral responses. Inhibition of LDHB also inhibited apoptosis, providing an environment conducive to persistent viral infection. Finally, we demonstrated that LDHB inhibition promoted CSFV growth via mitophagy, whereas its overexpression decreased CSFV replication. Our data revealed a novel mechanism through which LDHB, a metabolic enzyme, mediates CSFV infection, and provides new avenues for the development of anti-viral strategies.Abbreviations: 3-MA:3-methyladenine; CCCP:carbonyl cyanide 3-chlorophenylhydrazone; CCK-8:cell counting kit-8; CSFV:classical swine fever virus; DAPI:4',6-diamidino-2-phenylindole; DMSO:dimethyl sulfoxide; EGFP:enhanced green fluorescent protein; FBS:fetal bovine serum; FITC:fluorescein isothiocyanate; GST:glutathione-S-transferase; HCV:hepatitis C virus; IFN:interferon; LDH:lactate dehydrogenase; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MFN2:mitofusin 2; MOI:multiplicity of infection; NFKB:nuclear factor kappa B subunit 1; NFKBIA:nuclear factor inhibitor alpha; NS3:nonstructural protein 3; NKIRAS2:NFKB inhibitor interacting Ras like 2; PRKN:parkin E3 ubiquitin protein ligase; PBS:phosphate-buffered saline; qRT-PCR:real-time quantitative reverse transcriptase polymerase chain reaction; RELA:RELA proto-oncogene, NF-kB subunit; shRNA: short hairpin RNA; siRNA: small interfering RNA; TCID50:50% tissue culture infectious doses; TEM:transmission electron microscopy; TNF:tumor necrosis factor; TOMM20:translocase of outer mitochondrial membrane 20; VDAC1:voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jin Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Shengming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Erpeng Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yuming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
24
|
Mendes C, Serpa J. Revisiting lactate dynamics in cancer—a metabolic expertise or an alternative attempt to survive? J Mol Med (Berl) 2020; 98:1397-1414. [DOI: 10.1007/s00109-020-01965-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
|
25
|
Liu J, Li Y, Chen XQ, Sun C, Sun XL, Yang Z, Kong QP. rs11046147 mutation in the promoter region of lactate dehydrogenase-B as a potential predictor of prognosis in triple-negative breast cancer. Cancer Commun (Lond) 2020; 40:279-282. [PMID: 32432403 PMCID: PMC7307255 DOI: 10.1002/cac2.12031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/09/2020] [Accepted: 04/26/2020] [Indexed: 01/26/2023] Open
Affiliation(s)
- Jia Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, P. R. China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming, Yunnan, 650223, P. R. China.,Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China
| | - Yue Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, P. R. China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming, Yunnan, 650223, P. R. China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650223, P. R. China
| | - Xiao-Qiong Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, P. R. China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming, Yunnan, 650223, P. R. China
| | - Chang Sun
- College of Life Science, Shanxi Normal University, Xi'an, Shanxi, 710119, P. R. China
| | - Xiu-Li Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China
| | - Zheng Yang
- Department of Pathology, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518100, P. R. China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, P. R. China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming, Yunnan, 650223, P. R. China
| |
Collapse
|
26
|
Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT, Rahmani AH. The Biochemical and Clinical Perspectives of Lactate Dehydrogenase: An Enzyme of Active Metabolism. Endocr Metab Immune Disord Drug Targets 2020; 20:855-868. [PMID: 31886754 DOI: 10.2174/1871530320666191230141110] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lactate dehydrogenase (LDH) is a group of oxidoreductase isoenzymes catalyzing the reversible reaction between pyruvate and lactate. The five isoforms of this enzyme, formed from two subunits, vary in isoelectric points and these isoforms have different substrate affinity, inhibition constants and electrophoretic mobility. These diverse biochemical properties play a key role in its cellular, tissue and organ specificity. Though LDH is predominantly present in the cytoplasm, it has a multi-organellar location as well. OBJECTIVE The primary objective of this review article is to provide an update in parallel, the previous and recent biochemical views and its clinical significance in different diseases. METHODS With the help of certain inhibitors, its active site three-dimensional view, reactions mechanisms and metabolic pathways have been sorted out to a greater extent. Overexpression of LDH in different cancers plays a principal role in anaerobic cellular metabolism, hence several inhibitors have been designed to employ as novel anticancer agents. DISCUSSION LDH performs a very important role in overall body metabolism and some signals can induce isoenzyme switching under certain circumstances, ensuring that the tissues consistently maintain adequate ATP supply. This enzyme also experiences some posttranslational modifications, to have diversified metabolic roles. Different toxicological and pathological complications damage various organs, which ultimately result in leakage of this enzyme in serum. Hence, unusual LDH isoform level in serum serves as a significant biomarker of different diseases. CONCLUSION LDH is an important diagnostic biomarker for some common diseases like cancer, thyroid disorders, tuberculosis, etc. In general, LDH plays a key role in the clinical diagnosis of various common and rare diseases, as this enzyme has a prominent role in active metabolism.
Collapse
Affiliation(s)
- Amjad A Khan
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Khaled S Allemailem
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Sivakumar J T Gowder
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City,
Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Vietnam
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| |
Collapse
|
27
|
Cheng A, Zhang P, Wang B, Yang D, Duan X, Jiang Y, Xu T, Jiang Y, Shi J, Ding C, Wu G, Sang Z, Wu Q, Wang H, Wu M, Zhang Z, Pan X, Pan YY, Gao P, Zhang H, Zhou CZ, Guo J, Yang Z. Aurora-A mediated phosphorylation of LDHB promotes glycolysis and tumor progression by relieving the substrate-inhibition effect. Nat Commun 2019; 10:5566. [PMID: 31804482 PMCID: PMC6895051 DOI: 10.1038/s41467-019-13485-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/08/2019] [Indexed: 02/08/2023] Open
Abstract
Overexpressed Aurora-A kinase promotes tumor growth through various pathways, but whether Aurora-A is also involved in metabolic reprogramming-mediated cancer progression remains unknown. Here, we report that Aurora-A directly interacts with and phosphorylates lactate dehydrogenase B (LDHB), a subunit of the tetrameric enzyme LDH that catalyzes the interconversion between pyruvate and lactate. Aurora-A-mediated phosphorylation of LDHB serine 162 significantly increases its activity in reducing pyruvate to lactate, which efficiently promotes NAD+ regeneration, glycolytic flux, lactate production and bio-synthesis with glycolytic intermediates. Mechanistically, LDHB serine 162 phosphorylation relieves its substrate inhibition effect by pyruvate, resulting in remarkable elevation in the conversions of pyruvate and NADH to lactate and NAD+. Blocking S162 phosphorylation by expression of a LDHB-S162A mutant inhibited glycolysis and tumor growth in cancer cells and xenograft models. This study uncovers a function of Aurora-A in glycolytic modulation and a mechanism through which LDHB directly contributes to the Warburg effect.
Collapse
Affiliation(s)
- Aoxing Cheng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bo Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dongdong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongliang Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ya Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiahui Shi
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chengtao Ding
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gao Wu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhihong Sang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Qiang Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mian Wu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yue-Yin Pan
- Department of Medical Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ping Gao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhenye Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
28
|
Mitochondrial Metabolism in Cancer. A Tangled Topic. Which Role for Proteomics? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:1-16. [DOI: 10.1007/978-981-13-8367-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Jia Z, Zhu J, Zhuo Y, Li R, Qu H, Wang S, Wang M, Lu J, Chater JM, Ma R, Liu ZZ, Cai Z, Wu Y, Jiang F, He H, Zhong WD, Wu CL. Offsetting Expression Profiles of Prognostic Markers in Prostate Tumor vs. Its Microenvironment. Front Oncol 2019; 9:539. [PMID: 31316912 PMCID: PMC6611437 DOI: 10.3389/fonc.2019.00539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Diagnosis of the presence of tumors and subsequent prognosis based on tumor microenvironment becomes more clinically practical because tumor-adjacent tissues are easy to collect and they are more genetically homogeneous. The purpose of this study was to identify new prognostic markers in prostate stroma that are near the tumor. We have demonstrated the prognostic features of FGFR1, FRS2, S6K1, LDHB, MYPT1, and P-LDHA in prostate tumors using tissue microarrays (TMAs) which consist of 241 patient samples from Massachusetts General Hospital (MGH). In this study, we investigated these six markers in the tumor microenvironment using an Aperio Imagescope system in the same TMAs. The joint prognostic power of markers was further evaluated and classified using a new algorithm named Weighted Dichotomizing. The classifier was verified via rigorous 10-fold cross validation. Statistical analysis of the protein expression indicated that in tumor-adjacent stroma FGFR1 and MYPT1 were significantly correlated with patient outcomes and LDHB showed the outcome-association tendency. More interestingly, these correlations were completely opposite regarding tumor tissue as previously reported. The results suggest that prognostic testing should utilize either tumor-enriched tissue or stroma with distinct signature profiles rather than using mixture of both tissue types. The new classifier based on stroma tissue has potential value in the clinical management of prostate cancer patients.
Collapse
Affiliation(s)
- Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guangzhou, China
| | - Yangjia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruidong Li
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Han Qu
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Shibo Wang
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Meiyue Wang
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jianming Lu
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - John M Chater
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Renyuan Ma
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States.,Department of Mathematics, Bowdoin College, Brunswick, ME, United States
| | - Ze-Zhen Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiduan Cai
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongding Wu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Funeng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huichan He
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chin-Lee Wu
- Department of Pathology and Urology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Lactate Dehydrogenases as Metabolic Links between Tumor and Stroma in the Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11060750. [PMID: 31146503 PMCID: PMC6627402 DOI: 10.3390/cancers11060750] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a metabolic disease in which abnormally proliferating cancer cells rewire metabolic pathways in the tumor microenvironment (TME). Molecular reprogramming in the TME helps cancer cells to fulfill elevated metabolic demands for bioenergetics and cellular biosynthesis. One of the ways through which cancer cell achieve this is by regulating the expression of metabolic enzymes. Lactate dehydrogenase (LDH) is the primary metabolic enzyme that converts pyruvate to lactate and vice versa. LDH also plays a significant role in regulating nutrient exchange between tumor and stroma. Thus, targeting human lactate dehydrogenase for treating advanced carcinomas may be of benefit. LDHA and LDHB, two isoenzymes of LDH, participate in tumor stroma metabolic interaction and exchange of metabolic fuel and thus could serve as potential anticancer drug targets. This article reviews recent research discussing the roles of lactate dehydrogenase in cancer metabolism. As molecular regulation of LDHA and LDHB in different cancer remains obscure, we also review signaling pathways regulating LDHA and LDHB expression. We highlight on the role of small molecule inhibitors in targeting LDH activity and we emphasize the development of safer and more effective LDH inhibitors. We trust that this review will also generate interest in designing combination therapies based on LDH inhibition, with LDHA being targeted in tumors and LDHB in stromal cells for better treatment outcome.
Collapse
|
31
|
Li L, Wang Y, Wang Q, Qu J, Wei X, Xu J, Wang Y, Suo F, Zhang Y. High developmental pluripotency‑associated 4 expression promotes cell proliferation and glycolysis, and predicts poor prognosis in non‑small‑cell lung cancer. Mol Med Rep 2019; 20:445-454. [PMID: 31180527 PMCID: PMC6580026 DOI: 10.3892/mmr.2019.10272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/15/2019] [Indexed: 12/22/2022] Open
Abstract
The developmental pluripotency‑associated 4 (Dppa4) gene serves critical roles in cell self‑renewal, as well as in cancer development and progression. However, the regulatory role of Dppa4 in non‑small‑cell lung cancer (NSCLC) and its underlying mechanisms remain elusive. The aim of the present study was to investigate the biological function of Dppa4 in NSCLC and its underlying mechanism of action. Dppa4 expression was measured in NSCLC tissue samples and cell lines, and its effect on cell proliferation and the expression of glycolytic enzymes was determined. In addition, the underlying mechanisms of Dppa4‑induced alterations in glycolysis were analyzed. Univariate and multivariate analyses were also performed to analyze the prognostic significance of clinicopathological characteristics. Dppa4 was found to be highly expressed in NSCLC tissues and cell lines. Furthermore, it was observed that Dppa4 was correlated with the degree of tumor differentiation and TNM stage. Univariate and multivariate analyses identified Dppa4 expression and clinical stage as prognostic factors for NSCLC patients. Kaplan‑Meier analysis further revealed that patients with lower Dppa4 expression exhibited a better prognosis. In NSCLC cells, Dppa4 knockdown inhibited cell proliferation, while Dppa4 overexpression enhanced cell proliferation, which was likely mediated by glycolysis promotion. Dppa4 knockdown had no evident effect on the majority of enzymes examined; however, glucose transporter type 4 (GLUT‑4) and pyruvate kinase isozyme M2 were significantly upregulated, and hexokinase II (HK‑II) and lactate dehydrogenase B (LDHB) were downregulated following Dppa4 knockdown. By contrast, Dppa4 overexpression resulted in downregulation of GLUT‑4, and upregulation of HK‑II, enolase and LDHB, whereas it had no effect on other enzymes. Since the most evident effect was observed on LDHB, further functional experiments demonstrated that this enzyme reversed the promoting effects of Dppa4 in NSCLC. In conclusion, Dppa4 promotes NSCLC progression, partly through glycolysis by LDHB. Thus, the Dppa4‑LDHB axis critically contributes to glycolysis in NSCLC cells, thereby promoting NSCLC development and progression.
Collapse
Affiliation(s)
- Longfei Li
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yufeng Wang
- Department of Nuclear Medicine, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Qiang Wang
- Department of Radiotherapy and Oncology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Jingming Qu
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Xiangju Wei
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Jilei Xu
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yuanjin Wang
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Feng Suo
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yangjie Zhang
- Department of Orthopedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
32
|
Rosso M, Lapyckyj L, Besso MJ, Monge M, Reventós J, Canals F, Quevedo Cuenca JO, Matos ML, Vazquez-Levin MH. Characterization of the molecular changes associated with the overexpression of a novel epithelial cadherin splice variant mRNA in a breast cancer model using proteomics and bioinformatics approaches: identification of changes in cell metabolism and an increased expression of lactate dehydrogenase B. Cancer Metab 2019; 7:5. [PMID: 31086659 PMCID: PMC6507066 DOI: 10.1186/s40170-019-0196-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer (BC) is the most common female cancer and the leading cause of cancer death in women worldwide. Alterations in epithelial cadherin (E-cadherin) expression and functions are associated to BC, but the underlying molecular mechanisms have not been fully elucidated. We have previously reported a novel human E-cadherin splice variant (E-cadherin variant) mRNA. Stable transfectants in MCF-7 human BC cells (MCF7Ecadvar) depicted fibroblast-like cell morphology, E-cadherin wild-type downregulation, and other molecular changes characteristic of the epithelial-to-mesenchymal transition process, reduced cell-cell adhesion, and increased cell migration and invasion. In this study, a two-dimensional differential gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS) protein identification and bioinformatics analyses were done to characterize biological processes and canonical pathways affected by E-cadherin variant expression. Results By 2D-DIGE and MS analysis, 50 proteins were found differentially expressed (≥ Δ1.5) in MCF7Ecadvar compared to control cells. Validation of transcript expression was done in the ten most overexpressed and underexpressed proteins. Bioinformatics analyses revealed that 39 of the 50 proteins identified had been previously associated to BC. Moreover, metabolic processes were the most affected, and glycolysis the canonical pathway most altered. The lactate dehydrogenase B (LDHB) was the highest overexpressed protein, and transcript levels were higher in MCF7Ecadvar than in control cells. In agreement with these findings, MCF7Ecadvar conditioned media had lower glucose and higher lactate levels than control cells. MCF7Ecadvar cell treatment with 5 mM of the glycolytic inhibitor 2-deoxy-glucose led to decreased cell viability, and modulation of LDHB expression in MCF7Ecadvar cells with a specific small interfering RNA resulted in decreased cell proliferation. Finally, a positive association between expression levels of the E-cadherin variant and LDHB transcripts was demonstrated in 21 human breast tumor tissues, and breast tumor samples with higher Ki67 expression showed higher LDHB mRNA levels. Conclusions Results from this investigation contributed to further characterize molecular changes associated to the novel E-cadherin splice variant expression in BC cells. They also revealed an association between expression of the novel variant and changes related to BC progression and aggressiveness, in particular those associated to cell metabolism.
Collapse
Affiliation(s)
- Marina Rosso
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Lara Lapyckyj
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - María José Besso
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Marta Monge
- 2Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jaume Reventós
- 3Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Francesc Canals
- 2Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jorge Oswaldo Quevedo Cuenca
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - María Laura Matos
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Mónica Hebe Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| |
Collapse
|
33
|
Fedorova MS, Krasnov GS, Lukyanova EN, Zaretsky AR, Dmitriev AA, Melnikova NV, Moskalev AA, Kharitonov SL, Pudova EA, Guvatova ZG, Kobelyatskaya AA, Ishina IA, Slavnova EN, Lipatova AV, Chernichenko MA, Sidorov DV, Popov AY, Kiseleva MV, Kaprin AD, Snezhkina AV, Kudryavtseva AV. The CIMP-high phenotype is associated with energy metabolism alterations in colon adenocarcinoma. BMC MEDICAL GENETICS 2019; 20:52. [PMID: 30967137 PMCID: PMC6454590 DOI: 10.1186/s12881-019-0771-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND CpG island methylator phenotype (CIMP) is found in 15-20% of malignant colorectal tumors and is characterized by strong CpG hypermethylation over the genome. The molecular mechanisms of this phenomenon are not still fully understood. The development of CIMP is followed by global gene expression alterations and metabolic changes. In particular, CIMP-low colon adenocarcinoma (COAD), predominantly corresponded to consensus molecular subtype 3 (CMS3, "Metabolic") subgroup according to COAD molecular classification, is associated with elevated expression of genes participating in metabolic pathways. METHODS We performed bioinformatics analysis of RNA-Seq data from The Cancer Genome Atlas (TCGA) project for CIMP-high and non-CIMP COAD samples with DESeq2, clusterProfiler, and topGO R packages. Obtained results were validated on a set of fourteen COAD samples with matched morphologically normal tissues using quantitative PCR (qPCR). RESULTS Upregulation of multiple genes involved in glycolysis and related processes (ENO2, PFKP, HK3, PKM, ENO1, HK2, PGAM1, GAPDH, ALDOA, GPI, TPI1, and HK1) was revealed in CIMP-high tumors compared to non-CIMP ones. Most remarkably, the expression of the PKLR gene, encoding for pyruvate kinase participating in gluconeogenesis, was decreased approximately 20-fold. Up to 8-fold decrease in the expression of OGDHL gene involved in tricarboxylic acid (TCA) cycle was observed in CIMP-high tumors. Using qPCR, we confirmed the increase (4-fold) in the ENO2 expression and decrease (2-fold) in the OGDHL mRNA level on a set of COAD samples. CONCLUSIONS We demonstrated the association between CIMP-high status and the energy metabolism changes at the transcriptomic level in colorectal adenocarcinoma against the background of immune pathway activation. Differential methylation of at least nine CpG sites in OGDHL promoter region as well as decreased OGDHL mRNA level can potentially serve as an additional biomarker of the CIMP-high status in COAD.
Collapse
Affiliation(s)
- Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrew R. Zaretsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey L. Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Zulfiya G. Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Irina A. Ishina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Slavnova
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria A. Chernichenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V. Sidorov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Marina V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
34
|
Nagamine A, Araki T, Nagano D, Miyazaki M, Yamamoto K. L-Lactate dehydrogenase B may be a predictive marker for sensitivity to anti-EGFR monoclonal antibodies in colorectal cancer cell lines. Oncol Lett 2019; 17:4710-4716. [PMID: 30944657 DOI: 10.3892/ol.2019.10075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/31/2019] [Indexed: 01/19/2023] Open
Abstract
Recently, proteins derived from cancer cells have been widely investigated as biomarkers for predicting the efficacy of chemotherapy. In this study, to identify a sensitive biomarker for the efficacy of anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs), proteins derived from 6 colorectal cancer (CRC) cell lines with different sensitivities to cetuximab, an anti-EGFR mAb, were analyzed. Cytoplasmic and membrane proteins extracted from each CRC cell line were digested using trypsin and analyzed comprehensively using mass spectrometry. As a result, 148 and 146 peaks from cytoplasmic proteins and 363 and 267 peaks from membrane proteins were extracted as specific peaks for cetuximab-resistant and -sensitive CRC cell lines, respectively. By analyzing the proteins identified from the peptide peaks, cytoplasmic L-lactate dehydrogenase B (LDHB) was detected as a marker of cetuximab sensitivity, and it was confirmed that LDHB expression was increased in cetuximab-resistant CRC cell lines. Furthermore, LDHB expression levels were significantly upregulated with the acquisition of resistance to cetuximab in cetuximab-sensitive CRC cell lines. In conclusion, LDHB was identified as an important factor affecting cetuximab sensitivity using comprehensive proteome analysis for the first time.
Collapse
Affiliation(s)
- Ayumu Nagamine
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Takuya Araki
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Daisuke Nagano
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Mitsue Miyazaki
- Division of Endocrinology Metabolism and Signal Research, Gunma University Initiative for Advanced Research and Institute for Molecular and Cellular Regulation, Maebashi, Gunma 371-8511, Japan
| | - Koujirou Yamamoto
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
35
|
Ghanbari Movahed Z, Rastegari-Pouyani M, Mohammadi MH, Mansouri K. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell? Biomed Pharmacother 2019; 112:108690. [PMID: 30798124 DOI: 10.1016/j.biopha.2019.108690] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells can adapt to low energy sources in the face of ATP depletion as well as to their high levels of ROS by altering their metabolism and energy production networks which might also have a role in determining cell fate and developing drug resistance. Cancer cells are generally characterized by increased glycolysis. This is while; cancer stem cells (CSCs) exhibit an enhanced pentose phosphate pathway (PPP) metabolism. Based on the current literature, we suggest that cancer cells when encountering ROS, first increase the glycolysis rate and then following the continuation of oxidative stress, the metabolic balance is skewed from glycolysis to PPP. Therefore, we hypothesize in this review that in cancer cells this metabolic deviation during persistent oxidative stress might be a sign of cancer cells' shift towards CSCs, an issue that might be pivotal in more effective targeting of cancer cells and CSCs.
Collapse
Affiliation(s)
- Zahra Ghanbari Movahed
- Medical Biology Research Center, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- HSCT research center, Laboratory Hematology and blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical sciences, Kermanshah, Iran; Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
36
|
Lunetti P, Di Giacomo M, Vergara D, De Domenico S, Maffia M, Zara V, Capobianco L, Ferramosca A. Metabolic reprogramming in breast cancer results in distinct mitochondrial bioenergetics between luminal and basal subtypes. FEBS J 2019; 286:688-709. [PMID: 30657636 DOI: 10.1111/febs.14756] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is a key feature of cancer and is frequently associated with increased aggressiveness and metastatic potential. Recent evidence has brought to light a metabolic rewiring that takes place during the epithelial-to-mesenchymal transition (EMT), a process that drives the invasive capability of malignant tumors, and highlights a mechanistic link between mitochondrial dysfunction and EMT that has been only partially investigated. In this study, we characterized mitochondrial function and bioenergetic status of cultured human breast cancer cell lines, including luminal-like and basal-like subtypes. Through a combination of biochemical and functional studies, we demonstrated that basal-like cell lines exhibit impaired, but not completely inactive, mitochondrial function, and rely on a consequent metabolic switch to glycolysis to support their ATP demand. These altered metabolic activities are linked to modifications of key electron transport chain proteins and a significant increase in levels of reactive oxygen species compared to luminal cells. Furthermore, we observed that the stable knockdown of EMT markers caused functional changes in mitochondria that result in acquisition of a hybrid glycolysis/OXPHOS phenotype in cancer cells as a means to sustain their metabolic demand.
Collapse
Affiliation(s)
- Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Mariangela Di Giacomo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Stefania De Domenico
- Institute of Food Production Sciences, C.N.R. Unit of Lecce, Italy.,Biotecgen, c/o Department of Biological and Environmental Sciences and Technologies, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
37
|
Feng H, Wu J, Chen P, Wang J, Deng Y, Zhu G, Xian J, Huang L, Ouyang W. MicroRNA-375-3p inhibitor suppresses angiotensin II-induced cardiomyocyte hypertrophy by promoting lactate dehydrogenase B expression. J Cell Physiol 2019; 234:14198-14209. [PMID: 30618075 DOI: 10.1002/jcp.28116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023]
Abstract
Cardiac hypertrophy is a myocardial enlargement due to overload pressure, and the primary cause of heart failure. We investigated the function of miR-375-3p in cardiac hypertrophy and its regulating mechanisms. miR-375-3p was upregulated in hearts of the transverse aortic constriction rat model and angiotensin II (Ang II)-induced primary cardiomyocyte hypertrophy model; the opposite was observed for lactate dehydrogenase B (LDHB) protein expression. miR-375-3p knockdown reduced the surface area of primary cardiomyocytes increased by Ang II treatment and decreased the B-natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) messenger RNA (mRNA) and protein levels. miR-375-3p was also observed to directly target LDHB. LDHB knockdown increased the surface area of Ang II-treated primary cardiomyocytes and increased the BNP and β-MHC mRNA and protein levels. LDHB knockdown attenuated the effects of miR-375-3p on the surface area of primary cardiomyocytes and BNP and β-MHC levels. Therefore, miR-375-3p inhibitor suppresses Ang II-induced cardiomyocyte hypertrophy by promoting LDHB expression.
Collapse
Affiliation(s)
- Huijuan Feng
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Juqing Wu
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Pan Chen
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jing Wang
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yuying Deng
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Guoquan Zhu
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jialang Xian
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Liuhua Huang
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wei Ouyang
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
|
39
|
Koukourakis MI, Giatromanolaki A. Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. Int J Radiat Biol 2018; 95:408-426. [PMID: 29913092 DOI: 10.1080/09553002.2018.1490041] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The anaerobic metabolism of glucose by cancer cells, even under well-oxygenated conditions, has been documented by Otto Warburg as early as 1927. Micro-environmental hypoxia and intracellular pathways activating the hypoxia-related gene response, shift cancer cell metabolism to anaerobic pathways. In the current review, we focus on a major enzyme involved in anaerobic transformation of pyruvate to lactate, namely lactate dehydrogenase 5 (LDH5). The value of LDH5 as a marker of prognosis of cancer patients, as a predictor of response to radiotherapy (RT) and chemotherapy and, finally, as a major target for cancer treatment and radio-sensitization is reported and discussed. Clinical, translational and experimental data supporting the uniqueness of the LDHA gene and its product LDH5 isoenzyme are summarized and future directions for a metabolic treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Michael I Koukourakis
- a Department of Radiotherapy and Oncology, Medical School, Democritus University of Thrace , Alexandroupolis , Greece
| | - Alexandra Giatromanolaki
- b Department of Pathology , Medical School, Democritus University of Thrace , Alexandroupolis , Greece
| |
Collapse
|
40
|
Fortunato S, Bononi G, Granchi C, Minutolo F. An Update on Patents Covering Agents That Interfere with the Cancer Glycolytic Cascade. ChemMedChem 2018; 13:2251-2265. [DOI: 10.1002/cmdc.201800447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/07/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Serena Fortunato
- Dipartimento di FarmaciaUniversità di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Giulia Bononi
- Dipartimento di FarmaciaUniversità di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Carlotta Granchi
- Dipartimento di FarmaciaUniversità di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Filippo Minutolo
- Dipartimento di FarmaciaUniversità di Pisa Via Bonanno 33 56126 Pisa Italy
| |
Collapse
|
41
|
Liu J, Chen G, Liu Z, Liu S, Cai Z, You P, Ke Y, Lai L, Huang Y, Gao H, Zhao L, Pelicano H, Huang P, McKeehan WL, Wu CL, Wang C, Zhong W, Wang F. Aberrant FGFR Tyrosine Kinase Signaling Enhances the Warburg Effect by Reprogramming LDH Isoform Expression and Activity in Prostate Cancer. Cancer Res 2018; 78:4459-4470. [PMID: 29891507 DOI: 10.1158/0008-5472.can-17-3226] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
The acquisition of ectopic fibroblast growthfactor receptor 1 (FGFR1) expression is well documented in prostate cancer progression. How it contributes to prostate cancer progression is not fully understood, although it is known to confer a growth advantage and promote cell survival. Here, we report that FGFR1 tyrosine kinase reprograms the energy metabolism of prostate cancer cells by regulating the expression of lactate dehydrogenase (LDH) isozymes. FGFR1 increased LDHA stability through tyrosine phosphorylation and reduced LDHB expression by promoting its promoter methylation, thereby shifting cell metabolism from oxidative phosphorylation to aerobic glycolysis. LDHA depletion compromised, whereas LDHB depletion enhanced the tumorigenicity of prostate cancer cells. Furthermore, FGFR1 overexpression and aberrant LDH isozyme expression were associated with short overall survival and biochemical recurrence times in patients with prostate cancer. Our results indicate that ectopic FGFR1 expression reprograms the energy metabolism of prostate cancer cells, representing a hallmark change in prostate cancer progression.Significance: FGF signaling drives the Warburg effect through differential regulation of LDHA and LDHB, thereby promoting the progression of prostate cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/16/4459/F1.large.jpg Cancer Res; 78(16); 4459-70. ©2018 AACR.
Collapse
Affiliation(s)
- Junchen Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Guo Chen
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Zezhen Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Shaoyou Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Zhiduan Cai
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Pan You
- Xianyue Hospital, Xiamen, China
| | - Yuepeng Ke
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Li Lai
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Yun Huang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | | | | | - Helene Pelicano
- Departments of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas
| | - Peng Huang
- Departments of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas
| | - Wallace L McKeehan
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Chin-Lee Wu
- Departments of Pathology and Urology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Cong Wang
- Wenzhou Medical University, Wenzhou, China.
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China. .,Department of Urology, Guangzhou Medical University, Guangzhou, China
| | - Fen Wang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas.
| |
Collapse
|
42
|
Poyyakkara A, Raji GR, Kunhiraman H, Edatt L, Kumar SVB. ER stress mediated regulation of miR23a confer Hela cells better adaptability to utilize glycolytic pathway. J Cell Biochem 2018; 119:4907-4917. [PMID: 29377281 DOI: 10.1002/jcb.26718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/24/2018] [Indexed: 02/04/2023]
Abstract
Cancer cells exhibit increased dependency on aerobic glycolysis, a phenomenon referred as the "Warburg effect" and therefore, blocking glycolysis by using non-metabolizable analogues of glucose, like 2-Deoxy glucose (2-DG), has been proposed to be of huge therapeutic importance. One of the major drawbacks of using 2-DG as a chemotherapeutic agent is that it can induce ER stress. ER stress is a hall mark in many solid tumors and the unfolded protein response (UPR) associated with it initiates many survival mechanisms in cancer cells. In the present study, we report a novel survival mechanism associated with ER stress, by which the cancer cells become more adapted to aerobic glycolysis. When ER stress was induced in Hela cells by treating them with 2-DG or Thapsigargin (TG) the expression and activity of LDH was significantly up regulated, conferring the cells a greater glycolytic potential. A simultaneous decrease was observed in the expression of miR-23a, which was predicted in silico to have target site on the 3'UTR of LDH A and B mRNAs. miRNA over expression studies and mRNA degradation assays suggest that miR-23a could target LDH A and LDH B mRNAs. Further on the basis of our results and previous scientific reports, we propose that "c-Myc," which is over expressed during ER stress, repress the expression of miR-23a, which in turn regulates the expression of its target genes viz., LDH A and LDH B, thereby making the cells more competent to survive in tumor microenvironment, which requires efficient use of aerobic glycolysis.
Collapse
Affiliation(s)
- Aswini Poyyakkara
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Grace R Raji
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Haritha Kunhiraman
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Lincy Edatt
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Sameer V B Kumar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| |
Collapse
|
43
|
Verma M, Kipari TMJ, Zhang Z, Man TY, Forster T, Homer NZM, Seckl JR, Holmes MC, Chapman KE. 11β-hydroxysteroid dehydrogenase-1 deficiency alters brain energy metabolism in acute systemic inflammation. Brain Behav Immun 2018; 69:223-234. [PMID: 29162555 PMCID: PMC5871395 DOI: 10.1016/j.bbi.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/16/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022] Open
Abstract
Chronically elevated glucocorticoid levels impair cognition and are pro-inflammatory in the brain. Deficiency or inhibition of 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), which converts inactive into active glucocorticoids, protects against glucocorticoid-associated chronic stress- or age-related cognitive impairment. Here, we hypothesised that 11β-HSD1 deficiency attenuates the brain cytokine response to inflammation. Because inflammation is associated with altered energy metabolism, we also examined the effects of 11β-HSD1 deficiency upon hippocampal energy metabolism. Inflammation was induced in 11β-HSD1 deficient (Hsd11b1Del/Del) and C57BL/6 control mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS reduced circulating neutrophil and monocyte numbers and increased plasma corticosterone levels equally in C57BL/6 and Hsd11b1Del/Del mice, suggesting a similar peripheral inflammatory response. However, the induction of pro-inflammatory cytokine mRNAs in the hippocampus was attenuated in Hsd11b1Del/Del mice. Principal component analysis of mRNA expression revealed a distinct metabolic response to LPS in hippocampus of Hsd11b1Del/Del mice. Expression of Pfkfb3 and Ldha, key contributors to the Warburg effect, showed greater induction in Hsd11b1Del/Del mice. Consistent with increased glycolytic flux, levels of 3-phosphoglyceraldehyde and dihydroxyacetone phosphate were reduced in hippocampus of LPS injected Hsd11b1Del/Del mice. Expression of Sdha and Sdhb, encoding subunits of succinate dehydrogenase/complex II that determines mitochondrial reserve respiratory capacity, was induced specifically in hippocampus of LPS injected Hsd11b1Del/Del mice, together with increased levels of its product, fumarate. These data suggest 11β-HSD1 deficiency attenuates the hippocampal pro-inflammatory response to LPS, associated with increased capacity for aerobic glycolysis and mitochondrial ATP generation. This may provide better metabolic support and be neuroprotective during systemic inflammation or aging.
Collapse
Affiliation(s)
- Manu Verma
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Tiina M J Kipari
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Zhenguang Zhang
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Tak Yung Man
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Thorsten Forster
- Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Natalie Z M Homer
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jonathan R Seckl
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Megan C Holmes
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Karen E Chapman
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
44
|
Yu L, Chen X, Wang L, Chen S. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy. Oncotarget 2018; 7:38908-38926. [PMID: 26918353 PMCID: PMC5122440 DOI: 10.18632/oncotarget.7676] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
Metabolic change is one of the hallmarks of tumor, which has recently attracted a great of attention. One of main metabolic characteristics of tumor cells is the high level of glycolysis even in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. The energy production is much less in glycolysis pathway than that in tricarboxylic acid cycle. The molecular mechanism of a high glycolytic flux in tumor cells remains unclear. A large amount of intermediates derived from glycolytic pathway could meet the biosynthetic requirements of the proliferating cells. Hypoxia-induced HIF-1α, PI3K-Akt-mTOR signaling pathway, and many other factors, such as oncogene activation and tumor suppressor inactivation, drive cancer cells to favor glycolysis over mitochondrial oxidation. Several small molecules targeting glycolytic pathway exhibit promising anticancer activity both in vitro and in vivo. In this review, we will focus on the latest progress in the regulation of aerobic glycolysis and discuss the potential targets for the tumor therapy.
Collapse
Affiliation(s)
- Li Yu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Xun Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Liantang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Shangwu Chen
- State Key Laboratory for Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| |
Collapse
|
45
|
Ždralević M, Marchiq I, de Padua MMC, Parks SK, Pouysségur J. Metabolic Plasiticy in Cancers-Distinct Role of Glycolytic Enzymes GPI, LDHs or Membrane Transporters MCTs. Front Oncol 2017; 7:313. [PMID: 29326883 PMCID: PMC5742324 DOI: 10.3389/fonc.2017.00313] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
Research on cancer metabolism has recently re-surfaced as a major focal point in cancer field with a reprogrammed metabolism no longer being considered as a mere consequence of oncogenic transformation, but as a hallmark of cancer. Reprogramming metabolic pathways and nutrient sensing is an elaborate way by which cancer cells respond to high bioenergetic and anabolic demands during tumorigenesis. Thus, inhibiting specific metabolic pathways at defined steps should provide potent ways of arresting tumor growth. However, both animal models and clinical observations have revealed that this approach is seriously limited by an extraordinary cellular metabolic plasticity. The classical example of cancer metabolic reprogramming is the preference for aerobic glycolysis, or Warburg effect, where cancers increase their glycolytic flux and produce lactate regardless of the presence of the oxygen. This allows cancer cells to meet the metabolic requirements for high rates of proliferation. Here, we discuss the benefits and limitations of disrupting fermentative glycolysis for impeding tumor growth at three levels of the pathway: (i) an upstream block at the level of the glucose-6-phosphate isomerase (GPI), (ii) a downstream block at the level of lactate dehydrogenases (LDH, isoforms A and B), and (iii) the endpoint block preventing lactic acid export (MCT1/4). Using these examples of genetic disruption targeting glycolysis studied in our lab, we will discuss the responses of different cancer cell lines in terms of metabolic rewiring, growth arrest, and tumor escape and compare it with the broader literature.
Collapse
Affiliation(s)
- Maša Ždralević
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d’Azur, Nice, France
| | - Ibtissam Marchiq
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d’Azur, Nice, France
| | - Monique M. Cunha de Padua
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d’Azur, Nice, France
| | - Scott K. Parks
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Jacques Pouysségur
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d’Azur, Nice, France
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| |
Collapse
|
46
|
Al-Maleki AR, Loke MF, Lui SY, Ramli NSK, Khosravi Y, Ng CG, Venkatraman G, Goh KL, Ho B, Vadivelu J. Helicobacter pylori outer inflammatory protein A (OipA) suppresses apoptosis of AGS gastric cells in vitro. Cell Microbiol 2017; 19. [PMID: 28776327 DOI: 10.1111/cmi.12771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/02/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022]
Abstract
Outer inflammatory protein A (OipA) is an important virulence factor associated with gastric cancer and ulcer development; however, the results have not been well established and turned out to be controversial. This study aims to elucidate the role of OipA in Helicobacter pylori infection using clinical strains harbouring oipA "on" and "off" motifs. Proteomics analysis was performed on AGS cell pre-infection and postinfection with H. pylori oipA "on" and "off" strains, using liquid chromatography/mass spectrometry. AGS apoptosis and cell cycle assays were performed. Moreover, expression of vacuolating cytotoxin A (VacA) was screened using Western blotting. AGS proteins that have been suggested previously to play a role or associated with gastric disease were down-regulated postinfection with oipA "off" strains comparing to oipA "on" strains. Furthermore, oipA "off" and ΔoipA cause higher level of AGS cells apoptosis and G0/G1 cell-cycle arrest than oipA "on" strains. Interestingly, deletion of oipA increased bacterial VacA production. The capability of H. pylori to induce apoptosis and suppress expression of proteins having roles in human disease in the absence of oipA suggests that strains not expressing OipA may be less virulent or may even be protective against carcinogenesis compared those expressing OipA. This potentially explains the higher incidence of gastric cancer in East Asia where oipA "on" strains predominates.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sook Yin Lui
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nur Siti Khadijah Ramli
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yalda Khosravi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chow Goon Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gopinath Venkatraman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Bow Ho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Precision Medicine Centre Pte Ltd, Singapore, Singapore
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Ristic B, Bhutia YD, Ganapathy V. Cell-surface G-protein-coupled receptors for tumor-associated metabolites: A direct link to mitochondrial dysfunction in cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:246-257. [PMID: 28512002 PMCID: PMC5997391 DOI: 10.1016/j.bbcan.2017.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
Abstract
Mitochondria are the sites of pyruvate oxidation, citric acid cycle, oxidative phosphorylation, ketogenesis, and fatty acid oxidation. Attenuation of mitochondrial function is one of the most significant changes that occurs in tumor cells, directly linked to oncogenesis, angiogenesis, Warburg effect, and epigenetics. In particular, three mitochondrial enzymes are inactivated in cancer: pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and 3-hydroxy-3-methylglutaryl CoA synthase-2 (HMGCS2). These enzymes are subject to regulation via acetylation/deacetylation. SIRT3, the predominant mitochondrial deacetylase, directly targets these enzymes for deacetylation and maintains their optimal catalytic activity. SIRT3 is a tumor suppressor, and deacetylation of these enzymes contributes to its biological function. PDH catalyzes the oxidative decarboxylation of pyruvate into acetyl CoA, SDH oxidizes succinate into fumarate, and HMGCS2 controls the synthesis of the ketone body β-hydroxybutyrate. As the activities of these enzymes are decreased in cancer, tumor cells accumulate lactate and succinate but produce less amounts of β-hydroxybutyrate. Apart from their role in cellular energetics, these metabolites function as signaling molecules via specific cell-surface G-protein-coupled receptors. Lactate signals via GPR81, succinate via GPR91, and β-hydroxybutyrate via GPR109A. In addition, lactate activates hypoxia-inducible factor HIF1α and succinate promotes DNA methylation. GPR81 and GPR91 are tumor promoters, and increased production of lactate and succinate as their agonists drives tumorigenesis by enhancing signaling via these two receptors. In contrast, GPR109A is a tumor suppressor, and decreased synthesis of β-hydroxybutyrate as its agonist suppresses signaling via this receptor, thus attenuating the tumor-suppressing function of GPR109A. In parallel with the opposing changes in lactate/succinate and β-hydroxybutyrate levels, tumor cells upregulate GPR81 and GPR91 but downregulate GPR109A. As such, these three metabolite receptors play a critical role in cancer and represent a new class of drug targets with selective antagonists of GPR81 and GPR91 for cancer treatment and agonists of GPR109A for cancer prevention.
Collapse
Affiliation(s)
- Bojana Ristic
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
48
|
Koh YW, Lee SJ, Park SY. Prognostic significance of lactate dehydrogenase B according to histologic type of non-small-cell lung cancer and its association with serum lactate dehydrogenase. Pathol Res Pract 2017; 213:1134-1138. [PMID: 28756978 DOI: 10.1016/j.prp.2017.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/06/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022]
Abstract
Lactate dehydrogenase B (LDHB) expression and the level of serum LDH were involved in tumor progression. Correlations between these parameters and their prognostic significance were not assessed in non-small cell lung cancer (NSCLC). We evaluated LDHB expression by immunohistochemical method and serum LDH in 243 NSCLC patients treated with surgical resection [136 adenocarcinomas (ADCs), 89 squamous cell carcinomas (SqCCs) and 18 other type carcinomas]. Correlation between LDHB expression and serum LDH was assessed, and the prognostic significance was determined. LDHB expression was identified in 52% of SqCC and 55% of ADC tissue samples. LDHB-positive SqCC patients had a higher recurrence-free survival (RFS) rate than LDHB-negative patients (p=0.017). LDHB-positive and LDHB-negative patients showed similar RFS rates in ADCs (p=0.519). Multivariate analysis showed that LDHB expression was an independent risk factor in lung SqCCs (hazard ratio=0.393, p=0.028). A positive correlation was found between LDHB expression and serum LDH level (p=0.02). High LDHB expression is significantly associated with the level of serum LDH and better clinical outcomes in lung SqCC.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Su Jin Lee
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
49
|
Abstract
One of the differences between normal and cancer cells is lower pH of the extracellular space in tumors. Low pH in the extracellular space activates proteases and stimulates tumor invasion and metastasis. Tumor cells display higher level of the HIF1α transcription factor that promotes cell switch from mitochondrial respiration to glycolysis. The terminal product of glycolysis is lactate. Lactate formation from pyruvate is catalyzed by the specific HIF1α-dependent isoform of lactate dehydrogenase A. Because lactate accumulation is deleterious for the cell, it is actively exported by monocarboxylate transporters. Lactate is cotransported with proton, which acidifies the extracellular space. Another protein that contributes to proton concentration increase in the extracellular space is tumor-specific HIF1α-dependent carbonic anhydrase IX, which generates a proton in the reaction between carbon dioxide and water. The activity of Na+/H+ exchanger (another protein pump) is stimulated by stress factors (e.g. osmotic shock) and proliferation stimuli. This review describes the mechanisms of proton pump activation and reviews results of studies on effects of various proton pump inhibitors on tumor functioning and growth in cell culture and in vivo. The prospects of combined application of proton pump inhibitors and cytostatics in cancer therapy are discussed.
Collapse
Affiliation(s)
- V A Kobliakov
- Blokhin Russian Cancer Research Center, Russian Ministry of Health, Moscow, 115478, Russia.
| |
Collapse
|
50
|
Kasvandik S, Samuel K, Peters M, Eimre M, Peet N, Roost AM, Padrik L, Paju K, Peil L, Salumets A. Deep Quantitative Proteomics Reveals Extensive Metabolic Reprogramming and Cancer-Like Changes of Ectopic Endometriotic Stromal Cells. J Proteome Res 2015; 15:572-84. [DOI: 10.1021/acs.jproteome.5b00965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sergo Kasvandik
- Proteomics
Core Facility, Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia
- Tartu University Women’s Clinic, L. Puusepa 8, Tartu, Estonia
| | - Külli Samuel
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia
- Tartu University Women’s Clinic, L. Puusepa 8, Tartu, Estonia
| | - Margus Eimre
- Chair
of Pathological Physiology, Institute of Bio- and Translational Medicine, University of Tartu, Ravila 19, Tartu, Estonia
| | - Nadežda Peet
- Chair
of Pathological Physiology, Institute of Bio- and Translational Medicine, University of Tartu, Ravila 19, Tartu, Estonia
| | - Anne Mari Roost
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia
- Tartu University Women’s Clinic, L. Puusepa 8, Tartu, Estonia
| | - Lee Padrik
- Tartu
University Hospital, Women’s Clinic, L. Puusepa 8, Tartu, Estonia
| | - Kalju Paju
- Chair
of Pathological Physiology, Institute of Bio- and Translational Medicine, University of Tartu, Ravila 19, Tartu, Estonia
| | - Lauri Peil
- Proteomics
Core Facility, Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia
- Tartu University Women’s Clinic, L. Puusepa 8, Tartu, Estonia
| |
Collapse
|