1
|
Li X, Mao J. Research progress on the role of lipoxygenase and its inhibitors in prostate cancer. Future Oncol 2024; 20:3549-3568. [PMID: 39535136 PMCID: PMC11776861 DOI: 10.1080/14796694.2024.2419356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Prostate cancer (PCa) has become a common disease among middle-aged and elderly men. The lipoxygenase (LOX) pathway plays a crucial role in the occurrence, development, invasion and metastasis of PCa and is therefore considered a new target for the prevention and treatment of PCa. 5-LOX and 12-LOX have a promoting effect on the occurrence, development, invasion and metastasis of PCa. 15-LOX-2 has an inhibitory effect on PCa. LOX inhibitors can effectively inhibit the metabolic activity of LOX. The research aims to review the mechanism of action and inhibitors of LOX in PCa, in order to provide relevant references for the prevention and treatment of PCa.
Collapse
Affiliation(s)
- Xiaobing Li
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jingxin Mao
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
2
|
Zhang T, Deng W, Deng Y, Liu Y, Xiao S, Luo Y, Xiang W, He Q. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment. Biomed Pharmacother 2023; 165:114706. [PMID: 37400352 DOI: 10.1016/j.biopha.2023.114706] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/05/2023] Open
Abstract
Acute myocardial infarction remains the leading cause of death in humans. Timely restoration of blood perfusion to ischemic myocardium remains the most effective strategy in the treatment of acute myocardial infarction, which can significantly reduce morbidity and mortality. However, after restoration of blood flow and reperfusion, myocardial injury will aggravate and induce apoptosis of cardiomyocytes, a process called myocardial ischemia-reperfusion injury. Studies have shown that the loss and death of cardiomyocytes caused by oxidative stress, iron load, increased lipid peroxidation, inflammation and mitochondrial dysfunction, etc., are involved in myocardial ischemia-reperfusion injury. In recent years, with the in-depth research on the pathology of myocardial ischemia-reperfusion injury, people have gradually realized that there is a new form of cell death in the pathological process of myocardial ischemia-reperfusion injury, namely ferroptosis. A number of studies have found that in the myocardial tissue of patients with acute myocardial infarction, there are pathological changes closely related to ferroptosis, such as iron metabolism disorder, lipid peroxidation, and increased reactive oxygen species free radicals. Natural plant products such as resveratrol, baicalin, cyanidin-3-O-glucoside, naringenin, and astragaloside IV can also exert therapeutic effects by correcting the imbalance of these ferroptosis-related factors and expression levels. Combining with our previous studies, this review summarizes the regulatory mechanism of natural plant products intervening ferroptosis in myocardial ischemia-reperfusion injury in recent years, in order to provide reference information for the development of targeted ferroptosis inhibitor drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Wenxu Deng
- The Central Hospital of Hengyang, Hengyang, Hunan 421001, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Yao Liu
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medcial School, University of South China, Hunan 421001, China.
| | - Sijie Xiao
- Department of Ultrasound, The First People's Hospital of Changde City, Changde 415003, China
| | - Yanfang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Immunology and Rheumatology, The First People's Hospital of Changde City, Changde 415003, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| |
Collapse
|
3
|
Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother 2022; 156:113981. [DOI: 10.1016/j.biopha.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
4
|
Benatzy Y, Palmer MA, Brüne B. Arachidonate 15-lipoxygenase type B: Regulation, function, and its role in pathophysiology. Front Pharmacol 2022; 13:1042420. [PMID: 36438817 PMCID: PMC9682198 DOI: 10.3389/fphar.2022.1042420] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 10/30/2023] Open
Abstract
As a lipoxygenase (LOX), arachidonate 15-lipoxygenase type B (ALOX15B) peroxidizes polyenoic fatty acids (PUFAs) including arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid (LA) to their corresponding fatty acid hydroperoxides. Distinctive to ALOX15B, fatty acid oxygenation occurs with positional specificity, catalyzed by the non-heme iron containing active site, and in addition to free PUFAs, membrane-esterified fatty acids serve as substrates for ALOX15B. Like other LOX enzymes, ALOX15B is linked to the formation of specialized pro-resolving lipid mediators (SPMs), and altered expression is apparent in various inflammatory diseases such as asthma, psoriasis, and atherosclerosis. In primary human macrophages, ALOX15B expression is associated with cellular cholesterol homeostasis and is induced by hypoxia. Like in inflammation, the role of ALOX15B in cancer is inconclusive. In prostate and breast carcinomas, ALOX15B is attributed a tumor-suppressive role, whereas in colorectal cancer, ALOX15B expression is associated with a poorer prognosis. As the biological function of ALOX15B remains an open question, this review aims to provide a comprehensive overview of the current state of research related to ALOX15B.
Collapse
Affiliation(s)
- Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Megan A. Palmer
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
5
|
Aghasizadeh M, Moghaddam T, Bahrami AR, Sadeghian H, Alavi SJ, Matin MM. 8-Geranyloxycarbostyril as a potent 15-LOX-1 inhibitor showed great anti-tumor effects against prostate cancer. Life Sci 2022; 293:120272. [PMID: 35065164 DOI: 10.1016/j.lfs.2021.120272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Carbostyrils are quinolone derivatives, with possible growth inhibition properties on cancer cells. Unlike many tumors, 15-Lipoxygenase-1 (15-LOX-1) is highly expressed in prostate cancer (PCa) cells and has oncogenic properties. Here, with the hypothesis that 6-, 7- and 8-geranyloxycarbostyril (GQ) have inhibitory properties on 15-LOX-1, their effects were assessed on PCa cells. Their cytotoxic effects were evaluated by MTT assay and mechanism of cell death was investigated using annexin V/PI staining. Finally, the anti-tumor properties of 8-GQ were assessed in immunocompromised C57BL/6 mice bearing human PCa cells. Accordingly, these compounds could effectively inhibit 15-LOX activity in PCa cells. MTT and flow cytometry tests confirmed their toxic effects on PCa cells, with no significant toxicity on normal cells, and apoptosis was the main mechanism of cell death. In vivo results indicated that use of 8-GQ at 50 mg/kg had stronger anti-tumor effects than 5 mg/kg cisplatin, with fewer side effects on normal tissues. Therefore, 8-GQ can be introduced as a potential drug candidate with 15-LOX-1 inhibitory potency, which can be effective in treatment of prostate cancer, and should be considered for further drug screening investigations.
Collapse
Affiliation(s)
- Mehrdad Aghasizadeh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Tayebe Moghaddam
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Sadeghian
- Neurogenic Inflammation Research Center, Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Jamal Alavi
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
6
|
Zhang Y, Li S, Liang Y, Liu R, Lv X, Zhang Q, Xu H, Bi K, Li Z, Li Q. A systematic strategy for uncovering quality marker of Asari Radix et Rhizoma on alleviating inflammation based chemometrics analysis of components. J Chromatogr A 2021; 1642:461960. [PMID: 33684872 DOI: 10.1016/j.chroma.2021.461960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Asari Radix et Rhizoma (Asarum), a traditional Chinese medicine (TCM), has been applied in clinical generally. However, due to the lack of valid methods for Asarum quality control, inhomogenous quality and therapy issues have become severe with each passing day. In this study, we aimed to establish a comprehensive multi-system to explore the quality control markers underlying pharmaceutical effects based on chemometrics analysis on the total ingredients of Asarum. In brief, DNA barcoding technology was used to screen out the unadulterated herbs in the 15 batches Asarum collected from different origins. Then, the chemical profiles of volatile/nonvolatile components of 10 batches Asarum with definite resource were obtained by HPLC Q-TOF/MS and GC/MS. Combination with chemometrics methods, 14 characteristic ingredients and 4 qualitative and quantitative markers were figured out preliminarily. Moreover, correlation analysis between the characteristic ingredients and the cytokines integrating the virtual targets prediction of network pharmacology, 3 potential bioactive substance were ascertained. In conclusion, l-asarinin, 2-Methoxy-4-vinylphenol and safrole were considered as the potent candidates for quality control markers based on the comprehensive understanding for therapeutic effects and the chemical information of Asarum, which provided a novel perspective of the development for the quality control of TCM.
Collapse
Affiliation(s)
- Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Saiyu Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yuting Liang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xinyan Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
7
|
Song YS, Lee DH, Yu JH, Oh DK, Hong JT, Yoon DY. Promotion of adipogenesis by 15-(S)-hydroxyeicosatetraenoic acid. Prostaglandins Other Lipid Mediat 2016; 123:1-8. [DOI: 10.1016/j.prostaglandins.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|
8
|
Leghmar K, Cenac N, Rolland M, Martin H, Rauwel B, Bertrand-Michel J, Le Faouder P, Bénard M, Casper C, Davrinche C, Fournier T, Chavanas S. Cytomegalovirus Infection Triggers the Secretion of the PPARγ Agonists 15-Hydroxyeicosatetraenoic Acid (15-HETE) and 13-Hydroxyoctadecadienoic Acid (13-HODE) in Human Cytotrophoblasts and Placental Cultures. PLoS One 2015; 10:e0132627. [PMID: 26171612 PMCID: PMC4501751 DOI: 10.1371/journal.pone.0132627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/16/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction Congenital infection by human cytomegalovirus (HCMV) is a leading cause of congenital abnormalities of the central nervous system. Placenta infection by HCMV allows for viral spread to fetus and may result in intrauterine growth restriction, preeclampsia-like symptoms, or miscarriages. We previously reported that HCMV activates peroxisome proliferator-activated receptor gamma (PPARγ) for its own replication in cytotrophoblasts. Here, we investigated the molecular bases of PPARγ activation in infected cytotrophoblasts. Results We show that onboarded cPLA2 carried by HCMV particles is required for effective PPARγ activation in infected HIPEC cytotrophoblasts, and for the resulting inhibition of cell migration. Natural PPARγ agonists are generated by PLA2 driven oxidization of linoleic and arachidonic acids. Therefore, using HPLC coupled with mass spectrometry, we disclosed that cellular and secreted levels of 13-hydroxyoctadecadienoic acid (13-HODE) and 15-hydroxyeicosatetraenoic acid (15-HETE) were significantly increased in and from HIPEC cytotrophoblasts at soon as 6 hours post infection. 13-HODE treatment of uninfected HIPEC recapitulated the effect of infection (PPARγ activation, migration impairment). We found that infection of histocultures of normal, first-term, human placental explants resulted in significantly increased levels of secreted 15-HETE and 13-HODE. Conclusion Our findings reveal that 15-HETE and 13-HODE could be new pathogenic effectors of HCMV congenital infection They provide a new insight about the pathogenesis of congenital infection by HCMV.
Collapse
Affiliation(s)
- Kaoutar Leghmar
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Nicolas Cenac
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Maude Rolland
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Hélène Martin
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Benjamin Rauwel
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | | | - Pauline Le Faouder
- MetaToul Lipidomics facility, Toulouse, France
- I2MC INSERM U1048, Toulouse, France
| | - Mélinda Bénard
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- Neonatal Unit, Children’s Hospital, Toulouse, France
| | - Charlotte Casper
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- Neonatal Unit, Children’s Hospital, Toulouse, France
| | - Christian Davrinche
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Thierry Fournier
- INSERM UMR-S1139, Paris, France
- Université Paris Descartes, Paris, France
- PremUP, Fondation, Paris, France
| | - Stéphane Chavanas
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, Toulouse, France
- CNRS U5282, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- * E-mail:
| |
Collapse
|
9
|
Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:308-30. [PMID: 25316652 DOI: 10.1016/j.bbalip.2014.10.002] [Citation(s) in RCA: 458] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated not only in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOXs oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in the regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Swathi Banthiya
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts Genrel Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
10
|
Canny GO, Lessey BA. The role of lipoxin A4 in endometrial biology and endometriosis. Mucosal Immunol 2013; 6:439-50. [PMID: 23485944 PMCID: PMC4062302 DOI: 10.1038/mi.2013.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipoxin A4 (LXA4), an endogenous anti-inflammatory and immunomodulatory mediator studied in many disease states, is recently appreciated as a potentially significant player in the endometrium. This eicosanoid, synthesized from arachidonic acid via the action of lipoxygenase enzymes, is likely regulated in endometrial tissue during the menstrual cycle. Recent studies revealed that LXA4 acts as an estrogen receptor agonist in endometrial epithelial cells, antagonizing some estrogen-mediated activities in a manner similar to the weak estrogen estriol, with which it shares structural similarity. LXA4 may also be an anti-inflammatory molecule in the endometrium, though its precise function in various physiological and pathological scenarios remains to be determined. The expression patterns for LXA4 and its receptor in the female reproductive tract suggest a role in pregnancy. The present review provides an oversight of its known and putative roles in the context of immuno-endocrine crosstalk. Endometriosis, a common inflammatory condition and a major cause of infertility and pain, is currently treated by surgery or anti-hormone therapies that are contraceptive and associated with undesirable side effects. LXA4 may represent a potential therapeutic and further research to elucidate its function in endometrial tissue and the peritoneal cavity will undoubtedly provide valuable insights.
Collapse
Affiliation(s)
- GO Canny
- Geneva Foundation for Medical Education and Research, Versoix, Switzerland
| | - BA Lessey
- University of South Carolina School of Medicine—Greenville, Greenville, SC, USA
| |
Collapse
|
11
|
O’Flaherty JT, Hu Y, Wooten RE, Horita DA, Samuel MP, Thomas MJ, Sun H, Edwards IJ. 15-lipoxygenase metabolites of docosahexaenoic acid inhibit prostate cancer cell proliferation and survival. PLoS One 2012; 7:e45480. [PMID: 23029040 PMCID: PMC3447860 DOI: 10.1371/journal.pone.0045480] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/20/2012] [Indexed: 02/06/2023] Open
Abstract
A 15-LOX, it is proposed, suppresses the growth of prostate cancer in part by converting arachidonic, eicosatrienoic, and/or eicosapentaenoic acids to n-6 hydroxy metabolites. These metabolites inhibit the proliferation of PC3, LNCaP, and DU145 prostate cancer cells but only at ≥1-10 µM. We show here that the 15-LOX metabolites of docosahexaenoic acid (DHA), 17-hydroperoxy-, 17-hydroxy-, 10,17-dihydroxy-, and 7,17-dihydroxy-DHA inhibit the proliferation of these cells at ≥0.001, 0.01, 1, and 1 µM, respectively. By comparison, the corresponding 15-hydroperoxy, 15-hydroxy, 8,15-dihydroxy, and 5,15-dihydroxy metabolites of arachidonic acid as well as DHA itself require ≥10-100 µM to do this. Like DHA, the DHA metabolites a) induce PC3 cells to activate a peroxisome proliferator-activated receptor-γ (PPARγ) reporter, express syndecan-1, and become apoptotic and b) are blocked from slowing cell proliferation by pharmacological inhibition or knockdown of PPARγ or syndecan-1. The DHA metabolites thus slow prostate cancer cell proliferation by engaging the PPARγ/syndecan-1 pathway of apoptosis and thereby may contribute to the prostate cancer-suppressing effects of not only 15-LOX but also dietary DHA.
Collapse
Affiliation(s)
- Joseph T. O’Flaherty
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yungping Hu
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Rhonda E. Wooten
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - David A. Horita
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Michael P. Samuel
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Michael J. Thomas
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Haiguo Sun
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Iris J. Edwards
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bickford JS, Mueller C, Newsom KJ, Barilovits SJ, Beachy DE, Herlihy JD, Keeler B, Flotte TR, Nick HS. Effect of allergy and inflammation on eicosanoid gene expression in CFTR deficiency. J Cyst Fibros 2012; 12:258-65. [PMID: 22985691 DOI: 10.1016/j.jcf.2012.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/02/2012] [Accepted: 08/10/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) is a complicating factor in cystic fibrosis (CF), affecting 2-15% of patients. We hypothesized that sensitization/challenge of CFTR(-/-) mice with an Aspergillus fumigatus (Af) extract will affect eicosanoid pathway gene expression, impacting ABPA and CF. METHODS FABP-hCFTR(+/-)-CFTR(-/-) mice were sensitized/challenged with an Af extract and gene expression of lung mRNA was evaluated for >40 genes, with correlative data in human CF (IB3.1) and CFTR-corrected (S9) bronchoepithelial cell lines. RESULTS Pla2g4c, Pla2g2c, Pla2g2d and Pla2g5 were induced in response to Af in CFTR(-/-) mice. Interestingly, PLA2G2D was induced by LPS, IL-2, IL-6, IL-13, and Af only in CFTR-deficient human IB3.1 cells. Prostanoid gene expression was relatively constant, however, several 12/15-lipoxygenase genes were induced in response to Af. Numerous cytokines also caused differential expression of ALOX15 only in IB3.1 cells. CONCLUSIONS The distinct regulation of PLA2G4C, PLA2G2D and ALOX15 genes in Aspergillus sensitization and/or cystic fibrosis could provide new insights into diagnosis and treatment of ABPA and CF.
Collapse
Affiliation(s)
- Justin S Bickford
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
15-Lipoxygenase eicosanoids are the putative ligands for vanilloid receptors and peroxisome proliferator-activated receptors (PPARs). Proc Natl Acad Sci U S A 2011. [PMID: 22207620 DOI: 10.1073/pnas.1118477109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
14
|
Suraneni MV, Schneider-Broussard R, Moore JR, Davis TC, Maldonado CJ, Li H, Newman RA, Kusewitt D, Hu J, Yang P, Tang DG. Transgenic expression of 15-lipoxygenase 2 (15-LOX2) in mouse prostate leads to hyperplasia and cell senescence. Oncogene 2010; 29:4261-75. [PMID: 20514017 PMCID: PMC3042242 DOI: 10.1038/onc.2010.197] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 04/21/2010] [Accepted: 04/25/2010] [Indexed: 12/13/2022]
Abstract
15-Lipoxygenase 2 (15-LOX2), a lipid-peroxidizing enzyme, is mainly expressed in the luminal compartment of the normal human prostate, and is often decreased or lost in prostate cancer. Previous studies from our lab implicate 15-LOX2 as a functional tumor suppressor. To better understand the biological role of 15-LOX2 in vivo, we generated prostate-specific 15-LOX2 transgenic mice using the ARR2PB promoter. Unexpectedly, transgenic expression of 15-LOX2 or 15-LOX2sv-b, a splice variant that lacks arachidonic acid-metabolizing activity, resulted in age-dependent prostatic hyperplasia and enlargement of the prostate. Prostatic hyperplasia induced by both 15-LOX2 and 15-LOX2sv-b was associated with an increase in luminal and Ki-67(+) cells; however, 15-LOX2-transgenic prostates also showed a prominent increase in basal cells. Microarray analysis revealed distinct gene expression profiles that could help explain the prostate phenotypes. Strikingly, 15-LOX2, but not 15-LOX2sv-b, transgenic prostate showed upregulation of several well-known stem or progenitor cell molecules including Sca-1, Trop2, p63, Nkx3.1 and Psca. Prostatic hyperplasia caused by both 15-LOX2 and 15-LOX2sv-b did not progress to prostatic intraprostate neoplasia or carcinoma and, mechanistically, prostate lobes (especially those of 15-LOX2 mice) showed a dramatic increase in senescent cells as revealed by increased SA-betagal, p27(Kip1) and heterochromatin protein 1gamma staining. Collectively, our results suggest that 15-LOX2 expression in mouse prostate leads to hyperplasia and also induces cell senescence, which may, in turn, function as a barrier to tumor development.
Collapse
Affiliation(s)
- MV Suraneni
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - R Schneider-Broussard
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - JR Moore
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - T Calhoun Davis
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - CJ Maldonado
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - H Li
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - RA Newman
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - D Kusewitt
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
| | - J Hu
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - P Yang
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - DG Tang
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957
- Program in Molecular Carcinogenesis, The University of Texas Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030
| |
Collapse
|
15
|
Campbell SE, Musich PR, Whaley SG, Stimmel JB, Leesnitzer LM, Dessus-Babus S, Duffourc M, Stone W, Newman RA, Yang P, Krishnan K. Gamma Tocopherol Upregulates the Expression of 15-S-HETE and Induces Growth Arrest Through a PPAR Gamma-Dependent Mechanism in PC-3 Human Prostate Cancer Cells. Nutr Cancer 2009; 61:649-62. [DOI: 10.1080/01635580902825654] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Abstract
Eicosanoids, the metabolites of arachidonic acid, have diverse functions in the regulation of cancer including prostate cancer. This review will provide an overview of the roles of eicosanoids and endocannabinoids and their potential as therapeutic targets for prostate cancer treatment.
Collapse
Affiliation(s)
- Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
17
|
Differential modulation of PPARα and γ target gene expression in the liver and kidney of rats treated with aspirin. ACTA ACUST UNITED AC 2008; 59:391-7. [DOI: 10.1016/j.etp.2007.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 11/28/2007] [Indexed: 01/04/2023]
|
18
|
Synergistic effect of 15-lipoxygenase 2 and radiation in killing head-and-neck cancer. Cancer Gene Ther 2008; 15:323-30. [DOI: 10.1038/cgt.2008.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Limor R, Sharon O, Knoll E, Many A, Weisinger G, Stern N. Lipoxygenase-derived metabolites are regulators of peroxisome proliferator-activated receptor gamma-2 expression in human vascular smooth muscle cells. Am J Hypertens 2008; 21:219-23. [PMID: 18202670 DOI: 10.1038/ajh.2007.39] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear receptor family that has been implicated in cell differentiation and proliferation, glucose metabolism, macrophage development, and inflammatory responses. PPAR-gamma can be activated by a range of synthetic substances and also by products of lipid oxidation such as oxidized low-density lipoprotein, 13-hydroxyoctadecadienoic acid (13-HODE) and 15-hydroxyeicosatetraenoic acid (15-HETE). Since 12- and 15-lipoxygenase (12- and 15-LO) are expressed in human vascular smooth muscle cells (VSMCs), we set out to investigate the possible relation between PPAR-gamma and LO system in these cells. METHODS In vitro experiments in human VSMC using standard methods. RESULTS The LO products, 12-HETE (10(-7) mol/l), 15-HETE (10(-7) mol/l) and 13-HODE (10(-7) mol//l) increased the expression of PPAR-gamma-2 messenger RNA (mRNA) in VSMC (by 100, 50, and 100%, respectively. Rosiglitazone (1-10 micromol/l) was found to upregulate both the mRNA expression of two LO enzymes, platelet-type 12-lipoxygenase (12-LO; +70%) and 15-lipoxygenase type 2 (15-LO; +60%), and the secretion of their eicosanoid products 12- and 15-HETE. In addition, rosiglitazone-induced a threefold increase in PPAR-gamma-2 mRNA expressions and modest 50% rise in PPAR-gamma-1 mRNA expression. The effect of rosiglitazone on PPAR-gamma-2 could be entirely blocked by the LO inhibitor baicalein and restored by the addition of exogenous 12-HETE. CONCLUSIONS These results suggest a novel amplification cycle in which PPAR-gamma activation induces production of 12- and 15-LO-derived metabolites which in turn feed back to upregulate PPAR-gamma-2's own expression. The implications of this link in VSMC pathophysiology remain to be elucidated.
Collapse
|
20
|
Campbell MJ, Carlberg C, Koeffler HP. A Role for the PPARgamma in Cancer Therapy. PPAR Res 2008; 2008:314974. [PMID: 18528521 PMCID: PMC2408680 DOI: 10.1155/2008/314974] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 03/17/2008] [Indexed: 12/19/2022] Open
Abstract
In 1997, the first published reports highlighted PPARgamma as a novel cancer therapeutic target regulating differentiation of cancer cells. A subsequent flurry of papers described these activities more widely and fuelled further enthusiasm for differentiation therapy, as the ligands for the PPARgamma were seen as well tolerated and in several cases well-established in other therapeutic contexts. This initial enthusiasm and promise was somewhat tempered by contradictory findings in several murine cancer models and equivocal trial findings. As more understanding has emerged in recent years, a renaissance has occurred in targeting PPARgamma within the context of either chemoprevention or chemotherapy. This clarity has arisen in part through a clearer understanding of PPARgamma biology, how the receptor interacts with other proteins and signaling events, and the mechanisms that modulate its transcriptional actions. Equally greater translational understanding of this target has arisen from a clearer understanding of in vivo murine cancer models. Clinical exploitation will most likely require precise and quantifiable description of PPARgamma actions, and resolution of which targets are the most beneficial to target combined with an understanding of the mechanisms that limits its anticancer effectiveness.
Collapse
Affiliation(s)
- Moray J. Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Carsten Carlberg
- Department of Biosciences, University of Kuopio, 70211 Kuopio, Finland
- Life Sciences Research Unit, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - H. Phillip Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles School of Medicine, University of California, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| |
Collapse
|