1
|
Arya AK, Kumari P, Singh P, Bhadada SK. Molecular basis of symptomatic sporadic primary hyperparathyroidism: New frontiers in pathogenesis. Best Pract Res Clin Endocrinol Metab 2025; 39:101985. [PMID: 40057423 DOI: 10.1016/j.beem.2025.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Primary hyperparathyroidism is a common endocrine disorder characterized by inappropriate elevation of parathyroid hormone and hypercalcemia. While predominantly an asymptomatic disease in Western populations, symptomatic presentations are more prevalent in Eastern countries. The molecular pathogenesis of sporadic PHPT primarily involves genetic and epigenetic alterations leading to abnormal parathyroid cell proliferation and altered calcium sensing mechanism. To date, MEN1 and cyclin D1 are the only established drivers of sporadic PHPT. Somatic MEN1 gene mutations occur in 30-40 % of sporadic parathyroid adenomas (PA), with a recent study on symptomatic cases reporting germline variants.Cyclin D1 overexpression in sporadic PA has been observed in 20-40 % of cases in Western populations and 80 % of cases in Eastern populations, with an inverse association with cyclin-dependent kinase inhibitors CDKN2A and CDKN2B expression. The calcium-sensing receptor expression was significantly lower in symptomatic compared to asymptomatic PHPT, strongly supported by epigenetic deregulation (promoter hypermethylation and histone methylation). Recent studies have highlighted the potential involvement of EZH2, a histone methyltransferase, in parathyroid tumorigenesis. Additionally, parathyroid-specific transcription factors like GCM2, PAX1, and GATA3 are emerging as putative tumor suppressors, especially from the symptomatic PHPT. Next-generation sequencing has identified novel potential drivers such as PIK3CA, MTOR, and NF1 in sporadic PC, alongside CDC73. The molecular landscape of sporadic PHPT appears to differ between Eastern and Western populations. This heterogeneity underscores the need for further large-scale studies, particularly in symptomatic cases from developing nations, to comprehensively elucidate the molecular drivers of parathyroid tumorigenesis.
Collapse
Affiliation(s)
- Ashutosh Kumar Arya
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Poonam Kumari
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Priyanka Singh
- Department of Systems Biology, City of Hope, Monrovia, CA 91016, USA.
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
2
|
Cao H, Wang M, Cheng A, Tian B, Yang Q, Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y, Zhang S, Huang J, Yu Y, Zhang L, Chen S, Liu M, Zhu D, Jia R. The functions of herpesvirus shuttling proteins in the virus lifecycle. Front Microbiol 2025; 16:1515241. [PMID: 39973925 PMCID: PMC11837949 DOI: 10.3389/fmicb.2025.1515241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
During viral infection, the transport of various proteins between the nucleus and cytoplasm plays an important role in the viral lifecycle. Shuttling proteins are key factors in the transmission of nucleocytoplasmic information within cells and usually contain nuclear localization signals and nuclear export signals to mediate correct positioning for themselves and other proteins. The nucleocytoplasmic transport process is carried out through the nuclear pore complex on the nuclear envelope and is mediated by specific protein carriers. The viral proteins that function through nucleocytoplasmic shuttling in herpesviruses have gradually been identified as research advances. This article provides an overview of how shuttling proteins utilize nucleocytoplasmic shuttling signals and nuclear transport receptors for nucleocytoplasmic transport, as well as discusses how herpesvirus shuttling proteins enhance the effective infection of viruses by affecting their lifecycle and participating in innate immunity, this review provides a reference for understanding the pathogenesis of herpesvirus infection and determining new antiviral strategies.
Collapse
Affiliation(s)
- Huijun Cao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Needleman L, Chun N, Sitaraman S, Tan M, Sellmeyer DE, Kebebew E, Annes JP. CDC73 c.1155-3A>G is a pathogenic variant that causes aberrant splicing, disrupted parafibromin expression, and hyperparathyroidism-jaw tumor syndrome. JBMR Plus 2025; 9:ziae149. [PMID: 39677927 PMCID: PMC11646312 DOI: 10.1093/jbmrpl/ziae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Germline and somatic pathogenic variants in the CDC73 gene, encoding the nuclear protein parafibromin, increase the risk for parathyroid carcinoma and cause hereditary primary hyperparathyroidism (PHPT) syndromes known as familial isolated hyperparathyroidism (FIHP) and hyperparathyroidism-jaw tumor syndrome (HPT-JT). The identification of pathogenic germline variants in PHPT-susceptibility genes can influence surgical planning for parathyroidectomy, guide screening for potential syndromic manifestations, and identify/exonerate at-risk family members. Numerous types of pathogenic germline variants have been described for CDC73-related conditions, including deletion, truncating, missense, and splice site mutations. Here, we report identification of a non-coding germline CDC73 variant (CDC73 c.1155-3A > G), previously categorized as a variant of uncertain significance (VUS), in a family with HPT-JT. This variant, found in two family members with PHPT, altered CDC73 splicing in peripheral blood cells and disrupted parafibromin immunostaining in associated parathyroid adenomas, strongly evidencing its pathogenicity. Sestamibi scintigraphy yielded nondiagnostic localization results for both patients' parathyroid adenomas, consistent with prior studies suggesting lower sensitivity for small or cystic lesions. Our findings demonstrate key aspects of CDC73-related disorders, highlight the diagnostic value of RNA testing, and exemplify the importance of obtaining a thorough, three-generational family history.
Collapse
Affiliation(s)
- Leor Needleman
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA 94305, United States
| | - Nicolette Chun
- Department of Genetics, Stanford University, Stanford CA 94305, United States
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305, United States
| | - Sathvika Sitaraman
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA 94305, United States
| | - Marilyn Tan
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA 94305, United States
| | - Deborah E Sellmeyer
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA 94305, United States
| | - Electron Kebebew
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305, United States
- Department of Surgery, Stanford University, Stanford CA 94305, United States
| | - Justin P Annes
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA 94305, United States
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
4
|
Jiang S, Peng J, Saneela S, Shi R, Wang D, Tang Q, Shi X, Meng Y. Bipartite nuclear localization sequence is indispensable for nuclear import and stability of self-dimerization of ADARa in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104190. [PMID: 39389319 DOI: 10.1016/j.ibmb.2024.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
The conservative post-transcriptional modification in mammals and Drosophila is adenosine-to-inosine (A-to-I) deamination in double-stranded RNA, catalyzed by RNA-editing enzymes known as adenosine deaminases acting on RNA (ADARs). The traditional nuclear import pathway for ADARs involves the recognition of a putative classical nuclear localization sequence (NLS) by importin α4 and α5. In our previous research, ADAR in silkworm, Bombyx mori (BmADARa) was confirmed predominantly located in the nucleus. However, the location of the NLS in BmADARa and its impact on nuclear import and self-dimerization remained unclear. Utilizing NLS prediction software, we predicted the presence of a bipartite NLS within the amino-terminal, 85 amino acids of BmADARa (N85). This prediction was validated through point mutation, which demonstrated that the bipartite NLS could directly mediate nuclear import of BmADARa. Co-immunoprecipitation analysis revealed that BmADARa is mainly dependent on BmKaryopherin α3 (homologous to mammalian importin α4) for nuclear import, although both BmKaryopherin α3 and BmImportin α5 could recognize bipartite NLS. The N-terminal truncated mutants and the bipartite NLS mutants of BmADARa suggest that the bipartite NLS is the major nuclear import site and a crucial structure for self-dimerization of BmADARa. In conclusion, the N-terminal bipartite NLS of BmADARa is recognized by BmKaryopherin α3 and BmImportin α5, facilitating its nuclear import. This promotes BmADARa self-dimerization and maintains the stability of dimerization, thereby enhancing its editing efficiency on target substrates. The results of this research demonstrate the role of bipartite NLS in BmADARa editing and laying a foundation for further research on the regulation of BmADARa in the growth and development in B. mori.
Collapse
Affiliation(s)
- Song Jiang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Hefei, 230036, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Junzhe Peng
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Hefei, 230036, China
| | - Syeda Saneela
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Ruoyun Shi
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Daoming Wang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Qingheng Tang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Hefei, 230036, China
| | - Xiaming Shi
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Hefei, 230036, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Hefei, 230036, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, 230036, China.
| |
Collapse
|
5
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 PMCID: PMC11550616 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
6
|
Tora R, Welch J, Sun J, Agarwal SK, Bell DA, Merino M, Weinstein LS, Simonds WF, Jha S. Phenotypic Profiling and Molecular Mechanisms in Hyperparathyroidism-jaw Tumor Syndrome. J Clin Endocrinol Metab 2023; 108:3165-3177. [PMID: 37339334 PMCID: PMC10655532 DOI: 10.1210/clinem/dgad368] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
CONTEXT Hyperparathyroidism-jaw tumor (HPT-JT) syndrome is a heritable form of primary hyperparathyroidism caused by germline inactivating mutations in CDC73 encoding parafibromin and is associated with an increased risk of parathyroid cancer. There is little evidence to guide the management of patients with the disease. OBJECTIVE (1) Characterize the natural history of HPT-JT, (2) correlate genotype and histology of parathyroid tumors with parafibromin immunostaining, (3) understand molecular changes downstream to CDC73 loss. DESIGN Retrospective study of patients with HPT-JT syndrome (genetically confirmed or affected first-degree relatives). Independent review of uterine tumor from 2 patients and staining for parafibromin on parathyroid tumors from 19 patients (13 adenomas, 6 carcinomas) was performed. RNA-sequencing was performed in 21 parathyroid samples (8 HPT-JT-related adenomas, 6 HPT-JT-related carcinomas, and 7 sporadic carcinomas with wild-type CDC73). RESULTS We identified 68 patients from 29 kindreds with HPT-JT with median age at last follow-up of 39 [interquartile range, 29-53] years. A total of 55/68 (81%) developed primary hyperparathyroidism; 17/55 (31%) had parathyroid carcinoma. Twelve of 32 (38%) females developed uterine tumors. Of the 11 patients who had surgical resection for uterine tumors, 12/24 (50%) tumors were rare mixed epithelial mesenchymal polypoid lesions. Four of 68 patients (6%) developed solid kidney tumors; 3/4 had a CDC73 variant at p.M1 residue. Parafibromin staining of parathyroid tumors did not correlate with tumor histology or genotype. RNA-sequencing showed a significant association of HPT-JT-related parathyroid tumors with transmembrane receptor protein tyrosine kinase signaling pathway, mesodermal commitment pathway, and cell-cell adhesion. CONCLUSIONS Multiple, recurrent atypical adenomyomatous uterine polyps appear to be enriched in women with HPT-JT and appear characteristic of the disease. Patients with CDC73 variants at p.M1 residue appear predisposed to kidney tumors. CLINICAL TRIAL NUMBER NCT04969926.
Collapse
Affiliation(s)
- Rana Tora
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Welch
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Sun
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debra A Bell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [PMID: 37974978 PMCID: PMC10643749 DOI: 10.1007/s12551-023-01136-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
Nuclear cytoplasmic transport is mediated by many receptors that recognize specific nuclear localization signals on proteins and RNA and transport these substrates through nuclear pore complexes. Facilitated diffusion through nuclear pore complexes requires the attachment of transport receptors. Despite the relatively large tunnel diameter, some even small proteins (less than 20-30 kDa), such as histones, pass through the nuclear pore complex only with transport receptors. Over several decades, considerable material has been accumulated on the structure, architecture, and amino acid composition of the proteins included in this complex and the sequence of many receptors. We consider the data available in the literature on the structure of the nuclear pore complex and possible mechanisms of nuclear-cytoplasmic transport, applying the theory of electrostatic interactions in the context of our data on changes in the electrokinetic potential of nuclei and our previously proposed physical model of the mechanism of facilitated diffusion through the nuclear pore complex (NPC). According to our data, the main contribution to the charge of the nuclear membrane is made by anionic phospholipids, which are part of both the nuclear membrane and the nuclear matrix, which creates a potential difference between them. The nuclear membrane is a four-layer phospholipid dielectric, so the potential vector can only pass through the NPC, creating an electrostatic funnel that "pulls in" the positively charged load-NLS-NTR trigger complexes. Considering the newly obtained data, an improved model of the previously proposed physical model of the mechanism of nuclear-cytoplasmic transport is proposed. This model considers the contribution of electrostatic fields to the transportation speed when changing the membrane's thickness in the NPC basket at a higher load.
Collapse
Affiliation(s)
- Liya A. Minasbekyan
- Scientific Research Institute of Biology, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| | - Hamlet G. Badalyan
- Chair of General Physics, Yerevan State University, A. Manoogian St., 1, 0025 Yerevan, Armenia
| |
Collapse
|
8
|
Minasbekyan LA, Badalyan HG. Physical model of the nuclear membrane permeability mechanism. Biophys Rev 2023; 15:1195-1207. [DOI: https:/doi.org/10.1007/s12551-023-01136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 02/27/2024] Open
|
9
|
Chen S, Cao R, Xiang L, Li Z, Chen H, Zhang J, Feng X. Research progress in nucleus-targeted tumor therapy. Biomater Sci 2023; 11:6436-6456. [PMID: 37609783 DOI: 10.1039/d3bm01116j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The nucleus is considered the most important organelle in the cell as it plays a central role in controlling cell reproduction, metabolism, and the cell cycle. The successful delivery of drugs into the nucleus can achieve excellent therapeutic effects, which reveals the potential of nucleus-targeted therapy in precision medicine. However, the transportation of therapeutics into the nucleus remains a significant challenge due to various biological barriers. Herein, we summarize the recent progress in the nucleus-targeted drug delivery system (NDDS). The structures of the nucleus and nuclear envelope are first described in order to understand the mechanisms by which drugs cross the nuclear envelope. Then, various drug delivery strategies based on the mechanisms and their applications are discussed. Finally, the challenges and solutions in the field of nucleus-targeted drug delivery are raised for developing a more efficient NDDS and promoting its clinical transformation.
Collapse
Affiliation(s)
- Shaofeng Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Rumeng Cao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ling Xiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ziyi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Jiumeng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
10
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
11
|
Wei C, Xu Y, Shen Q, Li R, Xiao X, Saw PE, Xu X. Role of long non-coding RNAs in cancer: From subcellular localization to nanoparticle-mediated targeted regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:774-793. [PMID: 37655045 PMCID: PMC10466435 DOI: 10.1016/j.omtn.2023.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts more than 200 nucleotides in length that play crucial roles in cancer development and progression. With the rapid development of high-throughput sequencing technology, a considerable number of lncRNAs have been identified as novel biomarkers for predicting the prognosis of cancer patients and/or therapeutic targets for cancer therapy. In recent years, increasing evidence has shown that the biological functions and regulatory mechanisms of lncRNAs are closely associated with their subcellular localization. More importantly, based on the important roles of lncRNAs in regulating cancer progression (e.g., growth, therapeutic resistance, and metastasis) and the specific ability of nucleic acids (e.g., siRNA, mRNA, and DNA) to regulate the expression of any target genes, much effort has been exerted recently to develop nanoparticle (NP)-based nucleic acid delivery systems for in vivo regulation of lncRNA expression and cancer therapy. In this review, we introduce the subcellular localization and regulatory mechanisms of various functional lncRNAs in cancer and systemically summarize the recent development of NP-mediated nucleic acid delivery for targeted regulation of lncRNA expression and effective cancer therapy.
Collapse
Affiliation(s)
- Chunfang Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Qian Shen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
12
|
Jiang X, Peng J, Xie Y, Xu Y, Liu Q, Cheng C, Yan P, Xu S, Wang Y, Zhang L, Li H, Li Y, Li B, Han J, Yu D. Oxoglutarate dehydrogenase-like inhibits the progression of hepatocellular carcinoma by inducing DNA damage through non-canonical function. Cell Death Differ 2023; 30:1931-1942. [PMID: 37419985 PMCID: PMC10406884 DOI: 10.1038/s41418-023-01186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Oxoglutarate dehydrogenase-like (OGDHL) is considered to be the isoenzyme of oxyglutarate dehydrogenase (OGDH) in the OGDH complex, which degrades glucose and glutamate. OGDHL was reported to reprogram glutamine metabolism to suppress HCC progression in an enzyme-activity-dependent manner. However, the potential subcellular localization and non-canonical function of OGDHL is poorly understood. We investigated the expression of OGDHL and its effect on HCC progression. By employing a variety of molecular biology techniques, we revealed the underlying mechanism of OGDHL-induced DNA damage in HCC cells in vitro and in vivo. AAV loaded with OGDHL exerts therapeutic effect on mouse HCC and prolongs survival time. OGDHL induces DNA damage in HCC cells in vitro and in vivo. We also observed that OGDHL possesses nuclear localization in HCC cells and OGDHL-induced DNA damage was independent of its enzymatic activity. Mechanistically, it was demonstrated that OGDHL binds to CDK4 in the nucleus to inhibit the phosphorylation of CDK4 by CAK, which in turn attenuates E2F1 signaling. Inhibition of E2F1 signaling downregulates pyrimidine and purine synthesis, thereby inducing DNA damage through dNTP depletion. We clarified the nuclear localization of OGDHL and its non-canonical function to induce DNA damage, which demonstrated that OGDHL may serve as a select potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiang Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jin Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yuanyuan Xie
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yanchao Xu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Qi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Chunxiao Cheng
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Peng Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Shoujing Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Laizhu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Huan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yunzheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Binghua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Junhai Han
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Decai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China.
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| |
Collapse
|
13
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Mattola S, Aho V, Bustamante‐Jaramillo LF, Pizzioli E, Kann M, Vihinen‐Ranta M. Nuclear entry and egress of parvoviruses. Mol Microbiol 2022; 118:295-308. [PMID: 35974704 PMCID: PMC9805091 DOI: 10.1111/mmi.14974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 01/09/2023]
Abstract
Parvoviruses are small non-enveloped single-stranded DNA viruses, which depend on host cell nuclear transcriptional and replication machinery. After endosomal exposure of nuclear localization sequence and a phospholipase A2 domain on the capsid surface, and escape into the cytosol, parvovirus capsids enter the nucleus. Due to the small capsid diameter of 18-26 nm, intact capsids can potentially pass into the nucleus through nuclear pore complexes (NPCs). This might be facilitated by active nuclear import, but capsids may also follow an alternative entry pathway that includes activation of mitotic factors and local transient disruption of the nuclear envelope. The nuclear entry is followed by currently undefined events of viral genome uncoating. After genome release, viral replication compartments are initiated and infection proceeds. Parvoviral genomes replicate during cellular S phase followed by nuclear capsid assembly during virus-induced S/G2 cell cycle arrest. Nuclear egress of capsids occurs upon nuclear envelope degradation during apoptosis and cell lysis. An alternative pathway for nuclear export has been described using active transport through the NPC mediated by the chromosome region maintenance 1 protein, CRM1, which is enhanced by phosphorylation of the N-terminal domain of VP2. However, other alternative but not yet uncharacterized nuclear export pathways cannot be excluded.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | - Vesa Aho
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| | | | - Edoardo Pizzioli
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Michael Kann
- Department of Infectious Diseases, Institute of BiomedicineUniversity of GothenburgGothenburgSweden,Sahlgrenska AcademyGothenburgSweden,Department of Clinical MicrobiologyRegion Västra Götaland, Sahlgrenska University HospitalGothenburgSweden
| | - Maija Vihinen‐Ranta
- Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
| |
Collapse
|
15
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
16
|
Kim SY, Lee JY, Cho YJ, Jo KH, Kim ES, Han JH, Baek KH, Moon SD. USP37 Deubiquitinates CDC73 in HPT-JT Syndrome. Int J Mol Sci 2022; 23:ijms23126364. [PMID: 35742816 PMCID: PMC9224168 DOI: 10.3390/ijms23126364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
The CDC73/HRPT2 gene, a defect which causes hyperparathyroidism–jaw tumor (HPT-JT) syndrome, encodes CDC73/parafibromin. We aimed to investigate whether CDC73 would be a target for ubiquitin–proteasome degradation. We cloned full-length cDNAs encoding a family of 58 ubiquitin-specific deubiquitinating enzymes (DUBs), also known as ubiquitin-specific proteases (USPs). Use of the yeast two-hybrid system then enabled us to identify USP37 as interacting with CDC73. The biochemical interaction between the USP37 and CDC73 and their reciprocal binding domains were studied. Co-localization of CDC73 and USP37 was observed in cells. CDC73 was found to be polyubiquitinated, and polyubiquitination of CDC73 was prominent in mutants. CDC73 was deubiquitinated via K48-specific ubiquitin chains by USP37, but not by the catalytically inactive USP37C350S mutant. Observation of the binding between deletion mutants of CDC73 and USP37 revealed that the β-catenin binding site of CDC73 and the ubiquitin-interacting motifs 2 and 3 (UIM2 and 3) of USP37 were responsible for the interaction between the two proteins. Moreover, these two enzymes co-existed within the nucleus of COS7 cells. We conclude that USP37 is a DUB for CDC73 and that the two proteins interact through specific domains, suggesting that USP37 is responsible for the stability of CDC73 in HPT-JT syndrome.
Collapse
Affiliation(s)
- Su Yeon Kim
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (S.Y.K.); (J.-y.L.)
| | - Ji-young Lee
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (S.Y.K.); (J.-y.L.)
| | - Yun-jung Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Korea; (Y.-j.C.); (K.H.J.); (E.S.K.); (J.H.H.)
| | - Kwan Hoon Jo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Korea; (Y.-j.C.); (K.H.J.); (E.S.K.); (J.H.H.)
| | - Eun Sook Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Korea; (Y.-j.C.); (K.H.J.); (E.S.K.); (J.H.H.)
| | - Je Ho Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Korea; (Y.-j.C.); (K.H.J.); (E.S.K.); (J.H.H.)
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea;
| | - Sung-dae Moon
- Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (S.Y.K.); (J.-y.L.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Korea; (Y.-j.C.); (K.H.J.); (E.S.K.); (J.H.H.)
- Correspondence: ; Tel.: +82-32-280-5508
| |
Collapse
|
17
|
Erickson LA, Mete O, Juhlin CC, Perren A, Gill AJ. Overview of the 2022 WHO Classification of Parathyroid Tumors. Endocr Pathol 2022; 33:64-89. [PMID: 35175514 DOI: 10.1007/s12022-022-09709-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
Abstract
The 2022 WHO classification reflects increases in the knowledge of the underlying pathogenesis of parathyroid disease. In addition to the classic characteristic features of parathyroid neoplasms, subtleties in histologic features which may indicate an underlying genetic abnormality reflect increased understanding of the clinical manifestations, histologic, and genetic correlation in parathyroid disease. The importance of underlying genetic aberrancies is emphasized due to their significance to the care of the patient. Traditionally, the term "parathyroid hyperplasia" has been applied to multiglandular parathyroid disease; however, the concept of hyperplasia is generally no longer supported in the context of primary hyperparathyroidism since affected glands are usually composed of multiple "clonal" neoplastic proliferations. In light of these findings and management implications for patient care, the 2022 WHO classification endorses primary hyperparathyroidism-related multiglandular parathyroid disease (multiglandular multiple parathyroid adenomas) as a germline susceptibility-driven multiglandular parathyroid neoplasia. From such a perspective, pathologists can provide additional value to genetic triaging by recognizing morphological and immunohistochemical harbingers of MEN1, CDKN1B, MAX, and CDC73-related manifestations. In the current WHO classification, the term "parathyroid hyperplasia" is now used primarily in the setting of secondary hyperplasia which is most often caused by chronic renal failure. In addition to expansion in the histological features, including those that may be suggestive of an underlying genetic abnormality, there are additional nomenclature changes in the 2022 WHO classification reflecting increased understanding of the underlying pathogenesis of parathyroid disease. The new classification no longer endorses the use of "atypical parathyroid adenoma". This entity is now being replaced with the term of "atypical parathyroid tumor" to reflect a parathyroid neoplasm of uncertain malignant potential. The differential diagnoses of atypical parathyroid tumor are discussed along with the details of worrisome clinical and laboratory findings, and also features that define atypical histological and immunohistochemical findings to qualify for this diagnosis. The histological definition of parathyroid carcinoma still requires one of the following findings: (i) angioinvasion (vascular invasion) characterized by tumor invading through a vessel wall and associated thrombus, or intravascular tumor cells admixed with thrombus, (ii) lymphatic invasion, (iii) perineural (intraneural) invasion, (iv) local malignant invasion into adjacent anatomic structures, or (v) histologically/cytologically documented metastatic disease. In parathyroid carcinomas, the documentation of mitotic activity (e.g., mitoses per 10mm2) and Ki67 labeling index is recommended. Furthermore, the importance of complete submission of parathyroidectomy specimens for microscopic examination, and the crucial role of multiple levels along with ancillary biomarkers have expanded the diagnostic workup of atypical parathyroid tumors and parathyroid carcinoma to ensure accurate characterization of parathyroid neoplasms. The concept of parafibromin deficiency has been expanded upon and term "parafibromin deficient parathyroid neoplasm" is applied to a parathyroid neoplasm showing complete absence of nuclear parafibromin immunoreactivity. Nucleolar loss is considered as abnormal finding that requires further molecular testing to confirm its biological significance. The 2022 WHO classification emphasizes the role of molecular immunohistochemistry in parathyroid disease. By adopting a question-answer framework, this review highlights advances in knowledge of histological features, ancillary studies, and associated genetic findings that increase the understanding of the underlying pathogenesis of parathyroid disease that are now reflected in the updated classification and new entities in the 2022 WHO classification.
Collapse
Affiliation(s)
- Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55901, USA.
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Anthony J Gill
- Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Afinanisa Q, Cho MK, Seong HA. AMPK Localization: A Key to Differential Energy Regulation. Int J Mol Sci 2021; 22:10921. [PMID: 34681581 PMCID: PMC8535671 DOI: 10.3390/ijms222010921] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.
Collapse
Affiliation(s)
| | | | - Hyun-A Seong
- Department of Biochemistry, School of Biological Sciences, Chungbuk National University, Cheongju 28644, Korea; (Q.A.); (M.K.C.)
| |
Collapse
|
19
|
Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, Ruan H. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal 2021; 19:60. [PMID: 34022911 PMCID: PMC8140498 DOI: 10.1186/s12964-021-00741-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
Nuclear localization signals (NLS) are generally short peptides that act as a signal fragment that mediates the transport of proteins from the cytoplasm into the nucleus. This NLS-dependent protein recognition, a process necessary for cargo proteins to pass the nuclear envelope through the nuclear pore complex, is facilitated by members of the importin superfamily. Here, we summarized the types of NLS, focused on the recently reported related proteins containing nuclear localization signals, and briefly summarized some mechanisms that do not depend on nuclear localization signals into the nucleus. Video Abstract.
Collapse
Affiliation(s)
- Juane Lu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Tao Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Biao Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Suke Liu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Wenjun Song
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
20
|
Juhlin CC, Erickson LA. Genomics and Epigenomics in Parathyroid Neoplasia: from Bench to Surgical Pathology Practice. Endocr Pathol 2021; 32:17-34. [PMID: 33269427 PMCID: PMC7960610 DOI: 10.1007/s12022-020-09656-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
The majority of parathyroid disease encountered in routine practice is due to single parathyroid adenoma, of which the majority arise as sporadic tumors. This is usually a straightforward diagnosis in endocrine pathology when in the appropriate clinical setting, although subsets of cases will exhibit atypical histological features that may warrant additional immunohistochemical and genetic analyses to estimate the malignant potential. Parathyroid carcinomas on the other hand, are bona fide malignant tumors characterized by their unequivocal invasion demonstrated through routine histology or metastasis. The ultimate endpoint for any molecular marker discovered through laboratory investigations is to be introduced in clinical routine practice and guide the surgical pathologist in terms of diagnostics and prognostication. For parathyroid tumors, the two main diagnostic challenges include the distinction between parathyroid adenoma and parathyroid carcinoma, as well as the pinpointing of hereditable disease for familial screening purposes. While numerous markers on genetic, epigenetic, and protein levels have been proposed as discriminative in these aspects, this review aims to condense the scientific coverage of these enigmatic topics and to propose a focused surgical pathology approach to the subject.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Cdc73 suppresses genome instability by mediating telomere homeostasis. PLoS Genet 2018; 14:e1007170. [PMID: 29320491 PMCID: PMC5779705 DOI: 10.1371/journal.pgen.1007170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/23/2018] [Accepted: 12/25/2017] [Indexed: 12/18/2022] Open
Abstract
Defects in the genes encoding the Paf1 complex can cause increased genome instability. Loss of Paf1, Cdc73, and Ctr9, but not Rtf1 or Leo1, caused increased accumulation of gross chromosomal rearrangements (GCRs). Combining the cdc73Δ mutation with individual deletions of 43 other genes, including TEL1 and YKU80, which are involved in telomere maintenance, resulted in synergistic increases in GCR rates. Whole genome sequence analysis of GCRs indicated that there were reduced relative rates of GCRs mediated by de novo telomere additions and increased rates of translocations and inverted duplications in cdc73Δ single and double mutants. Analysis of telomere lengths and telomeric gene silencing in strains containing different combinations of cdc73Δ, tel1Δ and yku80Δ mutations suggested that combinations of these mutations caused increased defects in telomere maintenance. A deletion analysis of Cdc73 revealed that a central 105 amino acid region was necessary and sufficient for suppressing the defects observed in cdc73Δ strains; this region was required for the binding of Cdc73 to the Paf1 complex through Ctr9 and for nuclear localization of Cdc73. Taken together, these data suggest that the increased GCR rate of cdc73Δ single and double mutants is due to partial telomere dysfunction and that Ctr9 and Paf1 play a central role in the Paf1 complex potentially by scaffolding the Paf1 complex subunits or by mediating recruitment of the Paf1 complex to the different processes it functions in. Maintaining a stable genome is crucial for all organisms, and loss of genome stability has been linked to multiple human diseases, including many cancers. Previously we found that defects in Cdc73, a component of the Paf1 transcriptional elongation complex, give rise to increased genome instability. Here, we explored the mechanism underlying this instability and found that Cdc73 defects give rise to partial defects in maintaining telomeres, which are the specialized ends of chromosomes, and interact with other mutations causing telomere defects. Remarkably, Cdc73 function is mediated through a short central region of the protein that is not a part of previously identified protein domains but targets Cdc73 to the Paf1 complex through interaction with the Ctr9 subunit. Analysis of the other components of the Paf1 complex provides a model in which the Paf1 subunit mediates recruitment of the other subunits to different processes they function in. Together, these data suggest that the mutations in CDC73 and CTR9 found in patients with hyperparathyroidism-jaw tumor syndrome and some patients with Wilms tumors, respectively, may contribute to cancer progression by contributing to genome instability.
Collapse
|
22
|
Newey PJ, Thakker RV. Multiple Endocrine Neoplasia Syndromes. GENETICS OF BONE BIOLOGY AND SKELETAL DISEASE 2018:699-732. [DOI: 10.1016/b978-0-12-804182-6.00038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Cardoso L, Stevenson M, Thakker RV. Molecular genetics of syndromic and non-syndromic forms of parathyroid carcinoma. Hum Mutat 2017; 38:1621-1648. [PMID: 28881068 PMCID: PMC5698716 DOI: 10.1002/humu.23337] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 12/23/2022]
Abstract
Parathyroid carcinoma (PC) may occur as part of a complex hereditary syndrome or an isolated (i.e., non-syndromic) non-hereditary (i.e., sporadic) endocrinopathy. Studies of hereditary and syndromic forms of PC, which include the hyperparathyroidism-jaw tumor syndrome (HPT-JT), multiple endocrine neoplasia types 1 and 2 (MEN1 and MEN2), and familial isolated primary hyperparathyroidism (FIHP), have revealed some genetic mechanisms underlying PC. Thus, cell division cycle 73 (CDC73) germline mutations cause HPT-JT, and CDC73 mutations occur in 70% of sporadic PC, but in only ∼2% of parathyroid adenomas. Moreover, CDC73 germline mutations occur in 20%-40% of patients with sporadic PC and may reveal unrecognized HPT-JT. This indicates that CDC73 mutations are major driver mutations in the etiology of PCs. However, there is no genotype-phenotype correlation and some CDC73 mutations (e.g., c.679_680insAG) have been reported in patients with sporadic PC, HPT-JT, or FIHP. Other genes involved in sporadic PC include germline MEN1 and rearranged during transfection (RET) mutations and somatic alterations of the retinoblastoma 1 (RB1) and tumor protein P53 (TP53) genes, as well as epigenetic modifications including DNA methylation and histone modifications, and microRNA misregulation. This review summarizes the genetics and epigenetics of the familial syndromic and non-syndromic (sporadic) forms of PC.
Collapse
Affiliation(s)
- Luís Cardoso
- Department of EndocrinologyDiabetes and MetabolismCentro Hospitalar e Universitário de CoimbraPraceta Prof Mota PintoCoimbraPortugal
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Mark Stevenson
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Rajesh V. Thakker
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
24
|
Sun W, Kuang XL, Liu YP, Tian LF, Yan XX, Xu W. Crystal structure of the N-terminal domain of human CDC73 and its implications for the hyperparathyroidism-jaw tumor (HPT-JT) syndrome. Sci Rep 2017; 7:15638. [PMID: 29142233 PMCID: PMC5688130 DOI: 10.1038/s41598-017-15715-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023] Open
Abstract
CDC73/Parafibromin is a critical component of the Paf1 complex (PAF1C), which is involved in transcriptional elongation and histone modifications. Mutations of the human CDC73/HRPT2 gene are associated with hyperparathyroidism-jaw tumor (HPT-JT) syndrome, an autosomal dominant disorder. CDC73/parafibromin was initially recognized as a tumor suppressor by inhibiting cell proliferation via repression of cyclin D1 and c-myc genes. In recent years, it has also shown oncogenic features by activating the canonical Wnt/β-catenin signal pathway. Here, through limited proteolysis analysis, we demonstrate that the evolutionarily conserved human CDC73 N-terminal 111 residues form a globularly folded domain (hCDC73-NTD). We have determined a crystal structure of hCDC73-NTD at 1.02 Å resolution, which reveals a novel protein fold. CDC73-NTD contains an extended hydrophobic groove on its surface that may be important for its function. Most pathogenic CDC73 missense mutations associated with the HPT-JT syndrome are located in the region encoding CDC73-NTD. Our crystal and biochemical data indicate that most CDC73 missense mutations disrupt the folding of the hydrophobic core of hCDC73-NTD, while others such as the K34Q mutant reduce its thermostability. Overall, our results provide a solid structural basis for understanding the structure and function of CDC73 and its association with the HPT-JT syndrome and other diseases.
Collapse
Affiliation(s)
- Wei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Xiao-Lin Kuang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Ping Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Li-Fei Tian
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
| | - Wenqing Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China. .,Department of Biological Structure, University of Washington, Seattle, Washington, 98195, USA.
| |
Collapse
|
25
|
Li Y, Simonds WF. Endocrine neoplasms in familial syndromes of hyperparathyroidism. Endocr Relat Cancer 2016; 23:R229-47. [PMID: 27207564 PMCID: PMC4917437 DOI: 10.1530/erc-16-0059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
Abstract
Familial syndromes of hyperparathyroidism, including multiple endocrine neoplasia type 1 (MEN1), multiple endocrine neoplasia type 2A (MEN2A), and the hyperparathyroidism-jaw tumor (HPT-JT), comprise 2-5% of primary hyperparathyroidism cases. Familial syndromes of hyperparathyroidism are also associated with a range of endocrine and nonendocrine tumors, including potential malignancies. Complications of the associated neoplasms are the major causes of morbidities and mortalities in these familial syndromes, e.g., parathyroid carcinoma in HPT-JT syndrome; thymic, bronchial, and enteropancreatic neuroendocrine tumors in MEN1; and medullary thyroid cancer and pheochromocytoma in MEN2A. Because of the different underlying mechanisms of neoplasia, these familial tumors may have different characteristics compared with their sporadic counterparts. Large-scale clinical trials are frequently lacking due to the rarity of these diseases. With technological advances and the development of new medications, the natural history, diagnosis, and management of these syndromes are also evolving. In this article, we summarize the recent knowledge on endocrine neoplasms in three familial hyperparathyroidism syndromes, with an emphasis on disease characteristics, molecular pathogenesis, recent developments in biochemical and radiological evaluation, and expert opinions on surgical and medical therapies. Because these familial hyperparathyroidism syndromes are associated with a wide variety of tumors in different organs, this review is focused on those endocrine neoplasms with malignant potential.
Collapse
Affiliation(s)
- Yulong Li
- Metabolic Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases
| | | |
Collapse
|
26
|
Abstract
INTRODUCTION Parathyroid carcinoma (PC) is a rare endocrine disorder, commonly causing severe primary hyperparathyroidism (PHPT). PC is mainly a sporadic disease, but it may occur in familial PHPT. Patients with PC usually present markedly elevated serum calcium and PTH. The clinical features are mostly due to the effects of the excessive secretion of PTH rather than to the spread of tumor. At times, the diagnosis can be difficult. PURPOSE The aim of this work is to review the available data on PC, and focus its molecular pathogenesis and the clinical utility of CDC73 genetic testing and immunostaining of its product, parafibromin. The pathological diagnosis of PC is restricted to lesions showing unequivocal growth into adjacent tissues or metastasis. Inactivating mutations of the cell division cycle 73 (CDC73) gene have been identified in up to 70 % of apparently sporadic PC and in one-third are germline. Loss of parafibromin immunostaining has been shown in most PC. The association of CDC73 mutations and loss of parafibromin predicts a worse clinical outcome and a lower overall 5- and 10-year survival. CONCLUSIONS The treatment of choice is the en bloc resection of the tumor. The course of PC is variable; most patients have local recurrences or distant metastases and die from unmanageable hypercalcemia.
Collapse
Affiliation(s)
- F Cetani
- University Hospital of Pisa, Endocrine Unit 2, Via Paradisa, 2, 56124, Pisa, Italy.
| | - E Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, Pisa, Italy
| | - C Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, Pisa, Italy
| |
Collapse
|
27
|
Bellido V, Larrañaga I, Guimón M, Martinez-Conde R, Eguia A, Perez de Nanclares G, Castaño L, Gaztambide S. A Novel Mutation in a Patient with Hyperparathyroidism-Jaw Tumour Syndrome. Endocr Pathol 2016; 27:142-6. [PMID: 26995009 DOI: 10.1007/s12022-016-9427-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hyperparathyroidism-jaw tumour syndrome (HPT-JT) is a rare variant of familial hyperparathyroidism, characterized by primary hyperparathyroidism (PHPT) due to one or multiple parathyroid adenomas, and benign tumours of the mandible and maxilla. It has an autosomal dominant pattern of inheritance, and is associated with mutations that deactivate the cell division cycle protein 73 homolog (CDC73) gene, also known as hyperparathyroidism 2 (HRPT2), located on the long arm of chromosome 1, that encodes for the tumour suppressor protein parafibromin. In the majority of cases, PHPT is the presenting symptom, but up to 30 % of HPT-JT cases initially present with an ossifying fibroma of the maxillofacial bones. HPT-JT may result in severe hypercalcemia-related complications and an elevated risk of parathyroid carcinoma. For this reason, early identification of the disease is important. We present the case of a 23-year-old woman who was found to have jaw tumours and was later diagnosed with PHPT. Genetic analysis revealed a novel mutation in exon 1 of CDC73. This report contributes to the understanding of the genetics of this rare syndrome. It also highlights the fact that HPT-JT should be considered and CDC73 mutation analysis should be performed in cases of early-onset PHPT associated with ossifying fibromas of the jaw.
Collapse
Affiliation(s)
- Virginia Bellido
- Department of Endocrinology, Cruces University Hospital, Plaza de Cruces s/n, 48903, Barakaldo, Vizcaya, Spain.
- University of the Basque Country, Leioa, Spain.
| | - Ihintza Larrañaga
- Department of Endocrinology, Cruces University Hospital, Plaza de Cruces s/n, 48903, Barakaldo, Vizcaya, Spain
| | - Maite Guimón
- Department of Endocrinology, Cruces University Hospital, Plaza de Cruces s/n, 48903, Barakaldo, Vizcaya, Spain
| | - Rafael Martinez-Conde
- Oral Medicine Unit, Oral and Maxillofacial Pathology Unit, Faculty of Medicine and Dentistry, UFI 11/25, University of the Basque Country, Leioa, Spain
| | - Asier Eguia
- Oral Medicine Unit, Oral and Maxillofacial Pathology Unit, Faculty of Medicine and Dentistry, UFI 11/25, University of the Basque Country, Leioa, Spain
| | - Gustavo Perez de Nanclares
- BioCruces Health Research Institute, Vizcaya, Spain
- CIBERER (Center for Biomedical Research on Rare Diseases), Carlos III Health Institute, Madrid, Spain
| | - Luis Castaño
- University of the Basque Country, Leioa, Spain
- BioCruces Health Research Institute, Vizcaya, Spain
- CIBERER (Center for Biomedical Research on Rare Diseases), Carlos III Health Institute, Madrid, Spain
- CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), Carlos III Health Institute, Madrid, Spain
| | - Sonia Gaztambide
- Department of Endocrinology, Cruces University Hospital, Plaza de Cruces s/n, 48903, Barakaldo, Vizcaya, Spain
- University of the Basque Country, Leioa, Spain
- BioCruces Health Research Institute, Vizcaya, Spain
- CIBERER (Center for Biomedical Research on Rare Diseases), Carlos III Health Institute, Madrid, Spain
- CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
28
|
Shen DF, Liu X, Yang XF, Fang L, Gao Y, Zhao S, Wu JC, Shi S, Li JJ, Zhao XX, Gou WF, Zheng HC. The roles of parafibromin expression in ovarian epithelial carcinomas: a marker for differentiation and prognosis and a target for gene therapy. Tumour Biol 2015; 37:2909-24. [PMID: 26409451 DOI: 10.1007/s13277-015-4103-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Parafibromin is a protein encoded by hyperparathyroidism 2 (HRPT2) and its downregulated expression is involved in the pathogenesis of parathyroid, breast, gastric, colorectal, lung, head and neck cancers. We aimed to investigate the roles of parafibromin expression in tumorigenesis, progression, or prognostic evaluation of ovarian cancers. HRPT2-expressing plasmid was transfected into ovarian cancer cells with the phenotypes and related molecules examined. The messenger RNA (mRNA) and protein expression of parafibromin were also examined in ovarian normal tissue, benign and borderline tumors and cancers by reverse transcription-polymerase chain reaction (RT-PCR), Western blot, or immunohistochemistry respectively. It was found that parafibromin overexpression caused a lower growth, migration and invasion, higher sensitivity to cisplatin and apoptosis than the mock and control (P < 0.05). The transfectants showed the hypoexpression of phosphoinositide 3-kinase (PI3K), Akt, p70 ribosomal protein S6 kinase (p70s6k), Wnt5a, B cell lymphoma-extra large (Bcl-xL), survivin, vascular endothelial growth factor (VEGF) and matrix metallopeptidase 9 (MMP-9) than the mock and control at both mRNA and protein levels (P < 0.05). According to real-time PCR, parafibromin mRNA level was lower in ovarian benign tumors and cancers than normal ovary (P < 0.05), while parafibromin was strongly expressed in metastatic cancers in omentum than primary cancers by Western blot. Immunohistochemically, parafibromin expression was stronger in primary cancers than that in ovarian normal tissue (P < 0.05) but weaker than the metastatic cancers (P < 0.05) with a positive correlation with dedifferentiation, ki-67 expression and the lower cumulative survival rate (P < 0.05). These findings indicate that parafibromin downregulation might promote the pathogenesis, dedifferentiation and metastasis of ovarian cancers possibly by suppressing aggressive phenotypes, such as proliferation, cell cycle, apoptosis, migration and invasion.
Collapse
Affiliation(s)
- Dao-Fu Shen
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Xin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Xue-Feng Yang
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Lei Fang
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Yang Gao
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Shuang Zhao
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Ji-Cheng Wu
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Shuai Shi
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Jun-Jun Li
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Xiang-Xuan Zhao
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Wen-Feng Gou
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Hua-Chuan Zheng
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China.
| |
Collapse
|
29
|
Zhang Z, Yang XF, Huang KQ, Ren L, Gou WF, Shen DF, Zhao S, Sun HZ, Takano Y, Zheng HC. The clinicopathological significances and biological functions of parafibromin expression in head and neck squamous cell carcinomas. Tumour Biol 2015; 36:9487-97. [PMID: 26124004 DOI: 10.1007/s13277-015-3618-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022] Open
Abstract
Downregulated parafibromin expression is involved in the pathogenesis and progression of parathyroid, breast, gastric, colorectal, and lung cancers. To investigate the roles of parafibromin expression in tumorigenesis, progression, and prognostic evaluation of head and neck squamous cell carcinomas (HNSCCs), we transfected parafibromin-expressing plasmid into HNSCC cell and examined the phenotypes and their relevant molecules. Parafibromin expression was detected on tissue microarray containing squamous epithelium, dysplasia, and carcinoma of head and neck by immunohistochemistry. Parafibromin overexpression was found to suppress growth, migration, and invasion, and induce apoptosis, S arrest, and mesenchymal to epithelial transition (EMT), compared with the mock and control (P < 0.05). Both overexpression of Cyclin E1, Bax, and E-cadherin and hypoexpression of c-myc, Bcl-xL, and slug were detected in B88 transfectants, in comparison to mock and control by real-time PCR. Parafibromin expression was weaker in primary cancers than those in normal squamous tissue and dysplasia (P < 0.05), but stronger than the metastatic cancers in lymph node (P < 0.05). Parafibromin expression was negatively correlated with lymph node metastasis, tumor-node-metastasis (TNM) staging, but positively with human papillomavirus (HPV) positivity (P < 0.05). The HNSCCs in tongue showed more parafibromin expression than those in larynx (P < 0.05). There was stronger parafibromin expression in moderately-than poorly-differentiated carcinomas (P < 0.05). The significantly positive correlation was observed between parafibromin expression and relapse-free survival rate by Kaplan-Meier curves (P < 0.05). Cox's proportional hazard model indicated that distant metastasis and parafibromin expression were independent prognostic factors for overall and relapse-free survival of HNSCC, respectively (P < 0.05). These findings suggest that downregulated expression of parafibromin protein plays an important role in the pathogenesis, differentiation, and metastasis of HNSCCs possibly by inducing apoptosis, suppressing proliferation, cell cycle progression, migration, invasion, and EMT. Parafibromin expression is an independent factor for relapse-free survival of HNSCCs.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Stomatology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Xue-Feng Yang
- Cancer Research Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Ke-Qiang Huang
- Department of Officer, Liaoning Medical University, Jinzhou, 121001, China
| | - Li Ren
- Department of Officer, Liaoning Medical University, Jinzhou, 121001, China
| | - Wen-Feng Gou
- Cancer Research Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Dao-Fu Shen
- Cancer Research Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Shuang Zhao
- Cancer Research Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Hong-Zhi Sun
- Cancer Research Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China
| | - Yasuo Takano
- School of Health Science, Tokyo University of Technology, Nishi-Kamata 5-23-22, Ohta-ku, Tokyo, 144-8535, Japan
| | - Hua-Chuan Zheng
- Cancer Research Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001, China.
| |
Collapse
|
30
|
A novel CDC73 gene mutation in an Italian family with hyperparathyroidism-jaw tumour (HPT-JT) syndrome. Cell Oncol (Dordr) 2014; 37:281-8. [PMID: 25113791 DOI: 10.1007/s13402-014-0187-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2014] [Indexed: 10/24/2022] Open
Abstract
PURPOSE The CDC73 gene, encoding parafibromin, has been identified as a tumour suppressor gene both in hyperparathyroidism-jaw tumour (HPT-JT) syndrome and in sporadic parathyroid carcinoma. While the vast majority of CDC73 mutations affect the N-terminus or the central core of the encoded protein, as yet few mutations have been reported affecting the C-terminus. Here, we report a case (Caucasian female, 28 years) with an invasive ossifying fibroma of the left mandible and hyperparathyroidism (sCa = 16 mg/dl, PTH = 660 pg/mL) due to a parathyroid lesion of 20 mm, hystologically diagnosed as carcinoma. METHODS The whole CDC73 gene was screened for the presence of mutations by Sanger sequencing. Immunohistochemistry, in vitro functional assays, Western blotting, MTT assays and in-silico modelling were performed to assess the effect of the detected mutation. RESULTS Sequence analysis of the CDC73 gene in the proband revealed the presence of a novel deletion affecting the C-terminus of the encoded protein (c.1379delT/p.L460Lfs*18). Clinical and genetic analyses of the available relatives led to the identification of three additional carriers, one of whom was also affected by a parathyroid lesion. Immunohistochemistry, Western blotting, MTT and in-silico modelling assays revealed that the deletion leads to down-regulation of the mutated protein, most likely through a proteasome-mediated pathway. We also found that the deletion may cause a conformational change in the C-terminus of the protein, possibly affecting its interaction with partner proteins. Finally, we found that the mutant protein enhances cellular growth. CONCLUSIONS We report a novel mutation in the CDC73 gene that may underlie HPT-JT syndrome. This mutation appears to affect the C-terminal moiety of the encoded protein, which is thought to interact with other protein partners. The identification of these partners may be instrumental for our understanding of the CDC73-associated phenotype.
Collapse
|
31
|
The PAF1 complex is involved in embryonic epidermal morphogenesis in Caenorhabditis elegans. Dev Biol 2014; 391:43-53. [PMID: 24721716 DOI: 10.1016/j.ydbio.2014.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 03/29/2014] [Accepted: 04/02/2014] [Indexed: 11/21/2022]
Abstract
The PAF1 complex (PAF1C) is an evolutionarily conserved protein complex involved in transcriptional regulation and chromatin remodeling. How the PAF1C is involved in animal development is still not well understood. Here, we report that, in the nematode Caenorhabditis elegans, the PAF1C is involved in epidermal morphogenesis in late embryogenesis. From an RNAi screen we identified the C. elegans ortholog of a component of the PAF1C, CTR-9, as a gene whose depletion caused various defects during embryonic epidermal morphogenesis, including epidermal cell positioning, ventral enclosure and epidermal elongation. RNAi of orthologs of other four components of the PAF1C (PAFO-1, LEO-1, CDC-73 and RTFO-1) caused similar epidermal defects. In these embryos, whereas the number and cell fate determination of epidermal cells were apparently unaffected, their position and shape were severely disorganized. PAFO-1::mCherry, mCherry::LEO-1 and GFP::RTFO-1 driven by the authentic promoters were detected in the nuclei of a wide range of cells. Nuclear localization of GFP::RTFO-1 was independent of other PAF1C components, while PAFO-1::mCherry and mCherry::LEO-1 dependent on other components except RTFO-1. Epidermis-specific expression of mCherry::LEO-1 rescued embryonic lethality of the leo-1 deletion mutant. Thus, although the PAF1C is universally expressed in C. elegans embryos, its epidermal function is crucial for the viability of this animal.
Collapse
|
32
|
Pazienza V, la Torre A, Baorda F, Alfarano M, Chetta M, Muscarella LA, Battista C, Copetti M, Kotzot D, Kapelari K, Al-Abdulrazzaq D, Perlman K, Sochett E, Cole DEC, Pellegrini F, Canaff L, Hendy GN, D’Agruma L, Zelante L, Carella M, Scillitani A, Guarnieri V. Identification and functional characterization of three NoLS (nucleolar localisation signals) mutations of the CDC73 gene. PLoS One 2013; 8:e82292. [PMID: 24340015 PMCID: PMC3855386 DOI: 10.1371/journal.pone.0082292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/31/2013] [Indexed: 11/22/2022] Open
Abstract
Hyperparathyroidism Jaw-Tumour Syndrome (HPT-JT) is characterized by primary hyperparathyroidism (PHPT), maxillary/mandible ossifying fibromas and by parathyroid carcinoma in 15% of cases. Inactivating mutations of the tumour suppressor CDC73/HRPT2 gene have been found in HPT-JT patients and also as genetic determinants of sporadic parathyroid carcinoma/atypical adenomas and, rarely, typical adenomas, in familial PHPT. Here we report the genetic and molecular analysis of the CDC73/HRPT2 gene in three patients affected by PHPT due to atypical and typical parathyroid adenomas, in one case belonging to familial PHPT. Flag-tagged WT and mutant CDC73/HRPT2 proteins were transiently transfected in HEK293 cells and functional assays were performed in order to investigate the effect of the variants on the whole protein expression, nuclear localization and cell overgrowth induction. We identified four CDC73/HRPT2 gene mutations, three germline (c.679_680delAG, p.Val85_Val86del and p.Glu81_Pro84del), one somatic (p.Arg77Pro). In three cases the mutation was located within the Nucleolar Localisation Signals (NoLS). The three NoLS variants led to instability either of the corresponding mutated protein or mRNA or both. When transfected in HEK293 cells, NoLS mutated proteins mislocalized with a predeliction for cytoplasmic or nucleo-cytoplasmic localization and, finally, they resulted in overgrowth, consistent with a dominant negative interfering effect in the presence of the endogenous protein.
Collapse
Affiliation(s)
- Valerio Pazienza
- Gastroenterology, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Annamaria la Torre
- Laboratory of Oncology, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Filomena Baorda
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Michela Alfarano
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Massimiliano Chetta
- Department of Molecular Biology, Molecular Stamping (Fondazione Bruno Kessler), Povo (TN), Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Claudia Battista
- Endocrinology, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Dieter Kotzot
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Klaus Kapelari
- Clinical Department of Pediatrics, Innsbruck Medical University, Innsbruck, Austria
| | - Dalia Al-Abdulrazzaq
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kusiel Perlman
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Etienne Sochett
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David E. C. Cole
- Departments of Laboratory Medicine and Pathobiology, Medicine and Genetics, University of Toronto, Ontario, Canada
| | - Fabio Pellegrini
- Laboratory of Clinical Epidemiology of Diabetes and Chronic Diseases, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | - Lucie Canaff
- Calcium Research Laboratory and Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Geoffrey N. Hendy
- Calcium Research Laboratory and Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Leonardo D’Agruma
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Leopoldo Zelante
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Massimo Carella
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Alfredo Scillitani
- Endocrinology, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Vito Guarnieri
- Medical Genetics, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
- * E-mail:
| |
Collapse
|
33
|
Ghemigian A, Ghemigian M, Popescu I, Vija L, Petrova E, Dumitru N, Dumitru I. Familial isolated primary hyperparathyroidism due to HRPT2 mutation. Hormones (Athens) 2013; 12:454-60. [PMID: 24121387 DOI: 10.1007/bf03401311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Primary hyperparathyroidism is a common endocrine disorder that is mostly caused by solitary tumors within the parathyroid glands. Characterized by early debut and higher frequency of multiple parathyroid masses, familial forms of primary hyperparathyroidism are caused by the already known mutations of: menin (MEN1 syndrome), RET proto-oncogene (MEN2 syndrome), HRPT2-parafibromin (hyperparathyroidism-jaw tumor syndrome), calcium sensing receptor gene (familial hypocalciuric hypercalcemia). A specific mutation in FIHP has not been identified in the majority of affected families. Recent studies revealed menin, HRPT2 and calcium-sensing receptor mutations in patients with FIHP. Whether FIHP is a variant or an early stage of MEN1 syndrome or hyperparathyroidism-jaw tumor syndrome is yet to be established. We present three siblings with familial isolated hyperparathyroidism due to solitary parathyroid adenoma and favorable evolution post-parathyroidectomy. Genetic tests revealed HRPT2 mutation.
Collapse
Affiliation(s)
- Adina Ghemigian
- "C.I. Parhon" National Institute of Endocrinology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
34
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
35
|
Marsh DJ, Hahn MA, Howell VM, Gill AJ. Molecular diagnosis of primary hyperparathyroidism in familial cancer syndromes. ACTA ACUST UNITED AC 2013; 1:377-92. [PMID: 23489357 DOI: 10.1517/17530059.1.3.377] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the last few years, causative genes have been identified for most of the familial hyperparathyroidism conditions. Germline mutations in the tumour suppressors multiple endocrine neoplasia type 1 (MEN1) and hyperparathyroidism 2 (HRPT2) provide a molecular diagnosis of multiple endocrine neoplasia type 1 and hyperparathyroidism jaw tumour syndrome, respectively. Germline mutations in the proto-oncogene RET (rearranged during transfection) provide a molecular diagnosis of multiple endocrine neoplasia type 2. Germline mutations of both MEN1 and, less frequently HRPT2, have been found in familial isolated hyperparathyroidism. A molecular diagnosis can now be incorporated into the management of patients with these conditions, however, the ease of diagnostics and value of genetic information in the context of clinical screening and early surgical intervention varies between these disorders. This review focuses on familial hyperparathyroidism and its known causative genes in the setting of neoplastic syndromes, with particular discussion of recent developments in the molecular diagnosis of parathyroid carcinoma.
Collapse
Affiliation(s)
- Deborah J Marsh
- University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia +61 2 9926 8486 ; +61 2 9926 8484 ;
| | | | | | | |
Collapse
|
36
|
Genome-wide and locus specific alterations in CDC73/HRPT2-mutated parathyroid tumors. PLoS One 2012; 7:e46325. [PMID: 23029479 PMCID: PMC3460869 DOI: 10.1371/journal.pone.0046325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Mutations in the hyperparathyroidism type 2 (HRPT2/CDC73) gene and alterations in the parafibromin protein have been established in the majority of parathyroid carcinomas and in subsets of parathyroid adenomas. While it is known that CDC73-mutated parathyroid tumors display specific gene expression changes compared to CDC73 wild-type cases, the molecular cytogenetic profile in CDC73-mutated cases compared to unselected adenomas (with an expected very low frequency of CDC73 mutations) remains unknown. For this purpose, nine parathyroid tumors with established CDC73 gene inactivating mutations (three carcinomas, one atypical adenoma and five adenomas) were analyzed for copy number alterations and loss of heterozygosity using array-comparative genomic hybridization (a-CGH) and single nucleotide polymorphism (SNP) microarrays, respectively. Furthermore, CDC73 gene promoter methylation levels were assessed using bisulfite Pyrosequencing. The panel included seven tumors with single mutation and three with double mutations of the CDC73 gene. The carcinomas displayed copy number alterations in agreement with previous studies, whereas the CDC73-mutated adenomas did not display the same pattern of alterations at loci frequently deleted in unselected parathyroid tumors. Furthermore, gross losses of chromosomal material at 1p and 13 were significantly (p = 0.012) associated with parathyroid carcinomas as opposed to adenomas. Quantitative PCR-based copy number loss regarding CDC73 was observed in three adenomas, while all the carcinomas were diploid or showed copy number gain for CDC73 gene. Hypermethylation of the CDC73 gene promoter was not observed. Our data could suggest that CDC73-mutated parathyroid adenomas exhibit a partly unique cytogenetic profile in addition to that of carcinomas and unselected adenomas. Furthermore, CDC73-mutated carcinomas displayed losses at 1p and 13 which are not seen in CDC73-mutated adenomas, making these regions of interest for further studies regarding malignant properties in tumors from CDC73-mutated cases. However, due to the small sample size, validation of the results in a larger cohort is warranted.
Collapse
|
37
|
Rohn JL, Sims D, Liu T, Fedorova M, Schöck F, Dopie J, Vartiainen MK, Kiger AA, Perrimon N, Baum B. Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype. ACTA ACUST UNITED AC 2012; 194:789-805. [PMID: 21893601 PMCID: PMC3171124 DOI: 10.1083/jcb.201103168] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNAi screens in Drosophila and human cells for novel actin
regulators revealed conserved roles for proteins involved in nuclear actin
export, RNA splicing, and ubiquitination. Although a large number of actin-binding proteins and their regulators have been
identified through classical approaches, gaps in our knowledge remain. Here, we
used genome-wide RNA interference as a systematic method to define metazoan
actin regulators based on visual phenotype. Using comparative screens in
cultured Drosophila and human cells, we generated phenotypic
profiles for annotated actin regulators together with proteins bearing predicted
actin-binding domains. These phenotypic clusters for the known metazoan
“actinome” were used to identify putative new core actin
regulators, together with a number of genes with conserved but poorly studied
roles in the regulation of the actin cytoskeleton, several of which we studied
in detail. This work suggests that although our search for new components of the
core actin machinery is nearing saturation, regulation at the level of nuclear
actin export, RNA splicing, ubiquitination, and other upstream processes remains
an important but unexplored frontier of actin biology.
Collapse
Affiliation(s)
- Jennifer L Rohn
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim HK, Oh YL, Kim SH, Lee DY, Kang HC, Lee JI, Jang HW, Hur KY, Kim JH, Min YK, Chung JH, Kim SW. Parafibromin immunohistochemical staining to differentiate parathyroid carcinoma from parathyroid adenoma. Head Neck 2011; 34:201-6. [PMID: 21717519 DOI: 10.1002/hed.21716] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2010] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Parafibromin is a protein encoded by the HRPT2 oncosuppressor gene, and the expression is reported to be decreased or absent in parathyroid carcinomas. METHODS A total of 26 tumor specimens from 18 patients with adenoma and 8 patients with carcinoma were immune-stained with an antibody against parafibromin. RESULTS Parafibromin immunostaining showed strong positivity in 17 of 18 adenomas. Negative staining was noted in 3 of 8 carcinomas, and weak positivity was found in 3 of 8 carcinomas. The remaining 2 cases of carcinoma showed strong positivity. The loss of parafibromin expression (negative or weak positivity) demonstrated 94.4% specificity in the diagnosis of parathyroid carcinomas. Relapses or distant metastases of carcinoma occurred only in cases in which there was a loss of parafibromin immunostaining. CONCLUSIONS Loss of parafibromin immunostating showed promising results in the differential diagnosis of parathyroid carcinoma from adenoma and may also serve as a prognostic marker.
Collapse
Affiliation(s)
- Hee Kyung Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mirczuk SM, Bowl MR, Nesbit MA, Cranston T, Fratter C, Allgrove J, Brain C, Thakker RV. A missense glial cells missing homolog B (GCMB) mutation, Asn502His, causes autosomal dominant hypoparathyroidism. J Clin Endocrinol Metab 2010; 95:3512-6. [PMID: 20463099 DOI: 10.1210/jc.2009-2532] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Glial cells missing B (GCMB), the mammalian homolog of the Drosophila GCM gene, encodes a 506-amino-acid parathyroid-specific transcription factor. To date, only two different heterozygous GCMB mutations have been reported in three kindreds with autosomal dominant hypoparathyroidism. OBJECTIVE Our objective was to investigate a family with autosomal dominant hypoparathyroidism for PTH, CaSR, and GCMB mutations. METHODS Leukocyte DNA was used with exon-specific primers for PCR amplification and the DNA sequences of the PCR products determined. Functional analyses using fluorescence microscopy, EMSAs, and luciferase reporter assays were undertaken. Informed consent was obtained using protocols approved by a national ethical committee. RESULTS DNA sequence analysis revealed an A to C transversion at codon 502 of GCMB, which altered the wild-type asparagine (Asn) to histidine (His). Functional studies, using transient transfections of COS7 cells with GCMB wild-type and mutant (Asn502His) tagged constructs, demonstrated that the wild-type and mutant proteins localized to the nucleus and retained the ability to bind the GCM-consensus DNA recognition motif. However, a luciferase reporter assay demonstrated that the Asn502His mutation resulted in a reduction in gene transactivation. Moreover, cotransfection of the wild-type with mutant did not lead to an increase in luciferase activity, thereby demonstrating a dominant-negative effect of the Asn502His mutant that would be consistent with an autosomal dominant inheritance. CONCLUSION Our results, which have identified the first dominant missense GCMB mutation, help to increase our understanding of the mechanism underlying gene transactivation that is a prerequisite for the function of this parathyroid gland-specific transcription factor.
Collapse
Affiliation(s)
- Samantha M Mirczuk
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Headington Oxford OX3 7LJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Givi B, Shah JP. Parathyroid carcinoma. Clin Oncol (R Coll Radiol) 2010; 22:498-507. [PMID: 20510594 DOI: 10.1016/j.clon.2010.04.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/27/2010] [Indexed: 11/26/2022]
Abstract
Parathyroid carcinoma is a rare endocrine malignancy. The reported incidence is from 0.5 to 5% of primary hyperparathyroidism cases in various series. The cause is unknown, but clinical correlations with different genetic syndromes exist. Mutations in the HPRT2 gene seem to play a significant role in the pathogenesis of this disease. Men and women are equally affected, usually in the fourth or fifth decade of life. Most patients will present with signs and symptoms of hypercalcaemia. Cases of non-functioning carcinoma are exceedingly rare. Surgical resection is the most effective method of treatment and palliation. A significant proportion of patients will experience recurrence, and will need further surgical and, eventually, medical management of hypercalcaemia. The disease is progressive but slow growing. Most patients will require multiple operations to resect recurrent disease. The main cause of morbidity and mortality is the sequela of uncontrolled chronic hypercalcaemia rather than tumour burden. The current paper will review the epidemiology, pathogenesis, clinical presentation and diagnostic work-up of this disease. Surgical management in different scenarios is reviewed in detail, followed by other types of treatment and management of incurable disease.
Collapse
Affiliation(s)
- B Givi
- Head and Neck Service, Department of Surgery, 1275 York Ave, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | | |
Collapse
|
41
|
Jeyabalan J, Nesbit MA, Galvanovskis J, Callaghan R, Rorsman P, Thakker RV. SEDLIN forms homodimers: characterisation of SEDLIN mutations and their interactions with transcription factors MBP1, PITX1 and SF1. PLoS One 2010; 5:e10646. [PMID: 20498720 PMCID: PMC2871040 DOI: 10.1371/journal.pone.0010646] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/22/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND SEDLIN, a 140 amino acid subunit of the Transport Protein Particle (TRAPP) complex, is ubiquitously expressed and interacts with the transcription factors c-myc promoter-binding protein 1 (MBP1), pituitary homeobox 1 (PITX1) and steroidogenic factor 1 (SF1). SEDLIN mutations cause X-linked spondyloepiphyseal dysplasia tarda (SEDT). METHODOLOGY/PRINCIPAL FINDINGS We investigated the effects of 4 missense (Asp47Tyr, Ser73Leu, Phe83Ser and Val130Asp) and the most C-terminal nonsense (Gln131Stop) SEDT-associated mutations on interactions with MBP1, PITX1 and SF1 by expression in COS7 cells. Wild-type SEDLIN was present in the cytoplasm and nucleus and interacted with MBP1, PITX1 and SF1; the SEDLIN mutations did not alter these subcellular localizations or the interactions. However, SEDLIN was found to homodimerize, and the formation of dimers between wild-type and mutant SEDLIN would mask a loss in these interactions. A mammalian SEDLIN null cell-line is not available, and the interactions between SEDLIN and the transcription factors were therefore investigated in yeast, which does not endogenously express SEDLIN. This revealed that all the SEDT mutations, except Asp47Tyr, lead to a loss of interaction with MBP1, PITX1 and SF1. Three-dimensional modelling studies of SEDLIN revealed that Asp47 resides on the surface whereas all the other mutant residues lie within the hydrophobic core of the protein, and hence are likely to affect the correct folding of SEDLIN and thereby disrupt protein-protein interactions. CONCLUSIONS/SIGNIFICANCE Our studies demonstrate that SEDLIN is present in the nucleus, forms homodimers and that SEDT-associated mutations cause a loss of interaction with the transcription factors MBP1, PITX1 and SF1.
Collapse
Affiliation(s)
- Jeshmi Jeyabalan
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - M. Andrew Nesbit
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Juris Galvanovskis
- Diabetes Research Laboratories, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Richard Callaghan
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Patrik Rorsman
- Diabetes Research Laboratories, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
42
|
Newey PJ, Bowl MR, Cranston T, Thakker RV. Cell division cycle protein 73 homolog (CDC73) mutations in the hyperparathyroidism-jaw tumor syndrome (HPT-JT) and parathyroid tumors. Hum Mutat 2010; 31:295-307. [DOI: 10.1002/humu.21188] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Bowl MR, Mirczuk SM, Grigorieva IV, Piret SE, Cranston T, Southam L, Allgrove J, Bahl S, Brain C, Loughlin J, Mughal Z, Ryan F, Shaw N, Thakker YV, Tiosano D, Nesbit MA, Thakker RV. Identification and characterization of novel parathyroid-specific transcription factor Glial Cells Missing Homolog B (GCMB) mutations in eight families with autosomal recessive hypoparathyroidism. Hum Mol Genet 2010; 19:2028-38. [PMID: 20190276 DOI: 10.1093/hmg/ddq084] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
GCMB is a member of the small transcription factor family GCM (glial cells missing), which are important regulators of development, present in vertebrates and some invertebrates. In man, GCMB encodes a 506 amino acid parathyroid gland-specific protein, mutations of which have been reported to cause both autosomal dominant and autosomal recessive hypoparathyroidism. We ascertained 18 affected individuals from 12 families with autosomal recessive hypoparathyroidism and have investigated them for GCMB abnormalities. Four different homozygous germline mutations were identified in eight families that originate from the Indian Subcontinent. These consisted of a novel nonsense mutation R39X; a missense mutation, R47L in two families; a novel missense mutation, R110W; and a novel frameshifting deletion, I298fsX307 in four families. Haplotype analysis, using polymorphic microsatellites from chromosome 6p23-24, revealed that R47L and I298fsX307 mutations arose either as ancient founders, or recurrent de novo mutations. Functional studies including: subcellular localization studies, EMSAs and luciferase-reporter assays, were undertaken and these demonstrated that: the R39X mutant failed to localize to the nucleus; the R47L and R110W mutants both lost DNA-binding ability; and the I298fsX307 mutant had reduced transactivational ability. In order to gain further insights, we undertook 3D-modeling of the GCMB DNA-binding domain, which revealed that the R110 residue is likely important for the structural integrity of helix 2, which forms part of the GCMB/DNA binding interface. Thus, our results, which expand the spectrum of hypoparathyroidism-associated GCMB mutations, help elucidate the molecular mechanisms underlying DNA-binding and transactivation that are required for this parathyroid-specific transcription factor.
Collapse
Affiliation(s)
- Michael R Bowl
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Parathyroid carcinoma in a child: an unusual case of an ectopically located malignant parathyroid gland with tumor invading the thymus. J Pediatr Surg 2009; 44:1649-52. [PMID: 19635322 DOI: 10.1016/j.jpedsurg.2009.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/15/2009] [Accepted: 04/15/2009] [Indexed: 11/20/2022]
Abstract
Parathyroid carcinoma is exceptionally rare in children. Parathyroid carcinoma in the pediatric population most typically presents with significant hypercalcemia and a palpable neck mass. The authors report the seventh case of parathyroid carcinoma diagnosed in a child younger than 16 years. To our knowledge, this case is the first documented case, in the pediatric population, of parathyroid carcinoma in an ectopically located parathyroid gland with tumor invading the thymus.
Collapse
|
45
|
Abstract
Parafibromin is a predominantly nuclear protein with a tumour suppressor role in the development of hereditary and nonhereditary parathyroid carcinomas, and the hyperparathyroidism-jaw tumour syndrome, which is associated with renal and uterine tumours. Parafibromin is a component of the highly conserved PAF1 complex, which regulates transcriptional events and histone modifications. The parafibromin/PAF1 complex regulates genes involved in cell growth and survival, and via these, parafibromin plays a pivotal role in embryonic development and survival of adults.
Collapse
Affiliation(s)
- P J Newey
- The Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, UK
| | | | | |
Collapse
|
46
|
Williams SE, Reed AAC, Galvanovskis J, Antignac C, Goodship T, Karet FE, Kotanko P, Lhotta K, Morinière V, Williams P, Wong W, Rorsman P, Thakker RV. Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum. Hum Mol Genet 2009; 18:2963-74. [PMID: 19465746 DOI: 10.1093/hmg/ddp235] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Familial juvenile hyperuricaemic nephropathy (FJHN), an autosomal dominant disorder, is caused by mutations in the UMOD gene, which encodes Uromodulin, a glycosylphosphatidylinositol-anchored protein that is expressed in the thick ascending limb of the loop of Henle and excreted in the urine. Uromodulin contains three epidermal growth factor (EGF)-like domains, a cysteine-rich region which includes a domain of eight cysteines and a zona pellucida (ZP) domain. Over 90% of UMOD mutations are missense, and 62% alter a cysteine residue, implicating a role for protein misfolding in the disease. We investigated 20 northern European FJHN probands for UMOD mutations. Wild-type and mutant Uromodulins were functionally studied by expression in HeLa cells and by the use of western blot analysis and confocal microscopy. Six different UMOD missense mutations (Cys32Trp, Arg185Gly, Asp196Asn, Cys217Trp, Cys223Arg and Gly488Arg) were identified. Patients with UMOD mutations were phenotypically similar to those without UMOD mutations. The mutant Uromodulins had significantly delayed maturation, retention in the endoplasmic reticulum (ER) and reduced expression at the plasma membrane. However, Gly488Arg, which is the only mutation we identified in the ZP domain, was found to be associated with milder in vitro abnormalities and to be the only mutant Uromodulin detected in conditioned medium from transfected cells, indicating that the severity of the mutant phenotypes may depend on their location within the protein. Thus, FJHN-causing Uromodulin mutants are retained in the ER, with impaired intracellular maturation and trafficking, thereby indicating mechanisms whereby Uromodulin mutants may cause the phenotype of FJHN.
Collapse
Affiliation(s)
- Siân E Williams
- Academic Endocrine Unit, Churchill Hospital, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Headington, Oxford OX3 7LJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Deb S, Ponnusamy MP, Senapati S, Dey P, Batra SK. Human PAF complexes in endocrine tumors and pancreatic cancer. Expert Rev Endocrinol Metab 2008; 3:557-565. [PMID: 30290411 DOI: 10.1586/17446651.3.5.557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human RNA polymerase II-associated factor (hPAF) complex is comprised of five subunits that include hPaf1, parafibromin, hLeo1, hCtr9 and hSki8. This multifaceted complex was first identified in yeast (yPAF) and subsequently in Drosophila and humans. Recent advances in the study on hPAF have revealed various functions of the complex in humans that are similar to yPAF, including efficient transcription elongation, mRNA quality control and cell cycle regulation. A major component of the hPAF complex, hPaf1, is amplified and overexpressed in pancreatic cancer. The parafibromin subunit of the hPAF complex is a product of the hereditary hyperparathyroidism type 2 (HRPT-2) tumor-suppressor gene, which is mutated in the germ line of hyperparathyroidism-jaw tumor patients. This review evaluates the role of the hPAF complex and its individual subunits in endocrine and pancreatic cancers. It focuses on the functions of the hPAF complex and its individual subunits and dysregulation of the complex, thus providing an insight into its potential involvement in the development of endocrine cancers and other tumor types.
Collapse
Affiliation(s)
- Shonali Deb
- a Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Moorthy P Ponnusamy
- b Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shantibhusan Senapati
- c Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Parama Dey
- c Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- a Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
49
|
Cetani F, Pardi E, Banti C, Borsari S, Ambrogini E, Vignali E, Cianferotti L, Viccica G, Pinchera A, Marcocci C. HRPT2 gene analysis and the diagnosis of parathyroid carcinoma. Expert Rev Endocrinol Metab 2008; 3:377-389. [PMID: 30754207 DOI: 10.1586/17446651.3.3.377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parathyroid carcinoma is an uncommon cause of primary hyperparathyroidism (PHPT) and is usually associated with more severe clinical manifestations than its much more common benign counterpart, the parathyroid adenomas. The histopathological distinction between benign and malignant parathyroid tumors is difficult. Currently, pathological diagnosis of parathyroid carcinoma is restricted to lesions showing unequivocal growth, as evidenced by perineural invasion, full-thickness capsular invasion with growth into adjacent tissues, or metastasis. Major advances in the molecular pathogenesis of parathyroid carcinoma have been made by the cloning of the HRPT2 gene, which encodes parafibromin, a 531-amino acid putative tumor-suppressor protein. Germline mutations of HRPT2 confer susceptibility to the hyperparathyroidism-jaw tumor syndrome (HPT-JT), an autosomal dominant syndrome with high but incomplete penetrance. Somatic inactivating mutations of the HRPT2 gene have been reported in the majority of apparently sporadic parathyroid carcinomas but, unexpectedly, germline HRPT2 mutation have been found in up to 30% of these patients. Several studies have been performed to evaluate whether parafibromin immunostaining might have some diagnostic utility. Loss of parafibromin immunoreactivity has been found in the majority of parathyroid carcinomas, in 50% of equivocal carcinomas and, very rarely, in benign adenomas. On the other hand, with the exception of HPT-JT-related tumors, loss of parafibromin associated with HRPT2 mutations strongly predicts parathyroid malignancy. In clinical practice, parafibromin immunostaining and HRPT2 gene analysis could be particularly useful in the subset of parathyroid tumors with equivocal histology.
Collapse
Affiliation(s)
- Filomena Cetani
- a Department of Endocrinology and Metabolism, Via Paradisa, 2, 56124 Pisa, Italy.
| | - Elena Pardi
- b Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Chiara Banti
- c Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Simona Borsari
- d Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Elena Ambrogini
- e Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Edda Vignali
- f Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | | | - Giuseppe Viccica
- h Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Aldo Pinchera
- i Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Claudio Marcocci
- j Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| |
Collapse
|
50
|
Rogemond V, Auger C, Giraudon P, Becchi M, Auvergnon N, Belin MF, Honnorat J, Moradi-Améli M. Processing and nuclear localization of CRMP2 during brain development induce neurite outgrowth inhibition. J Biol Chem 2008; 283:14751-61. [PMID: 18332147 DOI: 10.1074/jbc.m708480200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are believed to play a crucial role in neuronal differentiation and axonal outgrowth. Among them, CRMP2 mediates axonal guidance by collapsing growth cones during development. This activity is correlated with the reorganization of cytoskeletal proteins. CRMP2 is implicated in the regulation of several intracellular signaling pathways. Two subtypes, A and B, and multiple cytosolic isoforms of CRMP2B with apparent masses between 62 and 66 kDa have previously been reported. Here, we show a new short isoform of 58 kDa, expressed during brain development, derived from C-terminal processing of the CRMP2B subtype. Although full-length CRMP2 is restricted to the cytoplasm, using transfection experiments, we demonstrate that a part of the short isoform is found in the nucleus. Interestingly, at the tissue level, this short CRMP2 is also found in a nuclear fraction of brain extract. By mutational analysis, we demonstrate, for the first time, that nuclear translocation occurs via nuclear localization signal (NLS) within residues Arg(471)-Lys(472) in CRMP2 sequence. The NLS may be unmasked after C-terminal processing; thereby, this motif may be surface-exposed. This short CRMP2 induces neurite outgrowth inhibition in neuroblastoma cells and suppressed axonal growth in cultured cortical neurons, whereas full-length CRMP2 promotes neurite elongation. The NLS-mutated short isoform, restricted to the cytoplasm, abrogates both neurite outgrowth and axon growth inhibition, indicating that short nuclear CRMP2 acts as a dominant signal. Therefore, post-transcriptional processing of CRMP2 together with its nuclear localization may be an important key in the regulation of neurite outgrowth in brain development.
Collapse
|