1
|
Cortini M, Ilieva E, Massari S, Bettini G, Avnet S, Baldini N. Uncovering the protective role of lipid droplet accumulation against acid-induced oxidative stress and cell death in osteosarcoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167576. [PMID: 39561857 DOI: 10.1016/j.bbadis.2024.167576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Extracellular acidosis stemming from altered tumor metabolism promotes cancer progression by enabling tumor cell adaptation to the hostile microenvironment. In osteosarcoma, we have previously shown that acidosis increases tumor cell survival alongside substantial lipid droplet accumulation. In this study, we explored the role of lipid droplet formation in mitigating cellular stress induced by extracellular acidosis in osteosarcoma cells, thereby enhancing tumor survival during progression. Specifically, we examined how lipid droplets shield against reactive oxygen species induced by extracellular acidosis. We demonstrated that lipid droplet biogenesis is critical for acid-exposed tumor cell survival, as it starts shortly after acid exposure (24 h) and inversely correlates with ROS levels (DCFH-DA assay), lipid peroxidation (Bodipy assay), and the antioxidant response, as also revealed by NRF2 transcript. Additionally, extracellular metabolites, such as lactate, and interaction with mesenchymal stromal cells within the tumor microenvironment intensify lipid droplet build-up in osteosarcoma cells. Critically, upon targeting two key proteins implicated in LD formation - PLIN2 and DGAT1 - cell viability significantly declined while ROS production escalated. In summary, our findings underscore the vital reliance of acid-exposed tumor cells on lipid droplet formation to scavenge oxidative stress. We conclude that the rewiring of lipid metabolism driven by microenvironmental cues is of paramount importance for the survival of metabolically altered osteosarcoma cells in acidic condition. Overall, we suggest that targeting key members of lipid droplet biogenesis may eradicate more aggressive and resistant tumor cells, uncovering potential new treatment strategies for osteosarcoma.
Collapse
Affiliation(s)
- Margherita Cortini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy.
| | - Elizabeta Ilieva
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy.
| | - Stefania Massari
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy
| | - Giuliano Bettini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 40100 Ozzano dell'Emilia, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy.
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy; Biomedical Science, Technology and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
2
|
Luo J, Peng S, Jiang Z, Wang Q, Zhang M, Zeng Y, Yuan Y, Xia M, Hong Z, Yan Y, Tan Y, Tang J, Xie C, Gong Y. Roles and therapeutic opportunities of ω-3 long-chain polyunsaturated fatty acids in lung cancer. iScience 2025; 28:111601. [PMID: 39834867 PMCID: PMC11742864 DOI: 10.1016/j.isci.2024.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Over the past decades, researchers have continuously investigated the potential functions of long-chain polyunsaturated fatty acids (LCPUFAs) in cancers, including lung cancer. The ω-3 LCPUFAs, primarily consisting of eicosapentaenoic acid and docosahexaenoic acid, were found to modify inflammatory tumor microenvironment, induce cancer cell apoptosis and autophagy, and suppress tumor development when administered alone or with other therapeutical strategies. Although the precise anti-tumor mechanism has not been elucidated yet, ω-3 LCPUFAs are often used in the nutritional treatment of patients with cancer due to their ability to significantly improve patient's nutritional status, increase the sensitivity of tumor cells to treatments, and alleviate cancer-related complications. Here we present the key roles of ω-3 LCPUFAs as dietary supplementations in lung cancer, comprehensively review the recent progress on the underlying mechanisms of cancer cell regulation by ω-3 LCPUFAs, and introduce the application of ω-3 LCPUFAs in the clinical management of lung cancer and its malignant complications.
Collapse
Affiliation(s)
- Jiang Luo
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Peng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyu Jiang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingwei Wang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mini Zhang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuxin Zeng
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Yuan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Xia
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zixi Hong
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufei Yan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yushuang Tan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiawen Tang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Khoshakhlagh M, Butler AE, Jamialahmadi T, Sahebkar A. Protective Effects of Curcumin against Alcoholic Fatty Liver. Curr Med Chem 2025; 32:1702-1717. [PMID: 37581523 DOI: 10.2174/0929867331666230815113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 07/06/2023] [Indexed: 08/16/2023]
Abstract
Alcoholism is a global health concern. Due to its role as the principal site of ethanol metabolism, the liver endures the most significant amount of tissue damage from heavy drinking. Numerous liver lesions can result from chronic and heavy alcohol use, including steatosis, hepatitis, and fibrosis/cirrhosis. Fatty liver is caused by a redox shift from the oxidized to the reduced form of nicotinamide adenine dinucleotide (NAD+) caused by the ethanol oxidation reaction. The other molecular mechanisms related to the progression of alcohol-induced liver injury are increasing sterol regulatory element-binding protein-1 (SREBP-1) and decreasing PPAR-α activity, cell signaling pathway impairment, reactive oxygen species (ROS) accumulation, and lipid peroxidation. Curcuma longa L. rhizomes contain a substance called curcumin, which is naturally yellow in color and is also known as turmeric yellow. Curcumin has powerful biological and pharmacological properties, including antioxidant, anti-inflammatory, antifungal, antibacterial, antitumor, and anticancer effects. It's been employed as a hepatoprotective substance. Current studies have demonstrated the ability of curcumin to prevent the activation of NF-αB in Kupffer cells via endotoxins, to suppress the expression of various cytokines, chemokines, cyclooxygenase-2 (COX-2), and iNOS, as well as to modulate immune responses. The present study has shown the vital role of curcumin in a variety of hepatotoxic procedures, and summarizes those effects, focusing on the molecular insights they provide.
Collapse
Affiliation(s)
- Mahdieh Khoshakhlagh
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland-Bahrain, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Zeng T, Lei GL, Yu ML, Zhang TY, Wang ZB, Wang SZ. The role and mechanism of various trace elements in atherosclerosis. Int Immunopharmacol 2024; 142:113188. [PMID: 39326296 DOI: 10.1016/j.intimp.2024.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis is a slow and complex disease that involves various factors, including lipid metabolism disorders, oxygen-free radical production, inflammatory cell infiltration, platelet adhesion and aggregation, and local thrombosis. Trace elements play a crucial role in human health. Many trace elements, especially metallic ones, not only maintain the normal functions of organs but also participate in basic metabolic processes. The latest studies have revealed a close correlation between trace elements and the occurrence and progression of atherosclerosis. The imbalance of these trace elements can induce atherosclerosis or accelerate its progression through various mechanisms, which poses a significant threat to human health. Therefore, exploring the specific mechanism of trace elements on atherosclerosis is highly significant. In this review, we summarized the roles and mechanisms of iron, copper, zinc, magnesium, and selenium homeostasis and imbalance in atherosclerosis development, in order to identify novel targets and therapeutic strategies for treating atherosclerosis.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Guan-Lan Lei
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Mei-Ling Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Ting-Yu Zhang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
Jeayeng S, Saelim M, Muanjumpon P, Buraphat P, Kanchanapiboon P, Sampattavanich S, Panich U. Protective Effects of Keratinocyte-Derived GCSF and CCL20 on UVB-Induced Melanocyte Damage. Cells 2024; 13:1661. [PMID: 39404423 PMCID: PMC11475719 DOI: 10.3390/cells13191661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The skin microenvironment created by keratinocytes (KC) influences the stress responses of melanocytes (MC) to UVB insults. This study employed RNA sequencing analysis as well as in vitro and in vivo models to elucidate the underlying mechanisms. Our RNA-Seq analysis revealed a statistically significant upregulation of GCSF and CCL20 genes in UVB-irradiated KC, correlating with the protective effects of KC on MC responses to UVB exposure. Recombinant GCSF and CCL20 exhibited the most pronounced modulation of UVB-induced MC responses. These effects included the attenuation of apoptosis and reduction of ROS formation, along with the upregulation of tyrosinase and tyrosinase-related protein-1, which are involved in the melanogenic pathway. ELISA was also used to confirm that UVB could induce the secretion of GCSF and CCL20 from KC. A similar correlation between GCSF and CCL20 expression in KC and tyrosinase levels in MC was observed in UVB-irradiated mouse skin. Our study provides novel insights into the protective role of GCSF and CCL20 in the paracrine effects of KC on UVB-induced MC damage through the modulation of stress response pathways, the MITF-tyrosinase axis, and the regulation of p53. These findings have implications for the development of pharmacological strategies targeting KC-derived paracrine factors for the prevention of skin photodamage.
Collapse
Affiliation(s)
- Saowanee Jeayeng
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Malinee Saelim
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| | - Phetthinee Muanjumpon
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| | - Pongsakorn Buraphat
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Potjanee Kanchanapiboon
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Somponnat Sampattavanich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| |
Collapse
|
6
|
Eze FN. Transthyretin Amyloidosis: Role of oxidative stress and the beneficial implications of antioxidants and nutraceutical supplementation. Neurochem Int 2024; 179:105837. [PMID: 39154837 DOI: 10.1016/j.neuint.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Transthyretin (ATTR) amyloidosis constitutes a spectrum of debilitating neurodegenerative diseases instigated by systemic extracellular deposition of partially unfolded/aggregated aberrant transthyretin. The homotetrameric protein, TTR, is abundant in the plasma, and to a lesser extent the cerebrospinal fluid. Rate-limiting tetramer dissociation of the native protein is regarded as the critical step in the formation of morphologically heterogenous toxic aggregates and the onset of clinical manifestations such as polyneuropathy, cardiomyopathy, disturbances in motor and autonomic functions. Over the past few decades there has been increasing evidence suggesting that in addition to destabilization in TTR tetramer structure, oxidative stress may also play an important role in the pathogenesis of ATTR amyloidosis. In this review, an update on the impact of oxidative stress in TTR amyloidogenesis as well as TTR aggregate-mediated pathologies is discussed. The counteracting effects of antioxidants and nutraceutical agents explored in the treatment of ATTR amyloidosis based on recent evidence is also critically examined. The insights unveiled could further strengthen current understanding of the mechanisms underlying ATTR amyloidosis as well as extend the range of strategies for effective management of ATTR amyloidoses.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
7
|
Lai W, Zhang J, Sun J, Min T, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Oxidative stress in alcoholic liver disease, focusing on proteins, nucleic acids, and lipids: A review. Int J Biol Macromol 2024; 278:134809. [PMID: 39154692 DOI: 10.1016/j.ijbiomac.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Oxidative stress is one of the important factors in the development of alcoholic liver disease. The production of reactive oxygen species and other free radicals is an important feature of alcohol metabolism in the liver and an important substance in liver injury. When large amounts of ROS are produced, the homeostasis of the liver REDOX system will be disrupted and liver injury will be caused. Oxidative stress can damage proteins, nucleic acids and lipids, liver dysfunction. In addition, damaging factors produced by oxidative damage to liver tissue can induce the occurrence of inflammation, thereby aggravating the development of ALD. This article reviews the oxidative damage of alcohol on liver proteins, nucleic acids, and lipids, and provides new insights and summaries of the oxidative stress process. We also discussed the relationship between oxidative stress and inflammation in alcoholic liver disease from different perspectives. Finally, the research status of antioxidant therapy in alcoholic liver disease was summarized, hoping to provide better help for learning and developing the understanding of alcoholic liver disease.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Luo Y, Zhang J, Jiao Y, Huang H, Ming L, Song Y, Niu Y, Tang X, Liu L, Li Y, Jiang Y. Dihydroartemisinin abolishes cisplatin-induced nephrotoxicity in vivo. J Nat Med 2024; 78:439-454. [PMID: 38351420 DOI: 10.1007/s11418-024-01783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024]
Abstract
Dihydroartemisinin (DHA), a derivative of artemisinin which is primarily used to treat malaria in clinic, also confers protective effect on lipopolysaccharide-induced nephrotoxicity. While, the activities of DHA in cisplatin (CDDP)-caused nephrotoxicity are elusive. To investigate the role and underlying mechanism of DHA in CDDP-induced nephrotoxicity. Mice were randomly separated into four groups: normal, CDDP, and DHA (25 and 50 mg/kg were orally injected 1 h before CDDP for consecutive 10 days). All mice except the normal were single injected intraperitoneally with CDDP (22 mg/kg) for once on the 7th day. Combined with quantitative proteomics and bioinformatics analysis, the impact of DHA on renal cell apoptosis, oxidative stress, biochemical indexes, and inflammation in mice were investigated. Moreover, a human hepatocellular carcinoma cells xenograft model was established to elucidate the impact of DHA on tumor-related effects of CDDP. DHA reduced the levels of creatinine (CREA) (p < 0.01) and blood urea nitrogen (BUN) (p < 0.01), reversed CDDP-induced oxidative, inflammatory, and apoptosis indexes (p < 0.01). Mechanistically, DHA attenuated CDDP-induced inflammation by inhibiting nuclear factor κB p65 (NFκB p65) expression, and suppressed CDDP-induced renal cell apoptosis by inhibiting p63-mediated endogenous and exogenous apoptosis pathways. Additionally, DHA alone significantly decreased the tumor weight and did not destroy the antitumor effect of CDDP, and did not impact AST and ALT. In conclusion, DHA prevents CDDP-triggered nephrotoxicity via reducing inflammation, oxidative stress, and apoptosis. The mechanisms refer to inhibiting NFκB p65-regulated inflammation and alleviating p63-mediated mitochondrial endogenous and Fas death receptor exogenous apoptosis pathway.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Jiaxing Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research On Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Jiangxi, China
| | - Liangshan Ming
- Institute for Advanced Study, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Yanlong Niu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Jiangxi, China
| | - Xiaolu Tang
- Department of Human Anatomy, School of Basic Medical Science, Gannan Medical University, Jiangxi, China
| | - Liwei Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China.
- Artemisinin Research Center, and Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Xu G, Dong F, Su L, Tan ZX, Lei M, Li L, Wen D, Zhang F. The role and therapeutic potential of nuclear factor κB (NF-κB) in ischemic stroke. Biomed Pharmacother 2024; 171:116140. [PMID: 38211425 DOI: 10.1016/j.biopha.2024.116140] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Stroke is a prevalent cerebrovascular condition with a global impact, causing significant rates of illness and death. Despite extensive research, the available treatment options for stroke remain restricted. Hence, it is crucial to gain a deeper understanding of the molecular mechanisms associated with the onset and advancement of stroke in order to establish a theoretical foundation for novel preventive and therapeutic approaches. NF-κB, also known as nuclear factor κB, is a transcription factor responsible for controlling the expression of numerous genes and plays a crucial role in diverse physiological processes. NF-κB is triggered and regulates neuroinflammation and other processes after stroke, promoting the generation of cytokine storms and contributing to the advancement of ischemic stroke (IS). Therefore, NF-κB could potentially play a vital role in stroke by regulating diverse pathophysiological processes. This review provides an overview of the functions of NF-κB in stroke and its governing mechanisms. In addition, our attention is directed towards various potential therapies that aim to inhibit the NF-κB signaling pathway in order to offer valuable insights for the advancement of innovative treatment approaches for stroke.
Collapse
Affiliation(s)
- Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, PR China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
10
|
Li X, Zeng L, Qu Z, Zhang F. Huoxin pill protects verapamil-induced zebrafish heart failure through inhibition of oxidative stress-triggered inflammation and apoptosis. Heliyon 2024; 10:e23402. [PMID: 38169776 PMCID: PMC10758798 DOI: 10.1016/j.heliyon.2023.e23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Heart failure (HF) is a major and growing public health concern. Although advances in medical and surgical therapies have been achieved over the last decades, there is still no firmly evidence-based treatment with many traditional Chinese medicines (TCMs) for HF. Huoxin Pill (HXP), a TCM, has been widely used to treat patients with coronary heart disease and angina pectoris. However, the underlying molecular mechanism is poorly understood. In this study, using a verapamil-induced zebrafish HF model, we validated the efficacy and revealed the underlying mechanism of HXP in the treatment of HF. Zebrafish embryos were pretreated with different concentrations of HXP followed by verapamil administration, and we found that HXP significantly improved cardiac function in HF zebrafish, such as by effectively alleviating venous congestion and increasing heart rates. Mechanistically, HXP evidently inhibited verapamil-induced ROS and H2O2 production and upregulated CAT activity in HF zebrafish. Moreover, transgenic lines Tg(mpx:EGFP) and Tg(nfkb:EGFP) were administered for inflammation evaluation, and we found that neutrophil infiltration in HF zebrafish hearts and the activated NF-kB level could be reduced by HXP. Furthermore, HXP significantly downregulated the level of cell apoptosis in HF zebrafish hearts, as assessed by AO staining. Molecularly, RT‒qPCR results showed that pretreatment with HXP upregulated antioxidant-related genes such as gpx-1a and gss and downregulated the expression of the stress-related gene hsp70, proinflammatory genes such as tnf-α, il-6 and lck, and apoptosis-related indicators such as apaf1, puma and caspase9. In conclusion, HXP exerts a protective effect on verapamil-induced zebrafish HF through inhibition of oxidative stress-triggered inflammation and apoptosis.
Collapse
Affiliation(s)
- Xianmei Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Laifeng Zeng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Zhixin Qu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Fenghua Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| |
Collapse
|
11
|
Orfanakos K, Alifieris CE, Verigos EK, Deligiorgi MV, Verigos KE, Panayiotidis MI, Nikolaou M, Trafalis DT. The Predictive Value of 8-Hydroxy-Deoxyguanosine (8-OHdG) Serum Concentrations in Irradiated Non-Small Cell Lung Carcinoma (NSCLC) Patients. Biomedicines 2024; 12:134. [PMID: 38255239 PMCID: PMC10813052 DOI: 10.3390/biomedicines12010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Ionizing radiation is strongly linked to direct or indirect DNA damage, as with the production of reactive oxygen species (ROS), which in turn produce DNA damage products, such as 8-hydroxy-2-deoxyguanosine (8-OHdG). In this study, we aimed to investigate the formation of 8-OHdG after irradiation in patients with non-small cell cancer (NSCLC) and its use as a biomarker. Sixteen patients with squamous and thirty-six patients with non-squamous pathology were included. An enzyme-linked-immunosorbent assay (ELISA) was performed before and after radiation. A dose-dependent relationship was confirmed: 8-OHdG plasma concentrations, increased in the total of NSCLC patients and specifically with a linear correlation in non-squamous pathology; in squamous histology, after an initial increase, a significant decrease followed after 20 Gy dose of irradiation. The pretreatment total irradiated tumor volume (cm3) was positively correlated with 8-OHdG levels in patients with squamous histology. When plotting the 8-OHdG plasma concentration at a 10 Gy irradiation dose to the baseline, the AUC was 0.873 (95% CI 0.614-0.984), p < 0.0001, with an associated criterion value of >1378 as a cutoff (sensitivity 72.7%, specificity 100%). When normalizing this ratio to BSA, the associated criterion cutoff value was >708 (sensitivity of 100%, specificity 80%). Lastly, 8-OHdG levels were closely related with the development of radiation-induced toxicities.
Collapse
Affiliation(s)
- Kyriakos Orfanakos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
- Department of Radiation Therapy, 401 General Military Hospital, 11525 Athens, Greece
| | - Constantinos E. Alifieris
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
- Department of Hepatobiliary and Transplant Surgery, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Emmanouil K. Verigos
- Department of Radiation Oncology, General Anticancer Oncology Hospital of Athens “O Agios Savvas”, 11522 Athens, Greece
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
| | - Kosmas E. Verigos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
- Department of Radiation Therapy, 401 General Military Hospital, 11525 Athens, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Michail Nikolaou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
| |
Collapse
|
12
|
Vinkel J, Rib L, Buil A, Hedetoft M, Hyldegaard O. Key pathways and genes that are altered during treatment with hyperbaric oxygen in patients with sepsis due to necrotizing soft tissue infection (HBOmic study). Eur J Med Res 2023; 28:507. [PMID: 37946314 PMCID: PMC10636866 DOI: 10.1186/s40001-023-01466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND For decades, the basic treatment strategies of necrotizing soft tissue infections (NSTI) have remained unchanged, primarily relying on aggressive surgical removal of infected tissue, broad-spectrum antibiotics, and supportive intensive care. One treatment strategy that has been proposed as an adjunctive measure to improve patient outcomes is hyperbaric oxygen (HBO2) treatment. HBO2 treatment has been linked to several immune modulatory effects; however, investigating these effects is complicated due to the disease's acute life-threatening nature, metabolic and cell homeostasis dependent variability in treatment effects, and heterogeneity with respect to both patient characteristics and involved pathogens. To embrace this complexity, we aimed to explore the underlying biological mechanisms of HBO2 treatment in patients with NSTI on the gene expression level. METHODS We conducted an observational cohort study on prospective collected data, including 85 patients admitted to the intensive care unit (ICU) for NSTI. All patients were treated with one or two HBO2 treatments and had one blood sample taken before and after the intervention. Total RNAs from blood samples were extracted and mRNA purified with rRNA depletion, followed by whole-transcriptome RNA sequencing with a targeted sequencing depth of 20 million reads. A model for differentially expressed genes (DEGs) was fitted, and the functional aspects of the obtained set of genes was predicted with GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of genes and Genomes) enrichment analyses. All analyses were corrected for multiple testing with FDR. RESULTS After sequential steps of quality control, a final of 160 biological replicates were included in the present study. We found 394 protein coding genes that were significantly DEGs between the two conditions with FDR < 0.01, of which 205 were upregulated and 189 were downregulated. The enrichment analysis of these DEGs revealed 20 GO terms in biological processes and 12 KEGG pathways that were significantly overrepresented in the upregulated DEGs, of which the term; "adaptive immune response" (GO:0002250) (FDR = 9.88E-13) and "T cell receptor signaling pathway" (hsa04660) (FDR = 1.20E-07) were the most significant. Among the downregulated DEGs two biological processes were significantly enriched, of which the GO term "apoptotic process" (GO:0006915) was the most significant (FDR = 0.001), followed by "Positive regulation of T helper 1 cell cytokine production" (GO:2000556), and "NF-kappa B signaling pathway" (hsa04064) was the only KEGG pathway that was significantly overrepresented (FDR = 0.001). CONCLUSIONS When one or two sessions of HBO2 treatment were administered to patients with a dysregulated immune response and systemic inflammation due to NSTI, the important genes that were regulated during the intervention were involved in activation of T helper cells and downregulation of the disease-induced highly inflammatory pathway NF-κB, which was associated with a decrease in the mRNA level of pro-inflammatory factors. TRIAL REGISTRATION Biological material was collected during the INFECT study, registered at ClinicalTrials.gov (NCT01790698).
Collapse
Affiliation(s)
- Julie Vinkel
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Leonor Rib
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Alfonso Buil
- Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | - Morten Hedetoft
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark
- Department of Anesthesiology, Zealand University Hospital, Køge, Denmark
| | - Ole Hyldegaard
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Saleh EAM, Al-Dolaimy F, Qasim Almajidi Y, Baymakov S, Kader M MA, Ullah MI, Abbas AHR, Khlewee IH, Bisht YS, Alsaalamy AH. Oxidative stress affects the beginning of the growth of cancer cells through a variety of routes. Pathol Res Pract 2023; 249:154664. [PMID: 37573621 DOI: 10.1016/j.prp.2023.154664] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/15/2023]
Abstract
Oxidative stress is a physiological condition that occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the cell's antioxidant defense system. ROS are highly reactive molecules that can cause damage to cellular structures such as DNA, proteins, and lipids. the regulation of ROS levels and the antioxidant defense system is crucial for cancer prevention and treatment. Strategies to enhance antioxidant defenses or induce oxidative stress selectively in cancer cells are being developed as potential therapeutic approaches. targeting oxidative stress in cancer treatment is an active area of research with several potential therapeutic approaches being investigated. Developing selective and effective therapies that target oxidative stress in cancer cells while sparing normal cells will be crucial for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University,College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia.
| | | | | | - Sayfiddin Baymakov
- Department of General surgery and Military-Field surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Samarkand State Dental Institute, Samarkand, Uzbekistan.
| | - Mohammed Abdul Kader M
- Department Restorative Dental science, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka, 72388 Aljouf, Saudi Arabia
| | - Ahmed Hussien R Abbas
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ibrahim Hammoud Khlewee
- Department of Prosthodontics, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Ali Hashiem Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
14
|
Vinkel J, Arenkiel B, Hyldegaard O. The Mechanisms of Action of Hyperbaric Oxygen in Restoring Host Homeostasis during Sepsis. Biomolecules 2023; 13:1228. [PMID: 37627293 PMCID: PMC10452474 DOI: 10.3390/biom13081228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The perception of sepsis has shifted over time; however, it remains a leading cause of death worldwide. Sepsis is now recognized as an imbalance in host cellular functions triggered by the invading pathogens, both related to immune cells, endothelial function, glucose and oxygen metabolism, tissue repair and restoration. Many of these key mechanisms in sepsis are also targets of hyperbaric oxygen (HBO2) treatment. HBO2 treatment has been shown to improve survival in clinical studies on patients with necrotizing soft tissue infections as well as experimental sepsis models. High tissue oxygen tension during HBO2 treatment may affect oxidative phosphorylation in mitochondria. Oxygen is converted to energy, and, as a natural byproduct, reactive oxygen species are produced. Reactive oxygen species can act as mediators, and both these and the HBO2-mediated increase in oxygen supply have the potential to influence the cellular processes involved in sepsis. The pathophysiology of sepsis can be explained comprehensively through resistance and tolerance to infection. We argue that HBO2 treatment may protect the host from collateral tissue damage during resistance by reducing neutrophil extracellular traps, inhibiting neutrophil adhesion to vascular endothelium, reducing proinflammatory cytokines, and halting the Warburg effect, while also assisting the host in tolerance to infection by reducing iron-mediated injury and upregulating anti-inflammatory measures. Finally, we show how inflammation and oxygen-sensing pathways are connected on the cellular level in a self-reinforcing and detrimental manner in inflammatory conditions, and with support from a substantial body of studies from the literature, we conclude by demonstrating that HBO2 treatment can intervene to maintain homeostasis.
Collapse
Affiliation(s)
- Julie Vinkel
- Department of Anesthesiology, Centre of Head and Orthopedics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bjoern Arenkiel
- Department of Anesthesiology, Centre of Head and Orthopedics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anesthesiology, Centre of Head and Orthopedics, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
15
|
Smit C, De Wet S, Barron T, Loos B. Rooibos tea-in the cross fire of ROS, mitochondrial dysfunction and loss of proteostasis-positioned for healthy aging. Biogerontology 2023; 24:149-162. [PMID: 36781516 DOI: 10.1007/s10522-022-10012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
Impaired mitochondrial function and loss of cellular proteostasis control are key hallmarks of aging and are implicated in the development of neurodegenerative diseases. A common denominator is the cell's inability to handle reactive oxygen species (ROS), leading to major downstream oxidative damage that exacerbates neuronal dysfunction. Although we have progressed in understanding the molecular defects associated with neuronal aging, many unanswered questions remain. How much ROS is required to serve cellular function before it becomes detrimental and how does the cell's oxidative status impact mitochondrial function and protein degradation through autophagy? How does ROS regulate autophagy? Aspalathus linearis, also commonly known as rooibos, is an endemic South African plant that is gaining globally acclaim for its antioxidant properties and its role as functional medicinal beverage. In this article we dissect the role of rooibos in the context of the cell's ROS handling capacity, mitochondrial function and autophagy activity. By addressing the dynamic relationship between these critical interconnected systems, and by evaluating the functional properties of rooibos, we unravel its position for preserving cell viability and promoting healthy aging.
Collapse
Affiliation(s)
- Catherine Smit
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Sholto De Wet
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Tamryn Barron
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa.
| |
Collapse
|
16
|
LOX-1 Activation by oxLDL Induces AR and AR-V7 Expression via NF-κB and STAT3 Signaling Pathways Reducing Enzalutamide Cytotoxic Effects. Int J Mol Sci 2023; 24:ijms24065082. [PMID: 36982155 PMCID: PMC10049196 DOI: 10.3390/ijms24065082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
The oxidized low-density lipoprotein receptor 1 (LOX-1) is one of the most important receptors for modified LDLs, such as oxidated (oxLDL) and acetylated (acLDL) low-density lipoprotein. LOX-1 and oxLDL are fundamental in atherosclerosis, where oxLDL/LOX1 promotes ROS generation and NF-κB activation inducing the expression of IL-6, a STAT3 activator. Furthermore, LOX-1/oxLDL function has been associated with other diseases, such as obesity, hypertension, and cancer. In prostate cancer (CaP), LOX-1 overexpression is associated with advanced stages, and its activation by oxLDL induces an epithelial-mesenchymal transition, increasing angiogenesis and proliferation. Interestingly, enzalutamide-resistant CaP cells increase the uptake of acLDL. Enzalutamide is an androgen receptor (AR) antagonist for castration-resistant prostate cancer (CRPC) treatment, and a high percentage of patients develop a resistance to this drug. The decreased cytotoxicity is promoted in part by STAT3 and NF-κB activation that induces the secretion of the pro-inflammatory program and the expression of AR and its splicing variant AR-V7. Here, we demonstrate for the first time that oxLDL/LOX-1 increases ROS levels and activates NF-κB, inducing IL-6 secretion and the activation of STAT3 in CRPC cells. Furthermore, oxLDL/LOX1 increases AR and AR-V7 expression and decreases enzalutamide cytotoxicity in CRPC. Thus, our investigation suggests that new factors associated with cardiovascular pathologies, such as LOX-1/oxLDL, may also promote important signaling axes for the progression of CRPC and its resistance to drugs used for its treatment.
Collapse
|
17
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
18
|
Kamimura N, Wolf AM, Yokota T, Nito C, Takahashi H, Ohta S. Transgenic type2 diabetes mouse models for in vivo redox measurement of hepatic mitochondrial oxidative stress. Biochim Biophys Acta Gen Subj 2023; 1867:130302. [PMID: 36577487 DOI: 10.1016/j.bbagen.2022.130302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oxidative stress is involved in the progression of diabetes and its associated complications. However, it is unclear whether increased oxidative stress plays a primary role in the onset of diabetes or is a secondary indicator caused by tissue damage. Previous methods of analyzing oxidative stress have involved measuring the changes in oxidative stress biomarkers. Our aim is to identify a novel approach to clarify whether oxidative stress plays a primary role in the onset of diabetes. METHODS We constructed transgenic type 2 diabetes mouse models expressing redox-sensitive green fluorescent proteins (roGFPs) that distinguished between mitochondria and whole cells. Pancreas, liver, skeletal muscle, and kidney redox states were measured in vivo. RESULTS Hepatic mitochondrial oxidation increased when the mice were 4 weeks old and continued to increase in an age-dependent manner. The increase in hepatic mitochondrial oxidation occurred simultaneously with weight gain and increased blood insulin levels before the blood glucose levels increased. Administering the oxidative stress inducer acetaminophen increased the vulnerability of the liver mitochondria to oxidative stress. CONCLUSIONS This study demonstrates that oxidative stress in liver mitochondria in mice begins at the onset of diabetes rather than after the disease has progressed. GENERAL SIGNIFICANCE RoGFP-expressing transgenic type 2 diabetes mouse models are effective and convenient tools for measuring hepatic mitochondrial redox statuses in vivo. These models may be used to assess mitochondria-targeting antioxidants and establish the role of oxidative stress in type 2 diabetes.
Collapse
Affiliation(s)
- Naomi Kamimura
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan.
| | - Alexander M Wolf
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Yokota
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Chikako Nito
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Takahashi
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan; Department of Ophthalmology, Nippon Medical School, Tokyo, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; Department of Neurology Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Marinaccio J, Micheli E, Udroiu I, Di Nottia M, Carrozzo R, Baranzini N, Grimaldi A, Leone S, Moreno S, Muzzi M, Sgura A. TERT Extra-Telomeric Roles: Antioxidant Activity and Mitochondrial Protection. Int J Mol Sci 2023; 24:ijms24054450. [PMID: 36901881 PMCID: PMC10002448 DOI: 10.3390/ijms24054450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase holoenzyme, which adds telomeric DNA repeats on chromosome ends to counteract telomere shortening. In addition, there is evidence of TERT non-canonical functions, among which is an antioxidant role. In order to better investigate this role, we tested the response to X-rays and H2O2 treatment in hTERT-overexpressing human fibroblasts (HF-TERT). We observed in HF-TERT a reduced induction of reactive oxygen species and an increased expression of the proteins involved in the antioxidant defense. Therefore, we also tested a possible role of TERT inside mitochondria. We confirmed TERT mitochondrial localization, which increases after oxidative stress (OS) induced by H2O2 treatment. We next evaluated some mitochondrial markers. The basal mitochondria quantity appeared reduced in HF-TERT compared to normal fibroblasts and an additional reduction was observed after OS; nevertheless, the mitochondrial membrane potential and morphology were better conserved in HF-TERT. Our results suggest a protective function of TERT against OS, also preserving mitochondrial functionality.
Collapse
Affiliation(s)
| | - Emanuela Micheli
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- Correspondence:
| | - Ion Udroiu
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
| | - Michela Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Sandra Moreno
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Maurizio Muzzi
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Antonella Sgura
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
| |
Collapse
|
20
|
ARMS-NF-κB signaling regulates intracellular ROS to induce autophagy-associated cell death upon oxidative stress. iScience 2023; 26:106005. [PMID: 36798436 PMCID: PMC9926119 DOI: 10.1016/j.isci.2023.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Ankyrin repeat-rich membrane spanning (ARMS) plays roles in neural development, neuropathies, and tumor formation. Such pleiotropic function of ARMS is often attributed to diverse ARMS-interacting molecules in different cell context. However, it might be achieved by ARMS' effect on global biological mediator like reactive oxygen species (ROS). We established ARMS-knockdown in melanoma cells (siARMS) and in Drosophila eyes (GMR>dARMS RNAi ) and challenged them with H2O2. Decreased ARMS in both systems compromises nuclear translocation of NF-κB and induces ROS, which in turn augments autophagy flux and confers susceptibility to H2O2-triggered autophagic cell death. Resuming NF-κB activity or reducing ROS by antioxidants in siARMS cells and GMR>dARMS RNAi fly decreases intracellular peroxides level concurrent with reduced autophagy and attenuated cell death. Conversely, blocking NF-κB activity in wild-type flies/melanoma enhances ROS and induces autophagy with cell death. We thus uncover intracellular ROS modulated by ARMS-NFκB signaling primes autophagy for autophagic cell death upon oxidative stress.
Collapse
|
21
|
Devanaboyina M, Kaur J, Whiteley E, Lin L, Einloth K, Morand S, Stanbery L, Hamouda D, Nemunaitis J. NF-κB Signaling in Tumor Pathways Focusing on Breast and Ovarian Cancer. Oncol Rev 2022; 16:10568. [PMID: 36531159 PMCID: PMC9756851 DOI: 10.3389/or.2022.10568] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/02/2022] [Indexed: 08/30/2023] Open
Abstract
Immune disorders and cancer share a common pathway involving NF-κb signaling. Through involvement with GM-CSF, NF-κB can contribute to proliferation and activation of T- and B- cells as well as immune cell migration to sites of inflammation. In breast cancer, this signaling pathway has been linked to resistance with endocrine and chemotherapies. Similarly, in ovarian cancer, NF-κB influences angiogenesis and inflammation pathways. Further, BRCA1 signaling common to both breast and ovarian cancer also has the capability to induce NF-κB activity. Immunotherapy involving NF-κB can also be implemented to combat chemoresistance. The complex signaling pathways of NF-κB can be harnessed for developing cancer therapeutics to promote immunotherapy for improving patient outcomes.
Collapse
Affiliation(s)
- Monika Devanaboyina
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Jasskiran Kaur
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Emma Whiteley
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Katelyn Einloth
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Susan Morand
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
22
|
Mediouni S, Lyu S, Schader SM, Valente ST. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses 2022; 14:1980. [PMID: 36146786 PMCID: PMC9502519 DOI: 10.3390/v14091980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels. While strategies to permanently eradicate the virus have not yet provided significant success, recent work has focused on the management of this residual viral reservoir to effectively limit comorbidities associated with the ongoing viral transcription still observed during suppressive ART, as well as limit the need for daily ART. Our group has been at the forefront of exploring the viability of the block-and-lock remission approach, focused on the long-lasting epigenetic block of viral transcription such that without daily ART, there is no risk of viral rebound, transmission, or progression to AIDS. Numerous studies have reported inhibitors of both viral and host factors required for HIV transcriptional activation. Here, we highlight and review some of the latest HIV transcriptional inhibitor discoveries that may be leveraged for the clinical exploration of block-and-lock and revolutionize the way we treat HIV infections.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Shuang Lyu
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| |
Collapse
|
23
|
Toktay E, Yayla M, Sahin L, Harmankaya A, Ozic C, Aksu Kilicle P, Gurbuz MA, Erbas E, Demir O, Bayram P. The effects of dragon fruit (Hylocereus polyrhizus) extract on indomethacin-induced stomach ulcer in rats. J Food Biochem 2022; 46:e14274. [PMID: 35716002 DOI: 10.1111/jfbc.14274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the effects of red dragon fruit (Hylocereus polyrhizus) extract (DFE) on the stomach in ulcer model induced by indomethacin in rats. Effects of DFE were evaluated in indomethacin-induced gastric damage model on Sprague-Dawley rats. Experimental model: all rats were fasted for 24 h. At the end of this period, DFE was administered to the ulcer-induced groups. One hour after this application, a dose of 25 mg/kg of indomethacin was applied by oral gavage to all groups except the HEALTHY and DFE1000 groups. Six hours after indomethacin administration, the rats were euthanized with high-dose anesthesia and the experiment was terminated. Macroscopic and microscopic analyses for investigating ulcerative area, molecular and biochemical analyses for oxidative damages investigation and molecular analyses for the effect mechanism of indomethacin and DFE were conducted on stomach tissues in the study. While oxidative stress-associated markers such as MDA, BAX, and Caspase 3 increased dramatically in the indomethacin group, GSH antioxidant levels decreased. It was observed that these parameters were significantly improved in DFE 500 mg/kg and DFE 1000 mg/kg groups compared to ulcer group, and the results of especially DFE 1000 mg/kg group were similar to famotidine group. We observed that our histopathological findings also supported all our other findings. Dragon fruit extract was protected against indomethacin-induced ulcer damage by decreased MDA levels, increased GSH levels, and inhibition of Caspase 3, BAX, and Cox-2, and activation of Cox-1. PRACTICAL APPLICATIONS: People of all ages around the world suffer from gastric ulcer which is one of the most common gastrointestinal ailments. The etiological factors of the disease are using of cigarette and alcohol, nutritional deficiencies, infections, and using non-steroidal anti-inflammatory drugs which use frequent and indiscriminate. Indomethacin is one of the NSAIDs and is commonly preferred to induce ulcer modeling in rats due to its gastric toxicity potential. Current anti-ulcer drugs have many serious side effects. Patients who suffered from gastric ulcer tend to discontinue the drug because of side effects. Therefore, patients need new agents that are non-toxic, have few side effects, and are easily accessible anti-ulcer drugs. Dragon fruit, as a medicinal herb, is highly valuable and widely used in traditional medicine, and may provide gastroprotective activity. Studies have shown that H. polyrhizus has antioxidant activities. We consider the effects of dragon fruit extract (DFE) to be a therapeutic drug for an indomethacin-induced ulcer model.
Collapse
Affiliation(s)
- Erdem Toktay
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Muhammed Yayla
- Department of Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Levent Sahin
- Department of Emergency Medicine, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Ahmet Harmankaya
- Department of Biochemistry, Faculty of Science and Art, Kafkas University, Kars, Turkey
| | - Cem Ozic
- Department of Medicine Biology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Pinar Aksu Kilicle
- Department of Biology, Faculty of Science and Art, Kafkas University, Kars, Turkey
| | - Muhammet Ali Gurbuz
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Elif Erbas
- Department of Histology and Embryology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Ozlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Pinar Bayram
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
24
|
Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol 2022; 43:757-775. [PMID: 35965153 DOI: 10.1016/j.it.2022.07.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
The procurement and management of nutrients and ability to fight infections are fundamental requirements for survival. These defense responses are bioenergetically costly, requiring the immune system to balance protection against pathogens with the need to maintain metabolic homeostasis. NF-κB transcription factors are central regulators of immunity and inflammation. Over the last two decades, these factors have emerged as a pivotal node coordinating the immune and metabolic systems in physiology and the etiopathogenesis of major threats to human health, including cancer, autoimmunity, chronic inflammation, and others. In this review, we discuss recent advances in understanding how NF-κB-dependent metabolic programs control inflammation, metabolism, and immunity and how improved knowledge of them may lead to better diagnostics and therapeutics for widespread human diseases.
Collapse
Affiliation(s)
- Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
25
|
Silva RCMC, Vasconcelos LR, Travassos LH. The different facets of heme-oxygenase 1 in innate and adaptive immunity. Cell Biochem Biophys 2022; 80:609-631. [PMID: 36018440 DOI: 10.1007/s12013-022-01087-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Heme oxygenase (HO) enzymes are responsible for the main oxidative step in heme degradation, generating equimolar amounts of free iron, biliverdin and carbon monoxide. HO-1 is induced as a crucial stress response protein, playing protective roles in physiologic and pathological conditions, due to its antioxidant, anti-apoptotic and anti-inflammatory effects. The mechanisms behind HO-1-mediated protection are being explored by different studies, affecting cell fate through multiple ways, such as reduction in intracellular levels of heme and ROS, transcriptional regulation, and through its byproducts generation. In this review we focus on the interplay between HO-1 and immune-related signaling pathways, which culminate in the activation of transcription factors important in immune responses and inflammation. We also discuss the dual interaction of HO-1 and inflammatory mediators that govern resolution and tissue damage. We highlight the dichotomy of HO-1 in innate and adaptive immune cells development and activation in different disease contexts. Finally, we address different known anti-inflammatory pharmaceuticals that are now being described to modulate HO-1, and the possible contribution of HO-1 in their anti-inflammatory effects.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Ricardo Vasconcelos
- Cellular Signaling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Qi X, Tong X, You S, Mao R, Cai E, Pan W, Zhang C, Hu R, Shen J. Mild Hyperthermia-Assisted ROS Scavenging Hydrogels Achieve Diabetic Wound Healing. ACS Macro Lett 2022; 11:861-867. [PMID: 35759676 DOI: 10.1021/acsmacrolett.2c00290] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excessive reactive oxygen species (ROS) production induces oxidative damage to biomolecules, which can lead to the development of chronic diseases. Biocompatible hydrogel antioxidants composed of natural materials, such as polysaccharides and polyphenols, are of significant option for ROS scavenging. However, rapidly achieving hydrogel antioxidants with convenient, economical, safe, and efficient features remains challenging. Herein, facile synthesis of a physically cross-linked polyphenol/polysaccharide hydrogel by introducing tannic acid microsize particles (TAMP) into a cationic guar gum (CG) matrix is reported. Combining antioxidant/photothermal properties of TAMP and mechanical support from injectable CG, the formulated TAMP/CG is explored for treating diabetic wounds. Both in vitro and in vivo assays verify that TAMP/CG can protect the cells from ROS-induced oxidative damage, which can also be strengthened by the local photothermal heating (42 °C) triggered by near-infrared light. Overall, this study establishes the paradigm of enhanced diabetic wound healing by mild hyperthermia-assisted ROS scavenging hydrogels.
Collapse
Affiliation(s)
- Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xianqin Tong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shengye You
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ruiting Mao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Erya Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wenhao Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chenhao Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rongdang Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| |
Collapse
|
27
|
Hurtado-Navarro L, Angosto-Bazarra D, Pelegrín P, Baroja-Mazo A, Cuevas S. NLRP3 Inflammasome and Pyroptosis in Liver Pathophysiology: The Emerging Relevance of Nrf2 Inducers. Antioxidants (Basel) 2022; 11:antiox11050870. [PMID: 35624734 PMCID: PMC9137763 DOI: 10.3390/antiox11050870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes, particularly the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome, apparently serve as crucial regulators of the inflammatory response through the activation of Caspase-1 and induction of pro-inflammatory cytokines and pyroptotic cell death. Pyroptosis is a type of programmed cell death mediated by Caspase-1 cleavage of Gasdermin D and the insertion of its N-terminal fragment into the plasma membrane, where it forms pores, enabling the release of different pro-inflammatory mediators. Pyroptosis is considered not only a pro-inflammatory pathway involved in liver pathophysiology but also an important pro-fibrotic mediator. Diverse molecular mechanisms linking oxidative stress, inflammasome activation, pyroptosis, and the progression of liver pathologies have been documented. Numerous studies have indicated the protective effects of several antioxidants, with the ability to induce nuclear factor erythroid 2-related factor 2 (Nrf2) activity on liver inflammation and fibrosis. In this review, we have summarised recent studies addressing the role of the NLRP3 inflammasome and pyroptosis in the pathogenesis of various hepatic diseases, highlighting the potential application of Nrf2 inducers in the prevention of pyroptosis as liver protective compounds.
Collapse
Affiliation(s)
- Laura Hurtado-Navarro
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
| | - Diego Angosto-Bazarra
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Correspondence: (A.B.-M.); (S.C.); Tel.: +34-868-885-039 (A.B.-M.); +34-868-885-031 (S.C.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Correspondence: (A.B.-M.); (S.C.); Tel.: +34-868-885-039 (A.B.-M.); +34-868-885-031 (S.C.)
| |
Collapse
|
28
|
ZC3H15 promotes gastric cancer progression by targeting the FBXW7/c-Myc pathway. Cell Death Dis 2022; 8:32. [PMID: 35064102 PMCID: PMC8782901 DOI: 10.1038/s41420-022-00815-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022]
Abstract
Zinc finger CCCH-type containing 15 (ZC3H15), a highly conserved eukaryotic protein, which was associated with several cellular processes and was ubiquitously expressed in various human tissues. Recent studies indicated that ZC3H15 was involved in tumorigenesis and may be a potential biomarker in hepatocellular carcinoma (HCC) and acute myeloid leukemia (AML). However, the biological function and molecular mechanism of ZC3H15 in gastric cancer (GC) have not been studied. In this study, we revealed that ZC3H15 was highly expressed in GC and high ZC3H15 expression was closely linked to poor survival of patients with GC. We found that ZC3H15 promoted cell proliferation, migration, and invasion by increasing c-Myc expression. Next, we found that ZC3H15 could modulate c-Myc protein stability by suppressing the transcription of FBXW7, which was mainly responsible for c-Myc degradation. Moreover, silencing of FBXW7 in ZC3H15-knockdown GC cells could partly abrogate the effects induced by ZC3H15 downregulation. Taken together, our data unearth the important roles of ZC3H15 in GC development and suggest that ZC3H15 may be a potential target for the treatment of GC.
Collapse
|
29
|
Milanesi E, Dobre M, Cucos CA, Rojo AI, Jiménez-Villegas J, Capetillo-Zarate E, Matute C, Piñol-Ripoll G, Manda G, Cuadrado A. Whole Blood Expression Pattern of Inflammation and Redox Genes in Mild Alzheimer's Disease. J Inflamm Res 2021; 14:6085-6102. [PMID: 34848989 PMCID: PMC8612672 DOI: 10.2147/jir.s334337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background Although Alzheimer’s disease (AD) is associated with alterations of the central nervous system, this disease has an echo in blood that might represent a valuable source of biomarkers for improved diagnosis, prognosis and for monitoring drug response. Methods We performed a targeted transcriptomics study on 38 mild Alzheimer’s disease (AD) patients and 38 matched controls for evaluating the expression levels of 136 inflammation and 84 redox genes in whole blood. Patients were diagnosed as mild AD based on altered levels of total TAU, phospho-TAU and Abeta(1–42) in cerebrospinal fluid, and Abeta(1–40), Abeta(1–42) and total TAU levels in plasma. Whenever possible, blood and brain comparisons were made using public datasets. Results We found 48 inflammation and 34 redox genes differentially expressed in the blood of AD patients vs controls (FC >1.5, p < 0.01), out of which 22 pro-inflammatory and 12 redox genes exhibited FC >2 and p < 0.001. Receiver operating characteristic (ROC) analysis identified nine inflammation and seven redox genes that discriminated between AD patients and controls (area under the curve >0.9). Correlations of the dysregulated inflammation and redox transcripts indicated that RELA may regulate several redox genes including DUOX1 and GSR. Based on the gene expression profile, we have found that the master regulators of inflammation and redox homeostasis, NFκB and NRF2, were significantly disturbed in the blood of AD patients, as well as several zinc finger and helix-loop-helix transcription factors. Conclusion The selected inflammation and redox genes might be useful biomarkers for monitoring anti-inflammatory therapy in mild AD.
Collapse
Affiliation(s)
- Elena Milanesi
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | - Maria Dobre
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | | | - Ana I Rojo
- Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, 28029, Spain.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain.,Neuroscience Section, Instituto de Investigación Sanitaria La Paz (IDIPAZ), Madrid, 28046, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain
| | - José Jiménez-Villegas
- Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, 28029, Spain.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain
| | - Estibaliz Capetillo-Zarate
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Carlos Matute
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastons Cognitius, Hospital Universitari Santa Maria-IRB Leida, Lleida, 25198, Spain
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | - Antonio Cuadrado
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania.,Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, 28029, Spain.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain.,Neuroscience Section, Instituto de Investigación Sanitaria La Paz (IDIPAZ), Madrid, 28046, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain
| |
Collapse
|
30
|
Anticancer Effects of Propionic Acid Inducing Cell Death in Cervical Cancer Cells. Molecules 2021; 26:molecules26164951. [PMID: 34443546 PMCID: PMC8399869 DOI: 10.3390/molecules26164951] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies found that short-chain fatty acids (SCFAs), which are produced through bacterial fermentation in the gastrointestinal tract, have oncoprotective effects against cervical cancer. The most common SCFAs that are well known include acetic acid, butyric acid, and propionic acid, among which propionic acid (PA) has been reported to induce apoptosis in HeLa cells. However, the mechanism in which SCFAs suppress HeLa cell viability remain poorly understood. Our study aims to provide a more detailed look into the mechanism of PA in HeLa cells. Flow cytometry analysis revealed that PA induces reactive oxygen species (ROS), leading to the dysfunction of the mitochondrial membrane. Moreover, PA inhibits NF-κB and AKT/mTOR signaling pathways and induces LC3B protein levels, resulting in autophagy. PA also increased the sub-G1 cell population that is characteristic of cell death. Therefore, the results of this study propose that PA inhibits HeLa cell viability through a mechanism mediated by the induction of autophagy. The study also suggests a new approach for cervical cancer therapeutics.
Collapse
|
31
|
George G, Shyni GL, Abraham B, Nisha P, Raghu KG. Downregulation of TLR4/MyD88/p38MAPK and JAK/STAT pathway in RAW 264.7 cells by Alpinia galanga reveals its beneficial effects in inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114132. [PMID: 33887419 DOI: 10.1016/j.jep.2021.114132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpinia galanga, commonly known as greater galangal or raasna, is widely used in Ayurveda against various inflammatory disorders. It is also known as Kulinjan, Aratha, Rasna or Sugandhamula. Some of the Ayurvedic preparations using the rhizome of Alpinia galanga are Rasnadi kashayam, Rasna panchakam, Rasnapthakam, and Rasnarendadi. The aromatic rhizome is the source of the drug greater galangal and it is also used as a spice in South and South East Asia. However, the molecular mechanism of action of A galanga against inflammation remains poorly understood. AIM OF THE STUDY To elucidate the anti-inflammatory effect of hydroalcoholic extract of Alpinia galanga rhizome. STUDY DESIGN/METHOD The mechanism of the anti-inflammatory effect of hydroalcoholic extract of Alpinia galanga (AGE) was investigated by enzyme-linked immunosorbent assay (ELISA), Western blot, and immunofluorescence in LPS stimulated murine macrophage cell line (RAW 264.7). HPLC analysis was done to elucidate the rich polyphenolic nature of AGE. RESULTS The study showed that pre-treatment with AGE downregulated the release of pro-inflammatory mediators (IL-6, TNF-α, NO, and ROS) and stimulated the release of anti-inflammatory mediator IL-10 in LPS stimulated RAW 264.7 cells. The vital enzymes of inflammation (iNOS, COX-2, and MMP-9) were also downregulated by pre-treatment with AGE. AGE targeted the upstream elements of the inflammatory cascade by blocking LPS induced activation of TLR4 and JAK/STAT pathway. The phosphorylation of downstream kinases was significantly affected. The inhibition of nuclear translocation of NFκB further confirmed the specific inhibition of the TLR4 pathway. Particularly AGE inhibited the phosphorylation of JNK, p38, IκBα, and STAT. HPLC analysis of the AGE showed the polyphenol-rich nature of the extract. CONCLUSIONS The results from this study provide firm evidence that AGE exerts its anti-inflammatory effect via modulation of TLR4 and JAK/STAT pathway.
Collapse
Affiliation(s)
- Genu George
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.
| | - G L Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.
| | - Billu Abraham
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - P Nisha
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
32
|
Gene Expression Profile in Different Age Groups and Its Association with Cognitive Function in Healthy Malay Adults in Malaysia. Cells 2021; 10:cells10071611. [PMID: 34199148 PMCID: PMC8304476 DOI: 10.3390/cells10071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult's susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.
Collapse
|
33
|
Aboulhoda BE, El-Din SS, Khalifa MM, Arsanyos SF, Motawie AG, Sedeek MS, Abdelfattah GH, Abdelgalil WA. Histological, immunohistochemical, and molecular investigation on the hepatotoxic effect of potassium dichromate and the ameliorating role of Persea americana mill pulp extract. Microsc Res Tech 2021; 84:2434-2450. [PMID: 33908126 DOI: 10.1002/jemt.23798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/03/2021] [Accepted: 04/10/2021] [Indexed: 11/10/2022]
Abstract
The current study has been designed to assess the role of Persea americana (P. americana) pulp extract on potassium dichromate-induced hepatotoxicity in rats. P. americana pulp extract administration improved the hepatic vascular congestion, blood extravasation, inflammatory cellular infiltration, Kupffer cell hyperplasia, and nuclear changes. It also significantly ameliorated hepatic interstitial and peri-portal fibrosis and caused retrieval of the PAS-positive reaction in the liver parenchyma and around the central vein with restoration of the glycogen granules. P. americana also significantly attenuated the immunohistochemical expression of NF-kβ p65 and its downstream inflammatory cytokines IL6 and TNFα in the liver parenchyma. The antioxidant effect of P. americana was evidenced by significant modulation of the three major components of the thioredoxin (Trx) antioxidant system, the Trx, the thioredoxin reductase (TrxR), and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase along with significant increase in the level of superoxide dismutase and glutathione, and decrease in the lipid peroxidation product malondialdehyde. P. americana pulp extract also caused significant elevation of hepatic protein phosphatase 5 with subsequent down-regulation of Apoptosis signal-regulating kinase1 (ASK1) and its downstream signaling targets MAPK kinase 4 (MKK4), p38 mitogen-activated protein kinases (p38-MAPKs), the c-JUN N-terminal kinase (JNK), and the extracellular signal-regulated kinase 1/2 (ERK 1/2). Also, In conclusion, P. americana pulp extract has anti-oxidative and anti-inflammatory effects against potassium dichromate-induced hepatotoxicity.
Collapse
Affiliation(s)
- Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shimaa Saad El-Din
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sherif Fahmy Arsanyos
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Galal Motawie
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Gaber Hassan Abdelfattah
- Department of Anatomy and Embryology, Faculty of Medicine, Benisuef University, Bani Sweif, Egypt
| | | |
Collapse
|
34
|
Allaman-Pillet N, Schorderet DF. Piperlongumine promotes death of retinoblastoma cancer cells. Oncotarget 2021; 12:907-916. [PMID: 33953844 PMCID: PMC8092346 DOI: 10.18632/oncotarget.27947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 04/01/2021] [Indexed: 01/08/2023] Open
Abstract
Retinoblastoma is the most common pediatric intraocular malignant tumor. While retinoblastoma initiation is triggered by the inactivation of both alleles of the retinoblastoma tumor suppressor gene (RB1) in the developing retina, tumor progression requires additional epigenetic changes, retinoblastoma genomes being quite stable. Although the management of RB has recently improved, new therapeutic agents are necessary to improve the treatment of advanced forms of retinoblastoma. In this report, we analyzed the pro-death effect of piperlongumine (PL), a natural compound isolated from Piper longum L., on two human retinoblastoma cell lines, WERI-Rb and Y79. The effects of PL on cell proliferation, cell death and cell cycle were investigated. PL effectively inhibited cell growth, impacted the cell cycle by decreasing the level of cyclins and CDK1 and increasing CDKN1A and triggered a caspase-3 independant cell death process in which reactive oxygen species (ROS) production is a major player. Indeed, PL toxicity in retinoblastoma cell lines was inhibited by a ROS scavenger N-acetyl-l-cysteine (NAC) treatment. These findings suggest that PL reduces tumor growth and induces cell death by regulating the cell cycle.
Collapse
Affiliation(s)
| | - Daniel F Schorderet
- Institute for Research in Ophthalmology, Sion, Switzerland.,University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland.,Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| |
Collapse
|
35
|
Brooker C, d'Arcy R, Mele E, Willcock H. Designing responsive dressings for inflammatory skin disorders; encapsulating antioxidant nanoparticles into biocompatible electrospun fibres. SOFT MATTER 2021; 17:3775-3783. [PMID: 33533791 DOI: 10.1039/d0sm01987a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inflammatory skin disorders are highly prevalent and current treatments are marred by side-effects. Here, we have designed anti-inflammatory fibrous sheets with the potential to treat low exudate inflammatory skin disorders such as psoriasis or atopic dermatitis. Antioxidant and anti-inflammatory nanoparticles composed of crosslinked poly(propylene sulfide) (PPS) were encapsulated in poly(ethylene oxide) (PEO) fibres via electrospinning from an aqueous suspension. The loading of nanoparticles did not adversely effect the homogenous nature of the electrospun fibres; furthermore, nanoparticles retained their morphology, size and anti-inflammatory character after electrospinning. The PPS-nanoparticle-loaded nanofibres were found to be highly cytocompatible when tested on human dermal fibroblasts. These findings suggest they have significant potential to topically treat inflamed tissues that are characterized by high reactive oxygen species (ROS) levels.
Collapse
Affiliation(s)
- Charles Brooker
- Materials Department, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | | | | | | |
Collapse
|
36
|
Setti T, Arab MGL, Santos GS, Alkass N, Andrade MAP, Lana JFSD. The protective role of glutathione in osteoarthritis. J Clin Orthop Trauma 2021; 15:145-151. [PMID: 33717929 PMCID: PMC7920102 DOI: 10.1016/j.jcot.2020.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/16/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
It is currently understood that osteoarthritis (OA) is a major chronic inflammatory musculoskeletal disease. While this disease has long been attributed to biomechanical trauma, recent evidence establishes a significant correlation between osteoarthritic progression and unbridled oxidative stress, responsible for prolonged inflammation. Research describes this as a disturbance in the balanced production of reactive oxygen species (ROS) and antioxidant defenses, generating macromolecular damage and disrupted redox signaling and control. Since ROS pathways are being considered new targets for OA treatment, the development of antioxidant therapy to counteract exacerbated oxidative stress is being continuously researched and enhanced in order to fortify the cellular defenses. Experiments with glutathione and its precursor molecule, N-acetylcysteine (NAC), have shown interesting results in the literature for the management of OA, where they have demonstrated efficacy in reducing cartilage degradation and inflammation markers as well as significant improvements in pain and functional outcomes. Glutathione remains a safe, effective and overall cheap treatment alternative in comparison to other current therapeutic solutions and, for these reasons, it may prove to be comparably superior under particular circumstances. METHODS Literature was reviewed using PubMed and Google Scholar in order to bring up significant evidence and illustrate the defensive mechanisms of antioxidant compounds against oxidative damage in the onset of musculoskeletal diseases. The investigation included a combination of keywords such as: oxidative stress, oxidative damage, inflammation, osteoarthritis, antioxidant, glutathione, n-acetylcysteine, redox, and cell signaling. CONCLUSION Based on the numerous studies included in this literature review, glutathione and its precursor N-acetylcysteine have demonstrated significant protective effects in events of prolonged, exacerbated oxidative stress as seen in chronic inflammatory musculoskeletal disorders such as osteoarthritis.
Collapse
Affiliation(s)
- Thiago Setti
- Orthopedics – Sports Medicine – Pain Physician, Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue – Room #406 – Centro, 89814-210, Maravilha, SC, Brazil
| | - Miguel Gustavo Luz Arab
- Orthopedics – Sports Medicine – Pain Physician, Samax - Saude Maxima, 401 Sergipe St – Cj 102, 01243-001, São Paulo, SP, Brazil
| | - Gabriel Silva Santos
- IOC – Instituto do Osso e da Cartilagem, The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue, Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| | - Natasha Alkass
- Pharmaceutical Science, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia
| | - Marco Antonio Percope Andrade
- Federal University of Minas Gerais, Department of Locomotor Apparatus, 6627 Presidente Antônio Carlos Avenue, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - José Fábio Santos Duarte Lana
- Orthopedics – Sports Medicine – Pain Physician, IOC – Instituto do Osso e da Cartilagem, The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue, Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| |
Collapse
|
37
|
Shang Y, Wang Q, Li J, Liu H, Zhao Q, Huang X, Dong H, Chen W, Gui R, Nie X. Zirconia Nanoparticles Induce HeLa Cell Death Through Mitochondrial Apoptosis and Autophagy Pathways Mediated by ROS. Front Chem 2021; 9:522708. [PMID: 33796503 PMCID: PMC8007972 DOI: 10.3389/fchem.2021.522708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Zirconia nanoparticles (ZrO2 NPs) are commonly used in the field of biomedical materials, but their antitumor activity and mechanism is unclear. Herein, we evaluated the anti-tumor activity of ZrO2 NPs and explored the anti-tumor mechanism. The results of in vitro and in vivo experiments showed that the level of intracellular reactive oxygen species (ROS) in HeLa cells was elevated after ZrO2 NPs treatment. Transmission electron microscopy (TEM) showed that after treatment with ZrO2 NPs, the mitochondria of HeLa cells were swollen, accompanied with the induction of autophagic vacuoles. In addition, flow cytometry analysis showed that the apoptotic rate of HeLa cells increased significantly by Annexin staining after treatment with ZrO2 NPs, and the mitochondrial membrane potential (MMP) was reduced significantly. The proliferation of HeLa cells decreased as indicated by reduced Ki-67 labeling. In contrast, TUNEL-positive cells in tumor tissues increased after treatment with ZrO2 NPs, which is accompanied by increased expression of mitochondrial apoptotic proteins including Bax, Caspase-3, Caspase-9, and Cytochrome C (Cyt C) and increased expression of autophagy-related proteins including Atg5, Atg12, Beclin-1, and LC3-II. Treating HeLa cells with N-acetyl-L-cysteine (NAC) significantly reduced ROS, rate of apoptosis, MMP, and in vivo anti-tumor activity. In addition, apoptosis- and autophagy-related protein expressions were also suppressed. Based on these observations, we conclude that ZrO2 NPs induce HeLa cell death through ROS mediated mitochondrial apoptosis and autophagy.
Collapse
Affiliation(s)
- Yinghui Shang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueyuan Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinmin Nie
- Clinical Laboratory of the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Sharapov MG, Glushkova OV, Parfenyuk SB, Gudkov SV, Lunin SM, Novoselova EG. The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6. Arch Biochem Biophys 2021; 702:108830. [PMID: 33727039 DOI: 10.1016/j.abb.2021.108830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 01/11/2023]
Abstract
Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with multi-substrate peroxidase and phospholipase activities that is involved in cell redox homeostasis and regulates intracellular processes. Previously, recombinant Prdx6 was shown to exert a radioprotective effect during whole-body exposure to a lethal dose of X-ray radiation. Moreover, a mutant form Prdx6-C47S, which lacks peroxidase activity, also had a radioprotective effect, and this indicates that the mechanism of radioprotection is unknown. The present study was aimed to test the hypothesis that the radioprotective effect of Prdx6 and Prdx6-C47S may be mediated through the TLR4/NF-κB signaling pathway. It was demonstrated that exogenously applied Prdx6 protected 3T3 fibroblast cells against LD50 X-ray radiation in vitro. Pretreatment with Prdx6 increased cell survival, stimulated proliferation, normalized the level of reactive oxygen species in culture, and suppressed apoptosis and necrosis. Wild-type Prdx6 and, to a lesser degree, the Prdx6-C47S mutant proteins promoted a significant increase in NF-κB activation in irradiated cells, which likely contributes to the antiapoptotic effect. Pretreatment with TLR4 inhibitors, especially those directed to the extracellular part of the receptor, significantly reduced the radioprotective effect, and this supports the role of TLR4 signaling in the protective effects of Prdx6. Therefore, the radioprotective effect of Prdx6 was related not only to its antioxidant properties, but also to its ability to trigger cellular defense mechanisms through interaction with the TLR4 receptor and subsequent activation of the NF-κB pathway. Recombinant Prdx6 may be useful for the development of a new class of safe radioprotective compounds that have a combination of antioxidant and immunomodulatory properties.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia.
| | - Olga V Glushkova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Svetlana B Parfenyuk
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Elena G Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| |
Collapse
|
39
|
AbdelAziz EY, Tadros MG, Menze ET. The effect of metformin on indomethacin-induced gastric ulcer: Involvement of nitric oxide/Rho kinase pathway. Eur J Pharmacol 2021; 892:173812. [PMID: 33345855 DOI: 10.1016/j.ejphar.2020.173812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Gastric ulcer is a very common disease that represent an economic burden. Non-steroidal anti-inflammatory drugs induce ulcer in old patients and in patients with comorbidities. Indomethacin is widely used to induce gastric ulcer in animal models. Diabetic patients are highly susceptible to develop gastric ulcer. Metformin, the first line medication for the treatment of type II diabetes melilites that have many off label uses in non-diabetic patients, has been recently reported to have anti-inflammatory activities. Therefore, this research was conducted to assess the possible healing effects of metformin on gastric ulcers induced by indomethacin in rats. Indomethacin (48 mg/kg) single dose increased stomach acidity, ulcer index and induced histopathological changes. Indomethacin also decreased mucin levels and increased the activity of tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), Rho-associated protein kinas-1 (ROCK-1) and decreased the levels of the protective nitric oxide (NO). After the induction of ulcer, rats were treated by omeprazole (30 mg/kg) or metformin (50, 100 or 200 mg/kg). Omeprazole and metformin were found to decrease stomach acidity and ulcer index, restored the histological features and increased mucin levels. Both also decreased the levels of NF-κB, TNF-α, ROCK-1 and increased NO. Metformin exerted ulcer healing effects comparable to that of omeprazole. This can be attributed, at least partly, to its anti-inflammatory activity and increasing NO levels.
Collapse
Affiliation(s)
- Eman Y AbdelAziz
- Pharmacology and Toxicology Department, Faculty of Pharmacy Ain Shams University, Cairo, Egypt
| | - Mariane G Tadros
- Pharmacology and Toxicology Department, Faculty of Pharmacy Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Pharmacology and Toxicology Department, Faculty of Pharmacy Ain Shams University, Cairo, Egypt.
| |
Collapse
|
40
|
Verigos KE, Sagredou S, Orfanakos K, Dalezis P, Trafalis DT. 8-Hydroxy-2'-Deoxyguanosine and 8-Nitroguanine Production and Detection in Blood Serum of Breast Cancer Patients in Response to Postoperative Complementary External Ionizing Irradiation of Normal Tissues. Dose Response 2021; 18:1559325820982172. [PMID: 33424517 PMCID: PMC7758665 DOI: 10.1177/1559325820982172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
It is widely known that ionizing irradiation is strongly linked to the production of reactive oxygen (ROS) and nitrative species (RNS) through which DNA damage products like 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NG) are generated, respectively. In the present study, we aimed to investigate the formation of 8-OHdG and 8-NG upon irradiation and to further explore whether alterations in their concentration levels are related to the administered radiation doses and exposure time. Our research work was conducted in blood serum samples collected from 33 breast cancer patients who received adjuvant radiotherapy. The detection of 8-OHdG and 8-NG was assessed by enzyme-linked immunosorbent assay. Our results suggest that both, 8-OHdG and 8-NG, were formed during the radiation regimen. Significant correlations with radiation dose were also demonstrated by the dose-response curves of 8-OHdG and 8-NG, fitted by logarithmic distribution and polynomial regression, respectively. More precisely, 8-OHdG and 8-NG concentrations (ng/mL) were considerably increased when patients received ionizing radiation up to 30 Gy whereas irradiation over 30 Gy did not induce any further increases. The current study supports a) the production of 8-OHdG and 8-NG during radiotherapy and b) significant correlations between either 8-OHdG or 8-NG levels and radiation doses, indicating a radiation-dose-dependent relationship.
Collapse
Affiliation(s)
- Kosmas E Verigos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Department of Radiation Therapy, 401 General Military Hospital, Athens, Greece
| | - Sofia Sagredou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriakos Orfanakos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Radiation Therapy Clinic-A, "Metaxa" Cancer Hospital, Piraeus, Greece
| | - Panayiotis Dalezis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
41
|
Zhong QY, Lin B, Chen YT, Huang YP, Feng WP, Wu Y, Long GH, Zou YN, Liu Y, Lin BQ, Sang NL, Zhan JYX. Gender differences in UV-induced skin inflammation, skin carcinogenesis and systemic damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103512. [PMID: 33096234 DOI: 10.1016/j.etap.2020.103512] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/09/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Ultraviolet (UV) radiation-induced chronic inflammation contributes to all stages of skin tumor development. In addition, gender plays an important role in inflammatory diseases or cancer. In this study, histopathology changes, hematology, oxidative stress and inflammatory response were used to evaluate sex differences in UV-induced chronic inflammation-associated cancer development. The results showed that the male and female mice had photoaging damage at the 9th week. However, skin tumors only appeared in male mice at 31st week. Furthermore, UV increased ROS production, p65, p-p65, IL-6 and TNF-α protein expressions in skin, and these factors elevated more in male mouse model. Hematology results showed that the parameters of blood systemic inflammation were changed in different degrees in model groups, while the pathological results showed inflammatory cell infiltration in the internal organs of both model groups in varying degrees. These results indicate that there are gender differences in UV-induced skin inflammation, carcinogenesis and systemic damage. Moreover, male mice are more sensitive to UV irradiation, which may be responsible to greater oxidative stress and inflammatory damage.
Collapse
Affiliation(s)
- Qing-Yuan Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Bing Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yin-Ting Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yin-Ping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Wei-Peng Feng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ying Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Gui-Hong Long
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yun-Nan Zou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Bao-Qin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Nian-Li Sang
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Janis Ya-Xian Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
42
|
Menegazzi M, Masiello P, Novelli M. Anti-Tumor Activity of Hypericum perforatum L. and Hyperforin through Modulation of Inflammatory Signaling, ROS Generation and Proton Dynamics. Antioxidants (Basel) 2020; 10:antiox10010018. [PMID: 33379141 PMCID: PMC7824709 DOI: 10.3390/antiox10010018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
In this paper we review the mechanisms of the antitumor effects of Hypericum perforatum L. (St. John's wort, SJW) and its main active component hyperforin (HPF). SJW extract is commonly employed as antidepressant due to its ability to inhibit monoamine neurotransmitters re-uptake. Moreover, further biological properties make this vegetal extract very suitable for both prevention and treatment of several diseases, including cancer. Regular use of SJW reduces colorectal cancer risk in humans and prevents genotoxic effects of carcinogens in animal models. In established cancer, SJW and HPF can still exert therapeutic effects by their ability to downregulate inflammatory mediators and inhibit pro-survival kinases, angiogenic factors and extracellular matrix proteases, thereby counteracting tumor growth and spread. Remarkably, the mechanisms of action of SJW and HPF include their ability to decrease ROS production and restore pH imbalance in tumor cells. The SJW component HPF, due to its high lipophilicity and mild acidity, accumulates in membranes and acts as a protonophore that hinders inner mitochondrial membrane hyperpolarization, inhibiting mitochondrial ROS generation and consequently tumor cell proliferation. At the plasma membrane level, HPF prevents cytosol alkalization and extracellular acidification by allowing protons to re-enter the cells. These effects can revert or at least attenuate cancer cell phenotype, contributing to hamper proliferation, neo-angiogenesis and metastatic dissemination. Furthermore, several studies report that in tumor cells SJW and HPF, mainly at high concentrations, induce the mitochondrial apoptosis pathway, likely by collapsing the mitochondrial membrane potential. Based on these mechanisms, we highlight the SJW/HPF remarkable potentiality in cancer prevention and treatment.
Collapse
Affiliation(s)
- Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7168
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Via Roma 55, I-56126 Pisa, Italy; (P.M.); (M.N.)
| | - Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Via Roma 55, I-56126 Pisa, Italy; (P.M.); (M.N.)
| |
Collapse
|
43
|
Gupta A, Brooks C, Storey KB. Regulation of NF-κB, FHC and SOD2 in response to oxidative stress in the freeze tolerant wood frog, Rana sylvatica. Cryobiology 2020; 97:28-36. [DOI: 10.1016/j.cryobiol.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
|
44
|
Zhang L, Meng B, Li L, Wang Y, Zhang Y, Fang X, Wang D. Boletus aereus protects against acute alcohol-induced liver damage in the C57BL/6 mouse via regulating the oxidative stress-mediated NF-κB pathway. PHARMACEUTICAL BIOLOGY 2020; 58:905-914. [PMID: 32915675 PMCID: PMC7534317 DOI: 10.1080/13880209.2020.1812672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/09/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Alcoholic liver disease, caused by abuse and consumption of alcohol, exhibits high morbidity and mortality. Boletus aereus Bull. (Boletaceae) (BA) shows antioxidant, anti-inflammatory and antimicrobial effects. OBJECTIVES To investigate the hepatoprotective effects of BA using an acute alcohol-induced hepatotoxicity mice model. MATERIALS AND METHODS The composition of BA fruit body was first systematically analyzed. Subsequently, a C57BL/6 mice model of acute alcohol-induced liver injury was established by intragastrically administration of alcohol, which was intragastrically received with BA powder at 200 mg/kg and 800 mg/kg for 2 weeks, 60 mg/kg silybin treatment was used as positive control group. By employing the pathological examination, ELISA, RT-PCR and western blot, the regulation of BA on oxidative stress signals was investigated. RESULTS The LD50 of BA was much higher than 4 g/kg/p.o. In acute alcohol-damaged mice, BA reduced the levels of alanine aminotransferase (>18.3%) and aspartate aminotransferase (>27.6%) in liver, increased the activity of liver alcohol dehydrogenase (>35.0%) and serum acetaldehyde dehydrogenase (>18.9%). BA increased the activity of superoxide dismutase (>13.4%), glutathione peroxidase (>11.0%) and 800 mg/kg BA strongly reduced chemokine (C-X-C motif) ligand 13 (14.9%) and chitinase-3 like-1 protein (13.4%) in serum. BA reversed mRNA over-expression (>70%) and phosphor-stimulated expression (>45.0%) of an inhibitor of nuclear factor κ-B kinase (NF-κB, an inhibitor of nuclear factor κ-B α and nuclear factor κ-B in the liver. CONCLUSIONS BA is effective in ameliorating alcohol-induced liver injury through regulating oxidative stress-mediated NF-κB signalling, which provides a scientific basis for further research on its clinical applications.
Collapse
Affiliation(s)
- Luping Zhang
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
| | - Bo Meng
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Lanzhou Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yanzhen Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Pharmacy Food Science, Zhuhai College of Jilin University, Zhuhai, China
| | - Yuanzhu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xuexun Fang
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Pharmacy Food Science, Zhuhai College of Jilin University, Zhuhai, China
| |
Collapse
|
45
|
Allegra AG, Mannino F, Innao V, Musolino C, Allegra A. Radioprotective Agents and Enhancers Factors. Preventive and Therapeutic Strategies for Oxidative Induced Radiotherapy Damages in Hematological Malignancies. Antioxidants (Basel) 2020; 9:antiox9111116. [PMID: 33198328 PMCID: PMC7696711 DOI: 10.3390/antiox9111116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy plays a critical role in the management of a wide range of hematologic malignancies. It is well known that the post-irradiation damages both in the bone marrow and in other organs are the main causes of post-irradiation morbidity and mortality. Tumor control without producing extensive damage to the surrounding normal cells, through the use of radioprotectors, is of special clinical relevance in radiotherapy. An increasing amount of data is helping to clarify the role of oxidative stress in toxicity and therapy response. Radioprotective agents are substances that moderate the oxidative effects of radiation on healthy normal tissues while preserving the sensitivity to radiation damage in tumor cells. As well as the substances capable of carrying out a protective action against the oxidative damage caused by radiotherapy, other substances have been identified as possible enhancers of the radiotherapy and cytotoxic activity via an oxidative effect. The purpose of this review was to examine the data in the literature on the possible use of old and new substances to increase the efficacy of radiation treatment in hematological diseases and to reduce the harmful effects of the treatment.
Collapse
Affiliation(s)
- Andrea Gaetano Allegra
- Radiation Oncology Unit, Department of Biomedical, Experimental, and Clinical Sciences “Mario Serio”, Azienda Ospedaliero-Universitaria Careggi, University of Florence, 50100 Florence, Italy;
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98125 Messina, Italy;
| | - Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
- Correspondence: ; Tel.: +39-090-221-2364
| |
Collapse
|
46
|
Zouhal H, Bagheri R, Ashtary-Larky D, Wong A, Triki R, Hackney AC, Laher I, Abderrahman AB. Effects of Ramadan intermittent fasting on inflammatory and biochemical biomarkers in males with obesity. Physiol Behav 2020; 225:113090. [DOI: 10.1016/j.physbeh.2020.113090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/03/2023]
|
47
|
PET Imaging for Oxidative Stress in Neurodegenerative Disorders Associated with Mitochondrial Dysfunction. Antioxidants (Basel) 2020; 9:antiox9090861. [PMID: 32937849 PMCID: PMC7554831 DOI: 10.3390/antiox9090861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress based on mitochondrial dysfunction is assumed to be the principal molecular mechanism for the pathogenesis of many neurodegenerative disorders. However, the effects of oxidative stress on the neurodegeneration process in living patients remain to be elucidated. Molecular imaging with positron emission tomography (PET) can directly evaluate subtle biological changes, including the redox status. The present review focuses on recent advances in PET imaging for oxidative stress, in particular the use of the Cu-ATSM radioligand, in neurodegenerative disorders associated with mitochondrial dysfunction. Since reactive oxygen species are mostly generated by leakage of excess electrons from an over-reductive state due to mitochondrial respiratory chain impairment, PET with 62Cu-ATSM, the accumulation of which depends on an over-reductive state, is able to image oxidative stress. 62Cu-ATSM PET studies demonstrated enhanced oxidative stress in the disease-related brain regions of patients with mitochondrial disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, the magnitude of oxidative stress increased with disease severity, indicating that oxidative stress based on mitochondrial dysfunction contributes to promoting neurodegeneration in these diseases. Oxidative stress imaging has improved our insights into the pathological mechanisms of neurodegenerative disorders, and is a promising tool for monitoring further antioxidant therapies.
Collapse
|
48
|
Abdel Latif H, Abdel Khalek R, AbdelGalil W, AbdAllah H, Fawzy A, AbdelFattah S. Nanocurcumin versus mesenchymal stem cells in ameliorating the deleterious effects in the cadmium-induced testicular injury: A crosstalk between oxidative and apoptotic markers. Andrologia 2020; 52:e13760. [PMID: 32692431 DOI: 10.1111/and.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd), a grave occupational pollutant, can result in; testicular damage. This study was designed to distinguish the potential effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) versus that of curcumin nanoemulsion on Cd-induced testicular damage. Fifty adult male Sprague Dawley rats were distributed into five groups; control, sham control, Cd-treated, stem cell-treated and nanocurcumin-treated groups. Histological, immune histochemical; caspase 3 and proliferating cell nuclear antigen (PCNA) and CD 68, testosterone levels, nitric oxide, malondialdehyde (MDA)/glutathione (GSH) superoxide, dismutase (SOD), Western blot; B-cell lymphoma (Bcl-2), BCL2-Associated X Protein (BAX), BAX/Bcl-2 ratio and morphometry were done. Cadmium-treated group showed degenerated, detached seminiferous tubules, vacuolations and wide interstitial spaces containing fluid exudates. The same group revealed increased expression of BAX, BAX/Bcl-2 ratio, caspase 3, CD 68 and increased mean values of MDA, NO. Concomitantly, Cd has significant reduction in PCNA, Bcl-2 and sperm cell count when compared to control group. BM-MSCs- and nanocurcumin-treated groups revealed well-structured tubules and were perceived to expressively enhance the deleterious changes induced by Cd. The injurious changes on the testis induced by Cd were obviously improved when treated with either MSCs or nano-curcumin. BM-MSCs exerted more ameliorative changes.
Collapse
Affiliation(s)
- Hany Abdel Latif
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha Abdel Khalek
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Walid AbdelGalil
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend AbdAllah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmad Fawzy
- Medical Physiology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shereen AbdelFattah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
49
|
Mehrabadi S, Sadr SS. Assessment of Probiotics Mixture on Memory Function, Inflammation Markers, and Oxidative Stress in an Alzheimer's Disease Model of Rats. IRANIAN BIOMEDICAL JOURNAL 2020; 24:220-8. [PMID: 32306720 PMCID: PMC7275815 DOI: 10.29252/ibj.24.4.220] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/11/2020] [Indexed: 12/16/2022]
Abstract
Background The most important cause of neurodegeneration in Alzheimer's disease (AD) is associated with inflammation and oxidative stress. Probiotics are microorganisms that are believed to be beneficial to human and animals. Probiotics reduce oxidative stress and inflammation in some cases. Therefore, this study determined the effects of probiotics mixture on the biomarkers of oxidative stress and inflammation in an AD model of rats. Methods In this study, 50 rats were allocated to five groups, namely control, sham, and AD groups with Aβ1-40 intra-hippocampal injection, as well as AD + rivastigmine and AD + probiotics groups with Aβ1-40 intra-hippocampal injection and 2 ml (1010 CFU) of probiotics (Lactobacillus reuteri, Lactobacillus rhamnosus, and Bifidobacterium infantis) orally once a day for 10 weeks. MWM was used to assess memory and learning. To detect Aβ plaque, Congo red staining was used. Oxidative stress was monitored by measuring the MDA level and SOD activity, and to assess inflammation markers (IL-1β and TNF-α) in the hippocampus, ELISA method was employed.. Results Spatial memory improved significantly in treatment group as measured by MWM. Probiotics administration reduced Aβ plaques in AD rats. MDA decreased and SOD increased in the treatment group. Besides, probiotics reduced IL-1β and TNF-α as inflammation markers in the AD model of rats. Conclusion Our data revealed that probiotics are helpful in attenuating inflammation and oxidative stress in AD.
Collapse
Affiliation(s)
- Shima Mehrabadi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Tocmo R, Pena‐Fronteras J, Calumba KF, Mendoza M, Johnson JJ. Valorization of pomelo (
Citrus grandis
Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr Rev Food Sci Food Saf 2020; 19:1969-2012. [DOI: 10.1111/1541-4337.12561] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Restituto Tocmo
- Deparment of Pharmacy PracticeUniversity of Illinois‐Chicago Chicago Illinois
| | - Jennifer Pena‐Fronteras
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Kriza Faye Calumba
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Melanie Mendoza
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | | |
Collapse
|