1
|
Lai SCA, Gundlapalli H, Ekiz HA, Jiang A, Fernandez E, Welm AL. Blocking Short-Form Ron Eliminates Breast Cancer Metastases through Accumulation of Stem-Like CD4+ T Cells That Subvert Immunosuppression. Cancer Discov 2021; 11:3178-3197. [PMID: 34330779 PMCID: PMC8800951 DOI: 10.1158/2159-8290.cd-20-1172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapy has potential to prevent and treat metastatic breast cancer, but strategies to enhance immune-mediated killing of metastatic tumors are urgently needed. We report that a ligand-independent isoform of Ron kinase (SF-Ron) is a key target to enhance immune infiltration and eradicate metastatic tumors. Host-specific deletion of SF-Ron caused recruitment of lymphocytes to micrometastases, augmented tumor-specific T-cell responses, and nearly eliminated breast cancer metastasis in mice. Lack of host SF-Ron caused stem-like TCF1+ CD4+ T cells with type I differentiation potential to accumulate in metastases and prevent metastatic outgrowth. There was a corresponding increase in tumor-specific CD8+ T cells, which were also required to eliminate lung metastases. Treatment of mice with a Ron kinase inhibitor increased tumor-specific CD8+ T cells and protected from metastatic outgrowth. These data provide a strong preclinical rationale to pursue small-molecule Ron kinase inhibitors for the prevention and treatment of metastatic breast cancer. SIGNIFICANCE The discovery that SF-Ron promotes antitumor immune responses has significant clinical implications. Therapeutic antibodies targeting full-length Ron may not be effective for immunotherapy; poor efficacy of such antibodies in trials may be due to their inability to block SF-Ron. Our data warrant trials with inhibitors targeting SF-Ron in combination with immunotherapy. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Shu-Chin Alicia Lai
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Harika Gundlapalli
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - H. Atakan Ekiz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Amanda Jiang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Elvelyn Fernandez
- Genomics Summer Research for Minorities (GSRM) Program, University of Utah, Salt Lake City, Utah
| | - Alana L. Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
2
|
Wang L, Wang L, Cybula M, Drumond-Bock AL, Moxley KM, Bieniasz M. Multi-kinase targeted therapy as a promising treatment strategy for ovarian tumors expressing sfRon receptor. Genes Cancer 2020; 11:106-121. [PMID: 33488949 PMCID: PMC7805538 DOI: 10.18632/genesandcancer.205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/17/2020] [Indexed: 11/25/2022] Open
Abstract
The sfRon kinase is an important therapeutic target in ovarian cancer that contributes to prominent tumor growth and disease progression. We reasoned that a multi-kinase inhibition of sfRon pathway might be an effective strategy to achieve a sustained anti-tumor response, while simultaneously preventing treatment resistance. We performed a detailed dissection of sfRon signaling in vitro and demonstrated that S6K1 is a key component of a multi-kinase targeting strategy in sfRon expressing ovarian tumors. We selected AD80 compound that targets several kinases within sfRon pathway including AKT and S6K1, and compared its efficacy with inhibitors that selectively target either sfRon or PI3 kinase. Using human ovarian xenografts and clinically relevant patient-derived xenografts (PDXs), we demonstrated that in vivo treatment with single agent AD80 shows superior efficacy to a standard-care chemotherapy (cisplatin/paclitaxel), or to the direct inhibition of sfRon kinase by BMS777607. Our findings indicate that ovarian tumors expressing sfRon are most effectively treated with multi-kinase inhibitors simultaneously targeting AKT and S6K1, such as AD80, which results in long-term anti-tumor response and prevents metastasis development.
Collapse
Affiliation(s)
- Luyao Wang
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lin Wang
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | | - Katherine M. Moxley
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | | |
Collapse
|
3
|
Berning P, Hennemann C, Tulotta C, Schaefer C, Lechtape B, Hotfilder M, El Gourari Y, Jürgens H, Snaar-Jagalska E, Hempel G, Dirksen U, Potratz J. The Receptor Tyrosine Kinase RON and Its Isoforms as Therapeutic Targets in Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12040904. [PMID: 32272784 PMCID: PMC7226494 DOI: 10.3390/cancers12040904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
The receptor tyrosine kinase (RTK) RON is linked to an aggressive metastatic phenotype of carcinomas. While gaining interest as a therapeutic target, RON remains unstudied in sarcomas. In Ewing sarcoma, we identified RON among RTKs conferring resistance to insulin-like growth factor-1 receptor (IGF1R) targeting. Therefore, we explored RON in pediatric sarcoma cell lines and an embryonic Tg(kdrl:mCherry) zebrafish model, using an shRNA-based approach. To examine RON–IGF1R crosstalk, we employed the clinical-grade monoclonal antibody IMC-RON8, alone and together with the IGF1R-antibody IMC-A12. RON silencing demonstrated functions in vitro and in vivo, particularly within micrometastatic cellular capacities. Signaling studies revealed a unidirectional IGF1-mediated cross-activation of RON. Yet, IMC-A12 failed to sensitize cells to IMC-RON8, suggesting additional mechanisms of RON activation. Here, RT-PCR revealed that childhood sarcomas express short-form RON, an isoform resistant to antibody-mediated targeting. Interestingly, in contrast to carcinomas, treatment with DNA methyltransferase inhibitor did not diminish but increased short-form RON expression. Thus, this first report supports a role for RON in the metastatic progression of Ewing sarcoma. While principal molecular functions appear transferrable between carcinomas, Ewing sarcoma and possibly more common sarcoma subtypes, RON highlights that specific regulations of cellular networks and isoforms require better understanding to successfully transfer targeting strategies.
Collapse
Affiliation(s)
- Philipp Berning
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Carolin Hennemann
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Claudia Tulotta
- Institute of Biology, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Christiane Schaefer
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Birgit Lechtape
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Yassmine El Gourari
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Heribert Jürgens
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Uta Dirksen
- Division of Hematology and Oncology, Department of Pediatrics III, West German Cancer Centre, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Jenny Potratz
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
4
|
Maniscalco L, Guil-Luna S, Iussich S, Gattino F, Trupia C, Millan Y, de Las Mulas JM, Cespedez RS, Saeki K, Accornero P, De Maria R. Expression of the Short Form of RON/STK in Feline Mammary Carcinoma. Vet Pathol 2018; 56:220-229. [PMID: 30558510 DOI: 10.1177/0300985818806967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RON is a tyrosine kinase receptor activated by the macrophage-stimulating protein (MSP) ligand that is overexpressed in human breast cancer. In humans, RON protein can be present in different isoforms, and the most studied isoform is represented by the short form of RON ( sf-RON), which is generated by an alternative promoter located in intron 10 of the RON complementary DNA (cDNA). It plays an important role in breast cancer progression. Considering the many similarities between feline mammary carcinoma (FMC) and human breast cancer, the aim of this study was to investigate the expression of both RON and MSP in FMCs and to identify the presence of the sf-RON transcript. Tissue samples of spontaneous mammary tumors were collected from 60 queens (10 benign lesions, 50 carcinomas). All of the samples were tested for RON and MSP expression by immunohistochemistry; moreover, RNA was extracted from paraffin-embedded tissue samples, and the cDNA was tested by reverse transcription-polymerase chain reaction (RT-PCR) to identify the presence of sf-RON. Immunohistochemistry detected the expression of RON and MSP in 34 of 50 (68%) and 29 of 50 (58%) FMCs, respectively. RT-PCR revealed the presence of the short-form in 18 of 47 (38%) FMCs. This form originates, as in humans, from an alternative promoter (P2), and it codes for the proper feline short form ( sf-RON). sf-RON expression was associated with poorly differentiated tumors and with a shorter disease-free ( P < .05; hazard ratio [HR], 2.2) period and a shorter survival ( P < .05; HR, 2.2). These results support FMC as a suitable model in comparative oncology and identify sf-RON expression as potential predictor of outcomes for this disease.
Collapse
Affiliation(s)
- Lorella Maniscalco
- 1 Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Silvia Guil-Luna
- 2 Faculty of Veterinary Medicine, Department of Comparative Pathology, University of Córdoba, Córdoba, Spain.,3 Maimónides Institute for Biomedical Research of Córdoba, IMIBIC, Córdoba, Spain
| | - Selina Iussich
- 1 Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Francesca Gattino
- 1 Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Calogero Trupia
- 1 Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Yolanda Millan
- 2 Faculty of Veterinary Medicine, Department of Comparative Pathology, University of Córdoba, Córdoba, Spain
| | - Juana Martín de Las Mulas
- 2 Faculty of Veterinary Medicine, Department of Comparative Pathology, University of Córdoba, Córdoba, Spain
| | - Raquel Sanchez Cespedez
- 2 Faculty of Veterinary Medicine, Department of Comparative Pathology, University of Córdoba, Córdoba, Spain
| | - K Saeki
- 4 Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Paolo Accornero
- 1 Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Raffaella De Maria
- 1 Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
5
|
Krishnaswamy S, Bukhari I, Mohammed AK, Amer OE, Tripathi G, Alokail MS, Al-Daghri NM. Identification of the splice variants of Recepteur d'Origine nantais (RON) in lung cancer cell lines. Gene 2018; 679:335-340. [PMID: 30223007 DOI: 10.1016/j.gene.2018.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
RON receptor tyrosine kinase is a transmembrane protein directly involved in suppression of inflammation and its aberrant expression linked to cancers and metastasis. Efforts to block deregulated RON signaling in tumors using small molecule kinase inhibitors or antibodies have been complicated by the presence of unknown number/types of isoforms of RON, which, despite being structurally similar, localize differently and mediate varied functions. Current study was designed to identify the splice variants of RON transcripts formed by skipping of sequences between exons 9 and 14 for better understanding of isoform specific RON signaling in cancers. PCR amplification and bi-directional sequencing of a 901 bp cDNA sequence located between exons 9 to 14 of RON from lung cancer cell lines revealed the presence of two splicing variants formed by skipping of exons 11 and 11-13. Each of these transcripts was found in more than one cell line. Expressed sequence tag (EST) database search indicated that the splicing variant lacking exons 11-13 was a novel one. Here we conclude that the splice variants of RON lacking exon 11 and exons 11-13 were detected in several lung cancer cell lines. Novel variant formed by skipping exons 11-13, the sequence of which code for transmembrane region, is predicted to code for a truncated isoform that may be secreted out. Tumors may antagonize the ligand dependent anti-inflammatory function of wild-type RON by secreting out the ligand binding isoforms.
Collapse
Affiliation(s)
- Soundararajan Krishnaswamy
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia
| | - Ihtisham Bukhari
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Translational Research Institute, School of Medicine, Henan Provincial People's Hospital, Henan University, Zhengzhou, China
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Osama Emam Amer
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia
| | - Gyanendra Tripathi
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Majed S Alokail
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia
| | - Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Bardales JA, Wieser E, Kawaji H, Murakawa Y, Darzacq X. Selective Activation of Alternative MYC Core Promoters by Wnt-Responsive Enhancers. Genes (Basel) 2018; 9:genes9060270. [PMID: 29882899 PMCID: PMC6027352 DOI: 10.3390/genes9060270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022] Open
Abstract
In Metazoans, transcription of most genes is driven by the use of multiple alternative promoters. Although the precise regulation of alternative promoters is important for proper gene expression, the mechanisms that mediates their differential utilization remains unclear. Here, we investigate how the two alternative promoters (P1, P2) that drive MYC expression are regulated. We find that P1 and P2 can be differentially regulated across cell-types and that their selective usage is largely mediated by distal regulatory sequences. Moreover, we show that in colon carcinoma cells, Wnt-responsive enhancers preferentially upregulate transcription from the P1 promoter using reporter assays and in the context of the endogenous Wnt induction. In addition, multiple enhancer deletions using CRISPR/Cas9 corroborate the regulatory specificity of P1. Finally, we show that preferential activation between Wnt-responsive enhancers and the P1 promoter is influenced by the distinct core promoter elements that are present in the MYC promoters. Taken together, our results provide new insight into how enhancers can specifically target alternative promoters and suggest that formation of these selective interactions could allow more precise combinatorial regulation of transcription initiation.
Collapse
Affiliation(s)
- Jorge A Bardales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA.
| | - Evin Wieser
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan.
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama 230-0045, Japan.
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama 230-0045, Japan.
| | - Yasuhiro Murakawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan.
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama 230-0045, Japan.
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
- Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Chakedis J, French R, Babicky M, Jaquish D, Mose E, Cheng P, Holman P, Howard H, Miyamoto J, Porras P, Walterscheid Z, Schultz-Fademrecht C, Esdar C, Schadt O, Eickhoff J, Lowy AM. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics. Oncotarget 2018; 7:45959-45975. [PMID: 27323855 PMCID: PMC5216774 DOI: 10.18632/oncotarget.10009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023] Open
Abstract
The RON tyrosine kinase receptor is under investigation as a novel target in pancreatic cancer. While RON mutations are uncommon, RON isoforms are produced in cancer cells via a variety of mechanisms. In this study we sought to: 1) characterize RON isoform expression in pancreatic cancer, 2) investigate mechanisms that regulate isoform expression, and 3) determine how various isoforms effect gene expression, oncogenic phenotypes and responses to RON directed therapies. We quantified RON transcripts in human pancreatic cancer and found expression levels 2500 fold that of normal pancreas with RON isoform expression comprising nearly 50% of total transcript. RNA seq studies revealed that the short form (sfRON) and P5P6 isoforms which have ligand independent activity, induce markedly different patterns of gene expression than wild type RON. We found that transcription of RON isoforms is regulated by promoter hypermethylation as the DNA demethylating agent 5-aza-2′-deoxycytidine decreased all RON transcripts in a subset of pancreatic cancer cell lines. The viability of sfRON-expressing HPDE cells was reduced by a RON specific small molecule inhibitor, while a therapeutic monoclonal antibody had no demonstrable effects. In summary, RON isoforms may comprise half of total RON transcript in human pancreatic cancer and their expression is regulated at least in part by promoter hypermethylation. RON isoforms activate distinct patterns of gene expression, have transforming activity and differential responses to RON directed therapies. These findings further our understanding of RON biology in pancreatic cancer and have implications for therapeutic strategies to target RON activity.
Collapse
Affiliation(s)
- Jeffery Chakedis
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Randall French
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Michele Babicky
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Dawn Jaquish
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Evangeline Mose
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Peter Cheng
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Patrick Holman
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Haleigh Howard
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jaclyn Miyamoto
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Paula Porras
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zakk Walterscheid
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | - Andrew M Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Krishnaswamy S, Mohammed AK, Tripathi G, Alokail MS, Al-Daghri NM. Splice variants of the extracellular region of RON receptor tyrosine kinase in lung cancer cell lines identified by PCR and sequencing. BMC Cancer 2017; 17:738. [PMID: 29121914 PMCID: PMC5679369 DOI: 10.1186/s12885-017-3747-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Background Altered expression of receptor tyrosine kinases (RTKs) is a major driver of growth and metastasis of cancers. Recepteur d’origine nantais (RON) receptor is a single-pass transmembrane RTK aberrantly expressed in a number of cancers. Efforts to block deregulated RON signaling in tumors using small molecule kinase inhibitors or antibodies are complicated by the presence of unknown number/types of isoforms of RON, which, despite having similar sequences, are localized differently and mediate varied functions. The objective of this study was to identify splice variants of RON transcripts between exons 1 and 10 that code for the extracellular region. Methods Direct cDNA sequencing was performed for the transcript between exons 1–10 of RON by Sanger sequencing in various lung cancer cell lines. Results PCR amplification and bi-directional sequencing of cDNA for section between exons 1 and 10 from lung cancer cell lines revealed the presence of several splice variants of RON transcripts; the variants were formed by skipping of exons 2, 2–3, 5–6, 6 and 8–9. Each of these transcript variants were found in one or more cell lines. While the variants formed by skipping of exons 2, 2–3 and 5–6 resulted in loss of 63, 106 and 109 amino acids, respectively, and didn’t cause reading-frameshift, the transcripts formed by skipping of exons 6 and 8–9 caused reading-frameshift. Splice variant lacking exons 8–9 was found in 13 out of 23 cell lines tested. Conclusion Lung cancer cell lines contain several splice variants of RON which involve skipping of exons coding for extracellular region. Some of the splicing changes result in reading-frameshift and the N-terminally truncated isoforms are expected to be secreted out. The ubiquitous nature of alternative splicing events in RON suggests the need for isoform specific approaches to functional analysis and therapeutic targeting of RON. Electronic supplementary material The online version of this article (10.1186/s12885-017-3747-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soundararajan Krishnaswamy
- Biomarkers Research Program, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Riyadh Biochemistry Department, College of Science, King Saud University, Box 2455, Riyadh, PO, 11451, Saudi Arabia
| | - Abdul Khader Mohammed
- Biomarkers Research Program, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Riyadh Biochemistry Department, College of Science, King Saud University, Box 2455, Riyadh, PO, 11451, Saudi Arabia.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Gyanendra Tripathi
- Department of Biomedical Sciences, University of Westminster, W1W 6UW, London, UK
| | - Majed S Alokail
- Biomarkers Research Program, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Riyadh Biochemistry Department, College of Science, King Saud University, Box 2455, Riyadh, PO, 11451, Saudi Arabia
| | - Nasser M Al-Daghri
- Biomarkers Research Program, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia. .,Prince Mutaib Chair for Biomarkers of Osteoporosis, Riyadh Biochemistry Department, College of Science, King Saud University, Box 2455, Riyadh, PO, 11451, Saudi Arabia.
| |
Collapse
|
9
|
HRAS, EGFR, MET, and RON Genes Are Recurrently Activated by Provirus Insertion in Liver Tumors Induced by the Retrovirus Myeloblastosis-Associated Virus 2. J Virol 2017; 91:JVI.00467-17. [PMID: 28768863 DOI: 10.1128/jvi.00467-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Myeloblastosis-associated virus 2 (MAV-2) is a highly tumorigenic simple avian retrovirus. Chickens infected in ovo with MAV-2 develop tumors in the kidneys, lungs, and liver with a short latency, less than 8 weeks. Here we report the results of molecular analyses of MAV-2-induced liver tumors that fall into three classes: hepatic hemangiosarcomas (HHSs), intrahepatic cholangiocarcinomas (ICCs), and hepatocellular carcinomas (HCCs). Comprehensive inverse PCR-based screening of 92 chicken liver tumors revealed that in ca. 86% of these tumors, MAV-2 provirus had integrated into one of four gene loci: HRAS, EGFR, MET, and RON Insertionally mutated genes correlated with tumor type: HRAS was hit in HHSs, MET in ICCs, RON mostly in ICCs, and EGFR mostly in HCCs. The provirus insertions led to the overexpression of the affected genes and, in the case of EGFR and RON, also to the truncation of exons encoding the extracellular ligand-binding domains of these transmembrane receptors. The structures of truncated EGFR and RON closely mimic the structures of oncogenic variants of these genes frequently found in human tumors (EGFRvIII and sfRON).IMPORTANCE These data describe the mechanisms of oncogenesis induced in chickens by the MAV-2 retrovirus. They also show that molecular processes converting cellular regulatory genes to cancer genes may be remarkably similar in chickens and humans. We suggest that the MAV-2 retrovirus-based model can complement experiments performed using mouse models and provide data that could translate to human medicine.
Collapse
|
10
|
Yang SY, Nguyen TT, Ung TT, Jung YD. Role of Recepteur D'origine Nantais on Gastric Cancer Development and Progression. Chonnam Med J 2017; 53:178-186. [PMID: 29026705 PMCID: PMC5636756 DOI: 10.4068/cmj.2017.53.3.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023] Open
Abstract
Recepteur d'origine nantais (RON) is a receptor tyrosine kinase belonging to the subfamily of which c-MET is the prototype. Large epidemiologic studies have confirmed the strong association between RON and gastric cancer development. Constitutive activation of RON signaling directly correlates with tumorigenic phenotypes of gastric cancer and a poor survival rate in advanced gastric cancer patients. In this review, we focus on recent evidence of the aberrant expression and activation of RON in gastric cancer tumors and provide insights into the mechanism of RON signaling associated with gastric cancer progression and metastasis. Current therapeutics against RON in gastric cancer are summarized.
Collapse
Affiliation(s)
- Sung Yeul Yang
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Thi Thinh Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Trong Thuan Ung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
11
|
Wu Z, Zhang Z, Ge X, Lin Y, Dai C, Chang J, Liu X, Geng R, Wang C, Chen H, Sun M, Guo W, Li J. Identification of short-form RON as a novel intrinsic resistance mechanism for anti-MET therapy in MET-positive gastric cancer. Oncotarget 2016; 6:40519-34. [PMID: 26528757 PMCID: PMC4747350 DOI: 10.18632/oncotarget.5816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/22/2015] [Indexed: 12/30/2022] Open
Abstract
Despite the promising results from initial studies, there are significant limitations in the application of MET-targeted therapy in gastric cancer. Intrinsic resistance is one of the major obstacles. The aim of this study is to identify the responsible receptor tyrosine kinases (RTKs) that determine the unresponsiveness of MET inhibitor in MET-positive gastric cancer. through an RNA-interference-based functional screen targeting most human RTKs, we identified that activation of the fibroblast growth factor receptor 2 (FGFR2) and recepteur d'origine nantais (RON) pathways attenuated MET inhibitor-induced suppression of cell proliferation and migration. Notably, in the two forms of RON pathway activation, only upregulation of short-form RON (sf-RON), but not stimulation of full length RON with macrophage stimulating protein, conferred MET inhibitor resistance in vitro and in vivo. Furthermore, the profile of the gastric cancer samples observed that sf-RON was frequently upregulated in MET-positive gastric cancer. Our findings indicate that activation of the sf-RON signaling pathway represents a novel mechanism underlying MET inhibitor unresponsiveness. A combination strategy with drugs targeting both RON and MET pathways is believed to improve the efficacy of MET-targeted therapy.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhe Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoxiao Ge
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Congqi Dai
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jinjia Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xinyang Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ruixuan Geng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chenchen Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huan Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Menghong Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Abstract
Short-form Ron (sfRon) is an understudied, alternative isoform of the full-length Ron receptor tyrosine kinase. In contrast to Ron, which has been shown to be an important player in many cancers, little is known about the role of sfRon in cancer pathogenesis. Here we report the striking discovery that sfRon expression is required for development of carcinogen-induced malignant ovarian tumors in mice. We also show that sfRon is expressed in several subtypes of human ovarian cancer including high-grade serous carcinomas, which is in contrast to no detectable expression in healthy ovaries. In addition, we report that introduction of sfRon into OVCAR3 cells resulted in epithelial-to-mesenchymal transition, activation of the PI3K and PDK1 pathway, and inhibition of the MAPK pathway. We demonstrated that sfRon confers an aggressive cancer phenotype in vitro characterized by increased proliferation and migration, and decreased adhesion of ovarian cancer cells. Moreover, the in vivo studies show that OVCAR3 tumors expressing sfRon exhibit significantly more robust growth and spreading to the abdominal cavity when compared with the parental sfRon negative OVCAR3 cells. These data suggest that sfRon plays a significant role in ovarian cancer initiation and progression, and may represent a promising therapeutic target for ovarian cancer treatment.
Collapse
|
13
|
Honda S, Minato M, Suzuki H, Fujiyoshi M, Miyagi H, Haruta M, Kaneko Y, Hatanaka KC, Hiyama E, Kamijo T, Okada T, Taketomi A. Clinical prognostic value of DNA methylation in hepatoblastoma: Four novel tumor suppressor candidates. Cancer Sci 2016; 107:812-9. [PMID: 26991471 PMCID: PMC4968605 DOI: 10.1111/cas.12928] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatoblastoma (HB) is very rare but the most common malignant neoplasm of the liver occurring in children. Despite improvements in therapy, outcomes for patients with advanced HB that is refractory to standard preoperative chemotherapy remain unsatisfactory. To improve the survival rate among this group, identification of novel prognostic markers and therapeutic targets is needed. We have previously reported that altered DNA methylation patterns are of biological and clinical importance in HB. In the present study, using genome‐wide methylation analysis and bisulfite pyrosequencing with specimens from HB tumors, we detected nine methylated genes. We then focused on four of those genes, GPR180,MST1R,OCIAD2, and PARP6, because they likely encode tumor suppressors and their increase of methylation was associated with a poor prognosis. The methylation status of the four genes was also associated with age at diagnosis, and significant association with the presence of metastatic tumors was seen in three of the four genes. Multivariate analysis revealed that the presence of metastatic tumors and increase of methylation of GPR180 were independent prognostic factors affecting event‐free survival. These findings indicate that the four novel tumor suppressor candidates are potentially useful molecular markers predictive of a poor outcome in HB patients, which may serve as the basis for improved therapeutic strategies when clinical trials are carried out.
Collapse
Affiliation(s)
- Shohei Honda
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashi Minato
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Masato Fujiyoshi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hisayuki Miyagi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masayuki Haruta
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Yasuhiko Kaneko
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Eiso Hiyama
- Japanese Study Group for Pediatric Liver Tumor, Hiroshima, Japan
| | - Takehiko Kamijo
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Tadao Okada
- Faculty of Education, School Health Nursing, Hokkaido University of Education, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
14
|
Mariotti S, Barravecchia I, Vindigni C, Pucci A, Balsamo M, Libro R, Senchenko V, Dmitriev A, Jacchetti E, Cecchini M, Roviello F, Lai M, Broccoli V, Andreazzoli M, Mazzanti CM, Angeloni D. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion. Oncotarget 2016; 7:1808-25. [PMID: 26689989 PMCID: PMC4811499 DOI: 10.18632/oncotarget.6577] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/14/2015] [Indexed: 12/30/2022] Open
Abstract
The MICAL (Molecules Interacting with CasL) proteins catalyze actin oxidation-reduction reactions destabilizing F-actin in cytoskeletal dynamics. Here we show for the first time that MICAL2 mRNA is significantly over-expressed in aggressive, poorly differentiated/undifferentiated, primary human epithelial cancers (gastric and renal). Immunohistochemistry showed MICAL2-positive cells on the cancer invasive front and in metastasizing cancer cells inside emboli, but not at sites of metastasis, suggesting MICAL2 expression was 'on' in a subpopulation of primary cancer cells seemingly detaching from the tissue of origin, enter emboli and travel to distant sites, and was turned 'off' upon homing at metastatic sites. In vitro, MICAL2 knock-down resulted in mesenchymal to epithelial transition, reduction of viability, and loss of motility and invasion properties of human cancer cells. Moreover, expression of MICAL2 cDNA in MICAL2-depleted cells induced epithelial to mesenchymal transition. Altogether our data indicate that MICAL2 over-expression is associated with cancer progression and metastatic disease. MICAL2 might be an important regulator of epithelial to mesenchymal transition and therefore a promising target for anti-metastatic therapy.
Collapse
Affiliation(s)
- Sara Mariotti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Ivana Barravecchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Carla Vindigni
- U.O.C. Anatomia Patologica, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy
| | - Angela Pucci
- U.O.C. Anatomia Patologica, Azienda Ospedaliera Universitaria Pisana, 56100 Pisa, Italy
| | - Michele Balsamo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Rosaliana Libro
- BIOS Doctoral School in Life Sciences, University of Pisa, 56124 Pisa, Italy
| | - Vera Senchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Emanuela Jacchetti
- NEST, National Enterprise for nanoScience and nanoTechnology, CNR and Scuola Normale Superiore, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, National Enterprise for nanoScience and nanoTechnology, CNR and Scuola Normale Superiore, 56127 Pisa, Italy
| | - Franco Roviello
- Department of Human Pathology and Oncology, University of Siena, 53100 Siena, Italy
| | - Michele Lai
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
- Pisa Science Foundation, 56100 Pisa, Italy
| | | | | | | | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| |
Collapse
|
15
|
Novel splicing variants of recepteur d'origine nantais (RON) tyrosine kinase involving exons 15-19 in lung cancer. Lung Cancer 2015; 92:41-6. [PMID: 26775595 DOI: 10.1016/j.lungcan.2015.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/03/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Altered expressions of receptor tyrosine kinases drive the growth and metastasis of several cancers. RON is a single pass transmembrane receptor tyrosine kinase (RTK) shown to be aberrantly expressed in various cancer types. However, target validation and successful therapeutic targeting of RON in cancers is hampered by the co-existence of unknown number/types of isoforms, which are structurally similar but functionally diverse. OBJECTIVE The objective of this study was to identify differential splicing in the C-terminal region of RON transcripts to better understand RON signaling in cancers. mRNA transcript sequence between exons 14 and 20 of RON was PCR amplified and sequenced using cDNA from 10 SCLC and 13 NSCLC cell lines. Specific exon deletions were identified by aligning sequencing chromatograms with reference RON cDNA sequence. RESULTS We identified the presence of four unique transcript sequence variants of RON formed through skipping of exons 15-19, 16-19, 16-17 and 16. The transcript variants, except the one lacking exons 15-19, were found in more than one cell line. Several cell lines contained two to four of these uniquely spliced transcript variants. dbEST (Expressed Sequence Tags database) or other DNA sequence databases did not contain RON cDNA sequences corresponding to any of the above exon deletions indicating that all these transcript sequence alterations are novel. CONCLUSIONS Results of our study indicate common occurrence of different types of alternatively spliced transcripts of RON in lung cancer with potential to be translated into proteins lacking active kinase domain. Our findings suggest that tumors produce several dominant negative isoforms which probably inhibit ligand dependent RON signaling, and hence, raise important questions regarding the appropriateness of blocking wild type RON signaling for therapy. Further, presence of transcript variants and their isoform products may interfere with quantitative and functional analysis during target validation.
Collapse
|
16
|
Expression and DNA methylation alterations of seven cancer-associated 3p genes and their predicted regulator miRNAs (miR-129-2, miR-9-1) in breast and ovarian cancers. Gene 2015; 576:483-91. [PMID: 26519551 DOI: 10.1016/j.gene.2015.10.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 01/05/2023]
Abstract
The methylation of promoter CpG islands and interactions between microRNAs (miRNAs) and messenger RNAs (mRNAs) of target genes are considered two crucial epigenetic mechanisms for inducing gene and pathway deregulation in tumors. Here, the expression levels of seven cancer-associated 3p genes (RASSF1(isoform A), RARB(isoform 2), SEMA3B, RHOA, GPX1, NKIRAS1, and CHL1) and their predicted regulator miRNAs (miR-129-2, miR-9-1) were analyzed in breast (BC, 40 samples) and ovarian (OC, 14 samples) cancers using RT-PCR and qPCR. We first revealed a negative correlation between the level of the miR-129-2 precursor and RASSF1(A) and GPX1 mRNA levels in BC (Spearman's correlation coefficient (rs) was − 0.26 in both cases). Similar results were observed for the miR-129-2 precursor and the RASSF1(A), GPX1, RARB(2), and CHL1 genes in OC (rs was in the range − 0.48 to − 0.54). Using methylation-specific PCR, a significant correlation was shown between promoter hypermethylation and the down-regulation of the RASSF1(A), GPX1, RARB(2), SEMA3B, MIR-129-2, and MIR-9-1 genes in BC (rs = 0.41 to 0.75) and of the RASSF1(A) gene in OC (rs = 0.67). We first demonstrated a high hypermethylation frequency of MIR-129-2 and SEMA3B (up to 45 to 48%) in both BC (69 samples) and OC (41 samples). Moreover, we observed a positive correlation between the hypermethylation of MIR-129-2 and the up-regulation of the RASSF1(A) and GPX1 genes in BC (rs = 0.38 and 0.42, respectively). QPCR analysis of the expression of RASSF1(A) and mature miR-129-2 in additional BC sample set (24 samples) revealed a negative correlation between them (rs = − 0.41) that strengthened the results obtained during the analysis of miR-129-2 precursor level. In summary, the obtained data indicate the involvement of methylation in the down-regulation of the studied coding and miRNA genes and suggest the involvement of miR-129-2 in the deregulation of RASSF1(A) via a direct interaction or/and mediators in common pathways (according to KEGG, Gene Ontology (FDR < 0.01), and GeneCards data) in the examined gynecological tumors.
Collapse
|
17
|
Bieniasz M, Radhakrishnan P, Faham N, De La O JP, Welm AL. Preclinical Efficacy of Ron Kinase Inhibitors Alone and in Combination with PI3K Inhibitors for Treatment of sfRon-Expressing Breast Cancer Patient-Derived Xenografts. Clin Cancer Res 2015; 21:5588-600. [PMID: 26289070 DOI: 10.1158/1078-0432.ccr-14-3283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 08/11/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE Recent studies have demonstrated that short-form Ron (sfRon) kinase drives breast tumor progression and metastasis through robust activation of the PI3K pathway. We reasoned that upfront, concurrent inhibition of sfRon and PI3K might enhance the antitumor effects of Ron kinase inhibitor therapy while also preventing potential therapeutic resistance to tyrosine kinase inhibitors (TKI). EXPERIMENTAL DESIGN We used patient-derived breast tumor xenografts (PDX) as high-fidelity preclinical models to determine the efficacy of single-agent or dual Ron/PI3K inhibition. We tested the Ron kinase inhibitor ASLAN002 with and without coadministration of the PI3K inhibitor NVP-BKM120 in hormone receptor-positive [estrogen receptor (ER)(+)/progesterone receptor (PR)(+)] breast PDXs with and without PIK3CA gene mutation. RESULTS Breast PDX tumors harboring wild-type PIK3CA showed a robust response to ASLAN002 as a single agent. In contrast, PDX tumors harboring mutated PIK3CA demonstrated partial resistance to ASLAN002, which was overcome with addition of NVP-BKM120 to the treatment regimen. We further demonstrated that concurrent inhibition of sfRon and PI3K in breast PDX tumors with wild-type PIK3CA provided durable tumor stasis after therapy cessation, whereas discontinuation of either monotherapy facilitated tumor recurrence. CONCLUSIONS Our work provides preclinical rationale for targeting sfRon in patients with breast cancer, with the important stipulation that tumors harboring PIK3CA mutations may be partially resistant to Ron inhibitor therapy. Our data also indicate that tumors with wild-type PIK3CA are most effectively treated with an upfront combination of Ron and PI3K inhibitors for the most durable response. Clin Cancer Res; 21(24); 5588-600. ©2015 AACR.
Collapse
Affiliation(s)
- Magdalena Bieniasz
- Oklahoma Medical Research Foundation, Program in Immunobiology and Cancer, Oklahoma City, Oklahoma.
| | | | - Najme Faham
- Oklahoma Medical Research Foundation, Program in Immunobiology and Cancer, Oklahoma City, Oklahoma
| | | | - Alana L Welm
- Huntsman Cancer Institute, Salt Lake City, Utah.
| |
Collapse
|
18
|
Batth IS, Yun H, Kumar AP. Recepteur d'origine nantais (RON), more than a kinase: Role in castrate-resistant prostate cancer. Mol Carcinog 2015; 54:937-46. [PMID: 26152593 DOI: 10.1002/mc.22354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/28/2015] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCA) is the second leading cause of cancer-related deaths in men in the United States. It is natural for a hormone-driven malignancy such as prostate cancer that androgen deprivation therapy (ADT) would be the preferred treatment for clinical disease management. However, after initial treatment response a vast majority of patients develop metastatic castrate-resistant prostate cancer (CRPC), which is fatal. While great headway has been made to understand the possible mechanisms that drive castrate-resistant disease, a bonafide cure remains elusive. Reactivation of androgen receptor (AR) signaling partly contributes to the emergence of CRPC. Here we briefly examine some of the known mechanisms of AR reactivation including intratumoral synthesis of androgens, modulation of AR coregulators, and AR variants with constitutive activity as well as activation of receptor tyrosine kinases. We primarily focus on the emerging dual function of the receptor tyrosine kinase (recepteur d'origine nantais; RON) as a traditional tyrosine kinase and transcription factor. We further discuss activation of RON as an alternate mechanism in the development of CRPC and available therapeutic approaches for clinical management of CRPC by combined inhibition of RON and AR.
Collapse
Affiliation(s)
- Izhar Singh Batth
- Department of Urology, University of Texas Health Science Center, San Antonio, Texas
| | - Huiyoung Yun
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas
| | - Addankl P Kumar
- Department of Urology, University of Texas Health Science Center, San Antonio, Texas.,Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas.,Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas.,Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas.,South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
19
|
Braga EA, Khodyrev DS, Loginov VI, Pronina IV, Senchenko VN, Dmitriev AA, Kubatiev AA, Kushlinskii NE. Methylation in the regulation of the expression of chromosome 3 and microRNA genes in clear-cell renal cell carcinomas. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415050026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Braga EA, Loginov VI, Pronina IV, Khodyrev DS, Rykov SV, Burdennyy AM, Friedman MV, Kazubskaya TP, Kubatiev AA, Kushlinskii NE. Upregulation of RHOA and NKIRAS1 genes in lung tumors is associated with loss of their methylation as well as with methylation of regulatory miRNA genes. BIOCHEMISTRY (MOSCOW) 2015; 80:483-94. [DOI: 10.1134/s0006297915040124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Devaney JM, Wang S, Furbert-Harris P, Apprey V, Ittmann M, Wang BD, Olender J, Lee NH, Kwabi-Addo B. Genome-wide differentially methylated genes in prostate cancer tissues from African-American and Caucasian men. Epigenetics 2015; 10:319-28. [PMID: 25864488 DOI: 10.1080/15592294.2015.1022019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence suggests that aberrant DNA methylation changes may contribute to prostate cancer (PCa) ethnic disparity. To comprehensively identify DNA methylation alterations in PCa disparity, we used the Illumina 450K methylation platform to interrogate the methylation status of 485,577 CpG sites focusing on gene-associated regions of the human genome. Genomic DNA from African-American (AA; 7 normal and 3 cancers) and Caucasian (Cau; 8 normal and 3 cancers) was used in the analysis. Hierarchical clustering analysis identified probe-sets unique to AA and Cau samples, as well as common to both. We selected 25 promoter-associated novel CpG sites most differentially methylated by race (fold change > 1.5-fold; adjusted P < 0.05) and compared the β-value of these sites provided by the Illumina, Inc. array with quantitative methylation obtained by pyrosequencing in 7 prostate cell lines. We found very good concordance of the methylation levels between β-value and pyrosequencing. Gene expression analysis using qRT-PCR in a subset of 8 genes after treatment with 5-aza-2'-deoxycytidine and/or trichostatin showed up-regulation of gene expression in PCa cells. Quantitative analysis of 4 genes, SNRPN, SHANK2, MST1R, and ABCG5, in matched normal and PCa tissues derived from AA and Cau PCa patients demonstrated differential promoter methylation and concomitant differences in mRNA expression in prostate tissues from AA vs. Cau. Regression analysis in normal and PCa tissues as a function of race showed significantly higher methylation prevalence for SNRPN (P = 0.012), MST1R (P = 0.038), and ABCG5 (P < 0.0002) for AA vs. Cau samples. We selected the ABCG5 and SNRPN genes and verified their biological functions by Western blot analysis and siRNA gene knockout effects on cell proliferation and invasion in 4 PCa cell lines (2 AA and 2 Cau patients-derived lines). Knockdown of either ABCG5 or SNRPN resulted in a significant decrease in both invasion and proliferation in Cau PCa cell lines but we did not observe these remarkable loss-of-function effects in AA PCa cell lines. Our study demonstrates how differential genome-wide DNA methylation levels influence gene expression and biological functions in AA and Cau PCa.
Collapse
Affiliation(s)
- J M Devaney
- a Children's National Medical Center ; Center for Genetic Medicine Research ; Washington, DC USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sehrawat A, Singh SV. Short-form RON overexpression augments benzyl isothiocyanate-induced apoptosis in human breast cancer cells. Mol Carcinog 2015; 55:473-85. [PMID: 25857724 DOI: 10.1002/mc.22295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/26/2014] [Accepted: 01/14/2015] [Indexed: 11/08/2022]
Abstract
Chemoprevention of breast cancer is feasible with the use of non-toxic phytochemicals from edible and medicinal plants. Benzyl isothiocyanate (BITC) is one such plant compound that prevents mammary cancer development in a transgenic mouse model in association with tumor cell apoptosis. Prior studies from our laboratory have demonstrated a role for reactive oxygen species (ROS)-dependent Bax activation through the intermediary of c-Jun N-terminal kinases in BITC-induced apoptosis in human breast cancer cells. The present study demonstrates that truncated Recepteur d'Origine Nantais (sfRON) is a novel regulator of BITC-induced apoptosis in breast cancer cells. Overexpression of sfRON in MCF-7 and MDA-MB-361 cells resulted in augmentation of BITC-induced apoptosis when the apoptotic fraction was normalized against vehicle control for each cell type (untransfected and sfRON overexpressing cells). ROS generation and G2 /M phase cell cycle arrest resulting from BITC treatment were significantly attenuated in sfRON overexpressing cells after normalization with vehicle control for each cell type. Increased BITC-induced apoptosis by sfRON overexpression was independent of c-Jun N-terminal kinase or p38 mitogen-activated protein kinase hyperphosphorylation. On the other hand, activation of Bax and Bak following BITC exposure was markedly more pronounced in sfRON overexpressing cells than in controls. sfRON overexpression also augmented apoptosis induction by structurally diverse cancer chemopreventive phytochemicals including withaferin A, phenethyl isothiocyanate, and D,L-sulforaphane. In conclusion, the present study provides novel mechanistic insights into the role of sfRON in apoptosis regulation by BITC and other electrophilic phytochemicals.
Collapse
Affiliation(s)
- Anuradha Sehrawat
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Wang Q, Quan H, Zhao J, Xie C, Wang L, Lou L. RON confers lapatinib resistance in HER2-positive breast cancer cells. Cancer Lett 2013; 340:43-50. [DOI: 10.1016/j.canlet.2013.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/04/2013] [Accepted: 06/20/2013] [Indexed: 12/26/2022]
|
24
|
Steinig AG, Li AH, Wang J, Chen X, Dong H, Ferraro C, Jin M, Kadalbajoo M, Kleinberg A, Stolz KM, Tavares-Greco PA, Wang T, Albertella MR, Peng Y, Crew L, Kahler J, Kan J, Schulz R, Cooke A, Bittner M, Turton RW, Franklin M, Gokhale P, Landfair D, Mantis C, Workman J, Wild R, Pachter J, Epstein D, Mulvihill MJ. Novel 6-aminofuro[3,2-c]pyridines as potent, orally efficacious inhibitors of cMET and RON kinases. Bioorg Med Chem Lett 2013; 23:4381-7. [DOI: 10.1016/j.bmcl.2013.05.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 02/07/2023]
|
25
|
Wang MH, Zhang R, Zhou YQ, Yao HP. Pathogenesis of RON receptor tyrosine kinase in cancer cells: activation mechanism, functional crosstalk, and signaling addiction. J Biomed Res 2013; 27:345-56. [PMID: 24086167 PMCID: PMC3783819 DOI: 10.7555/jbr.27.20130038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/27/2013] [Indexed: 12/15/2022] Open
Abstract
The RON receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor implicated in tumor malignancy. Specifically, aberrations in RON signaling result in increased cancer cell growth, survival, invasion, angiogenesis, and drug resistance. Biochemical events such as ligand binding, receptor overexpression, generation of structure-defected variants, and point mutations in the kinase domain contribute to RON signaling activation. Recently, functional crosstalk between RON and signaling proteins such as MET and EFGR has emerged as an additional mechanism for RON activation, which is critical for tumorigenic development. The RON signaling crosstalk acts either as a regulatory feedback loop that strengthens or enhances tumorigenic phenotype of cancer cells or serves as a signaling compensatory pathway providing a growth/survival advantage for cancer cells to escape targeted therapy. Moreover, viral oncoproteins derived from Friend leukemia or Epstein-Barr viruses interact with RON to drive viral oncogenesis. In cancer cells, RON signaling is integrated into cellular signaling network essential for cancer cell growth and survival. These activities provide the molecular basis of targeting RON for cancer treatment. In this review, we will discuss recent data that uncover the mechanisms of RON activation in cancer cells, review evidence of RON signaling crosstalk relevant to cancer malignancy, and emphasize the significance of the RON signaling addiction by cancer cells for tumor therapy. Understanding aberrant RON signaling will not only provide insight into the mechanisms of tumor pathogenesis, but also lead to the development of novel strategies for molecularly targeted cancer treatment.
Collapse
Affiliation(s)
- Ming-Hai Wang
- Cancer Biology Research Center, ; Department of Biomedical Sciences, and
| | | | | | | |
Collapse
|
26
|
Abstract
Since the discovery of MSP (macrophage-stimulating protein; also known as MST1 and hepatocyte growth factor-like (HGFL)) as the ligand for the receptor tyrosine kinase RON (also known as MST1R) in the early 1990s, the roles of this signalling axis in cancer pathogenesis has been extensively studied in various model systems. Both in vitro and in vivo evidence has revealed that MSP-RON signalling is important for the invasive growth of different types of cancers. Currently, small-molecule inhibitors and antibodies blocking RON signalling are under investigation. Substantial responses have been achieved in human tumour xenograft models, laying the foundation for clinical validation. In this Review, we discuss recent advances that demonstrate the importance of MSP-RON signalling in cancer and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hang-Ping Yao
- Viral Oncogenesis Section in State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P. R. China
| | | | | | | |
Collapse
|
27
|
Liu X, Zhao L, Derose YS, Lin YC, Bieniasz M, Eyob H, Buys SS, Neumayer L, Welm AL. Short-Form Ron Promotes Spontaneous Breast Cancer Metastasis through Interaction with Phosphoinositide 3-Kinase. Genes Cancer 2012; 2:753-62. [PMID: 22207901 DOI: 10.1177/1947601911421924] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/07/2011] [Indexed: 01/13/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) have been the subject of intense investigation due to their widespread deregulation in cancer and the prospect of developing targeted therapeutics against these proteins. The Ron RTK has been implicated in tumor aggressiveness and is a developing target for therapy, but its function in tumor progression and metastasis is not fully understood. We examined Ron activity in human breast cancers and found striking predominance of an activated Ron isoform known as short-form Ron (sfRon), whose function in breast tumors has not been explored. We found that sfRon plays a significant role in aggressiveness of breast cancer in vitro and in vivo. sfRon expression was sufficient to convert slow-growing, nonmetastatic tumors into rapidly growing tumors that spontaneously metastasized to liver and bones. Mechanistic studies revealed that sfRon promotes epithelial-mesenchymal transition, invasion, tumor growth, and metastasis through interaction with p85, the regulatory subunit of phosphoinositide 3-kinase (PI3K). Inhibition of PI3K activity, or introduction of a single mutation in the p85 docking site on sfRon, completely eliminated the ability of sfRon to promote tumor growth, invasion, and metastasis. These findings reveal sfRon as an important new player in breast cancer and validate Ron and PI3K as therapeutic targets in this disease.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fialin C, Larrue C, Vergez F, Sarry JE, Bertoli S, Mansat-De Mas V, Demur C, Delabesse E, Payrastre B, Manenti S, Roche S, Récher C. The short form of RON is expressed in acute myeloid leukemia and sensitizes leukemic cells to cMET inhibitors. Leukemia 2012; 27:325-35. [PMID: 22902361 DOI: 10.1038/leu.2012.240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several receptor tyrosine kinases (TKs) are involved in the pathogenesis of acute myeloid leukemia (AML). Here, we have assessed the expression of the Recepteur d'Origine Nantais (RON) in leukemic cell lines and samples from AML patients. In a series of 86 AML patients, we show that both the full length and/or the short form (sf) of RON are expressed in 51% and 43% of cases, respectively. Interestingly, sfRON is not expressed in normal CD34+ hematopoietic cells and induces part of its oncogenic signaling through interaction with the Src kinase Lyn. sfRON-mediated signaling in leukemic cells also involves mTORC1, the proapoptotic bcl2-family member, BAD, but not the phosphatidylinositol 3-kinase/Akt pathway. Furthermore, the expression of sfRON was specifically downregulated by 5-azacytidine (AZA). Conversely, AZA could induce the expression of sfRON in sfRON-negative leukemic cells suggesting that the activity of this drug in AML and myelodysplastic syndromes could involve modulation of TKs. cMET/RON inhibitors exhibited an antileukemic activity exclusively in AML samples and cell lines expressing sfRON. These results might support clinical trials evaluating cMET/RON inhibitors in AML patients expressing sfRON.
Collapse
Affiliation(s)
- C Fialin
- INSERM UMR1037-Cancer Research Center of Toulouse, CNRS ERL 5294, Pavillon Lefebvre BP3028, CHU Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Alternative transcription and alternative splicing in cancer. Pharmacol Ther 2012; 136:283-94. [PMID: 22909788 DOI: 10.1016/j.pharmthera.2012.08.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 01/27/2023]
Abstract
In recent years, the notion of "one gene makes one protein that functions in one signaling pathway" in mammalian cells has been shown to be overly simplistic. Recent genome-wide studies suggest that at least half of the human genes, including many therapeutic target genes, produce multiple protein isoforms through alternative splicing and alternative usage of transcription initiation and/or termination. For example, alternative splicing of the vascular endothelial growth factor gene (VEGFA) produces multiple protein isoforms, which display either pro-angiogenic or anti-angiogenic activities. Similarly, for the majority of human genes, the inclusion or exclusion of exonic sequences enhances the generation of transcript variants and/or protein isoforms that can vary in structure and functional properties. Many of the isoforms produced in this manner are tightly regulated during normal development but are misregulated in cancer cells. Altered expression of transcript variants and protein isoforms for numerous genes is linked with disease and its prognosis, and cancer cells manipulate regulatory mechanisms to express specific isoforms that confer drug resistance and survival advantages. Emerging insights indicate that modulating the expression of transcript and protein isoforms of a gene may hold the key to impeding tumor growth and act as a model for efficient targeting of disease-associated genes at the isoform level. This review highlights the role and regulation of alternative transcription and splicing mechanisms in generating the transcriptome, and the misuse and diagnostic/prognostic potential of alternative transcription and splicing in cancer.
Collapse
|
30
|
Class I phosphoinositide 3-kinases in normal and pathologic hematopoietic cells. Curr Top Microbiol Immunol 2012; 362:163-84. [PMID: 23086418 DOI: 10.1007/978-94-007-5025-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Class I phosphoinositide 3-kinases which produce the D3-phosphoinositide second messenger phosphatidylinositol 3,4,5-trisphosphate in response to membrane receptors activation play a critical role in cell proliferation, survival, metabolism, and motility. These lipid kinases and the phosphatases regulating the level of D3-phosphoinositides have been an intense area of research these last two decades. The class I phosphoinositide 3-kinases signaling is found aberrantly activated in numerous human cancers, including in malignant hemopathies, and are important therapeutic targets for cancer therapy. Haematopoiesis is an ongoing process which generates the distinct blood cell types from a common hematopoietic stem cell through the action of a variety of cytokines. In the human adult hematopoiesis occurs primarily in the bone marrow, and defects in hematopoiesis result in diseases, such as anemia, thrombocytopenia, myeloproliferative syndromes, or leukemia. Here we give a brief overview of the role of class I phosphoinositide 3-kinases in hematopoietic stem cells, in hematopoietic lineage development and in leukemia, particularly in acute myeloid leukemia and summarize the potential therapeutic implications.
Collapse
|
31
|
Negri T, Brich S, Conca E, Bozzi F, Orsenigo M, Stacchiotti S, Alberghini M, Mauro V, Gronchi A, Dusio GF, Pelosi G, Picci P, Casali PG, Pierotti MA, Pilotti S. Receptor tyrosine kinase pathway analysis sheds light on similarities between clear-cell sarcoma and metastatic melanoma. Genes Chromosomes Cancer 2011; 51:111-26. [DOI: 10.1002/gcc.20933] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/22/2022] Open
|
32
|
Ter Elst A, Diks SH, Kampen KR, Hoogerbrugge PM, Ruijtenbeek R, Boender PJ, Sikkema AH, Scherpen FJG, Kamps WA, Peppelenbosch MP, de Bont ESJM. Identification of new possible targets for leukemia treatment by kinase activity profiling. Leuk Lymphoma 2010; 52:122-30. [PMID: 21133721 DOI: 10.3109/10428194.2010.535181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To date, the biology of acute leukemia has been unclear, and defining new therapeutic targets without prior knowledge remains complicated. The use of high-throughput techniques would enable us to learn more about the biology of the disease, and make it possible to directly assess a broader range of therapeutic targets. In this study we have identified comprehensive tyrosine kinase activity profiles in leukemia samples using the PamChip® kinase activity profiling system. Strikingly, 31% (44/120) of the detected peptides were active in all three groups of leukemia samples. The recently reported activity of platelet-derived growth factor receptor (PDGFR) and neurotrophic tyrosine kinase receptors (NTRK1 and NTRK2) in leukemia could be appreciated in our array results. In addition, high levels of peptide phosphorylation were demonstrated for peptides related to macrophage stimulating 1 receptor (MST1R). A provisional signal transduction scheme of the common active peptides was constructed and used to specifically select an inhibitor for leukemic blast cell survival assays. As expected, a dose-dependent decrease in leukemic blast cell survival was achieved for all leukemia samples. Our data demonstrate that kinase activity profiling in leukemic samples is feasible and provides novel insights into the pathogenesis of leukemia. This approach can be used for the rapid discovery of potential drug targets.
Collapse
Affiliation(s)
- Arja Ter Elst
- Department of Pediatric Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Merlin S, Pietronave S, Locarno D, Valente G, Follenzi A, Prat M. Deletion of the ectodomain unleashes the transforming, invasive, and tumorigenic potential of the MET oncogene. Cancer Sci 2009; 100:633-8. [PMID: 19175607 PMCID: PMC11158143 DOI: 10.1111/j.1349-7006.2008.01079.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/04/2008] [Accepted: 12/07/2008] [Indexed: 11/26/2022] Open
Abstract
The c-MET proto-oncogene, encoding the p190 hepatocyte growth factor tyrosine kinase receptor, can acquire oncogenic potential by multiple mechanisms, such as gene rearrangement, amplification and overexpression, point mutation, and ectopic expression, all resulting in its constitutive activation. Hepatocyte growth factor receptor truncated forms are generated by post-translational cleavage: p140 and p130 lack the kinase domain and are inactive. Their C-terminal remnant fragments are generally undetectable in normal cells, but a membrane-associated truncated form is recognized by anti-C-terminus antibodies in some human tumors, suggesting that a hepatocyte growth factor receptor lacking the ectodomain, but retaining the transmembrane and intracellular domains (Met-EC-), could acquire oncogenic properties. Herein we show that NIH-3T3 cells transduced with MET-EC- expressed a membrane-associated constitutively tyrosine-phosphorylated 60-kDa protein and, similarly to NIH-3T3 cells expressing the cytosolic oncoprotein Tpr-Met, showed activated extracellular regulated kinase 1/2 mitogen-activated protein kinase and Akt downstream transducers. Compared to control NIH-3T3 cells, NIH-3T3-Met-EC- cells grew faster and showed anchorage-independent growth and invasive properties in all aspects similar to cells expressing the transforming TPR-MET. Nude female mice injected subcutaneously with NIH-3T3-Met-EC- cells developed visible tumors, displaying the typical morphology of carcinomas with polygonal cells, in contrast to sarcomas with spindle-shaped cells induced by the injection of NIH-3T3-Tpr-Met cells. It is suggested that the different subcellular localization of the oncoproteins, more than differences in signal transduction, could be responsible for the tumor phenotype. All together, these data show that deletion of the ectodomain activates the hepatocyte growth factor receptor and its downstream signaling pathways, unleashing its transforming, invasive, and tumorigenic potential.
Collapse
Affiliation(s)
- Simone Merlin
- Laboratory of Histology, Department of Medical Sciences, Università del Piemonte Orientale A. Avogardro, Novara, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Zhang Y, Kaplan-Lefko PJ, Rex K, Yang Y, Moriguchi J, Osgood T, Mattson B, Coxon A, Reese M, Kim TS, Lin J, Chen A, Burgess TL, Dussault I. Identification of a novel recepteur d'origine nantais/c-met small-molecule kinase inhibitor with antitumor activity in vivo. Cancer Res 2008; 68:6680-7. [PMID: 18701492 DOI: 10.1158/0008-5472.can-07-6782] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recepteur d'origine nantais (RON) is a receptor tyrosine kinase closely related to c-Met. Both receptors are involved in cell proliferation, migration, and invasion, and there is evidence that both are deregulated in cancer. Receptor overexpression has been most frequently described, but other mechanisms can lead to the oncogenic activation of RON and c-Met. They include activating mutations or gene amplification for c-Met and constitutively active splicing variants for RON. We identified a novel inhibitor of RON and c-Met, compound I, and characterized its in vitro and in vivo activities. Compound I selectively and potently inhibited the kinase activity of RON and c-Met with IC(50)s of 9 and 4 nmol/L, respectively. Compound I inhibited hepatocyte growth factor-mediated and macrophage-stimulating protein-mediated signaling and cell migration in a dose-dependent manner. Compound I was tested in vivo in xenograft models that either were dependent on c-Met or expressed a constitutively active form of RON (RONDelta160 in HT-29). Compound I caused complete tumor growth inhibition in NIH3T3 TPR-Met and U-87 MG xenografts but showed only partial inhibition in HT-29 xenografts. The effect of compound I in HT-29 xenografts is consistent with the expression of the activating b-Raf V600E mutation, which activates the mitogen-activated protein kinase pathway downstream of RON. Importantly, tumor growth inhibition correlated with the inhibition of c-Met-dependent and RON-dependent signaling in tumors. Taken together, our results suggest that a small-molecule dual inhibitor of RON/c-Met has the potential to inhibit tumor growth and could therefore be useful for the treatment of patients with cancers where RON and/or c-Met are activated.
Collapse
Affiliation(s)
- Yihong Zhang
- Department of Oncology Research, Amgen, Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Leonis MA, Thobe MN, Waltz SE. Ron-receptor tyrosine kinase in tumorigenesis and metastasis. Future Oncol 2008; 3:441-8. [PMID: 17661719 PMCID: PMC4082960 DOI: 10.2217/14796694.3.4.441] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Ron-receptor tyrosine kinase has been increasingly recognized for its tumorigenic potential in the last decade. Ron-receptor activation leads to the activation of common receptor tyrosine kinase downstream-signaling pathways, and most prominently in tumor models, activation of MAPK, PI3K and beta-catenin. Numerous experimental models of mammalian tumorigenesis have demonstrated that increased Ron-receptor activity correlates with increased tumorigenesis in a variety of organs of epithelial origin. The evidence for Ron as an oncogene in human tumor biology is growing. The Ron receptor is overexpressed and over activated in a large number of human tumors, and overexpression of Ron correlates with a worse clinical outcome for patients in at least two human cancer states, namely breast and bladder cancer. Several experimental approaches have been demonstrated to successfully block Ron activity and function, and given these convincing data, approaches to block Ron-receptor activity in targeted human cancers should prove to be fruitful in the setting of future clinical research trials.
Collapse
Affiliation(s)
- Mike A. Leonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Megan N. Thobe
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558
| | - Susan E. Waltz
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558
- Department of Research, Shriner’s Hospital for Children, Cincinnati, OH 45267-0558
| |
Collapse
|
36
|
Lu Y, Yao HP, Wang MH. Multiple variants of the RON receptor tyrosine kinase: Biochemical properties, tumorigenic activities, and potential drug targets. Cancer Lett 2007; 257:157-64. [PMID: 17889431 DOI: 10.1016/j.canlet.2007.08.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 08/06/2007] [Accepted: 08/08/2007] [Indexed: 12/24/2022]
Abstract
Aberrant expression of the RON (Recepteur d'Origine Nantais) receptor tyrosine kinase, accompanied by generation of multiple splicing or truncated variants, contributes to pathogenesis of epithelial cancers. Currently, six variants including RONDelta170, Delta165, Delta160, Delta155, Delta110, and Delta55 with various deletions or truncations in the extracellular or intracellular regions have been identified. The extracellular sequences contain functional structures such as sema domain, PSI motif, and IPT units. The deletion or truncation results in constitutive phosphorylation and increased kinase activities. Oncogenic RONDelta160, generated by exclusion of the first IPT unit, is a typical example. In contrast, the deletion adjacent to the conserved MET(1254) in the kinase domain converts RON into a dominant negative agent. Among three mechanisms underlying isoform production, the switch from constitutive to alternative pre-mRNA splicing is the major event in producing RON variants in cancer cells. Most of the RON variants have the ability to activate multiple signaling cascades with a different substrate specificity and phosphorylation profile. They regulate cell migration, invasion, and proliferation, which contribute to the invasive phenotype and promote the malignant progression. Thus, determining the pathogenesis of RON variants is critical in understanding the mechanisms underlying cancer initiation and progression. Targeting oncogenic signals elicited by RON or its variants by special antibody or small interfering RNA could provide a novel strategy for the treatment of malignant epithelial cancers.
Collapse
Affiliation(s)
- Yi Lu
- Laboratory of Cancer Biology and Therapeutics, Institute of Infectious Diseases at First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
| | | | | |
Collapse
|
37
|
The tyrosine kinase sf-Stk and its downstream signals are required for maintenance of friend spleen focus-forming virus-induced fibroblast transformation. J Virol 2007; 82:419-27. [PMID: 17959667 DOI: 10.1128/jvi.01349-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of erythroid progenitor cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia and eventually to erythroleukemia in susceptible strains of mice. The viral envelope protein, SFFV gp55, forms a complex with the erythropoietin receptor (EpoR) and a short form of the receptor tyrosine kinase Stk (sf-Stk), activating both and inducing Epo-independent proliferation. Recently, we discovered that coexpression of SFFV gp55 and sf-Stk is sufficient to transform NIH 3T3 and primary fibroblasts. In the current study, we demonstrate that sf-Stk and its downstream effectors are critical to this transformation. Unlike SFFV-derived erythroleukemia cells, which depend on PU.1 expression for maintenance of the transformed phenotype, SFFV gp55-sf-Stk-transformed fibroblasts are negative for PU.1. Underscoring the importance of sf-Stk to fibroblast transformation, knockdown of sf-Stk abolished the ability of these cells to form anchorage-independent colonies. Like SFFV-infected erythroid cells, SFFV gp55-sf-Stk-transformed fibroblasts express high levels of phosphorylated MEK, ERK, phosphatidylinositol 3-kinase (PI3K), Gab1/2, Akt, Jun kinase (JNK), and STAT3, but unlike virus-infected erythroid cells they fail to express phosphorylated STATs 1 and 5, which may require involvement of the EpoR. In addition, the p38 mitogen-activated protein kinase (MAPK) stress response is suppressed in the transformed fibroblasts. Inhibition of either JNK or the PI3K pathway decreases both monolayer proliferation and anchorage-independent growth of the transformed fibroblasts as does the putative kinase inhibitor luteolin, but inhibition of p38 MAPK has no effect. Our results indicate that sf-Stk is a molecular endpoint of transformation that could be targeted directly or with agents against its downstream effectors.
Collapse
|