1
|
Wang T, Fu J, Huang Y, Fu C. Mechanism of APC truncation involved in colorectal cancer tumorigenesis (Review). Oncol Lett 2025; 29:2. [PMID: 39526304 PMCID: PMC11544694 DOI: 10.3892/ol.2024.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Adenomatous polyposis coli (APC) is widely recognized as a heavily mutated gene that suppresses tumor growth in colorectal cancer (CRC). Its mutation is considered to be the primary and early event that occurs in the development of CRC. In addition, APC has a crucial role in inhibiting the canonical Wnt signaling pathway. APC mutations in CRC result in the production of shortened gene products. This impairment of β-catenin destruction complexes causes an accumulation of active β-catenin in the cytoplasm and nucleus. In these compartments, β-catenin can bind with DNA-binding proteins of the transcription factor/lymphoid enhancer-binding factor family, thereby activating the Wnt signaling pathway. Consequently, the balance of numerous cellular processes is disrupted, ultimately driving the formation of tumors. There is a growing body of evidence indicating the prevalent occurrence of APC truncation in the majority of CRC cases. Furthermore, it has been observed that these truncated proteins have a crucial role in the activation of the Wnt signaling pathway and the subsequent loss of tumor inhibitory function. This review aimed to provide an overview of the recent advancements in understanding the mechanism behind APC truncation and its association with the onset and progression of CRC.
Collapse
Affiliation(s)
- Tuya Wang
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Jing Fu
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Ye Huang
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Chun Fu
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| |
Collapse
|
2
|
Alonso-Villa E, Bonet F, Hernandez-Torres F, Campuzano Ó, Sarquella-Brugada G, Quezada-Feijoo M, Ramos M, Mangas A, Toro R. The Role of MicroRNAs in Dilated Cardiomyopathy: New Insights for an Old Entity. Int J Mol Sci 2022; 23:13573. [PMID: 36362356 PMCID: PMC9659086 DOI: 10.3390/ijms232113573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and systolic dysfunction. In most cases, DCM is progressive, leading to heart failure (HF) and death. This cardiomyopathy has been considered a common and final phenotype of several entities. DCM occurs when cellular pathways fail to maintain the pumping function. The etiology of this disease encompasses several factors, such as ischemia, infection, autoimmunity, drugs or genetic susceptibility. Although the prognosis has improved in the last few years due to red flag clinical follow-up, early familial diagnosis and ongoing optimization of treatment, due to its heterogeneity, there are no targeted therapies available for DCM based on each etiology. Therefore, a better understanding of the mechanisms underlying the pathophysiology of DCM will provide novel therapeutic strategies against this cardiac disease and their different triggers. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play key roles in post-transcriptional gene silencing by targeting mRNAs for translational repression or, to a lesser extent, degradation. A growing number of studies have demonstrated critical functions of miRNAs in cardiovascular diseases (CVDs), including DCM, by regulating mechanisms that contribute to the progression of the disease. Herein, we summarize the role of miRNAs in inflammation, endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial dysfunction, autophagy, cardiomyocyte apoptosis and fibrosis, exclusively in the context of DCM.
Collapse
Affiliation(s)
- Elena Alonso-Villa
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Óscar Campuzano
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, School of Medicine, University of Cadiz, 11009 Cadiz, Spain
| | - Rocío Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| |
Collapse
|
3
|
Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer Metastasis Rev 2019; 37:159-172. [PMID: 29318445 DOI: 10.1007/s10555-017-9725-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.
Collapse
|
4
|
Hankey W, McIlhatton MA, Ebede K, Kennedy B, Hancioglu B, Zhang J, Brock GN, Huang K, Groden J. Mutational Mechanisms That Activate Wnt Signaling and Predict Outcomes in Colorectal Cancer Patients. Cancer Res 2017; 78:617-630. [PMID: 29212857 DOI: 10.1158/0008-5472.can-17-1357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022]
Abstract
APC biallelic loss-of-function mutations are the most prevalent genetic changes in colorectal tumors, but it is unknown whether these mutations phenocopy gain-of-function mutations in the CTNNB1 gene encoding β-catenin that also activate canonical WNT signaling. Here we demonstrate that these two mutational mechanisms are not equivalent. Furthermore, we show how differences in gene expression produced by these different mechanisms can stratify outcomes in more advanced human colorectal cancers. Gene expression profiling in Apc-mutant and Ctnnb1-mutant mouse colon adenomas identified candidate genes for subsequent evaluation of human TCGA (The Cancer Genome Atlas) data for colorectal cancer outcomes. Transcriptional patterns exhibited evidence of activated canonical Wnt signaling in both types of adenomas, with Apc-mutant adenomas also exhibiting unique changes in pathways related to proliferation, cytoskeletal organization, and apoptosis. Apc-mutant adenomas were characterized by increased expression of the glial nexin Serpine2, the human ortholog, which was increased in advanced human colorectal tumors. Our results support the hypothesis that APC-mutant colorectal tumors are transcriptionally distinct from APC-wild-type colorectal tumors with canonical WNT signaling activated by other mechanisms, with possible implications for stratification and prognosis.Significance: These findings suggest that colon adenomas driven by APC mutations are distinct from those driven by WNT gain-of-function mutations, with implications for identifying at-risk patients with advanced disease based on gene expression patterns. Cancer Res; 78(3); 617-30. ©2017 AACR.
Collapse
Affiliation(s)
- William Hankey
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Michael A McIlhatton
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Kenechi Ebede
- Department of Anesthesiology, University of Florida, Gainesville, Florida
| | - Brian Kennedy
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Baris Hancioglu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, Indiana
| | - Guy N Brock
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Kun Huang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, Indiana
| | - Joanna Groden
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
5
|
Zhang L, Shay JW. Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. J Natl Cancer Inst 2017; 109:3113843. [PMID: 28423402 DOI: 10.1093/jnci/djw332] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Adenomatous polyposis coli (APC) is widely accepted as a tumor suppressor gene highly mutated in colorectal cancers (CRC). Mutation and inactivation of this gene is a key and early event almost uniquely observed in colorectal tumorigenesis. Alterations in the APC gene generate truncated gene products, leading to activation of the Wnt signaling pathway and deregulation of multiple other cellular processes. It has been a mystery why most patients with CRC retain a truncated APC protein, but accumulating evidence suggest that these C terminally truncated APC proteins may have gain of function properties beyond the well-established loss of tumor suppressive function. Here, we will review the evidence for both the loss of function and the gain of function of APC truncations and how together they contribute to CRC initiation and progression.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| |
Collapse
|
6
|
Hagiyama M, Yoneshige A, Inoue T, Sato Y, Mimae T, Okada M, Ito A. The intracellular domain of cell adhesion molecule 1 is present in emphysematous lungs and induces lung epithelial cell apoptosis. J Biomed Sci 2015; 22:67. [PMID: 26259600 PMCID: PMC4531499 DOI: 10.1186/s12929-015-0173-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022] Open
Abstract
Background Pulmonary emphysema is characterized histologically by destruction of alveolar walls and enlargement of air spaces due to lung epithelial cell apoptosis. Cell adhesion molecule 1 (CADM1) is an immunoglobulin superfamily member expressed in lung epithelial cells. CADM1 generates a membrane-associated C-terminal fragment, αCTF, through A disintegrin- and metalloprotease-10-mediated ectodomain shedding, subsequently releasing the intracellular domain (ICD) through γ-secretase-mediated intramembrane shedding of αCTF. αCTF localizes to mitochondria and induces apoptosis in lung epithelial cells. αCTF contributes to the development and progression of emphysema as a consequence of increased CADM1 ectodomain shedding. The purpose of this study was to examine whether the ICD makes a similar contribution. Results The ICD was synthesized as a 51-amino acid peptide, and its mutant was synthesized by substituting seven amino acids and deleting two amino acids. These peptides were labeled with fluorescein isothiocyanate and were introduced into various cell lines. ICD peptide-derived fluorescence was well visualized in lung epithelial cells at the site of Mitotracker mitochondrial labeling, but was detected in locations other than mitochondria in other cell types. Mutant peptide-derived fluorescence was detected in locations other than mitochondria, even in lung epithelial cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays revealed that transduction of the ICD peptide increased the proportion of apoptotic cells 2- to 5-fold in the lung epithelial cell lines, whereas the mutant peptide did not. Abundance of the ICD was below the Western blot detection limit in emphysematous (n = 4) and control (n = 4) human lungs. However, the ICD was detected only in emphysematous lungs when it was immunoprecipitated with anti-CADM1 antibody (4/4 vs. 0/4, P = 0.029). Conclusions As the abundance of ICD molecules was sparse but present, increased CADM1 shedding appeared to contribute to the development of emphysema by generating αCTF and the ICD in lung epithelial cells. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0173-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka, 589-8511, Japan.
| | - Azusa Yoneshige
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka, 589-8511, Japan.
| | - Takao Inoue
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka, 589-8511, Japan.
| | - Yasufumi Sato
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka, 589-8511, Japan.
| | - Takahiro Mimae
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka, 589-8511, Japan.
| |
Collapse
|
7
|
Isserlin R, Merico D, Wang D, Vuckovic D, Bousette N, Gramolini AO, Bader GD, Emili A. Systems analysis reveals down-regulation of a network of pro-survival miRNAs drives the apoptotic response in dilated cardiomyopathy. MOLECULAR BIOSYSTEMS 2015; 11:239-51. [PMID: 25361207 PMCID: PMC4856157 DOI: 10.1039/c4mb00265b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apoptosis is a hallmark of multiple etiologies of heart failure, including dilated cardiomyopathy. Since microRNAs are master regulators of cardiac development and key effectors of intracellular signaling, they represent novel candidates for understanding the mechanisms driving the increased dysfunction and loss of cardiomyocytes during cardiovascular disease progression. To determine the role of cardiac miRNAs in the apoptotic response, we used microarray technology to monitor miRNA levels in a validated murine phospholambam mutant model of dilated cardiomyopathy. 24 miRNAs were found to be differentially expressed, most of which have not been previously linked to dilated cardiomyopathy. We showed that individual silencing of 7 out of 8 significantly down-regulated miRNAs (mir-1, -29c, -30c, -30d, -149, -486, -499) led to a strong apoptotic phenotype in cell culture, suggesting they repress pro-apoptotic factors. To identify putative miRNA targets most likely relevant to cell death, we computationally integrated transcriptomic, proteomic and functional annotation data. We showed the dependency of prioritized target abundance on miRNA expression using RNA interference and quantitative mass spectrometry. We concluded that down regulation of key pro-survival miRNAs causes up-regulation of apoptotic signaling effectors that contribute to cardiac cell loss, potentially leading to system decompensation and heart failure.
Collapse
Affiliation(s)
- Ruth Isserlin
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, Canada M5S 3E1.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu HP, Gao ZH, Cui SX, Wang Y, Li BY, Lou HX, Qu XJ. Chemoprevention of intestinal adenomatous polyposis by acetyl-11-keto-beta-boswellic acid in APC(Min/+) mice. Int J Cancer 2012; 132:2667-81. [PMID: 23132636 DOI: 10.1002/ijc.27929] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/19/2012] [Indexed: 02/06/2023]
Abstract
Acetyl-11-keto-beta-boswellic acid (AKBA) is a derivative of boswellic acid, which is an active component of the gum resin of Boswellia serrata. AKBA has been used as an adjuvant medication for treatment of inflammatory diseases. In this study, we aimed to evaluate the efficacy of AKBA as a chemopreventive agent against intestinal adenomatous polyposis in the adenomatous polyposis coli multiple intestinal neoplasia (APC(Min/+) ) mouse model. APC(Min/+) mice were administered AKBA by p.o. gavage for 8 consecutive weeks. The mice were sacrificed and the number, size and histopathology of intestinal polyps were examined by light microscopy. AKBA decreased polyp numbers by 48.9% in the small intestine and 60.4% in the colon. An even greater AKBA effect was observed in preventing the malignant progression of these polyps. The number of large (>3 cm) colonic polyposis was reduced by 77.8%. Histopathologic analysis demonstrated a significant reduction in the number of dysplastic cells and in the degree of dysplasia in each polyp after AKBA treatment. There was no evidence of high grade dysplasia or intramucosal carcinoma in any of the polyps examined within the treated group. More interestingly, interdigitated normal appearing intestinal villi were observed in the polyps of the treated group. During the course of the study, AKBA was well tolerated by the mice with no obvious signs of toxicity. Results from immunohistochemical staining, Western blotting and enzyme-linked immunosorbent assay indicated that the chemopreventive effect of AKBA was attributed to a collection of activities including antiproliferation, apoptosis induction, antiangiogenesis and anti-inflammation. AKBA was found to exert its chemopreventive action through the inhibition of the Wnt/β-catenin and NF-κB/cyclooxygenase-2 signaling pathways. Our findings suggest that AKBA could be a promising regimen in chemoprevention against intestinal tumorigenesis.
Collapse
Affiliation(s)
- Hui-Ping Liu
- Department of Pharmacology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu BQ, Meng X, Li C, Gao YY, Li N, Niu XF, Guan Y, Wang HQ. Glucosamine induces cell death via proteasome inhibition in human ALVA41 prostate cancer cell. Exp Mol Med 2012; 43:487-93. [PMID: 21697645 DOI: 10.3858/emm.2011.43.9.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glucosamine, a naturally occurring amino monosaccharide, has been reported to play a role in the regulation of apoptosis more than half century. However the effect of glucosamine on tumor cells and the involved molecular mechanisms have not been thoroughly investigated. Glucosamine enters the hexosamine biosynthetic pathway (HBP) downstream of the rate-limiting step catalyzed by the GFAT (glutamine:fluctose- 6-phosphate amidotransferase), providing UDPGlcNAc substrates for O-linked β-N-acetylglucosamine (O-GlcNAc) protein modification. Considering that O-GlcNAc modification of proteasome subunits inhibits its activity, we examined whether glucosamine induces growth inhibition via affecting proteasomal activity. In the present study, we found glucosamine inhibited proteasomal activity and the proliferation of ALVA41 prostate cancer cells. The inhibition of proteasomal activity results in the accumulation of ubiquitinated proteins, followed by induction of apoptosis. In addition, we demonstrated that glucosamine downregulated proteasome activator PA28γ and overexpression of PA28γ rescued the proteasomal activity and growth inhibition mediated by glucosamine. We further demonstrated that inhibition of O-GlcNAc abrogated PA28γ suppression induced by glucosamine. These findings suggest that glucosamine may inhibit growth of ALVA41 cancer cells through downregulation of PA28γ and inhibition of proteasomal activity via O-GlcNAc modification.
Collapse
Affiliation(s)
- Bao-Qin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lui C, Mills K, Brocardo MG, Sharma M, Henderson BR. APC as a mobile scaffold: regulation and function at the nucleus, centrosomes, and mitochondria. IUBMB Life 2011; 64:209-14. [PMID: 22162224 DOI: 10.1002/iub.599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/02/2011] [Indexed: 12/13/2022]
Abstract
Genetic mutations of adenomatous polyposis coli (APC) predispose to high risk of human colon cancer. APC is a large tumor suppressor protein and truncating mutations disrupt its normal roles in regulating cell migration, DNA replication/repair, mitosis, apoptosis, and turnover of oncogenic β-catenin. APC is targeted to multiple subcellular sites, and here we discuss recent evidence implicating novel protein interactions and functions of APC in the nucleus and at centrosomes and mitochondria. The ability of APC to shuttle between these and other cell locations is hypothesized to be integral to its cellular function.
Collapse
Affiliation(s)
- Christina Lui
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, New South Wales, Australia
| | | | | | | | | |
Collapse
|
11
|
Mechanisms Regulating Microtubule Binding, DNA Replication, and Apoptosis are Controlled by the Intestinal Tumor Suppressor APC. CURRENT COLORECTAL CANCER REPORTS 2011; 7:145-151. [PMID: 23308069 DOI: 10.1007/s11888-011-0088-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) results from the progressive accumulation of both genetic and epigenetic alterations that lead to the transformation of normal colorectal epithelium to benign (adenoma) and invasive (carcinoma) disease. Since its discovery in mutated form as the causative gene for familial adenomatous polyposis coli (FAP), as well as in many sporadic CRCs, the APC tumor suppressor has been shown to possess numerous functions within the cell including regulation of WNT signaling pathways and its transcriptional effects, cell migration, and chromosome separation. In recent years, other novel roles for APC have been investigated and suggest that APC can also repress DNA replication and enhance apoptosis. Further insights into the mechanisms by which APC contributes to tumor suppression will accelerate the diagnosis and treatment of CRC.
Collapse
|
12
|
Qian J, Perchiniak EM, Sun K, Groden J. The mitochondrial protein hTID-1 partners with the caspase-cleaved adenomatous polyposis cell tumor suppressor to facilitate apoptosis. Gastroenterology 2010; 138:1418-28. [PMID: 19900451 PMCID: PMC3547615 DOI: 10.1053/j.gastro.2009.10.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 10/23/2009] [Accepted: 10/29/2009] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS The adenomatous polyposis cell (APC) tumor suppressor is a multifunctional protein involved in cell migration, proliferation, differentiation, and apoptosis. Cleavage of APC and the subsequent release of an amino-terminal segment are necessary for a transcription-independent mechanism of APC-mediated apoptosis. The aim of the current study is to elucidate the mechanism by which the amino-terminus of APC contributes to the enhancement of apoptosis. METHODS Previous yeast 2-hybrid screens, using the armadillo repeat domain of APC as bait, identified hTID-1 as a potential binding partner. Coimmunoprecipitations, coimmunofluorescence, and binding assays confirm a direct interaction between caspase-cleaved APC and hTID-1 in vivo at the mitochondria. Overexpression and small interfering RNA (siRNA) knockdown studies were designed to determine the significance of this interaction. RESULTS These experiments have identified hTID-1 as a directly interacting protein partner of caspase-cleaved APC. hTID-1 is an apoptosis modulator: 2 of its known mitochondrial protein isoforms, 43-kilodaltons and 40-kilodaltons, have opposing effects in apoptosis. We demonstrate that the amino-terminal segment of APC interacts with both hTID-1 isoforms directly, although there is a stronger association with the apoptotic suppressor 40-kilodalton isoform in vitro. This interaction localizes to amino acids 202-512 of APC, a region including 2 of the 7 armadillo repeats. Overexpression of the 40-kilodalton hTID-1 isoform partially rescues cells from apoptosis mediated by APC 1-777, whereas siRNA knockdown of this hTID-1 isoform enhances apoptosis. CONCLUSIONS These data suggest that the amino-terminal segment of APC promotes cell sensitivity to apoptosis modulated through its binding to 40- and 43-kilodalton hTID-1 isoforms.
Collapse
Affiliation(s)
| | | | | | - Joanna Groden
- Corresponding author: Joanna Groden, Ph.D., Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, 460 W 12th Street, Columbus, OH 43210-2207, , Phone: 614-688-4301
| |
Collapse
|
13
|
Benchabane H, Ahmed Y. The adenomatous polyposis coli tumor suppressor and Wnt signaling in the regulation of apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 656:75-84. [PMID: 19928354 DOI: 10.1007/978-1-4419-1145-2_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adenomatous polyposis coli (APC) tumor suppressor is an essential negative regulator in the evolutionarily conserved Wnt/Wingless (Wg) signal transduction pathway. During normal development, Wnt signaling is required not only to induce cell proliferation and cell fate specification, but also to induce apoptotic cell death. However in some malignant states triggered by APC loss, inappropriate activation of Wnt signaling promotes cell survival and inhibits cell death, indicating that the cellular response to APC loss and Wnt signaling is highly dependent on cell context. This chapter summarizes our current understanding of the role of APC and Wnt signaling in the regulation of apoptosis, based upon studies from fly and mouse in vivo models, as well as cultured carcinoma cells.
Collapse
|
14
|
Yeung AT, Patel BB, Li XM, Seeholzer SH, Coudry RA, Cooper HS, Bellacosa A, Boman BM, Zhang T, Litwin S, Ross EA, Conrad P, Crowell JA, Kopelovich L, Knudson A. One-hit effects in cancer: altered proteome of morphologically normal colon crypts in familial adenomatous polyposis. Cancer Res 2008; 68:7579-86. [PMID: 18794146 PMCID: PMC2562578 DOI: 10.1158/0008-5472.can-08-0856] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We studied patients with Familial Adenomatous Polyposis (FAP) because they are virtually certain to develop colon cancer, and because much is known about the causative APC gene. We hypothesized that the inherited heterozygous mutation itself leads to changes in the proteome of morphologically normal crypts and the proteins that changed may represent targets for preventive and therapeutic agents. We determined the differential protein expression of morphologically normal colon crypts of FAP patients versus those of individuals without the mutation, using two-dimensional gel electrophoresis, mass spectrometry, and validation by two-dimensional gel Western blotting. Approximately 13% of 1,695 identified proteins were abnormally expressed in the morphologically normal crypts of APC mutation carriers, indicating that a colon crypt cell under the one-hit state is already abnormal. Many of the expression changes affect pathways consistent with the function of the APC protein, including apoptosis, cell adhesion, cell motility, cytoskeletal organization and biogenesis, mitosis, transcription, and oxidative stress response. Thus, heterozygosity for a mutant APC tumor suppressor gene alters the proteome of normal-appearing crypt cells in a gene-specific manner, consistent with a detectable one-hit event. These changes may represent the earliest biomarkers of colorectal cancer development, potentially leading to the identification of molecular targets for cancer prevention.
Collapse
Affiliation(s)
- Anthony T Yeung
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Qian J, Sarnaik AA, Bonney TM, Keirsey J, Combs KA, Steigerwald K, Acharya S, Behbehani GK, Barton MC, Lowy AM, Groden J. The APC tumor suppressor inhibits DNA replication by directly binding to DNA via its carboxyl terminus. Gastroenterology 2008; 135:152-62. [PMID: 18474248 PMCID: PMC2832605 DOI: 10.1053/j.gastro.2008.03.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/26/2008] [Accepted: 03/27/2008] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS The APC tumor suppressor is well known for its ability to regulate Wnt signaling through mediation of beta-catenin levels in the cell. Transient over expression of the tumor suppressor gene APC in colon cancer cells prevents entry into S phase of the cell cycle, a phenotype only partially restored by cotransfection of a transcriptionally active form of beta-catenin. In an attempt to define its transcription-independent tumor suppressor functions, we tested whether APC directly affects DNA replication. METHODS A transcriptionally quiescent in vitro DNA replication system, the polymerase chain reaction, DNA binding assays, and transient transfections in colon cancer cell lines were used to determine the effects of APC on DNA replication and the mechanism by which it works. RESULTS We report that exogenous full-length APC inhibits replication of template DNA through a function that maps to amino acids 2140-2421, a region of the protein commonly lost by somatic or germline mutation. This segment of APC directly interacts with DNA, while mutation of the DNA-binding S(T)PXX motifs within it abolishes DNA binding and reduces inhibition of DNA replication. Phosphorylation of this segment by cyclin-dependent kinases also reduces inhibition of DNA replication. Furthermore, transient transfection of an APC segment encoding amino acids 2140-2421 into a colon cancer cell line with mutant APC prevents cell cycle progression into or through S phase. CONCLUSIONS Our results suggest that APC can negatively regulate cell cycle progression through inhibition of DNA replication by direct interaction with DNA.
Collapse
Affiliation(s)
- Jiang Qian
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210-2207,Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Amod A. Sarnaik
- Division of Surgical Oncology in the Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Tera M. Bonney
- Division of Surgical Oncology in the Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jeremy Keirsey
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210-2207
| | - Kelly A. Combs
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Kira Steigerwald
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Samir Acharya
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210-2207
| | - Gregory K. Behbehani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Michelle C. Barton
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Andy M. Lowy
- Division of Surgical Oncology in the Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Joanna Groden
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210-2207,To whom reprint requests should be addressed:
| |
Collapse
|
16
|
Brocardo M, Lei Y, Tighe A, Taylor SS, Mok MT, Henderson BR. Mitochondrial Targeting of Adenomatous Polyposis Coli Protein Is Stimulated by Truncating Cancer Mutations. J Biol Chem 2008; 283:5950-9. [DOI: 10.1074/jbc.m708775200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
|