1
|
Implications of venous thromboembolism GWAS reported genetic makeup in the clinical outcome of ovarian cancer patients. THE PHARMACOGENOMICS JOURNAL 2020; 21:222-232. [PMID: 33161412 DOI: 10.1038/s41397-020-00201-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer (OC) represents the most lethal gynaecological neoplasia. Conversely, venous thromboembolism (VTE) and OC are intricately connected, with many haemostatic components favouring OC progression. In light of this bilateral relationship, genome-wide association studies (GWAS) have reported several single-nucleotide polymorphisms (SNPs) associated with VTE risk that could be used as predictors of OC clinical outcome for better therapeutic management strategies. Thus, the present study aimed to analyse the impact of VTE GWAS-identified SNPs on the clinical outcome of 336 epithelial ovarian cancer (EOC) patients. Polymorphism genotyping was performed using the TaqMan® Allelic Discrimination methodology. Carriers with the ZFPM2 rs4734879 G allele presented a significantly higher 5-year OS, 10-year OS and disease-free survival (DFS) compared to AA genotype patients with FIGO I/II stages (P = 0.009, P = 0.001 and P = 0.003, respectively). Regarding SLC19A2 rs2038024 polymorphism, carriers with the CC genotype presented a significantly lower 5-year OS, 10-year OS and DFS compared to A allele carriers in the same FIGO subgroup (P < 0.001, P = 0.004 and P = 0.005, respectively). As for CNTN6 rs6764623 polymorphism, carriers with the CC genotype presented a significantly lower 5-year OS compared to A allele carriers with FIGO I/II stages (P = 0.015). As for OTUD7A rs7164569, F11 rs4253417 and PROCR rs10747514, no significant impact on EOC patients' survival was observed. However, future studies are required to validate these results and uncover the biological mechanisms underlying our results.
Collapse
|
2
|
Inactivation of the GATA Cofactor ZFPM1 Results in Abnormal Development of Dorsal Raphe Serotonergic Neuron Subtypes and Increased Anxiety-Like Behavior. J Neurosci 2020; 40:8669-8682. [PMID: 33046550 DOI: 10.1523/jneurosci.2252-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Serotonergic neurons in the dorsal raphe (DR) nucleus are associated with several psychiatric disorders including depression and anxiety disorders, which often have a neurodevelopmental component. During embryonic development, GATA transcription factors GATA2 and GATA3 operate as serotonergic neuron fate selectors and regulate the differentiation of serotonergic neuron subtypes of DR. Here, we analyzed the requirement of GATA cofactor ZFPM1 in the development of serotonergic neurons using Zfpm1 conditional mouse mutants. Our results demonstrated that, unlike the GATA factors, ZFPM1 is not essential for the early differentiation of serotonergic precursors in the embryonic rhombomere 1. In contrast, in perinatal and adult male and female Zfpm1 mutants, a lateral subpopulation of DR neurons (ventrolateral part of the DR) was lost, whereas the number of serotonergic neurons in a medial subpopulation (dorsal region of the medial DR) had increased. Additionally, adult male and female Zfpm1 mutants had reduced serotonin concentration in rostral brain areas and displayed increased anxiety-like behavior. Interestingly, female Zfpm1 mutant mice showed elevated contextual fear memory that was abolished with chronic fluoxetine treatment. Altogether, these results demonstrate the importance of ZFPM1 for the development of DR serotonergic neuron subtypes involved in mood regulation. It also suggests that the neuronal fate selector function of GATAs is modulated by their cofactors to refine the differentiation of neuronal subtypes.SIGNIFICANCE STATEMENT Predisposition to anxiety disorders has both a neurodevelopmental and a genetic basis. One of the brainstem nuclei involved in the regulation of anxiety is the dorsal raphe, which contains different subtypes of serotonergic neurons. We show that inactivation of a transcriptional cofactor ZFPM1 in mice results in a developmental failure of laterally located dorsal raphe serotonergic neurons and changes in serotonergic innervation of rostral brain regions. This leads to elevated anxiety-like behavior and contextual fear memory, alleviated by chronic fluoxetine treatment. Our work contributes to understanding the neurodevelopmental mechanisms that may be disturbed in the anxiety disorder.
Collapse
|
3
|
Molecular Fingerprint and Developmental Regulation of the Tegmental GABAergic and Glutamatergic Neurons Derived from the Anterior Hindbrain. Cell Rep 2020; 33:108268. [PMID: 33053343 DOI: 10.1016/j.celrep.2020.108268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/09/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Tegmental nuclei in the ventral midbrain and anterior hindbrain control motivated behavior, mood, memory, and movement. These nuclei contain inhibitory GABAergic and excitatory glutamatergic neurons, whose molecular diversity and development remain largely unraveled. Many tegmental neurons originate in the embryonic ventral rhombomere 1 (r1), where GABAergic fate is regulated by the transcription factor (TF) Tal1. We used single-cell mRNA sequencing of the mouse ventral r1 to characterize the Tal1-dependent and independent neuronal precursors. We describe gene expression dynamics during bifurcation of the GABAergic and glutamatergic lineages and show how active Notch signaling promotes GABAergic fate selection in post-mitotic precursors. We identify GABAergic precursor subtypes that give rise to distinct tegmental nuclei and demonstrate that Sox14 and Zfpm2, two TFs downstream of Tal1, are necessary for the differentiation of specific tegmental GABAergic neurons. Our results provide a framework for understanding the development of cellular diversity in the tegmental nuclei.
Collapse
|
4
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
5
|
Han S, Cao D, Sha J, Zhu X, Chen D. LncRNA ZFPM2-AS1 promotes lung adenocarcinoma progression by interacting with UPF1 to destabilize ZFPM2. Mol Oncol 2020; 14:1074-1088. [PMID: 31919993 PMCID: PMC7191191 DOI: 10.1002/1878-0261.12631] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 01/08/2020] [Indexed: 11/08/2022] Open
Abstract
Lung adenocarcinoma (LUAD), a histological subclass of non-small-cell lung cancer, is globally the leading cause of cancer-related deaths. Long noncoding RNAs (lncRNAs) are emerging as cancer regulators. Zinc finger protein multitype 2 antisense RNA 1 (ZFPM2-AS1) is an oncogene in gastric cancer, but its functions have not been investigated in LUAD. We showed that ZFPM2-AS1 expression is high in LUAD samples based on GEPIA database (http://gepia.cancer-pku.cn/) and validated ZFPM2-AS1 upregulation in LUAD cell lines. Functionally, ZFPM2-AS1 facilitated proliferation, invasion, and epithelial-to-mesenchymal transition of LUAD cells. Thereafter, we found that ZFPM2 was negatively regulated by ZFPM2-AS1, and identified the suppressive effect of ZFPM2 regulation by ZFPM2-AS1 on LUAD progression. Mechanistically, we showed that ZFPM2-AS1 interacted with up-frameshift 1 (UPF1) to regulate mRNA decay of ZFPM2. Rescue assays in vitro and in vivo confirmed that ZFPM2-AS1 regulated LUAD progression and tumor growth through ZFPM2. Taken together, our findings demonstrate a role for the ZFPM2-AS1-UPF1-ZFPM2 axis in LUAD progression, suggesting ZFPM2-AS1 as a new potential target for LUAD treatment.
Collapse
Affiliation(s)
- Shuhua Han
- Department of Pulmonary Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dandan Cao
- Department of Pulmonary Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jun Sha
- Department of Pulmonary Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoli Zhu
- Department of Pulmonary Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dongqin Chen
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, China
| |
Collapse
|
6
|
Guo Y, Yu J, Deng J, Liu B, Xiao Y, Li K, Xiao F, Yuan F, Liu Y, Chen S, Guo F. A Novel Function of Hepatic FOG2 in Insulin Sensitivity and Lipid Metabolism Through PPARα. Diabetes 2016; 65:2151-63. [PMID: 27207553 DOI: 10.2337/db15-1565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/21/2016] [Indexed: 11/13/2022]
Abstract
Friend of GATA 2 (FOG2) is a transcriptional cofactor involved mostly in cardiac function. The aim of this study was to investigate the role of hepatic FOG2 in insulin sensitivity and lipid accumulation. FOG2 overexpression by adenovirus-expressing FOG2 (Ad-FOG2) significantly attenuates insulin signaling in hepatocytes in vitro. Opposite effects were observed when FOG2 was knocked down through adenovirus-expressing small hairpin RNA for FOG2 (Ad-shFOG2). Furthermore, FOG2 knockdown by Ad-shFOG2 ameliorated insulin resistance in leptin receptor-mutated (db/db) mice, and FOG2 overexpression by Ad-FOG2 attenuated insulin sensitivity in C57BL/6J wild-type (WT) mice. In addition, Ad-FOG2 reduced, whereas Ad-shFOG2 promoted, hepatic triglyceride (TG) accumulation in WT mice under fed or fasted conditions, which was associated with increased or decreased hepatic peroxisome proliferator-activated receptor α (PPARα) expression, respectively. Moreover, the improved insulin sensitivity and increased hepatic TG accumulation by Ad-shFOG2 were largely reversed by adenovirus-expressing PPARα (Ad-PPARα) in WT mice. Finally, we generated FOG2 liver-specific knockout mice and found that they exhibit enhanced insulin sensitivity and elevated hepatic TG accumulation, which were also reversed by Ad-PPARα. Taken together, the results demonstrate a novel function of hepatic FOG2 in insulin sensitivity and lipid metabolism through PPARα.
Collapse
Affiliation(s)
- Yajie Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Junjie Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Bin Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Yuzhong Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Kai Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Yong Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Galazo MJ, Emsley JG, Macklis JD. Corticothalamic Projection Neuron Development beyond Subtype Specification: Fog2 and Intersectional Controls Regulate Intraclass Neuronal Diversity. Neuron 2016; 91:90-106. [PMID: 27321927 DOI: 10.1016/j.neuron.2016.05.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/16/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023]
Abstract
Corticothalamic projection neurons (CThPN) are a diverse set of neurons, critical for function of the neocortex. CThPN development and diversity need to be precisely regulated, but little is known about molecular controls over their differentiation and functional specialization, critically limiting understanding of cortical development and complexity. We report the identification of a set of genes that both define CThPN and likely control their differentiation, diversity, and function. We selected the CThPN-specific transcriptional coregulator Fog2 for functional analysis. We identify that Fog2 controls CThPN molecular differentiation, axonal targeting, and diversity, in part by regulating the expression level of Ctip2 by CThPN, via combinatorial interactions with other molecular controls. Loss of Fog2 specifically disrupts differentiation of subsets of CThPN specialized in motor function, indicating that Fog2 coordinates subtype and functional-area differentiation. These results confirm that we identified key controls over CThPN development and identify Fog2 as a critical control over CThPN diversity.
Collapse
Affiliation(s)
- Maria J Galazo
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jason G Emsley
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
8
|
The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro. Arch Biochem Biophys 2015; 591:98-110. [PMID: 26682631 DOI: 10.1016/j.abb.2015.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/09/2015] [Accepted: 12/02/2015] [Indexed: 01/18/2023]
Abstract
Previously, we observed that wild yam (Dioscorea villosa) root extract (WYRE) was able to activate GATA3 in human breast cancer cells targeting epigenome. This study aimed to find out if dioscin (DS), a bioactive compound of WYRE, can modulate GATA3 functions and cellular invasion in human breast cancer cells. MCF-7 and MDA-MB-231 cells were treated in the absence/presence of various concentrations of DS and subjected to gene analysis by RT-qPCR, immunoblotting, and immunocytochemistry. We determined the ability of MDA-MB-231 cells to migrate into wound area and examined the effects of DS on cellular invasion using invasion assay. DS reduced cell viability of both cell lines in a concentration and time-dependent manner. GATA3 expression was enhanced by DS (5.76 μM) in MDA-MB-231 cells. DS (5.76 μM)-treated MDA-MB-231 cells exhibited the morphological characteristic of epithelial-like cells; mRNA expression of DNMT3A, TET2, TET3, ZFPM2 and E-cad were increased while TET1, VIM and MMP9 were decreased. Cellular invasion of MDA-MB-231 was reduced by 65 ± 5% in the presence of 5.76 μM DS. Our data suggested that DS-mediated pathway could promote GATA3 expression at transcription and translation levels. We propose that DS has potential to be used as an anti-invasive agent in breast cancer.
Collapse
|
9
|
Tsang SY, Mei L, Wan W, Li J, Li Y, Zhao C, Ding X, Pun FW, Hu X, Wang J, Zhang J, Luo R, Cheung ST, Leung GKK, Poon WS, Ng HK, Zhang L, Xue H. Glioma Association and Balancing Selection of ZFPM2. PLoS One 2015. [PMID: 26207917 PMCID: PMC4514883 DOI: 10.1371/journal.pone.0133003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ZFPM2, encoding a zinc finger protein and abundantly expressed in the brain, uterus and smooth muscles, plays important roles in cardiac and gonadal development. Abnormal expression of ZFPM2 in ovarian tumors and neuroblastoma has been reported but hitherto its genetic association with cancer and effects on gliomas have not been studied. In the present study, the hexamer insertion-deletion polymorphism rs71305152, located within a large haplotype block spanning intron 1 to intron 3 of ZFPM2, was genotyped in Chinese cohorts of glioma (n = 350), non-glioma cancer (n = 354) and healthy control (n = 463) by direct sequencing and length polymorphism in gel electrophoresis, and ZFPM2 expression in glioma tissues (n = 69) of different grades was quantified by real-time RT-PCR. Moreover, potential natural selection pressure acting on the gene was investigated. Disease-association analysis showed that the overall genotype of rs71305152 was significantly associated with gliomas (P = 0.016), and the heterozygous genotype compared to the combined homozygous genotypes was less frequent in gliomas than in controls (P = 0.005) or non-glioma cancers (P = 0.020). ZFPM2 mRNA expression was negatively correlated with the grades of gliomas (P = 0.002), with higher expression levels in the low-grade gliomas. In the astrocytoma subtype, higher ZFPM2 expression was also correlated with the rs71305152 heterozygous genotype (P = 0.028). In addition, summary statistics tests gave highly positive values, demonstrating that the gene is under the influence of balancing selection. These findings suggest that ZFPM2 is a glioma susceptibility gene, its genotype and expression showing associations with incidence and severity, respectively. Moreover, the balancing selection acting on ZFPM2 may be related to the important roles it has to play in multiple organ development or associated disease etiology.
Collapse
Affiliation(s)
- Shui-Ying Tsang
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Lingling Mei
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Weiqing Wan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Li
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yi Li
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Cunyou Zhao
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaofan Ding
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Frank W. Pun
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaoxia Hu
- Department of Hematology, Institute of Hematology, PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Wang
- Department of Hematology, Institute of Hematology, PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Junyi Zhang
- Cancer Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongcheng Luo
- Cancer Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siu-Tim Cheung
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Gilberto K. K. Leung
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Wai-Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- * E-mail: (HX); (LZ)
| | - Hong Xue
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- * E-mail: (HX); (LZ)
| |
Collapse
|
10
|
Tevosian SG. Transgenic mouse models in the study of reproduction: insights into GATA protein function. Reproduction 2014; 148:R1-R14. [DOI: 10.1530/rep-14-0086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For the past 2 decades, transgenic technology in mice has allowed for an unprecedented insight into the transcriptional control of reproductive development and function. The key factor among the mouse genetic tools that made this rapid advance possible is a conditional transgenic approach, a particularly versatile method of creating gene deletions and substitutions in the mouse genome. A centerpiece of this strategy is an enzyme, Cre recombinase, which is expressed from defined DNA regulatory elements that are active in the tissue of choice. The regulatory DNA element (either genetically engineered or natural) assures Cre expression only in predetermined cell types, leading to the guided deletion of genetically modified (flanked by loxP or ‘floxed’ byloxP) gene loci. This review summarizes and compares the studies in which genes encoding GATA family transcription factors were targeted either globally or by Cre recombinases active in the somatic cells of ovaries and testes. The conditional gene loss experiments require detailed knowledge of the spatial and temporal expression of Cre activity, and the challenges in interpreting the outcomes are highlighted. These studies also expose the complexity of GATA-dependent regulation of gonadal gene expression and suggest that gene function is highly context dependent.
Collapse
|
11
|
Cava C, Bertoli G, Ripamonti M, Mauri G, Zoppis I, Rosa PAD, Gilardi MC, Castiglioni I. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition. PLoS One 2014; 9:e97681. [PMID: 24866763 PMCID: PMC4035288 DOI: 10.1371/journal.pone.0097681] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/23/2014] [Indexed: 12/20/2022] Open
Abstract
Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Marilena Ripamonti
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communications, University of Milan–Bicocca, Milan, Italy
| | - Italo Zoppis
- Department of Informatics, Systems and Communications, University of Milan–Bicocca, Milan, Italy
| | | | - Maria Carla Gilardi
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
12
|
The transcription factor GATA4 is required for follicular development and normal ovarian function. Dev Biol 2013; 381:144-58. [PMID: 23769843 DOI: 10.1016/j.ydbio.2013.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 11/20/2022]
Abstract
Sex determination in mammals requires interaction between the transcription factor GATA4 and its cofactor FOG2. We have recently described the function of both proteins in testis development beyond the sex determination stage; their roles in the postnatal ovary, however, remain to be defined. Here, we use gene targeting in mice to determine the requirement of GATA4 and FOG2 in ovarian development and folliculogenesis. The results from this study identify an essential role of the GATA4 protein in the ovarian morphogenetic program. We show that in contrast to the sex determination phase, which relies on the GATA4-FOG2 complex, the subsequent regulation of ovarian differentiation is dependent upon GATA4 but not FOG2. The loss of Gata4 expression within the ovary results in impaired granulosa cell proliferation and theca cell recruitment as well as fewer primordial follicles in the ovarian cortex, causing a failure in follicular development. Preantral follicular atresia is observed within the few follicles that develop despite Gata4 deficiency. The depletion of the follicular pool in GATA4 deficient ovary results in the formation of ovarian cysts and sterility.
Collapse
|
13
|
Gaynor KU, Grigorieva IV, Allen MD, Esapa CT, Head RA, Gopinath P, Christie PT, Nesbit MA, Jones JL, Thakker RV. GATA3 mutations found in breast cancers may be associated with aberrant nuclear localization, reduced transactivation and cell invasiveness. Discov Oncol 2013; 4:123-39. [PMID: 23435732 DOI: 10.1007/s12672-013-0138-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/08/2013] [Indexed: 01/05/2023] Open
Abstract
Somatic and germline mutations in the dual zinc-finger transcription factor GATA3 are associated with breast cancers expressing the estrogen receptor (ER) and the autosomal dominant hypoparathyroidism-deafness-renal dysplasia syndrome, respectively. To elucidate the role of GATA3 in breast tumorigenesis, we investigated 40 breast cancers that expressed ER, for GATA3 mutations. Six different heterozygous GATA3 somatic mutations were identified in eight tumors, and these consisted of: a frameshifting deletion/insertion (944_945delGGinsAGC), an in-frame deletion of a key arginine residue (991_993delAGG), a seven-nucleotide frameshifting insertion (991_992insTGGAGGA), a frameshifting deletion (1196_1197delGA), and two frameshifting single nucleotide insertions (1224_1225insG found in three tumors and 1224_1225insA). Five of the eight mutations occurred in tumors that retained GATA3 immunostaining, indicating that absence of GATA3 immunostaining is an unreliable predictor of the presence of GATA3 mutations. Luciferase reporter assays, electrophoretic mobility shift assays, immunofluorescence, invasion and proliferation assays demonstrated that the GATA3 mutations resulted in loss (or reduction) of DNA binding, decrease in transactivational activity, and alterations in invasiveness but not proliferation. The 991_992insTGGAGGA (Arg330 frameshift) mutation led to a loss of nuclear localization, yet the 991_993delAGG (Arg330deletion) retained nuclear localization. Investigation of the putative nuclear localization signal (NLS) sites showed that the NLS of GATA3 does not conform to either a classical mono- or bi-partite signal, but contains multiple cooperative NLS elements residing around the N-terminal zinc-finger which comprises residues 264-288. Thus, approximately 20 % ER-positive breast cancers have somatic GATA3 mutations that lead to a loss of GATA3 transactivation activity and altered cell invasiveness.
Collapse
Affiliation(s)
- Katherine U Gaynor
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, OX3 7LJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep 2012; 32:113-30. [PMID: 22115363 DOI: 10.1042/bsr20110046] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When aberrant, factors critical for organ morphogenesis are also commonly involved in disease progression. FOXA1 (forkhead box A1), also known as HNF3α (hepatocyte nuclear factor 3α), is required for postnatal survival due to its essential role in controlling pancreatic and renal function. In addition to regulating a variety of tissues during embryogenesis and early life, rescue experiments have revealed a specific role for FOXA1 in the postnatal development of the mammary gland and prostate. Activity of the nuclear hormone receptors ERα (oestrogen receptor α) and AR (androgen receptor) is also required for proper development of the mammary gland and prostate respectively. FOXA1 modulates ER and AR function in breast and prostate cancer cells, supporting the postulate that FOXA1 is involved in ER and AR signalling under normal conditions, and that some carcinogenic processes in these tissues stem from hormonally regulated developmental pathways gone awry. In addition to broadly reviewing the function of FOXA1 in various aspects of development and cancer, this review focuses on the interplay of FOXA1/ER and FOXA1/AR, in normal and cancerous mammary and prostate epithelial cells. Given the hormone dependency of both breast and prostate cancer, a thorough understanding of FOXA1's role in both cancer types is critical for battling hormone receptor-positive disease and acquired anti-hormone resistance.
Collapse
|
15
|
Conditional ablation of Gata4 and Fog2 genes in mice reveals their distinct roles in mammalian sexual differentiation. Dev Biol 2011; 353:229-41. [PMID: 21385577 DOI: 10.1016/j.ydbio.2011.02.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 12/19/2022]
Abstract
Assembly of functioning testis and ovary requires a GATA4-FOG2 transcriptional complex. To define the separate roles for GATA4 and FOG2 proteins in sexual development of the testis we have ablated the corresponding genes in somatic gonadal cells. We have established that GATA4 is required for testis differentiation, for the expression of Dmrt1 gene, and for testis cord morphogenesis. While Sf1Cre-mediated excision of Gata4 permitted normal expression of most genes associated with embryonic testis development, gonadal loss of Fog2 resulted in an early partial block in male pathway and sex reversal. We have also determined that testis sexual differentiation is sensitive to the timing of GATA4 loss during embryogenesis. Our results now demonstrate that these two genes also have non-overlapping essential functions in testis development.
Collapse
|
16
|
Jiang S, Katayama H, Wang J, Li SA, Hong Y, Radvanyi L, Li JJ, Sen S. Estrogen-induced aurora kinase-A (AURKA) gene expression is activated by GATA-3 in estrogen receptor-positive breast cancer cells. HORMONES & CANCER 2010; 1:11-20. [PMID: 21761347 PMCID: PMC4501777 DOI: 10.1007/s12672-010-0006-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/05/2010] [Indexed: 01/30/2023]
Abstract
Aurora-A is a proto-oncogenic mitotic kinase that is frequently overexpressed in human epithelial malignancies including in breast and ovarian cancers. The mechanism of transcriptional upregulation of Aurora-A in human breast cancer is not yet elucidated. We report herein that Aurora-A transcription is positively regulated by GATA-3 in response to estrogen in estrogen receptor α (ERα)-positive cells. Transient expression of aurora-A promoter deletion mutants in luciferase constructs identified a GATA binding sequence motif as a functional regulatory element in ERα-positive breast cancer cells. Electrophoretic mobility shift assay identified the binding of regulatory proteins to the GATA element. Anti-GATA-3 antibody generated a supershifted complex. Recruitment of GATA-3 to the aurora-A promoter was verified by chromatin immunoprecipitation analysis with GATA-3 antibody. Ectopic expression of GATA-3 resulted in elevated expression of Aurora-A in both ERα-positive and negative cells while siRNA-mediated silencing led to downregulation of endogenous Aurora-A in ERα-positive cells. Estrogen treatment of ERα-positive cells induced increased Aurora-A expression with enhanced recruitment of GATA-3 to the aurora-A promoter. Finally, in the ACI rat model of estrogen-induced breast cancer, known to be associated with elevated Aurora-A expression, we observed increased expression of GATA-3 in preinvasive and invasive mammary epithelial cells exposed to prolonged estrogen treatment and in developing breast tumors. These results demonstrate a direct positive role of estrogen in regulating Aurora-A expression through activation of the ERα-GATA-3 signaling cascade and suggest that this pathway may be critical in the origin of estrogen-stimulated sporadic breast cancer.
Collapse
Affiliation(s)
- Shoulei Jiang
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 7435 Fannin, Houston, TX 77054 USA
| | - Hiroshi Katayama
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 7435 Fannin, Houston, TX 77054 USA
| | - Jin Wang
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 7435 Fannin, Houston, TX 77054 USA
| | - Sara Antonia Li
- Hormonal Oncogenesis Laboratory, Kansas Cancer Center, Department of Pharmacology, Toxicology, and Experimental Therapeutics, University of Kansas Medical Center, Kansas, KS 66160 USA
| | - Yan Hong
- Hormonal Oncogenesis Laboratory, Kansas Cancer Center, Department of Pharmacology, Toxicology, and Experimental Therapeutics, University of Kansas Medical Center, Kansas, KS 66160 USA
| | - Laszlo Radvanyi
- Department of Melanoma Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030 USA
| | - Jonathan J. Li
- Hormonal Oncogenesis Laboratory, Kansas Cancer Center, Department of Pharmacology, Toxicology, and Experimental Therapeutics, University of Kansas Medical Center, Kansas, KS 66160 USA
| | - Subrata Sen
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 7435 Fannin, Houston, TX 77054 USA
| |
Collapse
|
17
|
GATA factors in human neuroblastoma: distinctive expression patterns in clinical subtypes. Br J Cancer 2009; 101:1481-9. [PMID: 19707195 PMCID: PMC2768442 DOI: 10.1038/sj.bjc.6605276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: The aim of this study is to elucidate the expression patterns of GATA transcription factors in neuroblastoma and the developing sympathetic nervous system (SNS). Methods: GATA-2, -3 and -4 and their cofactor friend-of-GATA (FOG)-2 were investigated in primary neuroblastoma by immunohistochemistry, real-time RT-PCR (n=73) and microarray analysis (n=251). In addition, GATA-2, -3 and FOG-2 expression was determined by northern-blot hybridisation. In the developing murine SNS, Gata-4 and Fog-2 were examined by immunohistochemistry. Results: Although Gata-2, -3 and Fog-2 are expressed in the developing nervous system, Gata-4 was not detected. In contrast, protein expression of all factors was observed in human neuroblastoma. Northern-blot hybridisation and real-time RT-PCR suggested specific expression patterns of the four genes in primary neuroblastoma, but did not show unequivocal results. In the large cohort examined by microarrays, a significant association of GATA-2, -3 and FOG-2 expression with low-risk features was observed, whereas GATA-4 mRNA levels correlated with MYCN-amplification. Conclusion: The transcription factors GATA-2 and -3, which are essential for normal SNS development, and their cofactor FOG-2 are downregulated in aggressive but not in favourable neuroblastoma. In contrast, upregulation of GATA-4 appears to be a common feature of this malignancy and might contribute to neuroblastoma pathogenesis.
Collapse
|
18
|
Zhou B, Ma Q, Kong SW, Hu Y, Campbell PH, McGowan FX, Ackerman KG, Wu B, Zhou B, Tevosian SG, Pu WT. Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. J Clin Invest 2009; 119:1462-76. [PMID: 19411759 DOI: 10.1172/jci38723] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 03/11/2009] [Indexed: 12/27/2022] Open
Abstract
Aberrant transcriptional regulation contributes to the pathogenesis of both congenital and adult forms of heart disease. While the transcriptional regulator friend of Gata 2 (FOG2) is known to be essential for heart morphogenesis and coronary development, its tissue-specific function has not been previously investigated. Additionally, little is known about the role of FOG2 in the adult heart. Here we used spatiotemporally regulated inactivation of Fog2 to delineate its function in both the embryonic and adult mouse heart. Early cardiomyocyte- restricted loss of Fog2 recapitulated the cardiac and coronary defects of the Fog2 germline murine knockouts. Later cardiomyocyte-restricted loss of Fog2 (Fog2MC) did not result in defects in cardiac structure or coronary vessel formation. However, Fog2MC adult mice had severely depressed ventricular function and died at 8-14 weeks. Fog2MC adult hearts displayed a paucity of coronary vessels, associated with myocardial hypoxia, increased cardiomyocyte apoptosis, and cardiac fibrosis. Induced inactivation of Fog2 in the adult mouse heart resulted in similar phenotypes, as did ablation of the FOG2 interaction with the transcription factor GATA4. Loss of the FOG2 or FOG2-GATA4 interaction altered the expression of a panel of angiogenesis-related genes. Collectively, our data indicate that FOG2 regulates adult heart function and coronary angiogenesis.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Cardiology, Children's Hospital Boston and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Manuylov NL, Smagulova FO, Leach L, Tevosian SG. Ovarian development in mice requires the GATA4-FOG2 transcription complex. Development 2008; 135:3731-43. [DOI: 10.1242/dev.024653] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have demonstrated previously that mammalian sexual differentiation requires both the GATA4 and FOG2 transcriptional regulators to assemble the functioning testis. Here we have determined that the sexual development of female mice is profoundly affected by the loss of GATA4-FOG2 interaction. We have also identified the Dkk1 gene, which encodes a secreted inhibitor of canonical β-catenin signaling, as a target of GATA4-FOG2 repression in the developing ovary. The tissue-specific ablation of theβ-catenin gene in the gonads disrupts female development. In Gata4ki/ki; Dkk1-/- or Fog2-/-;Dkk1-/- embryos, the normal ovarian gene expression pattern is partially restored. Control of ovarian development by the GATA4-FOG2 complex presents a novel insight into the cross-talk between transcriptional regulation and extracellular signaling that occurs in ovarian development.
Collapse
Affiliation(s)
| | | | - Lyndsay Leach
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755,USA
| | | |
Collapse
|
20
|
Basinko A, Douet-Guilbert N, Le Bris MJ, Parent P, Ansquer H, Morel F, De Braekeleer M. Molecular cytogenetic characterization of an 8p22-8p23.2 duplication derived from a maternal intrachromosomal insertion in a child with congenital heart malformation, delayed puberty, and learning disabilities. Am J Med Genet A 2008; 146A:2950-4. [DOI: 10.1002/ajmg.a.32522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Smagulova FO, Manuylov NL, Leach LL, Tevosian SG. GATA4/FOG2 transcriptional complex regulates Lhx9 gene expression in murine heart development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:67. [PMID: 18577233 PMCID: PMC2447832 DOI: 10.1186/1471-213x-8-67] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 06/24/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND GATA4 and FOG2 proteins are required for normal cardiac development in mice. It has been proposed that GATA4/FOG2 transcription complex exercises its function through gene activation as well as repression; however, targets of GATA4/FOG2 action in the heart remain elusive. RESULTS Here we report identification of the Lhx9 gene as a direct target of the GATA4/FOG2 complex. We demonstrate that the developing mouse heart normally expresses truncated isoforms of Lhx9 - Lhx9alpha and Lhx9beta, and not the Lhx9-HD isoform that encodes a protein with an intact homeodomain. At E9.5 Lhx9alpha/beta expression is prominent in the epicardial primordium, septum transversum while Lhx9-HD is absent from this tissue; in the E11.5 heart LHX9alpha/beta-positive cells are restricted to the epicardial mesothelium. Thereafter in the control hearts Lhx9alpha/beta epicardial expression is promptly down-regulated; in contrast, mouse mutants with Fog2 gene loss fail to repress Lhx9alpha/beta expression. Chromatin immunoprecipitation from the E11.5 hearts demonstrated that Lhx9 is a direct target for GATA4 and FOG2. In transient transfection studies the expression driven by the cis-regulatory regions of Lhx9 was repressed by FOG2 in the presence of intact GATA4, but not the GATA4ki mutant that is impaired in its ability to bind FOG2. CONCLUSION In summary, the Lhx9 gene represents the first direct target of the GATA4/FOG2 repressor complex in cardiac development.
Collapse
Affiliation(s)
- Fatima O Smagulova
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay L Manuylov
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Lyndsay L Leach
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Sergei G Tevosian
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
22
|
Kouros-Mehr H, Kim JW, Bechis SK, Werb Z. GATA-3 and the regulation of the mammary luminal cell fate. Curr Opin Cell Biol 2008; 20:164-70. [PMID: 18358709 DOI: 10.1016/j.ceb.2008.02.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 01/19/2023]
Abstract
The GATA family of transcription factors plays essential roles in the specification and maintenance of differentiated cell types. GATA-3 was identified in a microarray screen of the mouse mammary gland as the most highly expressed transcription factor in the mammary epithelium and is expressed exclusively in the luminal epithelial cell population. Targeted deletion of GATA-3 in mammary glands leads to profound defects in mammary development and inability to specify and maintain the luminal cell fate in the adult mouse. In breast cancer, GATA-3 has emerged as a strong predictor of tumor differentiation, estrogen-receptor status, and clinical outcome. GATA-3 maintains tumor differentiation and suppresses tumor dissemination in a mouse model of breast cancer. This review explores our current understanding of GATA-3 signaling in luminal cell differentiation, both in mammary development and breast cancer.
Collapse
Affiliation(s)
- Hosein Kouros-Mehr
- Department of Anatomy and the Biomedical Sciences Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0452, United States
| | | | | | | |
Collapse
|
23
|
Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M. Positive Cross-Regulatory Loop Ties GATA-3 to Estrogen Receptor α Expression in Breast Cancer. Cancer Res 2007; 67:6477-83. [PMID: 17616709 DOI: 10.1158/0008-5472.can-07-0746] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor GATA-3 is required for normal mammary gland development, and its expression is highly correlated with estrogen receptor alpha (ER alpha) in human breast tumors. However, the functional role of GATA-3 in ER alpha-positive breast cancers is yet to be established. Here, we show that GATA-3 is required for estradiol stimulation of cell cycle progression in breast cancer cells. The role of GATA-3 in estradiol signaling requires the direct positive regulation of the expression of the ER alpha gene itself by GATA-3. GATA-3 binds to two cis-regulatory elements located within the ER alpha gene, and this is required for RNA polymerase II recruitment to ER alpha promoters. Reciprocally, ER alpha directly stimulates the transcription of the GATA-3 gene, indicating that these two factors are involved in a positive cross-regulatory loop. Moreover, GATA-3 and ER alpha regulate their own expression in breast cancer cells. Hence, this transcriptional coregulatory mechanism accounts for the robust coexpression of GATA-3 and ER alpha in human breast cancers. In addition, these results highlight the crucial role of GATA-3 for the response of ER alpha-positive breast cancers to estradiol. Moreover, they identify GATA-3 as a critical component of the master cell-type-specific transcriptional network including ER alpha and FoxA1 that dictates the phenotype of hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Jérôme Eeckhoute
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|