1
|
Nielsen DM, Hsu M, Zapata M, Ciavarra G, van Zyl L. Bayesian analysis of the rate of spontaneous malignant mesothelioma among BAP1 mutant mice in the absence of asbestos exposure. Sci Rep 2025; 15:169. [PMID: 39747518 PMCID: PMC11697272 DOI: 10.1038/s41598-024-84069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Cancers of the mesothelium, such as malignant mesothelioma (MM), historically have been attributed solely to exposure to asbestos. Recent large scale genetic and genomic functional studies now show that approximately 20% of all human mesotheliomas are causally linked to highly penetrant inherited (germline) pathogenic mutations in numerous cancer related genes. The rarity of these mutations in humans makes it difficult to perform statistically conclusive genetic studies to understand their biological effects. This has created a disconnect between functional and epidemiological studies. However, since the molecular pathogenesis of MM in mice accurately recapitulates that of human disease, this disconnect between functional and epidemiological studies can be overcome by using inbred mouse strains that harbor mutation(s) in genes involved in the disease. Most mouse studies have focused on the effect of asbestos exposure, leaving the effects of genetic mutations in the absence of exposure understudied. Here, using existing peer-reviewed studies, we investigate the rate of spontaneous MM among mice with and without germline genetic mutations, in the absence of asbestos exposure. We leveraged these published data to generate a historical control dataset (HCD) to allow us to improve statistical power and account for genetic heterogeneity between studies. Our Bayesian analyses indicate that the odds of spontaneous MM among germline BAP1 mutant mice is substantially larger than that of wildtype mice. These results support the existing biological study findings that mesotheliomas can arise in the presence of pathogenic germline mutations, independently of asbestos exposure.
Collapse
Affiliation(s)
- Dahlia M Nielsen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Mei Hsu
- ArrayXpress, Inc., Raleigh, NC, USA
| | | | | | | |
Collapse
|
2
|
Shen Z, Yu N, Zhang Y, Jia M, Sun Y, Li Y, Zhao L. The potential roles of HIF-1α in epithelial-mesenchymal transition and ferroptosis in tumor cells. Cell Signal 2024; 122:111345. [PMID: 39134249 DOI: 10.1016/j.cellsig.2024.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In tumors, the rapid proliferation of cells and the imperfect blood supply system lead to hypoxia, which can regulate the adaptation of tumor cells to the hypoxic environment through hypoxia-inducible factor-1α (HIF-1α) and promote tumor development in multiple ways. Recent studies have found that epithelial-mesenchymal transition (EMT) and ferroptosis play important roles in the progression of tumor cells. The activation of HIF-1α is considered a key factor in inducing EMT in tumor cells. When HIF-1α is activated, it can regulate EMT-related genes, causing tumor cells to gradually lose their epithelial characteristics and acquire more invasive mesenchymal traits. The occurrence of EMT allows tumor cells to better adapt to changes in the surrounding tissue, enhancing their migratory and invasive capabilities, thus promoting tumor progression. At the same time, HIF-1α also plays a crucial regulatory role in ferroptosis in tumor cells. In a hypoxic environment, HIF-1α may affect processes such as iron metabolism and oxidative stress responses, inducing ferroptosis in tumor cells. This article briefly reviews the dual role of HIF-1α in EMT and ferroptosis in tumor cells, helping to gain a deeper understanding of the regulatory pathways of HIF-1α in the development of tumor cells, providing a new perspective for understanding the pathogenesis of tumors. The regulation of HIF-1α may become an important strategy for future tumor therapy.
Collapse
Affiliation(s)
- Zhongjun Shen
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Na Yu
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yanfeng Zhang
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Mingbo Jia
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Ying Sun
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yao Li
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Liyan Zhao
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China.
| |
Collapse
|
3
|
Rodriguez BL, Huang J, Gibson L, Fradette JJ, Chen HIH, Koyano K, Cortez C, Li B, Ho C, Ashique AM, Lin VY, Crawley S, Roda JM, Chen P, Fan B, Kim J, Sissons J, Sitrin J, Kaplan DD, Gibbons DL, Rivera LB. Antitumor Activity of a Novel LAIR1 Antagonist in Combination with Anti-PD1 to Treat Collagen-Rich Solid Tumors. Mol Cancer Ther 2024; 23:1144-1158. [PMID: 38648067 PMCID: PMC11293989 DOI: 10.1158/1535-7163.mct-23-0866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
We recently reported that resistance to PD-1 blockade in a refractory lung cancer-derived model involved increased collagen deposition and the collagen-binding inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1). Thus, we hypothesized that LAIR1 and collagen cooperated to suppress therapeutic response. In this study, we report that LAIR1 is associated with tumor stroma and is highly expressed by intratumoral myeloid cells in both human tumors and mouse models of cancer. Stroma-associated myeloid cells exhibit a suppressive phenotype and correlate with LAIR1 expression in human cancer. NGM438, a novel humanized LAIR1 antagonist mAb, elicits myeloid inflammation and allogeneic T-cell responses by binding to LAIR1 and blocking collagen engagement. Furthermore, a mouse-reactive NGM438 surrogate antibody sensitized refractory KP mouse lung tumors to anti-PD-1 therapy and resulted in increased intratumoral CD8+ T-cell content and inflammatory gene expression. These data place LAIR1 at the intersection of stroma and suppressive myeloid cells and support the notion that blockade of the LAIR1/collagen axis can potentially address resistance to checkpoint inhibitor therapy in the clinic.
Collapse
Affiliation(s)
- B. Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiawei Huang
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Laura Gibson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared J. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hung-I H. Chen
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Kikuye Koyano
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Czrina Cortez
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Betty Li
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Carmence Ho
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | | | - Vicky Y. Lin
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | | | - Julie M. Roda
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Peirong Chen
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Bin Fan
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - Jeong Kim
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | - James Sissons
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| | | | | | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lee B. Rivera
- NGM Biopharmaceuticals Inc. South San Francisco, CA, USA
| |
Collapse
|
4
|
Konen JM, Rodriguez BL, Wu H, Fradette JJ, Gibson L, Diao L, Wang J, Schmidt S, Wistuba II, Zhang J, Gibbons DL. Autotaxin suppresses cytotoxic T cells via LPAR5 to promote anti-PD-1 resistance in non-small cell lung cancer. J Clin Invest 2023; 133:e163128. [PMID: 37655662 PMCID: PMC10471170 DOI: 10.1172/jci163128] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Non-small cell lung cancers that harbor concurrent KRAS and TP53 (KP) mutations are immunologically warm tumors with partial responsiveness to anti-PD-(L)1 blockade; however, most patients observe little or no durable clinical benefit. To identify novel tumor-driven resistance mechanisms, we developed a panel of KP murine lung cancer models with intrinsic resistance to anti-PD-1 and queried differential gene expression between these tumors and anti-PD-1-sensitive tumors. We found that the enzyme autotaxin (ATX), and the metabolite it produces, lysophosphatidic acid (LPA), were significantly upregulated in resistant tumors and that ATX directly modulated antitumor immunity, with its expression negatively correlating with total and effector tumor-infiltrating CD8+ T cells. Pharmacological inhibition of ATX, or the downstream receptor LPAR5, in combination with anti-PD-1 was sufficient to restore the antitumor immune response and efficaciously control lung tumor growth in multiple KP tumor models. Additionally, ATX was significantly correlated with inflammatory gene signatures, including a CD8+ cytolytic score in multiple lung adenocarcinoma patient data sets, suggesting that an activated tumor-immune microenvironment upregulates ATX and thus provides an opportunity for cotargeting to prevent acquired resistance to anti-PD-1 treatment. These data reveal the ATX/LPA axis as an immunosuppressive pathway that diminishes the immune checkpoint blockade response in lung cancer.
Collapse
Affiliation(s)
- Jessica M. Konen
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, USA
| | - B. Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haoyi Wu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jared J. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura Gibson
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Surgical Oncology
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology
| | - Jing Wang
- Department of Bioinformatics and Computational Biology
| | | | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, and
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
Perez-Oquendo M, Manshouri R, Tian Y, Fradette JJ, Rodriguez BL, Kundu ST, Gibbons DL. ZEB1 Is Regulated by K811 Acetylation to Promote Stability, NuRD Complex Interactions, EMT, and NSCLC Metastasis. Mol Cancer Res 2023; 21:779-794. [PMID: 37255406 PMCID: PMC10390859 DOI: 10.1158/1541-7786.mcr-22-0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/06/2023] [Accepted: 05/10/2023] [Indexed: 05/14/2023]
Abstract
Epithelial-to-mesenchymal transition results in loss of specialized epithelial cell contacts and acquisition of mesenchymal invasive capacity. The transcription repressor zinc finger E-box-binding homeobox 1 (ZEB1) binds to E-boxes of gene promoter regions to suppress the expression of epithelial genes. ZEB1 has inconsistent molecular weights, which have been attributed to posttranslational modifications (PTM). We performed mass spectrometry and identified K811 acetylation as a novel PTM in ZEB1. To define the role of ZEB1 acetylation in regulating function, we generated ZEB1 acetyl-mimetic (K811Q) and acetyl-deficient (K811R) mutant-expressing non-small cell lung cancer cell lines (NSCLC). We demonstrate that the K811R ZEB1 (125 kDa) has a shorter protein half-life than wild-type (WT) ZEB1 and K811Q ZEB1 (∼225 kDa), suggesting that lack of ZEB1 acetylation in the lower molecular weight form affects protein stability. Further, the acetylated form of ZEB1 recruits the nucleosome remodeling and deacetylase (NuRD) complex to bind the promoter of its target genes mir200c-141 and SEMA3F. RNA-sequencing revealed that WT ZEB1 and K811Q ZEB1 downregulate the expression of epithelial genes to promote lung adenocarcinoma invasion and metastasis, whereas the K811R ZEB1 does not. Our findings establish that the K811 acetylation promotes ZEB1 protein stability, interaction with other protein complexes, and subsequent invasion/metastasis of lung adenocarcinoma via epithelial-to-mesenchymal transition. IMPLICATIONS The molecular mechanisms by which ZEB1 is regulated by K811 acetylation to promote protein stability, NuRD complex and promoter interactions, and function are relevant to the development of treatment strategies to prevent and treat metastasis in patients with NSCLC.
Collapse
Affiliation(s)
- Mabel Perez-Oquendo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roxsan Manshouri
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanhua Tian
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared J. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - B. Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samrat T. Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Inoue C, Miki Y, Suzuki T. New Perspectives on Sex Steroid Hormones Signaling in Cancer-Associated Fibroblasts of Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:3620. [PMID: 37509283 PMCID: PMC10377312 DOI: 10.3390/cancers15143620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The importance of sex hormones, especially estrogen, in the pathogenesis of non-small-cell lung cancer (NSCLC) has attracted attention due to its high incidence among young adults and nonsmokers, especially those who are female. Cancer-associated fibroblasts (CAFs) reside in the cancer stroma and influence cancer growth, invasion, metastasis, and acquisition of drug resistance through interactions with cancer cells and other microenvironmental components. Hormone-mediated cell-cell interactions are classic cell-cell interactions and well-known phenomena in breast cancer and prostate cancer CAFs. In cancers of other organs, including NSCLC, the effects of CAFs on hormone-receptor expression and hormone production in cancer tissues have been reported; however, there are few such studies. Many more studies have been performed on breast and prostate cancers. Recent advances in technology, particularly single-cell analysis techniques, have led to significant advances in the classification and function of CAFs. However, the importance of sex hormones in cell-cell interactions of CAFs in NSCLC remains unclear. This review summarizes reports on CAFs in NSCLC and sex hormones in cancer and immune cells surrounding CAFs. Furthermore, we discuss the prospects of sex-hormone research involving CAFs in NSCLC.
Collapse
Affiliation(s)
- Chihiro Inoue
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Rodriguez BL, Chen L, Li Y, Miao S, Peng DH, Fradette JJ, Diao L, Konen JM, Alvarez FRR, Solis LM, Yi X, Padhye A, Gibson LA, Ochieng JK, Zhou X, Wang J, Gibbons DL. Targeting immunosuppressive Ly6C+ classical monocytes reverses anti-PD-1/CTLA-4 immunotherapy resistance. Front Immunol 2023; 14:1161869. [PMID: 37449205 PMCID: PMC10336223 DOI: 10.3389/fimmu.2023.1161869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Despite significant clinical advancement with the use of immune checkpoint blockade (ICB) in non-small cell lung cancer (NSCLC) there are still a major subset of patients that develop adaptive/acquired resistance. Understanding resistance mechanisms to ICB is critical to developing new therapeutic strategies and improving patient survival. The dynamic nature of the tumor microenvironment and the mutational load driving tumor immunogenicity limit the efficacy to ICB. Recent studies indicate that myeloid cells are drivers of ICB resistance. In this study we sought to understand which immune cells were contributing to resistance and if we could modify them in a way to improve response to ICB therapy. Results Our results show that combination anti-PD-1/CTLA-4 produces an initial antitumor effect with evidence of an activated immune response. Upon extended treatment with anti-PD-1/CTLA-4 acquired resistance developed with an increase of the immunosuppressive populations, including T-regulatory cells, neutrophils and monocytes. Addition of anti-Ly6C blocking antibody to anti-PD-1/CTLA-4 was capable of completely reversing treatment resistance and restoring CD8 T cell activity in multiple KP lung cancer models and in the autochthonous lung cancer KrasLSL-G12D/p53fl/fl model. We found that there were higher classical Ly6C+ monocytes in anti-PD-1/CTLA-4 combination resistant tumors. B7 blockade illustrated the importance of dendritic cells for treatment efficacy of anti-Ly6C/PD-1/CTLA-4. We further determined that classical Ly6C+ monocytes in anti-PD-1/CTLA-4 resistant tumors are trafficked into the tumor via IFN-γ and the CCL2-CCR2 axis. Mechanistically we found that classical monocytes from ICB resistant tumors were unable to differentiate into antigen presenting cells and instead differentiated into immunosuppressive M2 macrophages or myeloid-derived suppressor cells (MDSC). Classical Ly6C+ monocytes from ICB resistant tumors had a decrease in both Flt3 and PU.1 expression that prevented differentiation into dendritic cells/macrophages. Conclusions Therapeutically we found that addition of anti-Ly6C to the combination of anti-PD-1/CTLA-4 was capable of complete tumor eradication. Classical Ly6C+ monocytes differentiate into immunosuppressive cells, while blockade of classical monocytes drives dendritic cell differentiation/maturation to reinvigorate the anti-tumor T cell response. These findings support that immunotherapy resistance is associated with infiltrating monocytes and that controlling the differentiation process of monocytes can enhance the therapeutic potential of ICB.
Collapse
Affiliation(s)
- B. Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Limo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yanli Li
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shucheng Miao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- United of Texas (UT) Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - David H. Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jared J. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lixia Diao
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica M. Konen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Frank R. Rojas Alvarez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaohui Yi
- Bellicum Pharmaceuticals, Inc., Houston, TX, United States
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aparna Padhye
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- United of Texas (UT) Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Laura A. Gibson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua K. Ochieng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Wang
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
8
|
May L, Shows K, Nana-Sinkam P, Li H, Landry JW. Sex Differences in Lung Cancer. Cancers (Basel) 2023; 15:3111. [PMID: 37370722 PMCID: PMC10296433 DOI: 10.3390/cancers15123111] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Sex disparities in the incidence and mortality of lung cancer have been observed since cancer statistics have been recorded. Social and economic differences contribute to sex disparities in lung cancer incidence and mortality, but evidence suggests that there are also underlying biological differences that contribute to the disparity. This review summarizes biological differences which could contribute to the sex disparity. Sex hormones and other biologically active molecules, tumor cell genetic differences, and differences in the immune system and its response to lung cancer are highlighted. How some of these differences contribute to disparities in the response to therapies, including cytotoxic, targeted, and immuno-therapies, is also discussed. We end the study with a discussion of our perceived future directions to identify the key biological differences which could contribute to sex disparities in lung cancer and how these differences could be therapeutically leveraged to personalize lung cancer treatment to the individual sexes.
Collapse
Affiliation(s)
- Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, VCU School of Medicine, Richmond, VA 23298, USA;
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA 23806, USA;
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, VCU School of Medicine, Richmond, VA 23298, USA; (P.N.-S.); (H.L.)
| | - Howard Li
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, VCU School of Medicine, Richmond, VA 23298, USA; (P.N.-S.); (H.L.)
| | - Joseph W. Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, VCU School of Medicine, Richmond, VA 23298, USA;
| |
Collapse
|
9
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 315] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
10
|
Datta J, Narayan RR, Goldman DA, Chatila WK, Gonen M, Strong J, Balachandran VP, Drebin JA, Kingham TP, Jarnagin WR, Schultz N, Kemeny NE, D'Angelica MI. Distinct Genomic Profiles are Associated With Conversion to Resection and Survival in Patients With Initially Unresectable Colorectal Liver Metastases Treated With Systemic and Hepatic Artery Chemotherapy. Ann Surg 2022; 276:e474-e482. [PMID: 33214457 PMCID: PMC8502489 DOI: 10.1097/sla.0000000000004613] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To examine genomic correlates of conversion to resection (CTR and overall survival (OS) in patients with initially unresectable colorectal liver metastasis (IU-CRLM) treated with combination systemic and hepatic artery infusion (HAI) chemotherapy. BACKGROUND In patients presenting with IU-CRLM, combination systemic and HAI chemotherapy enables CTR with associated long-term OS in a subset of patients. Genomic correlates of CTR and OS in IU-CRLM have not been previously explored. METHODS Specimens from IU-CRLM patients receiving systemic/HAI chemotherapy (2003-2017) were submitted for next-generation sequencing. Fisher Exact test assessed associations with CTR, and Kaplan-Meier/Cox methods assessed associations with OS from HAI initiation. RESULTS Of 128 IU-CRLM patients, 51 (40%) underwent CTR at median 6 months (range: 3-35) from HAI initiation. CTR and persistently unresectable cohorts differed significantly in preoperative systemic chemotherapy exposure, node-positive primary status, and size of largest liver metastasis. Median and 5-year OS was 66 months and 51%. CTR was associated with prolonged survival (time-dependent HR 0.23,95% CI: 0.12-0.46, P < 0.001). The most frequently altered genes were APC (81%), TP53 (77%), and KRAS (37%). Oncogenic mutations in SOX9 and BRAF were associated with CTR. BRAF mutations, any RAS pathway alterations, and co-altered RAS/RAF-TP53 mutations wereassociated with worse survival. Classification and regression tree analysis defined prognostically relevant clusters of genomic risk to reveal co-altered RAS/RAF-TP53 as the highest risk subgroup. Co-altered RAS/RAF-TP53 remained independently associated with worse survival (HR 2.52, 95% CI: 1.37-4.64, P = 0.003) after controlling for CTR, number of liver metastases, and preoperative extrahepatic disease. CONCLUSIONS Distinct genomic profiles are associated with CTR and survival in patients with IU-CRLM treated with HAI/systemic chemotherapy. Presence of SOX9, BRAF , and co-altered RAS/RAF- TP53 mutations are promising biomarkers that, when validated in larger datasets, may impact treatment of IU-CRLM patients.
Collapse
Affiliation(s)
- Jashodeep Datta
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Raja R. Narayan
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Debra A. Goldman
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Walid K. Chatila
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James Strong
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vinod P. Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeffrey A. Drebin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - T. Peter Kingham
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William R. Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nancy E. Kemeny
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael I. D'Angelica
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
11
|
Bajaj R, Rodriguez BL, Russell WK, Warner AN, Diao L, Wang J, Raso MG, Lu W, Khan K, Solis LS, Batra H, Tang X, Fradette JF, Kundu ST, Gibbons DL. Impad1 and Syt11 work in an epistatic pathway that regulates EMT-mediated vesicular trafficking to drive lung cancer invasion and metastasis. Cell Rep 2022; 40:111429. [PMID: 36170810 PMCID: PMC9665355 DOI: 10.1016/j.celrep.2022.111429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is a highly aggressive and metastatic disease responsible for approximately 25% of all cancer-related deaths in the United States. Using high-throughput in vitro and in vivo screens, we have previously established Impad1 as a driver of lung cancer invasion and metastasis. Here we elucidate that Impad1 is a direct target of the epithelial microRNAs (miRNAs) miR-200 and miR∼96 and is de-repressed during epithelial-to-mesenchymal transition (EMT); thus, we establish a mode of regulation of the protein. Impad1 modulates Golgi apparatus morphology and vesicular trafficking through its interaction with a trafficking protein, Syt11. These changes in Golgi apparatus dynamics alter the extracellular matrix and the tumor microenvironment (TME) to promote invasion and metastasis. Inhibiting Impad1 or Syt11 disrupts the cancer cell secretome, regulates the TME, and reverses the invasive or metastatic phenotype. This work identifies Impad1 as a regulator of EMT and secretome-mediated changes during lung cancer progression.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amanda N Warner
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria G Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Khaja Khan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Luisa S Solis
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jared F Fradette
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Kundu ST, Rodriguez BL, Gibson LA, Warner AN, Perez MG, Bajaj R, Fradette JJ, Class CA, Solis LM, Rojas Alvarez FR, Wistuba II, Diao L, Chen F, Sachdeva M, Wang J, Kirsch DG, Creighton CJ, Gibbons DL. The microRNA-183/96/182 cluster inhibits lung cancer progression and metastasis by inducing an interleukin-2-mediated antitumor CD8 + cytotoxic T-cell response. Genes Dev 2022; 36:582-600. [PMID: 35654454 PMCID: PMC9186390 DOI: 10.1101/gad.349321.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
Here, Kundu et al. investigated the role of the microRNA-183/96/182 cluster (m96cl) in lung cancer and used a novel conditional m96cl mouse to establish that loss of m96cl accelerated the growth of K-Ras mutant autochthonous lung adenocarcinomas. Overall, the authors identified a novel mechanistic role of the m96cl in the suppression of lung cancer growth and metastasis by inducing an IL2-mediated systemic CD8+ CTL immune response. One of the mechanisms by which cancer cells acquire hyperinvasive and migratory properties with progressive loss of epithelial markers is the epithelial-to-mesenchymal transition (EMT). We have previously reported that in different cancer types, including nonsmall cell lung cancer (NSCLC), the microRNA-183/96/182 cluster (m96cl) is highly repressed in cells that have undergone EMT. In the present study, we used a novel conditional m96cl mouse to establish that loss of m96cl accelerated the growth of Kras mutant autochthonous lung adenocarcinomas. In contrast, ectopic expression of the m96cl in NSCLC cells results in a robust suppression of migration and invasion in vitro, and tumor growth and metastasis in vivo. Detailed immune profiling of the tumors revealed a significant enrichment of activated CD8+ cytotoxic T lymphocytes (CD8+ CTLs) in m96cl-expressing tumors, and m96cl-mediated suppression of tumor growth and metastasis was CD8+ CTL-dependent. Using coculture assays with naïve immune cells, we show that m96cl expression drives paracrine stimulation of CD8+ CTL proliferation and function. Using tumor microenvironment-associated gene expression profiling, we identified that m96cl elevates the interleukin-2 (IL2) signaling pathway and results in increased IL2-mediated paracrine stimulation of CD8+ CTLs. Furthermore, we identified that the m96cl modulates the expression of IL2 in cancer cells by regulating the expression of transcriptional repressors Foxf2 and Zeb1, and thereby alters the levels of secreted IL2 in the tumor microenvironment. Last, we show that in vivo depletion of IL2 abrogates m96cl-mediated activation of CD8+ CTLs and results in loss of metastatic suppression. Therefore, we have identified a novel mechanistic role of the m96cl in the suppression of lung cancer growth and metastasis by inducing an IL2-mediated systemic CD8+ CTL immune response.
Collapse
Affiliation(s)
- Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Laura A Gibson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amanda N Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mabel G Perez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Caleb A Class
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Frank R Rojas Alvarez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mohit Sachdeva
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chad J Creighton
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
13
|
Wei J, Song R, Sabbagh A, Marisetty A, Shukla N, Fang D, Najem H, Ott M, Long J, Zhai L, Lesniak MS, James CD, Platanias L, Curran M, Heimberger AB. Cell-directed aptamer therapeutic targeting for cancers including those within the central nervous system. Oncoimmunology 2022; 11:2062827. [PMID: 35433114 PMCID: PMC9009928 DOI: 10.1080/2162402x.2022.2062827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteopontin (OPN) is produced by tumor cells as well as by myeloid cells and is enriched in the tumor microenvironment (TME) of many cancers. Given the roles of OPN in tumor progression and immune suppression, we hypothesized that targeting OPN with aptamers that have high affinity and specificity could be a promising therapeutic strategy. Bi-specific aptamers targeting ligands for cellular internalization were conjugated to siRNAs to suppress OPN were created, and therapeutic leads were selected based on target engagement and in vivo activity. Aptamers as carriers for siRNA approaches were created including a cancer targeting nucleolin aptamer Ncl-OPN siRNA and a myeloid targeting CpG oligodeoxynucleotide (ODN)-OPN siRNA conjugate. These aptamers were selected as therapeutic leads based on 70–90% OPN inhibition in cancer (GL261, 344SQ, 4T1B2b) and myeloid (DC2.4) cells relative to scramble controls. In established immune competent 344SQ lung cancer and 4T1B2b breast cancer models, these aptamers, including in combination, demonstrate therapeutic activity by inhibiting tumor growth. The Ncl-OPN siRNA aptamer demonstrated efficacy in an immune competent orthotopic glioma model administered systemically secondary to the ability of the aptamer to access the glioma TME. Therapeutic activity was demonstrated using both aptamers in a breast cancer brain metastasis model. Targeted inhibition of OPN in tumor cells and myeloid cells using bifunctional aptamers that are internalized by specific cell types and suppress OPN expression once internalized may have clinical potential in cancer treatment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renduo Song
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aria Sabbagh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anantha Marisetty
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neal Shukla
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dexing Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lijie Zhai
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Charles David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Leonidas Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Michael Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
14
|
Lin YY, Wang YC, Yeh DW, Hung CY, Yeh YC, Ho HL, Mon HC, Chen MY, Wu YC, Chou TY. Gene Expression Profile in Primary Tumor Is Associated with Brain-Tropism of Metastasis from Lung Adenocarcinoma. Int J Mol Sci 2021; 22:ijms222413374. [PMID: 34948172 PMCID: PMC8703941 DOI: 10.3390/ijms222413374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Lung adenocarcinoma has a strong propensity to metastasize to the brain. The brain metastases are difficult to treat and can cause significant morbidity and mortality. Identifying patients with increased risk of developing brain metastasis can assist medical decision-making, facilitating a closer surveillance or justifying a preventive treatment. We analyzed 27 lung adenocarcinoma patients who received a primary lung tumor resection and developed metastases within 5 years after the surgery. Among these patients, 16 developed brain metastases and 11 developed non-brain metastases only. We performed targeted DNA sequencing, RNA sequencing and immunohistochemistry to characterize the difference between the primary tumors. We also compared our findings to the published data of brain-tropic and non-brain-tropic lung adenocarcinoma cell lines. The results demonstrated that the targeted tumor DNA sequencing did not reveal a significant difference between the groups, but the RNA sequencing identified 390 differentially expressed genes. A gene expression signature including CDKN2A could identify 100% of brain-metastasizing tumors with a 91% specificity. However, when compared to the differentially expressed genes between brain-tropic and non-brain-tropic lung cancer cell lines, a different set of genes was shared between the patient data and the cell line data, which include many genes implicated in the cancer-glia/neuron interaction. Our findings indicate that it is possible to identify lung adenocarcinoma patients at the highest risk for brain metastasis by analyzing the primary tumor. Further investigation is required to elucidate the mechanism behind these associations and to identify potential treatment targets.
Collapse
Affiliation(s)
- Yen-Yu Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (Y.-Y.L.); (Y.-C.Y.); (H.-L.H.); (H.-C.M.)
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-C.W.); (D.-W.Y.); (C.-Y.H.)
| | - Da-Wei Yeh
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-C.W.); (D.-W.Y.); (C.-Y.H.)
| | - Chen-Yu Hung
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-C.W.); (D.-W.Y.); (C.-Y.H.)
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (Y.-Y.L.); (Y.-C.Y.); (H.-L.H.); (H.-C.M.)
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-C.W.); (D.-W.Y.); (C.-Y.H.)
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (Y.-Y.L.); (Y.-C.Y.); (H.-L.H.); (H.-C.M.)
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsiang-Chen Mon
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (Y.-Y.L.); (Y.-C.Y.); (H.-L.H.); (H.-C.M.)
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yu-Chung Wu
- Department of Thoracic Surgery, Taipei Medical University Hospital, Taipei 110301, Taiwan;
| | - Teh-Ying Chou
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (Y.-Y.L.); (Y.-C.Y.); (H.-L.H.); (H.-C.M.)
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence:
| |
Collapse
|
15
|
The EMT activator ZEB1 accelerates endosomal trafficking to establish a polarity axis in lung adenocarcinoma cells. Nat Commun 2021; 12:6354. [PMID: 34732702 PMCID: PMC8566461 DOI: 10.1038/s41467-021-26677-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a transcriptionally governed process by which cancer cells establish a front-rear polarity axis that facilitates motility and invasion. Dynamic assembly of focal adhesions and other actin-based cytoskeletal structures on the leading edge of motile cells requires precise spatial and temporal control of protein trafficking. Yet, the way in which EMT-activating transcriptional programs interface with vesicular trafficking networks that effect cell polarity change remains unclear. Here, by utilizing multiple approaches to assess vesicular transport dynamics through endocytic recycling and retrograde trafficking pathways in lung adenocarcinoma cells at distinct positions on the EMT spectrum, we find that the EMT-activating transcription factor ZEB1 accelerates endocytosis and intracellular trafficking of plasma membrane-bound proteins. ZEB1 drives turnover of the MET receptor tyrosine kinase by hastening receptor endocytosis and transport to the lysosomal compartment for degradation. ZEB1 relieves a plus-end-directed microtubule-dependent kinesin motor protein (KIF13A) and a clathrin-associated adaptor protein complex subunit (AP1S2) from microRNA-dependent silencing, thereby accelerating cargo transport through the endocytic recycling and retrograde vesicular pathways, respectively. Depletion of KIF13A or AP1S2 mitigates ZEB1-dependent focal adhesion dynamics, front-rear axis polarization, and cancer cell motility. Thus, ZEB1-dependent transcriptional networks govern vesicular trafficking dynamics to effect cell polarity change. The way in which metastatic tumour cells control endocytic vesicular trafficking networks to establish a front-rear polarity axis that facilitates motility remains unclear. Here, the authors show that the EMT activator ZEB1 influences vesicular trafficking dynamics to execute cell polarity change.
Collapse
|
16
|
Ras-p53 genomic cooperativity as a model to investigate mechanisms of innate immune regulation in gastrointestinal cancers. Oncotarget 2021; 12:2104-2110. [PMID: 34611484 PMCID: PMC8487722 DOI: 10.18632/oncotarget.27983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023] Open
Abstract
Despite increasingly thorough mechanistic understanding of the dominant genetic drivers of gastrointestinal (GI) tumorigenesis (e.g., Ras/Raf, TP53, etc.), only a small proportion of these molecular alterations are therapeutically actionable. In an attempt to address this therapeutic impasse, our group has proposed an innovative extreme outlier model to identify novel cooperative molecular vulnerabilities in high-risk GI cancers which dictate prognosis, correlate with distinct patterns of metastasis, and define therapeutic sensitivity or resistance. Our model also proposes comprehensive investigation of their downstream transcriptomic, immunomic, metabolic, or upstream epigenomic cellular consequences to reveal novel therapeutic targets in previously “undruggable” tumors with high-risk genomic features. Leveraging this methodology, our and others’ data reveal that the genomic cooperativity between Ras and p53 alterations is not only prognostically relevant in GI malignancy, but may also represent the incipient molecular events that initiate and sustain innate immunoregulatory signaling networks within the GI tumor microenvironment, driving T-cell exclusion and therapeutic resistance in these cancers. As such, deciphering the unique transcriptional programs encoded by Ras-p53 cooperativity that promote innate immune trafficking and chronic inflammatory tumor-stromal-immune crosstalk may uncover immunologic vulnerabilities that could be exploited to develop novel therapeutic strategies for these difficult-to-treat malignancies.
Collapse
|
17
|
Sharifi S, Caracciolo G, Pozzi D, Digiacomo L, Swann J, Daldrup-Link HE, Mahmoudi M. The role of sex as a biological variable in the efficacy and toxicity of therapeutic nanomedicine. Adv Drug Deliv Rev 2021; 174:337-347. [PMID: 33957181 DOI: 10.1016/j.addr.2021.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
Males and females have physiological, hormonal, and genetic differences that can cause different responses to medicinal treatments. The role of sex in the pharmacokinetics and pharmacodynamics of drugs is well established in the literature. However, researchers have yet to robustly and consistently consider the impact of sex differences on the pharmacokinetics and pharmacodynamics of nanomedicine formulations when designing nanomedicine therapeutics and/or constructing clinical trials. In this review, we highlight the physiological and anatomical differences between sexes and discuss how these differences can influence the therapeutic efficacy, side effects, and drug delivery safety of nanomedicine products. A deep understanding of the effects of sex on nano-based drug delivery agents will robustly improve the risk assessment process, resulting in safer formulations, successful clinical translation, and improved therapeutic efficacies for both sexes.
Collapse
|
18
|
Redin E, Garmendia I, Lozano T, Serrano D, Senent Y, Redrado M, Villalba M, De Andrea CE, Exposito F, Ajona D, Ortiz-Espinosa S, Remirez A, Bertolo C, Sainz C, Garcia-Pedrero J, Pio R, Lasarte J, Agorreta J, Montuenga LM, Calvo A. SRC family kinase (SFK) inhibitor dasatinib improves the antitumor activity of anti-PD-1 in NSCLC models by inhibiting Treg cell conversion and proliferation. J Immunother Cancer 2021; 9:jitc-2020-001496. [PMID: 33658304 PMCID: PMC7931761 DOI: 10.1136/jitc-2020-001496] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The use of immune-checkpoint inhibitors has drastically improved the management of patients with non-small cell lung cancer (NSCLC), but innate and acquired resistances are hurdles needed to be solved. Immunomodulatory drugs that can reinvigorate the immune cytotoxic activity, in combination with antiprogrammed cell death 1 (PD-1) antibody, are a great promise to overcome resistance. We evaluated the impact of the SRC family kinases (SFKs) on NSCLC prognosis, and the immunomodulatory effect of the SFK inhibitor dasatinib, in combination with anti-PD-1, in clinically relevant mouse models of NSCLC. METHODS A cohort of patients from University Clinic of Navarra (n=116) was used to study immune infiltrates by multiplex immunofluorescence (mIF) and YES1 protein expression in tumor samples. Publicly available resources (TCGA, Km Plotter, and CIBERSORT) were used to study patient's survival based on expression of SFKs and tumor infiltrates. Syngeneic NSCLC mouse models 393P and UNSCC680AJ were used for in vivo drug testing. RESULTS Among the SFK members, YES1 expression showed the highest association with poor prognosis. Patients with high YES1 tumor levels also showed high infiltration of CD4+/FOXP3+ cells (regulatory T cells (Tregs)), suggesting an immunosuppressive phenotype. After testing for YES1 expression in a panel of murine cell lines, 393P and UNSCC680AJ were selected for in vivo studies. In the 393P model, dasatinib+anti-PD-1 treatment resulted in synergistic activity, with 87% tumor regressions and development of immunological memory that impeded tumor growth when mice were rechallenged. In vivo depletion experiments further showed that CD8+ and CD4+ cells are necessary for the therapeutic effect of the combination. The antitumor activity was accompanied by a very significant decrease in the number of Tregs, which was validated by mIF in tumor sections. In the UNSCC680AJ model, the antitumor effects of dasatinib+anti-PD-1 were milder but similar to the 393P model. In in vitro assays, we demonstrated that dasatinib blocks proliferation and transforming growth factor beta-driven conversion of effector CD4+ cells into Tregs through targeting of phospholymphocyte-specific protein tyrosine kinase and downstream effectors pSTAT5 and pSMAD3. CONCLUSIONS YES1 protein expression is associated with increased numbers of Tregs in patients with NSCLC. Dasatinib synergizes with anti-PD-1 to impair tumor growth in NSCLC experimental models. This study provides the preclinical rationale for the combined use of dasatinib and PD-1/programmed death-ligand 1 blockade to improve outcomes of patients with NSCLC.
Collapse
Affiliation(s)
- Esther Redin
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERONC, ISCIII, Madrid, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Irati Garmendia
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Diego Serrano
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Yaiza Senent
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Miriam Redrado
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria Villalba
- Department of Pathology, University Clinic of Navarra, Pamplona, Spain
| | - Carlos E De Andrea
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Department of Pathology, University Clinic of Navarra, Pamplona, Spain
| | - Francisco Exposito
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERONC, ISCIII, Madrid, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Daniel Ajona
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERONC, ISCIII, Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Sergio Ortiz-Espinosa
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ana Remirez
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Cristina Bertolo
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERONC, ISCIII, Madrid, Spain
| | - Cristina Sainz
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juana Garcia-Pedrero
- CIBERONC, ISCIII, Madrid, Spain.,Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Ruben Pio
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERONC, ISCIII, Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Juan Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jackeline Agorreta
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERONC, ISCIII, Madrid, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Luis M Montuenga
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERONC, ISCIII, Madrid, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Alfonso Calvo
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain .,CIBERONC, ISCIII, Madrid, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
19
|
Hartmann O, Reissland M, Maier CR, Fischer T, Prieto-Garcia C, Baluapuri A, Schwarz J, Schmitz W, Garrido-Rodriguez M, Pahor N, Davies CC, Bassermann F, Orian A, Wolf E, Schulze A, Calzado MA, Rosenfeldt MT, Diefenbacher ME. Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease. Front Cell Dev Biol 2021; 9:641618. [PMID: 33738287 PMCID: PMC7961101 DOI: 10.3389/fcell.2021.641618] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53 fl/fl :lsl-KRas G12D/wt . Developing tumors were indistinguishable from Trp53 fl/fl :lsl-KRas G12D/ wt -derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research.
Collapse
Affiliation(s)
- Oliver Hartmann
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Würzburg, Germany
| | - Michaela Reissland
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Würzburg, Germany
| | - Carina R. Maier
- Tumour Metabolism and Microenvironment Group, DKFZ Heidelberg, Heidelberg, Germany
| | - Thomas Fischer
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Cristian Prieto-Garcia
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Würzburg, Germany
- Faculty of Medicine, TICC, Technion Haifa, Haifa, Israel
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Jessica Schwarz
- Cancer Systems Biology Group, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Martin Garrido-Rodriguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Nikolett Pahor
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Würzburg, Germany
| | - Clare C. Davies
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Florian Bassermann
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Amir Orian
- Faculty of Medicine, TICC, Technion Haifa, Haifa, Israel
| | - Elmar Wolf
- Cancer Systems Biology Group, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Almut Schulze
- Tumour Metabolism and Microenvironment Group, DKFZ Heidelberg, Heidelberg, Germany
| | - Marco A. Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Mathias T. Rosenfeldt
- Mildred Scheel Early Career Center, Würzburg, Germany
- Institut für Pathologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Markus E. Diefenbacher
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Würzburg, Germany
| |
Collapse
|
20
|
Ochieng JK, Kundu ST, Bajaj R, Leticia Rodriguez B, Fradette JJ, Gibbons DL. MBIP (MAP3K12 binding inhibitory protein) drives NSCLC metastasis by JNK-dependent activation of MMPs. Oncogene 2020; 39:6719-6732. [PMID: 32963352 PMCID: PMC7584762 DOI: 10.1038/s41388-020-01463-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Metastasis is the cause for 90% of cancer-related mortalities. Identification of genetic drivers promoting dissemination of tumor cells may provide opportunities for novel therapeutic strategies. We previously reported an in vivo gain-of-function screen that identified ~30 genes with a functional role in metastasis promotion and characterized detailed mechanistic functions of two hits. In this study, we characterized the contribution of one of the identified genes, MBIP (MAP3K12 binding inhibitory protein), towards driving tumor invasion and metastasis. We demonstrate that expression of MBIP significantly enhances the cellular proliferation, migration and invasion of NSCLC cells in vitro and metastasis in vivo. We functionally characterized that MBIP mediates activation of the JNK pathway and induces expression of matrix metalloproteinases (MMPs), which are necessary for the invasive and metastatic phenotype. Our findings establish a novel mechanistic role of MBIP as a driver of NSCLC progression and metastasis.
Collapse
Affiliation(s)
- Joshua Kapere Ochieng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
El-Nikhely N, Karger A, Sarode P, Singh I, Weigert A, Wietelmann A, Stiewe T, Dammann R, Fink L, Grimminger F, Barreto G, Seeger W, Pullamsetti SS, Rapp UR, Savai R. Metastasis-Associated Protein 2 Represses NF-κB to Reduce Lung Tumor Growth and Inflammation. Cancer Res 2020; 80:4199-4211. [PMID: 32816854 DOI: 10.1158/0008-5472.can-20-1158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/05/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022]
Abstract
Although NF-κB is known to play a pivotal role in lung cancer, contributing to tumor growth, microenvironmental changes, and metastasis, the epigenetic regulation of NF-κB in tumor context is largely unknown. Here we report that the IKK2/NF-κB signaling pathway modulates metastasis-associated protein 2 (MTA2), a component of the nucleosome remodeling and deacetylase complex (NuRD). In triple transgenic mice, downregulation of IKK2 (Sftpc-cRaf-IKK2DN) in cRaf-induced tumors in alveolar epithelial type II cells restricted tumor formation, whereas activation of IKK2 (Sftpc-cRaf-IKK2CA) supported tumor growth; both effects were accompanied by altered expression of MTA2. Further studies employing genetic inhibition of MTA2 suggested that in primary tumor growth, independent of IKK2, MTA2/NuRD corepressor complex negatively regulates NF-κB signaling and tumor growth, whereas later dissociation of MTA2/NuRD complex from the promoter of NF-κB target genes and IKK2-dependent positive regulation of MTA2 leads to activation of NF-κB signaling, epithelial-mesenchymal transition, and lung tumor metastasis. These findings reveal a previously unrecognized biphasic role of MTA2 in IKK2/NF-κB-driven primary-to-metastatic lung tumor progression. Addressing the interaction between MTA2 and NF-κB would provide potential targets for intervention of tumor growth and metastasis. SIGNIFICANCE: These findings strongly suggest a prominent role of MTA2 in primary tumor growth, lung metastasis, and NF-κB signaling modulatory functions.
Collapse
Affiliation(s)
- Nefertiti El-Nikhely
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Annika Karger
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Poonam Sarode
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Indrabahadur Singh
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Astrid Wietelmann
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Reinhard Dammann
- Institute for Genetics; member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, UEGP, Wetzlar, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Guillermo Barreto
- Institute of Molecular Oncology, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany.,Brain and Lung Epigenetics (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Soni S Pullamsetti
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Ulf R Rapp
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany. .,Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| |
Collapse
|
22
|
Koch M, Reinartz S, Saggau J, Knittel G, Rosen N, Fedorchenko O, Thelen L, Barthel R, Reinart N, Seeger-Nukpezah T, Reinhardt HC, Hallek M, Nguyen PH. Meta-Analysis Reveals Significant Sex Differences in Chronic Lymphocytic Leukemia Progression in the Eµ-TCL1 Transgenic Mouse Model. Cancers (Basel) 2020; 12:cancers12071980. [PMID: 32698538 PMCID: PMC7409315 DOI: 10.3390/cancers12071980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The Eµ-TCL1 transgenic mouse model represents the most widely and extensively used animal model for chronic lymphocytic leukemia (CLL). In this report, we performed a meta-analysis of leukemia progression in over 300 individual Eµ-TCL1 transgenic mice and discovered a significantly accelerated disease progression in females compared to males. This difference is also reflected in an aggressive CLL mouse model with additional deletion of Tp53 besides the TCL1 transgene. Moreover, after serial adoptive transplantation of murine CLL cells, female recipients also succumbed to CLL earlier than male recipients. This sex-related disparity in the murine models is markedly contradictory to the human CLL condition. Thus, due to our observation we urge both careful consideration in the experimental design and accurate description of the Eµ-TCL1 transgenic cohorts in future studies.
Collapse
Affiliation(s)
- Maximilian Koch
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Sebastian Reinartz
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Julia Saggau
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Gero Knittel
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Natascha Rosen
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Oleg Fedorchenko
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Lisa Thelen
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Romy Barthel
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Nina Reinart
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Tamina Seeger-Nukpezah
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Hans Christian Reinhardt
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
- Clinic for Hematology, West German Cancer Center, University Hospital Essen, Essen, German Cancer Consortium (DKTK), 45147 Essen, Germany
| | - Michael Hallek
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Phuong-Hien Nguyen
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
- Correspondence: ; Tel.: +49-221-478-84120; Fax: +49-221-478-84115
| |
Collapse
|
23
|
Qi L, Knifley T, Piecoro DW, Rychahou P, Wu J, O'Connor KL, Chen M. In vivo Tumor Growth and Spontaneous Metastasis Assays Using A549 Lung Cancer Cells. Bio Protoc 2020; 10:e3579. [PMID: 33659549 DOI: 10.21769/bioprotoc.3579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 11/02/2022] Open
Abstract
Metastasis accounts for the majority of cancer related deaths. The genetically engineered mouse (GEM) models and cell line-based subcutaneous and orthotopic mouse xenografts have been developed to study the metastatic process. By using lung cancer cell line A549 as an example, we present a modified protocol to establish the cell line-based xenograft. Our protocol ensures sufficient establishment of the mouse xenografts and allows us to monitor tumor growth and spontaneous metastasis. This protocol could be adapted to other types of established cancer cell lines or primary cancer cells to study the mechanism of metastatic process as well as to test the effect of the potential anti-cancer agents on tumor growth and metastatic capacity.
Collapse
Affiliation(s)
- Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington, 40536-0679, USA
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington, 40536-0679, USA
| | - Dava W Piecoro
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, 40536-0298, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, 40536-0679, USA.,Department of Surgery, University of Kentucky, Lexington, 40536-0679, USA
| | - Jianrong Wu
- Markey Cancer Center, University of Kentucky, Lexington, 40536-0679, USA.,Department of Biostatistics, University of Kentucky, Lexington, 40536-0093, USA
| | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky, Lexington, 40536-0679, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, 40536-0679, USA
| | - Min Chen
- Markey Cancer Center, University of Kentucky, Lexington, 40536-0679, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, 40536-0679, USA
| |
Collapse
|
24
|
Datta J, Smith JJ, Chatila WK, McAuliffe JC, Kandoth C, Vakiani E, Frankel TL, Ganesh K, Wasserman I, Lipsyc-Sharf M, Guillem J, Nash GM, Paty PB, Weiser MR, Saltz LB, Berger MF, Jarnagin WR, Balachandran V, Kingham TP, Kemeny NE, Cercek A, Garcia-Aguilar J, Taylor BS, Viale A, Yaeger R, Solit DB, Schultz N, D'Angelica MI. Coaltered Ras/B-raf and TP53 Is Associated with Extremes of Survivorship and Distinct Patterns of Metastasis in Patients with Metastatic Colorectal Cancer. Clin Cancer Res 2019; 26:1077-1085. [PMID: 31719050 DOI: 10.1158/1078-0432.ccr-19-2390] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/27/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE We aimed to investigate genomic correlates underlying extremes of survivorship in metastatic colorectal cancer and their applicability in informing survival in distinct subsets of patients with metastatic colorectal cancer. EXPERIMENTAL DESIGN We examined differences in oncogenic somatic alterations between metastatic colorectal cancer cohorts demonstrating extremes of survivorship following complete metastasectomy: ≤2-year (n = 17) and ≥10-year (n = 18) survivors. Relevant genomic findings, and their association with overall survival (OS), were validated in two independent datasets of 935 stage IV and 443 resected stage I-IV patients. RESULTS In the extremes-of-survivorship cohort, significant co-occurrence of KRAS hotspot mutations and TP53 alterations was observed in ≤2-year survivors (P < 0.001). When validating these findings in the independent cohort of 935 stage IV patients, incorporation of the cumulative effect of any oncogenic Ras/B-raf (i.e., either KRAS, NRAS, or BRAF) and TP53 alteration generated three prognostic clusters: (i) TP53-altered alone (median OS, 132 months); (ii) Ras/B-raf-altered alone (65 months) or Ras/B-raf- and TP53 pan-wild-type (60 months); and (iii) coaltered Ras/B-raf-TP53 (40 months; P < 0.0001). Coaltered Ras/B-raf-TP53 was independently associated with mortality (HR, 2.47; 95% confidence interval, 1.91-3.21; P < 0.001). This molecular profile predicted survival in the second independent cohort of 443 resected stage I-IV patients. Coaltered Ras/B-raf-TP53 was associated with worse OS in patients with liver (n = 490) and lung (n = 172) but not peritoneal surface (n = 149) metastases. Moreover, coaltered Ras/B-raf-TP53 tumors were significantly more likely to involve extrahepatic metastatic sites with limited salvage options. CONCLUSIONS Genomic analysis of extremes of survivorship following colorectal cancer metastasectomy identifies a prognostic role for coaltered Ras/B-raf-TP53 and its association with distinct patterns of colorectal cancer metastasis.
Collapse
Affiliation(s)
- Jashodeep Datta
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - J Joshua Smith
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K Chatila
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John C McAuliffe
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Montefiore Medical Center, Bronx, New York
| | - Cyriac Kandoth
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy L Frankel
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Karuna Ganesh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Isaac Wasserman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marla Lipsyc-Sharf
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jose Guillem
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Garrett M Nash
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Philip B Paty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin R Weiser
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leonard B Saltz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinod Balachandran
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - T Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy E Kemeny
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Julio Garcia-Aguilar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael I D'Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
25
|
Exposito F, Villalba M, Redrado M, de Aberasturi AL, Cirauqui C, Redin E, Guruceaga E, de Andrea C, Vicent S, Ajona D, Montuenga LM, Pio R, Calvo A. Targeting of TMPRSS4 sensitizes lung cancer cells to chemotherapy by impairing the proliferation machinery. Cancer Lett 2019; 453:21-33. [DOI: 10.1016/j.canlet.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 01/27/2023]
|
26
|
Andries V, De Keuckelaere E, Staes K, Hochepied T, Taminau J, Lemeire K, Birembaut P, Berx G, van Roy F. A new mouse model to study the role of ectopic Nanos3 expression in cancer. BMC Cancer 2019; 19:598. [PMID: 31208373 PMCID: PMC6580527 DOI: 10.1186/s12885-019-5807-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND NANOS3 is a gene conserved throughout evolution. Despite the quite low conservation of Nanos sequences between different organisms and even between Nanos paralogs, their role in germ cell development is remarkably universal. Human Nanos3 expression is normally restricted to the gonads and the brain. However, ectopic activation of this gene has been detected in various human cancers. Until now, Nanos3 and other Nanos proteins have been studied almost exclusively in germ cell development. METHODS Transgenic mice were generated by targeted insertion of a human Nanos3 cDNA into the ROSA26 locus. The transgene could be spatiotemporally induced by Cre recombinase activity removing an upstream floxed STOP cassette. A lung tumor model with ectopic Nanos3 expression was based on the lung-specific activation of the reverse tetracycline transactivator gene, in combination with a tetO-CMV promoter controlling Cre expression. When doxycycline was provided to the mice, Cre was activated leading to deletion of TP53 alleles and activation of both oncogenic KRasG12D and Nanos3. Appropriate controls were foreseen. Tumors and tumor-derived cell cultures were analyzed in various ways. RESULTS We describe the successful generation of Nanos3LSL/- and Nanos3LSL/LSL mice in which an exogenous human NANOS3 gene can be activated in vivo upon Cre expression. These mice, in combination with different conditional and doxycycline-inducible Cre lines, allow the study of the role of ectopic Nanos3 expression in several cancer types. The Nanos3LSL mice were crossed with a non-small cell lung cancer (NSCLC) mouse model based on conditional expression of oncogenic KRas and homozygous loss of p53. This experiment demonstrated that ectopic expression of Nanos3 in the lungs has a significant negative effect on survival. Enhanced bronchiolar dysplasia was observed when Nanos3-expressing NSCLC mice were compared with control NSCLC mice. An allograft experiment, performed with cell cultures derived from primary lung tumors of control and Nanos3-expressing NSCLC mice, revealed lymph node metastasis in mice injected with Nanos3-expressing NSCLC cells. CONCLUSIONS A new mouse model was generated allowing examination of Nanos3-associated pathways and investigation of the influence of ectopic Nanos3 expression in various cancer types. This model might identify Nanos3 as an interesting target in cancer therapeutics.
Collapse
Affiliation(s)
- Vanessa Andries
- VIB-UGent Center for Inflammation Research (IRC), Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Evi De Keuckelaere
- VIB-UGent Center for Inflammation Research (IRC), Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katrien Staes
- VIB-UGent Center for Inflammation Research (IRC), Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Tino Hochepied
- VIB-UGent Center for Inflammation Research (IRC), Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Joachim Taminau
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kelly Lemeire
- VIB-UGent Center for Inflammation Research (IRC), Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Philippe Birembaut
- INSERM UMRS 1250, Department of Biopathology, CHU Maison-Blanche, University Hospital of Reims & University of Reims Champagne-Ardenne, rue Cognacq-Jay 45, 51092, Reims, France
| | - Geert Berx
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans van Roy
- VIB-UGent Center for Inflammation Research (IRC), Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
| |
Collapse
|
27
|
Guo X, Liu Y, Kim JL, Kim EY, Kim EQ, Jansen A, Li K, Chan M, Keenan BT, Conejo-Garcia J, Lim DC. Effect of cyclical intermittent hypoxia on Ad5CMVCre induced solitary lung cancer progression and spontaneous metastases in the KrasG12D+; p53fl/fl; myristolated p110fl/fl ROSA-gfp mouse. PLoS One 2019; 14:e0212930. [PMID: 30811514 PMCID: PMC6392281 DOI: 10.1371/journal.pone.0212930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epidemiological data suggests that obstructive sleep apnea (OSA) is associated with increased cancer incidence and mortality. We investigate the effects of cyclical intermittent hypoxia (CIH), akin to the underlying pathophysiology of OSA, on lung cancer progression and metastatic profile in a mouse model. METHODS Intrathoracic injection of Ad5CMVCre virus into a genetically engineered mouse (GEM) KrasG12D+/-; p53fl/fl; myristolated-p110αfl/fl-ROSA-gfp was utilized to induce a solitary lung cancer. Male mice were then exposed to either CIH or Sham for 40-41 days until harvest. To monitor malignant progression, serial micro CT scans with respiratory gating (no contrast) was performed. To detect spontaneous metastases in distant organs, H&E and immunohistochemistry were performed. RESULTS Eighty-eight percent of injected Ad5CMVCre virus was recovered from left lung tissue, indicating reliable and accurate injections. Serial micro CT demonstrated that CIH increases primary lung tumor volume progression compared to Sham on days 33 (p = 0.004) and 40 (p<0.001) post-injection. In addition, CIH increases variability in tumor volume on day 19 (p<0.0001), day 26 (p<0.0001), day 33 (p = 0.025) and day 40 (p = 0.004). Finally, metastases are frequently detected in heart, mediastinal lymph nodes, and right lung using H&E and immunohistochemistry. CONCLUSIONS Using a GEM mouse model of metastatic lung cancer, we report that male mice with solitary lung cancer have accelerated malignant progression and increased variability in tumor growth when exposed to cyclical intermittent hypoxia. Our results indicate that cyclical intermittent hypoxia is a pathogenic factor in non-small cell lung cancer that promotes the more rapid growth of developing tumors.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yan Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jessica L. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Y. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Edison Q. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexandria Jansen
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katherine Li
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - May Chan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brendan T. Keenan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jose Conejo-Garcia
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Diane C. Lim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| |
Collapse
|
28
|
Xu X, Zhang R, Liu F, Ping J, Wen X, Wang H, Wang K, Sun X, Zou H, Shen B, Wu L. 19F MRI in orthotopic cancer model via intratracheal administration of ανβ3-targeted perfluorocarbon nanoparticles. Nanomedicine (Lond) 2018; 13:2551-2562. [PMID: 30338723 DOI: 10.2217/nnm-2018-0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: To demonstrate the feasibility of intratracheal administration in orthotopic lung cancer model with 19F MRI. Materials & methods: αvβ3-integrin targeting ability of the perfluorocarbon (PFC) nanoparticles was tested. Orthotopic lung cancer model was established in rabbits under computed tomography guidance. αvβ3-targeted PFC nanoparticles were administrated intratracheally or intravenously, and 19F MRI was performed before and up to 24 h after administration. Results: The targeted PFC nanoparticles could bind with αvβ3-integrin. PFC concentrations in the tumors of intratracheal group after administration were significantly higher than intravenous group. Conclusion: Intratracheal administration of PFC nanoparticles was shown to be feasible and efficacious. 19F MRI with αvβ3-targeted PFC nanoparticles provided quantitative assessment of nanoparticles distribution and tumor angiogenesis.
Collapse
Affiliation(s)
- Xiuan Xu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
- Department of Medical Imaging, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Ruixin Zhang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Fang Liu
- Department of Medical Imaging, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Jiaqi Ping
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaofei Wen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Hongbin Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Kai Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Hongyan Zou
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Baozhong Shen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Lina Wu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, PR China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|
29
|
Akbay EA, Kim J. Autochthonous murine models for the study of smoker and never-smoker associated lung cancers. Transl Lung Cancer Res 2018; 7:464-486. [PMID: 30225211 DOI: 10.21037/tlcr.2018.06.04] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer accounts for the greatest number of cancer deaths in the world. Tobacco smoke-associated cancers constitute the majority of lung cancer cases but never-smoker cancers comprise a significant and increasing fraction of cases. Recent genomic and transcriptomic sequencing efforts of lung cancers have revealed distinct sets of genetic aberrations of smoker and never-smoker lung cancers that implicate disparate biology and therapeutic strategies. Autochthonous mouse models have contributed greatly to our understanding of lung cancer biology and identified novel therapeutic targets and strategies in the era of targeted therapy. With the emergence of immuno-oncology, mouse models may continue to serve as valuable platforms for novel biological insights and therapeutic strategies. Here, we will review the variety of available autochthonous mouse models of lung cancer, their relation to human smoker and never-smoker lung cancers, and their application to immuno-oncology and immune checkpoint blockade that is revolutionizing lung cancer therapy.
Collapse
Affiliation(s)
- Esra A Akbay
- Department of Pathology, University of Texas Southwestern, Dallas, TX 75208, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX 75208, USA
| | - James Kim
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX 75208, USA.,Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern, Dallas, TX 75208, USA
| |
Collapse
|
30
|
Kundu ST, Grzeskowiak CL, Fradette JJ, Gibson LA, Rodriguez LB, Creighton CJ, Scott KL, Gibbons DL. TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nat Commun 2018; 9:2731. [PMID: 30013069 PMCID: PMC6048095 DOI: 10.1038/s41467-018-05013-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Metastatic lung cancer is the leading cause of cancer-associated mortality worldwide, therefore necessitating novel approaches to identify specific genetic drivers for lung cancer progression and metastasis. We recently performed an in vivo gain-of-function genetic screen to identify driver genes of lung cancer metastasis. In the study reported here, we identify TMEM106B as a primary robust driver of lung cancer metastasis. Ectopic expression of TMEM106B could significantly promote the synthesis of enlarged vesicular lysosomes that are laden with elevated levels of active cathepsins. In a TFEB-dependent manner, TMEM106B could modulate the expression of lysosomal genes of the coordinated lysosomal expression and regulation (CLEAR) pathway in lung cancer cells and patient samples. We also demonstrate that TMEM106B-induced lysosomes undergo calcium-dependent exocytosis, thereby releasing active lysosomal cathepsins necessary for TMEM106B-mediated cancer cell invasion and metastasis in vivo, which could be therapeutically prevented by pharmacological inhibition of cathepsins. Further, in TCGA LUAD data sets, 19% of patients show elevated expression of TMEM106B, which predicts for poor disease-free and overall-survival.
Collapse
Affiliation(s)
- Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Laura A Gibson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Leticia B Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Grzeskowiak CL, Kundu ST, Mo X, Ivanov AA, Zagorodna O, Lu H, Chapple RH, Tsang YH, Moreno D, Mosqueda M, Eterovic K, Fradette JJ, Ahmad S, Chen F, Chong Z, Chen K, Creighton CJ, Fu H, Mills GB, Gibbons DL, Scott KL. In vivo screening identifies GATAD2B as a metastasis driver in KRAS-driven lung cancer. Nat Commun 2018; 9:2732. [PMID: 30013058 PMCID: PMC6048166 DOI: 10.1038/s41467-018-04572-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
Genetic aberrations driving pro-oncogenic and pro-metastatic activity remain an elusive target in the quest of precision oncology. To identify such drivers, we use an animal model of KRAS-mutant lung adenocarcinoma to perform an in vivo functional screen of 217 genetic aberrations selected from lung cancer genomics datasets. We identify 28 genes whose expression promoted tumor metastasis to the lung in mice. We employ two tools for examining the KRAS-dependence of genes identified from our screen: 1) a human lung cell model containing a regulatable mutant KRAS allele and 2) a lentiviral system permitting co-expression of DNA-barcoded cDNAs with Cre recombinase to activate a mutant KRAS allele in the lungs of mice. Mechanistic evaluation of one gene, GATAD2B, illuminates its role as a dual activity gene, promoting both pro-tumorigenic and pro-metastatic activities in KRAS-mutant lung cancer through interaction with c-MYC and hyperactivation of the c-MYC pathway.
Collapse
Affiliation(s)
- Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiulei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Andrei A Ivanov
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Oksana Zagorodna
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hengyu Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard H Chapple
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yiu Huen Tsang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniela Moreno
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maribel Mosqueda
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karina Eterovic
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sumreen Ahmad
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zechen Chong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chad J Creighton
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, 77030, USA.
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
32
|
Gallastegui A, Cheung J, Southard T, Hume KR. Volumetric and linear measurements of lung tumor burden from non-gated micro-CT imaging correlate with histological analysis in a genetically engineered mouse model of non-small cell lung cancer. Lab Anim 2018; 52:457-469. [PMID: 29436921 DOI: 10.1177/0023677218756457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In vivo micro-computed tomography (CT) imaging allows longitudinal studies of pulmonary neoplasms in genetically engineered mouse models. Respiratory gating increases the accuracy of lung tumor measurements but lengthens anesthesia time in animals that may be at increased risk for complications. We hypothesized that semiautomated, volumetric, and linear tumor measurements performed in micro-CT images from non-gated scans would have correlation with histological findings. Primary lung tumors were induced in eight FVB mice with two transgenes (FVB/N-Tg(tetO-Kras2)12Hev/J; FVB.Cg-Tg(Scgb1a1-rtTA)1Jaw/J). Non-gated micro-CT scans were performed and the lungs were subsequently harvested. In the acquired micro-CT scans, measurements of all identified tumors were determined using the following methods: semiautomated three-dimensional (3D) volume, ellipsoid volume, Response Evaluation Criteria in Solid Tumors (RECIST; sum of largest axial (i.e., transverse) diameter from five tumors), sum of largest axial diameters from all tumors (modified RECIST), and average axial diameter. For histological analysis, all five lung lobes were analyzed and the tumor area was summed from measurements made on five histological sections that were 300 µm apart from each other (covering a total depth of 1200 µm). All micro-CT measurement methods had very strong correlation with histological tumor burden (Pearson's correlation coefficient, 0.87 ( p = 0.0053) -0.98 ( p < 0.0001)). The only methods found to have different correlations were the semiautomated 3D method and the RECIST method (Williams' test for dependent overlapping correlations, p = 0.013). Our results suggest quantification of lung tumor burden from non-gated micro-CT imaging will reflect histological differences between mice and can therefore be used for between-group comparisons or when concerns about systemic health of research animals may limit lengthy anesthetic procedures.
Collapse
Affiliation(s)
- Aitor Gallastegui
- 1 Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, USA
| | - James Cheung
- 2 Department of Clinical Sciences, Cornell University College of Veterinary Medicine, USA
| | - Teresa Southard
- 3 Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, USA
| | - Kelly R Hume
- 2 Department of Clinical Sciences, Cornell University College of Veterinary Medicine, USA
| |
Collapse
|
33
|
Akeno N, Reece AL, Callahan M, Miller AL, Kim RG, He D, Lane A, Moulton JS, Wikenheiser-Brokamp KA. TRP53 Mutants Drive Neuroendocrine Lung Cancer Through Loss-of-Function Mechanisms with Gain-of-Function Effects on Chemotherapy Response. Mol Cancer Ther 2017; 16:2913-2926. [PMID: 28847987 DOI: 10.1158/1535-7163.mct-17-0353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/17/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths with small-cell lung cancer (SCLC) as the most aggressive subtype. Preferential occurrence of TP53 missense mutations rather than loss implicates a selective advantage for TP53-mutant expression in SCLC pathogenesis. We show that lung epithelial expression of R270H and R172H (R273H and R175H in humans), common TRP53 mutants in lung cancer, combined with RB1 loss selectively results in two subtypes of neuroendocrine carcinoma, SCLC and large cell neuroendocrine carcinoma (LCNEC). Tumor initiation and progression occur in a remarkably consistent time frame with short latency and uniform progression to lethal metastatic disease by 7 months. R270H or R172H expression and TRP53 loss result in similar phenotypes demonstrating that TRP53 mutants promote lung carcinogenesis through loss-of-function and not gain-of-function mechanisms. Tumor responses to targeted and cytotoxic therapeutics were discordant in mice and corresponding tumor cell cultures demonstrating need to assess therapeutic response at the organismal level. Rapamycin did not have therapeutic efficacy in the mouse model despite inhibiting mTOR signaling and markedly suppressing tumor cell growth in culture. In contrast, cisplatin/etoposide treatment using a patient regimen prolonged survival with development of chemoresistance recapitulating human responses. R270H, but not R172H, expression conferred gain-of-function activity in attenuating chemotherapeutic efficacy. These data demonstrate a causative role for TRP53 mutants in development of chemoresistant lung cancer, and provide tractable preclinical models to test novel therapeutics for refractory disease. Mol Cancer Ther; 16(12); 2913-26. ©2017 AACR.
Collapse
Affiliation(s)
- Nagako Akeno
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alisa L Reece
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Melissa Callahan
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ashley L Miller
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rebecca G Kim
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Diana He
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adam Lane
- Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jonathan S Moulton
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio. .,University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
34
|
Roudsari LC, Jeffs SE, West JL. Lung Adenocarcinoma Cell Responses in a 3D in Vitro Tumor Angiogenesis Model Correlate with Metastatic Capacity. ACS Biomater Sci Eng 2017; 4:368-377. [DOI: 10.1021/acsbiomaterials.7b00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laila C. Roudsari
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| | - Sydney E. Jeffs
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| | - Jennifer L. West
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| |
Collapse
|
35
|
Zhang X, Cheng Q, Yin H, Yang G. Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review). Int J Oncol 2017; 51:18-24. [PMID: 28560457 DOI: 10.3892/ijo.2017.4025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
Cellular autophagy and epithelial-mesenchymal transition (EMT) are key events mostly resulted from the interplay of tumor suppressors and oncogenes during cancer progression. The master tumor suppressor p53 may control tumor cell autophagy and EMT through the transcriptional induction of multiple target genes, while the activated oncogene RAS may also play a critical role in regulating mitogenic signaling to tumor cell autophagy and EMT. Although the fundamental functions of p53 and RAS are well understood, the interactive effects of p53 and RAS on autophagy and EMT are still unclear. In this review, we highlight the recent advances in the regulation of autophagy and EMT by p53 and RAS, aiming to explore novel therapeutic targets and biomarkers in cancer treatment and prevention.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Qian Cheng
- Department of Orthopedics, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Huijing Yin
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
36
|
Singh S, Vaughan CA, Frum RA, Grossman SR, Deb S, Palit Deb S. Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication. J Clin Invest 2017; 127:1839-1855. [PMID: 28394262 DOI: 10.1172/jci87724] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 02/16/2017] [Indexed: 01/09/2023] Open
Abstract
Gain-of-function (GOF) p53 mutations are observed frequently in most intractable human cancers and establish dependency for tumor maintenance and progression. While some of the genes induced by GOF p53 have been implicated in more rapid cell proliferation compared with p53-null cancer cells, the mechanism for dependency of tumor growth on mutant p53 is unknown. This report reveals a therapeutically targetable mechanism for GOF p53 dependency. We have shown that GOF p53 increases DNA replication origin firing, stabilizes replication forks, and promotes micronuclei formation, thus facilitating the proliferation of cells with genomic abnormalities. In contrast, absence or depletion of GOF p53 leads to decreased origin firing and a higher frequency of fork collapse in isogenic cells, explaining their poorer proliferation rate. Following genome-wide analyses utilizing ChIP-Seq and RNA-Seq, GOF p53-induced origin firing, micronuclei formation, and fork protection were traced to the ability of GOF p53 to transactivate cyclin A and CHK1. Highlighting the therapeutic potential of CHK1's role in GOF p53 dependency, experiments in cell culture and mouse xenografts demonstrated that inhibition of CHK1 selectively blocked proliferation of cells and tumors expressing GOF p53. Our data suggest the possibility that checkpoint inhibitors could efficiently and selectively target cancers expressing GOF p53 alleles.
Collapse
|
37
|
Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR, Cho WC. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. Int J Mol Sci 2017; 18:E367. [PMID: 28208579 PMCID: PMC5343902 DOI: 10.3390/ijms18020367] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/22/2017] [Accepted: 02/03/2017] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) constitutes 85% of all lung cancers, and is the leading cause of cancer-related death worldwide. The poor prognosis and resistance to both radiation and chemotherapy warrant further investigation into the molecular mechanisms of NSCLC and the development of new, more efficacious therapeutics. The processes of autophagy and apoptosis, which induce degradation of proteins and organelles or cell death upon cellular stress, are crucial in the pathophysiology of NSCLC. The close interplay between autophagy and apoptosis through shared signaling pathways complicates our understanding of how NSCLC pathophysiology is regulated. The apoptotic effect of autophagy is controversial as both inhibitory and stimulatory effects have been reported in NSCLC. In addition, crosstalk of proteins regulating both autophagy and apoptosis exists. Here, we review the recent advances of the relationship between autophagy and apoptosis in NSCLC, aiming to provide few insights into the discovery of novel pathogenic factors and the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fen Pei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fengqing Yang
- Department of Obstetrics and Gynecology, Dong'e No. 4 People's Hospital, Liaocheng 252200, China.
| | - Lingxiao Li
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Songnian Liu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
38
|
Marquez-Vilendrer SB, Rai SK, Gramling SJ, Lu L, Reisman DN. Loss of the SWI/SNF ATPase subunits BRM and BRG1 drives lung cancer development. Oncoscience 2016; 3:322-336. [PMID: 28105457 PMCID: PMC5235921 DOI: 10.18632/oncoscience.323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/23/2016] [Indexed: 12/24/2022] Open
Abstract
Inactivation of Brg1 and Brm accelerated lung tumor development, shortened tumor latency, and caused a loss of differentiation. Tumors with Brg1 and/or Brm loss recapitulated the evolution of human lung cancer as observed by the development of local tumor invasion as well as distal tumor metastasis, thereby making this model useful in lung cancer studies. Brg1 loss contributed to metastasis in part by driving E-cadherin loss and Vimentin up-regulation. By changing more than 6% of the murine genome with the down-regulation of tumor suppressors, DNA repair, differentiation and cell adhesion genes, and the concomitant up-regulation of oncogenes, angiogenesis, metastasis and antiapoptosis genes, caused by the dual loss of Brg1/Brm further accelerated tumor development. Additionally, this Brg1/Brm-driven change in gene expression resulted in a nearly two-fold increase in tumorigenicity in Brg1/Brm knockout mice compared with wild type mice. Most importantly, Brg1/Brm-driven lung cancer development histologically and clinically reflects human lung cancer development thereby making this GEMM model potentially useful.
Collapse
Affiliation(s)
| | - Sudhir K Rai
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Sarah Jb Gramling
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Li Lu
- Department of Pathology, University of Florida, Florida, USA
| | - David N Reisman
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| |
Collapse
|
39
|
Luo CQ, Jang Y, Xing L, Cui PF, Qiao JB, Lee AY, Kim HJ, Cho MH, Jiang HL. Aerosol delivery of folate-decorated hyperbranched polyspermine complexes to suppress lung tumorigenesis via Akt signaling pathway. Int J Pharm 2016; 513:591-601. [DOI: 10.1016/j.ijpharm.2016.09.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/06/2016] [Accepted: 09/24/2016] [Indexed: 01/09/2023]
|
40
|
Bigi A, Beltrami E, Trinei M, Stendardo M, Pelicci PG, Giorgio M. Cyclophilin D counteracts P53-mediated growth arrest and promotes Ras tumorigenesis. Oncogene 2016; 35:5132-43. [PMID: 26973251 DOI: 10.1038/onc.2016.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 01/04/2016] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
Abstract
Mitochondrial alterations induced by oncogenes are known to be crucial for tumorigenesis. Ras oncogene leads to proliferative signals through a Raf-1/MEK/ERK kinase cascade, whose components have been found to be also associated with mitochondria. The mitochondrial pepdidyl-prolyl isomerase cyclophilin D (CypD) is an important regulator of the mitochondrial permeability transition and a key player in mitochondria physiology; however, its role in cancer is still unclear. Using cellular and in vivo mouse models, we demonstrated that CypD protein upregulation induced by oncogenic Ras through the Raf-1/MEK/ERK pathway has a deterministic role in tumor progression. In fact, targeting CypD gene expression clearly affected RasV12-induced transformation, as showed by in vitro data on murine NIH3T3 and human MCF10A mammary epithelial cells. In addition, studies in xenograft and K-Ras lung cancer mouse models demonstrated that genetic deletion or pharmacological suppression of CypD efficiently prevented Ras-dependent tumor formation. Furthermore, Erbb2-mediated breast tumorigenesis was similarly prevented by targeting CypD. From a mechanistic point of view, CypD expression was associated with a reduced induction of p21(WAF1/CIP1) and p53 functions, unraveling an antagonistic function of CypD on p21-p53-mediated growth suppression. CypD activity is p53 dependent. Interestingly, a physical association between p53 and CypD was detected in mitochondria of MCF10A cells; furthermore, both in vitro and in vivo studies proved that CypD inhibitor-based treatment was able to efficiently impair this interaction, leading to a tumor formation reduction. All together, these findings indicate that the countering effect of CypD on the p53-p21 pathway participates in oncogene-dependent transformation.
Collapse
Affiliation(s)
- A Bigi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - E Beltrami
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - M Trinei
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - M Stendardo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - P G Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - M Giorgio
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
41
|
Taromi S, Kayser G, von Elverfeldt D, Reichardt W, Braun F, Weber WA, Zeiser R, Burger M. An orthotopic mouse model of small cell lung cancer reflects the clinical course in patients. Clin Exp Metastasis 2016; 33:651-60. [PMID: 27380917 DOI: 10.1007/s10585-016-9808-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/29/2016] [Indexed: 01/01/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with very poor prognosis due to early metastatic spread and development of chemoresistance. In the last 30 years the study of SCLC has been constrained by a lack of primary human tumor specimen thus highlighting the need of a suitable mouse model. In this article we present the establishment of an orthotopic xenograft mouse model which accurately reproduced the clinical course of SCLC. Orthotopic implantation enabled engraftment of primary lung tumors in all injected mice. Furthermore, immunodeficiency of mice allowed formation of spontaneous metastases in characteristic organs. Bioluminescence Imaging, Magnetic Resonance Imaging and Positron emission tomography were applied to monitor engraftment, metabolism and the exact growth of tumors over time. In order to mimic the extensive disease stage, mice were injected with aggressive human chemoresistant cells leading to development of chemoresistant tumors and early metastatic spread. As a proof of concept treatment of tumor-bearing mice with conventional chemotherapeutics reduced tumor volumes, but a complete regression of tumors was not achieved. By mimicking the extensive disease stage our mouse model can facilitate the study of mechanisms contributing to chemoresistance and metastasis formation, as well as drug screening and evaluation of new treatment strategies for SCLC patients.
Collapse
Affiliation(s)
- Sanaz Taromi
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Hugstetter Str. 55, 70106, Freiburg, Germany
| | - Gian Kayser
- Department of Pathology, University Medical Center, Freiburg, Germany
| | | | - Wilfried Reichardt
- Department of Radiology Medical Physics, University Medical Center, Freiburg, Germany
| | - Friederike Braun
- Institute of Nuclear Medicine, University Medical Center, Freiburg, Germany
| | - Wolfgang A Weber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA.,Institute of Nuclear Medicine, University Medical Center, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Hugstetter Str. 55, 70106, Freiburg, Germany
| | - Meike Burger
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Hugstetter Str. 55, 70106, Freiburg, Germany. .,Faculty of Medical and Life Sciences, University Futwangen, Campus Schwenningen, Jakob-Kienzle-Str. 17, 78054, Villingen-Schwenningen, Germany.
| |
Collapse
|
42
|
Musashi-2 (MSI2) supports TGF-β signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis. Proc Natl Acad Sci U S A 2016; 113:6955-60. [PMID: 27274057 DOI: 10.1073/pnas.1513616113] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-β receptor 1 (TGFβR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFβRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.
Collapse
|
43
|
Constanzo JD, Tang KJ, Rindhe S, Melegari M, Liu H, Tang X, Rodriguez-Canales J, Wistuba I, Scaglioni PP. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer. Neoplasia 2016; 18:282-293. [PMID: 27237320 PMCID: PMC4887597 DOI: 10.1016/j.neo.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/01/2016] [Accepted: 03/14/2016] [Indexed: 12/27/2022] Open
Abstract
The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC) cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.
Collapse
Affiliation(s)
- Jerfiz D Constanzo
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Ke-Jing Tang
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA; Department of Pulmonary Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Smita Rindhe
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Margherita Melegari
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Hui Liu
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pier Paolo Scaglioni
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA.
| |
Collapse
|
44
|
SHP-2-upregulated ZEB1 is important for PDGFRα-driven glioma epithelial-mesenchymal transition and invasion in mice and humans. Oncogene 2016; 35:5641-5652. [PMID: 27041571 PMCID: PMC5050071 DOI: 10.1038/onc.2016.100] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 12/20/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022]
Abstract
Gliomas are highly malignant brain tumors that are highly invasive and resistant to conventional therapy. Receptor tyrosine kinases (RTKs) such as PDGFRα (platelet-derived growth factor receptor-α), which show frequent aberrant activation in gliomas, are associated with a process of epithelial-mesenchymal transition (EMT), a cellular alteration that confers a more invasive and drug-resistant phenotype. Although this phenomenon is well documented in human cancers, the processes by which RTKs including PDGFRα mediate EMT are largely unknown. Here, we report that SHP-2 (encoded by PTPN11) upregulates an EMT inducer, ZEB1, to mediate PDGFRα-driven glioma EMT, invasion and growth in glioma cell lines and patient-derived glioma stem cells (GSCs) using cell culture and orthotopic xenograft models. ZEB1 and activated PDGFRα were coexpressed in invasive regions of mouse glioma xenografts and clinical glioma specimens. Glioma patients with high levels of both phospho-PDGFRα (p-PDGFRα) and ZEB1 had significantly shorter overall survival compared with those with low expression of p-PDGFRα and ZEB1. Knockdown of ZEB1 inhibited PDGFA/PDGFRα-stimulated glioma EMT, tumor growth and invasion in glioma cell lines and patient-derived GSCs. PDGFRα mutant deficient of SHP2 binding (PDGFRα-F720) or phosphoinositide 3-kinase (PI3K) binding (PDGFRα-F731/42), knockdown of SHP2 or treatments of pharmacological inhibitor for PDGFRα-signaling effectors attenuated PDGFA/PDGFRα-stimulated ZEB1 expression, cell migration and GSC proliferation. Importantly, SHP-2 acts together with PI3K/AKT to regulate a ZEB1-miR-200 feedback loop in PDGFRα-driven gliomas. Taken together, our findings uncover a new pathway in which ZEB1 functions as a key regulator for PDGFRα-driven glioma EMT, invasiveness and growth, suggesting that ZEB1 is a promising therapeutic target for treating gliomas with high PDGFRα activation.
Collapse
|
45
|
The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL. Sci Rep 2016; 6:18652. [PMID: 26728244 PMCID: PMC4700473 DOI: 10.1038/srep18652] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Tumor cell metastasis is a complex process that has been mechanistically linked to the epithelial-mesenchymal transition (EMT). The double-negative feedback loop between the microRNA-200 family and the Zeb1 transcriptional repressor is a master EMT regulator, but there is incomplete understanding of how miR-200 suppresses invasion. Our recent efforts have focused on the tumor cell-matrix interactions essential to tumor cell activation. Herein we utilized both our Kras/p53 mutant mouse model and human lung cancer cell lines to demonstrate that upon miR-200 loss integrin β1-collagen I interactions drive 3D in vitro migration/invasion and in vivo metastases. Zeb1-dependent EMT enhances tumor cell responsiveness to the ECM composition and activates FAK/Src pathway signaling by de-repression of the direct miR-200 target, CRKL. We demonstrate that CRKL serves as an adaptor molecule to facilitate focal adhesion formation, mediates outside-in signaling through Itgβ1 to drive cell invasion, and inside-out signaling that maintains tumor cell-matrix contacts required for cell invasion. Importantly, CRKL levels in pan-cancer TCGA analyses were predictive of survival and CRKL knockdown suppressed experimental metastases in vivo without affecting primary tumor growth. Our findings highlight the critical ECM-tumor cell interactions regulated by miR-200/Zeb1-dependent EMT that activate intracellular signaling pathways responsible for tumor cell invasion and metastasis.
Collapse
|
46
|
Kim JS, Kurie JM, Ahn YH. BMP4 depletion by miR-200 inhibits tumorigenesis and metastasis of lung adenocarcinoma cells. Mol Cancer 2015; 14:173. [PMID: 26395571 PMCID: PMC4580148 DOI: 10.1186/s12943-015-0441-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND MicroRNA-200 (miR-200) suppresses the epithelial-mesenchymal transition of various cancer cells, including lung adenocarcinoma cells. We found that bone morphogenetic protein 4 (BMP4) was decreased in miR-200-overexpressing cells and epithelial-like lung cancer cells. In this study, we investigated the mechanism and role of BMP4 depletion by miR-200 in murine lung adenocarcinoma cells. METHODS BMP4 expression levels in murine lung cancer cells were measured by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. Promoter and 3'-untranslated region (UTR) luciferase reporter assays were performed to discover the mechanism of regulation of BMP4 by miR-200. Murine lung cancer cells were transfected with Bmp4 shRNAs, which were then injected into syngeneic mice to measure their tumorigenic and metastatic potential and cultured on Matrigel to study the influence of BMP4 on 3-D acinus formation. RESULTS miR-200 down-regulated BMP4 via direct targeting of the GATA4 and GATA6 transcription factors that stimulate Bmp4 transcription. BMP4 up-regulated JAG2, an upstream factor of miR-200; therefore, JAG2, miR-200, and BMP4 form a regulatory loop. Bmp4 knockdown suppressed cancer cell growth, migration, and invasion and inhibited tumorigenesis and metastasis of lung cancer cells when injected into syngeneic mice. In addition, BMP4 was required for normal acinus formation in Matrigel 3-D culture of murine lung cancer cells, which may be mediated by MYH10, a downstream target of BMP4. CONCLUSION BMP4 functions as a pro-tumorigenic factor in a murine lung cancer model, and its transcription is regulated by miR-200 and GATA4/6. Thus, we propose that BMP4 and its antagonists may be suitable therapeutic targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jeong Seon Kim
- Department of Molecular Medicine and Tissue Injury Defense Research Center, Ewha Womans University School of Medicine, Seoul, South Korea.
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Young-Ho Ahn
- Department of Molecular Medicine and Tissue Injury Defense Research Center, Ewha Womans University School of Medicine, Seoul, South Korea.
| |
Collapse
|
47
|
The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 2015; 35:173-86. [PMID: 25798833 PMCID: PMC4580489 DOI: 10.1038/onc.2015.71] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/25/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022]
Abstract
Metastatic lung cancer is one of the most lethal forms of cancer and molecular pathways driving metastasis are still not clearly elucidated. Metastatic cancer cells undergo an epithelial-mesenchymal transition (EMT) where they lose their epithelial properties and acquire a migratory and invasive phenotype. Here we identify that expression of microRNAs from the miR-200 family and the miR-183~96~182 cluster are significantly co-repressed in non-small cell lung cancer (NSCLC) cell lines and primary tumors from multiple TCGA data sets with high EMT scores. Ectopic expression of the miR-183~96~182 cluster inhibited cancer cell migration and invasion, while its expression was tightly modulated by miR-200. We identified Foxf2 as a common, novel and direct target of both these microRNA families. Foxf2 expression tightly correlates with the transcription factor Zeb1 and is elevated in mesenchymal-like metastatic lung cancer cells. Foxf2 expression induced robust EMT, migration, invasion and metastasis in lung cancer cells, whereas Foxf2 inhibition significantly repressed these phenotypes. We also demonstrated that Foxf2 transcriptionally represses E-Cadherin and miR-200, independent of Zeb1, to form a double negative feedback loop. We therefore identified a novel mechanism whereby the miR-200 family and the miR-183~96~182 cluster inhibit lung cancer invasion and metastasis by targeting Foxf2.
Collapse
|
48
|
Downey CM, Jirik FR. DNA mismatch repair deficiency accelerates lung neoplasm development in K-ras(LA1/+) mice: a brief report. Cancer Med 2015; 4:897-902. [PMID: 25773971 PMCID: PMC4472212 DOI: 10.1002/cam4.420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 12/30/2014] [Indexed: 11/09/2022] Open
Abstract
Inherited as well as acquired deficiencies in specific DNA mismatch repair (MMR) components are associated with the development of a wide range of benign and malignant neoplasms. Loss of key members such as MSH2 and MLH1 severely cripples the ability of the cell to recognize and correct such lesions as base:base mismatches and replicative DNA polymerase errors such as slippages at repetitive sequences. Genomic instability resulting from MMR deficiency not only predisposes cells to malignant transformation but may also promote tumor progression. To test the latter, we interbred Msh2−/− mice with the K-rasLA1/+ transgenic line that spontaneously develops a range of premalignant and malignant lung lesions. Compared to K-rasLA1/+mice, K-rasLA1/+; Msh2−/− mice developed lung adenomas and adenocarcinomas at an increased frequency and also demonstrated evidence of accelerated adenocarcinoma growth. Since MMR defects have been identified in some human lung cancers, the mutant mice may not only be of preclinical utility but they will also be useful in identifying gene alterations able to act in concert with Kras mutants to promote tumor progression.
Collapse
Affiliation(s)
- Charlene M Downey
- Department of Biochemistry and Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| | - Frank R Jirik
- Department of Biochemistry and Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| |
Collapse
|
49
|
Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn YH, Byers LA, Zhang X, Yi X, Dwyer D, Lin W, Diao L, Wang J, Roybal J, Patel M, Ungewiss C, Peng D, Antonia S, Mediavilla-Varela M, Robertson G, Suraokar M, Welsh JW, Erez B, Wistuba II, Chen L, Peng D, Wang S, Ullrich SE, Heymach JV, Kurie JM, Qin FXF. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 2014; 5:5241. [PMID: 25348003 PMCID: PMC4212319 DOI: 10.1038/ncomms6241] [Citation(s) in RCA: 756] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/11/2014] [Indexed: 02/07/2023] Open
Abstract
Immunosuppression of tumour-infiltrating lymphocytes (TIL) is a common feature of advanced cancer, but its biological basis has remained obscure. We demonstrate here a molecular link between epithelial-to-mesenchymal transition (EMT) and CD8(+) TIL immunosuppression, two key drivers of cancer progression. We show that microRNA-200 (miR-200), a cell-autonomous suppressor of EMT and metastasis, targets PD-L1. Moreover, ZEB1, an EMT activator and transcriptional repressor of miR-200, relieves miR-200 repression of PD-L1 on tumour cells, leading to CD8(+) T-cell immunosuppression and metastasis. These findings are supported by robust correlations between the EMT score, miR-200 levels and PD-L1 expression in multiple human lung cancer datasets. In addition to revealing a link between EMT and T-cell dysfunction, these findings also show that ZEB1 promotes metastasis through a heretofore unappreciated cell non-autonomous mechanism, and suggest that subgroups of patients in whom malignant progression is driven by EMT activators may respond to treatment with PD-L1 antagonists.
Collapse
Affiliation(s)
- Limo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sangeeta Goswami
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Angelica Cortez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Young-Ho Ahn
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular Medicine, Ewha Womans University School of Medicine, 1071 Anyangcheonro, Yangcheon-gu, Seoul 158-710, Korea
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuejun Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaohui Yi
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Dwyer
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Lin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathon Roybal
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mayuri Patel
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christin Ungewiss
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott Antonia
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL33612, USA
| | | | - Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z, Canada
| | - Milind Suraokar
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James W Welsh
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Baruch Erez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio I Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lieping Chen
- Department of Immunobiology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06519, USA
| | - Di Peng
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shanshan Wang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Stephen E Ullrich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - F Xiao-Feng Qin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
50
|
Mishra DK, Scott KL, Wardwell-Ozgo JM, Thrall MJ, Kim MP. Circulating tumor cells from 4D model have less integrin beta 4 expression. J Surg Res 2014; 193:745-53. [PMID: 25234746 DOI: 10.1016/j.jss.2014.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/08/2014] [Accepted: 08/13/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Currently, there is no in vitro or ex vivo model that can isolate circulating tumor cells (CTCs). Recently, we developed a four-dimensional (4D) lung cancer model that allows for the isolation of CTCs. We postulated that these cells have different properties than parental (2D) cells. MATERIALS AND METHODS We obtained CTCs by growing A549, H1299, 393P, and 344SQ cell lines on the 4D lung model. The CTCs were functionally characterized in vitro and gene expression of the cell adhesion molecules was compared with respective 2D cells. Integrin beta 4 (ITGB4) was further investigated by stably transfecting the A549 and H1299 cells. RESULTS We found that all cell lines produced CTCs, and that CTCs from the 4D model were less adherent to the plastic and have a slower growth rate than respective 2D cells (P < 0.01). Most of the cell adhesion molecules were downregulated (P < 0.05) in CTCs, and ITGB4 was the common molecule, significantly more underexpressed in CTCs from all cell lines than their respective 2D cells. The modulation of ITGB4 led to a differential function of 2D cells. CONCLUSIONS CTCs from the 4D model have different transcriptional, translational, and in vitro characteristics than the same cells grown on a petri dish, and these CTCs from the 4D model have the properties of CTCs that are responsible for metastasis.
Collapse
Affiliation(s)
- Dhruva K Mishra
- Department of Surgery, Houston Methodist Research Institute, Houston, Texas
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Michael J Thrall
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas
| | - Min P Kim
- Department of Surgery, Houston Methodist Research Institute, Houston, Texas; Department of Surgery, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas.
| |
Collapse
|