1
|
Liu D, Ding B, Liu G, Yang Z. FUS and METTL3 collaborate to regulate RNA maturation, preventing unfolded protein response and promoting gastric cancer progression. Clin Exp Med 2024; 25:15. [PMID: 39708203 DOI: 10.1007/s10238-024-01525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
FUS-mediated alternative splicing and METTL3-regulated RNA methylation play crucial roles in RNA processing. The purpose of this study was to investigate the interactive roles of FUS and METTL3 in gastric cancer (GC) progression. RNA sequencing data were obtained from the TCGA-STAD dataset. Differentially expressed genes (DEGs) were analyzed across groups stratified by the medians of FUS, METTL3, and NEAT1, respectively. Endoplasmic reticulum (ER) stress markers PERK, IRE1, pIRE1, Bip, and CHOP, as well as related apoptosis stress markers PARP, cleaved-PARP, (Cleaved) Caspase 7, and (Cleaved) Caspase 3, were assessed through western blotting. Alternative splicing and N6-methyladenosine (m(6)A) methylation of specific genes were detected with MeRIP-PCR. Finally, in vivo experiments were conducted using nude mice bearing sh-FUS-transfected HGC27 xenograft tumors. FUS and METTL3 expression levels were elevated in GC tissues. A significant overlap of DEGs was observed between the FUS- and METTL3-stratified groups. These overlapping DEGs were predominantly enriched in mRNA processing and protein processing in the ER. ER stress and apoptosis were induced by sh-FUS or sh-METTL3, which was further enhanced by ER stress inducer tunicamycin in both MKN45 and HGC27 cells. Similarly, DEGs for NEAT1 high- and low-expressed groups were enriched in protein processing in the ER and spliceosome. To a lesser extent, ER stress was also induced by sh-NEAT1 and enhanced by tunicamycin in HGC27 cells. Furthermore, sh-FUS or sh-METTL3 influenced alternative splicing and methylation of specific mRNAs, including FUS, NEAT1, PCNA, MCM2, and BIRC5. Tumor progression was inhibited by sh-FUS in mice, and ER stress and apoptosis were induced, which were further enhanced by tunicamycin. FUS and METTL3 collaborate to facilitate RNA maturation. Inhibiting FUS or METTL3 promoted ER stress and apoptosis and inhibited progression in GC.
Collapse
Affiliation(s)
- Dongtao Liu
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Bo Ding
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Gang Liu
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhijuan Yang
- Department of Gynecology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
2
|
Zimyanin V, Dash BP, Großmann D, Simolka T, Glaß H, Verma R, Khatri V, Deppmann C, Zunder E, Redemann S, Hermann A. Axonal transcriptome reveals upregulation of PLK1 as a protective mechanism in response to increased DNA damage in FUS P525L spinal motor neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624439. [PMID: 39605661 PMCID: PMC11601502 DOI: 10.1101/2024.11.20.624439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mutations in the gene FUSED IN SARCOMA ( FUS ) are among the most frequently occurring genetic forms of amyotrophic lateral sclerosis (ALS). Early pathogenesis of FUS -ALS involves impaired DNA damage response and axonal degeneration. However, it is still poorly understood how these gene mutations lead to selective spinal motor neuron (MN) degeneration and how nuclear and axonal phenotypes are linked. To specifically address this, we applied a compartment specific RNA-sequencing approach using microfluidic chambers to generate axonal as well as somatodendritic compartment-specific profiles from isogenic induced pluripotent stem cells (iPSCs)-derived MNs. We demonstrate high purity of axonal and soma fractions and show that the axonal transcriptome is unique and distinct from that of somas including significantly fewer number of transcripts. Functional enrichment analysis revealed that differentially expressed genes (DEGs) in axons were mainly enriched in key pathways like RNA metabolism and DNA damage, complementing our knowledge of early phenotypes in ALS pathogenesis and known functions of FUS. In addition, we demonstrate a strong enrichment for cell cycle associated genes including significant upregulation of polo-like kinase 1 (PLK1) in FUS P525L mutant MNs. PLK1 was increased upon DNA damage induction and PLK1 inhibition further increased the number of DNA damage foci in etoposide-treated cells, an effect that was diminished in case of FUS mutant MNs. In contrast, inhibition of PLK1 increased late apoptotic or necrosis-induced neuronal cell death in mutant neurons. Taken together, our findings provide insights into compartment-specific transcriptomics in human FUS -ALS MNs and we propose that specific upregulation of PLK1 might represent an early event in the pathogenesis of ALS, possibly modulating DNA damage response and other associated pathways.
Collapse
|
3
|
Alirzayeva H, Loureiro R, Koyuncu S, Hommen F, Nabawi Y, Zhang WH, Dao TTP, Wehrmann M, Lee HJ, Vilchez D. ALS-FUS mutations cause abnormal PARylation and histone H1.2 interaction, leading to pathological changes. Cell Rep 2024; 43:114626. [PMID: 39167487 DOI: 10.1016/j.celrep.2024.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
The majority of severe early-onset and juvenile cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the FUS gene, resulting in rapid disease progression. Mutant FUS accumulates within stress granules (SGs), thereby affecting the dynamics of these ribonucleoprotein complexes. Here, we define the interactome of the severe mutant FUSP525L variant in human induced pluripotent stem cell (iPSC)-derived motor neurons. We find increased interaction of FUSP525L with the PARP1 enzyme, promoting poly-ADP-ribosylation (PARylation) and binding of FUS to histone H1.2. Inhibiting PARylation or reducing H1.2 levels alleviates mutant FUS aggregation, SG alterations, and apoptosis in human motor neurons. Conversely, elevated H1.2 levels exacerbate FUS-ALS phenotypes, driven by the internally disordered terminal domains of H1.2. In C. elegans models, knockdown of H1.2 and PARP1 orthologs also decreases FUSP525L aggregation and neurodegeneration, whereas H1.2 overexpression worsens ALS-related changes. Our findings indicate a link between PARylation, H1.2, and FUS with potential therapeutic implications.
Collapse
Affiliation(s)
- Hafiza Alirzayeva
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Rute Loureiro
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Seda Koyuncu
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Franziska Hommen
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Yara Nabawi
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - William Hongyu Zhang
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Thien T P Dao
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Markus Wehrmann
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Hyun Ju Lee
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - David Vilchez
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
4
|
Ji E, Pandey PR, Martindale JL, Yang X, Yang JH, Tsitsipatis D, Shin CH, Piao Y, Fan J, Mazan-Mamczarz K, Banskota N, De S, Gorospe M. FUS-Mediated Inhibition of Myogenesis Elicited by Suppressing TNNT1 Production. Mol Cell Biol 2024; 44:391-409. [PMID: 39133076 PMCID: PMC11376412 DOI: 10.1080/10985549.2024.2383296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Myogenesis is a highly orchestrated process whereby muscle precursor cells, myoblasts, develop into muscle fibers to form skeletal muscle during embryogenesis and regenerate adult muscle. Here, we studied the RNA-binding protein FUS (fused in sarcoma), which has been implicated in muscular and neuromuscular pathologies but is poorly characterized in myogenesis. Given that FUS levels declined in human and mouse models of skeletal myogenesis, and that silencing FUS enhanced myogenesis, we hypothesized that FUS might be a repressor of myogenic differentiation. Interestingly, overexpression of FUS delayed myogenesis, accompanied by slower production of muscle differentiation markers. To identify the mechanisms through which FUS inhibits myogenesis, we uncovered RNA targets of FUS by ribonucleoprotein immunoprecipitation (RIP) followed by RNA-sequencing (RNA-seq) analysis. Stringent selection of the bound transcripts uncovered Tnnt1 mRNA, encoding troponin T1 (TNNT1), as a major effector of FUS influence on myogenesis. We found that in myoblasts, FUS retained Tnnt1 mRNA in the nucleus, preventing TNNT1 expression; however, reduction of FUS during myogenesis or by silencing FUS released Tnnt1 mRNA for export to the cytoplasm, enabling TNNT1 translation and promoting myogenesis. We propose that FUS inhibits myogenesis by suppressing TNNT1 expression through a mechanism of nuclear Tnnt1 mRNA retention.
Collapse
Affiliation(s)
- Eunbyul Ji
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Poonam R. Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| |
Collapse
|
5
|
Lühmann KL, Seemann S, Martinek N, Ostendorp S, Kehr J. The glycine-rich domain of GRP7 plays a crucial role in binding long RNAs and facilitating phase separation. Sci Rep 2024; 14:16018. [PMID: 38992080 PMCID: PMC11239674 DOI: 10.1038/s41598-024-66955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
Microscale thermophoresis (MST) is a well-established method to quantify protein-RNA interactions. In this study, we employed MST to analyze the RNA binding properties of glycine-rich RNA binding protein 7 (GRP7), which is known to have multiple biological functions related to its ability to bind different types of RNA. However, the exact mechanism of GRP7's RNA binding is not fully understood. While the RNA-recognition motif of GRP7 is known to be involved in RNA binding, the glycine-rich region (known as arginine-glycine-glycine-domain or RGG-domain) also influences this interaction. To investigate to which extend the RGG-domain of GRP7 is involved in RNA binding, mutation studies on putative RNA interacting or modulating sites were performed. In addition to MST experiments, we examined liquid-liquid phase separation of GRP7 and its mutants, both with and without RNA. Furthermore, we systemically investigated factors that might affect RNA binding selectivity of GRP7 by testing RNAs of different sizes, structures, and modifications. Consequently, our study revealed that GRP7 exhibits a high affinity for a variety of RNAs, indicating a lack of pronounced selectivity. Moreover, we established that the RGG-domain plays a crucial role in binding longer RNAs and promoting phase separation.
Collapse
Affiliation(s)
- Kim Lara Lühmann
- Department of Biology, Molecular Plant Genetics, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Silja Seemann
- Department of Biology, Molecular Plant Genetics, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Nina Martinek
- Department of Biology, Molecular Plant Genetics, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Steffen Ostendorp
- Department of Biology, Molecular Plant Genetics, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Julia Kehr
- Department of Biology, Molecular Plant Genetics, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
6
|
Hawkins S, Mondaini A, Namboori SC, Nguyen GG, Yeo GW, Javed A, Bhinge A. ePRINT: exonuclease assisted mapping of protein-RNA interactions. Genome Biol 2024; 25:140. [PMID: 38807229 PMCID: PMC11134894 DOI: 10.1186/s13059-024-03271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate key aspects of RNA processing including alternative splicing, mRNA degradation and localization by physically binding RNA molecules. Current methods to map these interactions, such as CLIP, rely on purifying single proteins at a time. Our new method, ePRINT, maps RBP-RNA interaction networks on a global scale without purifying individual RBPs. ePRINT uses exoribonuclease XRN1 to precisely map the 5' end of the RBP binding site and uncovers direct and indirect targets of an RBP of interest. Importantly, ePRINT can also uncover RBPs that are differentially activated between cell fate transitions, including neural progenitor differentiation into neurons.
Collapse
Affiliation(s)
- Sophie Hawkins
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Alexandre Mondaini
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Seema C Namboori
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Grady G Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies and Therapeutics, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies and Therapeutics, UC San Diego, La Jolla, CA, USA
| | - Asif Javed
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Akshay Bhinge
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK.
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
7
|
Nguyen L. Updates on Disease Mechanisms and Therapeutics for Amyotrophic Lateral Sclerosis. Cells 2024; 13:888. [PMID: 38891021 PMCID: PMC11172142 DOI: 10.3390/cells13110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a motor neuron disease. In ALS, upper and lower motor neurons in the brain and spinal cord progressively degenerate during the course of the disease, leading to the loss of the voluntary movement of the arms and legs. Since its first description in 1869 by a French neurologist Jean-Martin Charcot, the scientific discoveries on ALS have increased our understanding of ALS genetics, pathology and mechanisms and provided novel therapeutic strategies. The goal of this review article is to provide a comprehensive summary of the recent findings on ALS mechanisms and related therapeutic strategies to the scientific audience. Several highlighted ALS research topics discussed in this article include the 2023 FDA approved drug for SOD1 ALS, the updated C9orf72 GGGGCC repeat-expansion-related mechanisms and therapeutic targets, TDP-43-mediated cryptic splicing and disease markers and diagnostic and therapeutic options offered by these recent discoveries.
Collapse
Affiliation(s)
- Lien Nguyen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Sundara Rajan S, Ebegboni VJ, Pichling P, Ludwig KR, Jones TL, Chari R, Tran A, Kruhlak MJ, Loncarek J, Caplen NJ. Endogenous EWSR1 Exists in Two Visual Modalities That Reflect Its Associations with Nucleic Acids and Concentration at Sites of Active Transcription. Mol Cell Biol 2024; 44:103-122. [PMID: 38506112 PMCID: PMC10986767 DOI: 10.1080/10985549.2024.2315425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
EWSR1 is a member of the FET family of nucleic acid binding proteins that includes FUS and TAF15. Here, we report the systematic analysis of endogenous EWSR1's cellular organization in human cells. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vernon J. Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricio Pichling
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, Maryland, USA
| | - Andy Tran
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael J. Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jadranka Loncarek
- Centrosome Biology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Demongin C, Tranier S, Joshi V, Ceschi L, Desforges B, Pastré D, Hamon L. RNA and the RNA-binding protein FUS act in concert to prevent TDP-43 spatial segregation. J Biol Chem 2024; 300:105716. [PMID: 38311174 PMCID: PMC10912363 DOI: 10.1016/j.jbc.2024.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
FUS and TDP-43 are two self-adhesive aggregation-prone mRNA-binding proteins whose pathological mutations have been linked to neurodegeneration. While TDP-43 and FUS form reversible mRNA-rich compartments in the nucleus, pathological mutations promote their respective cytoplasmic aggregation in neurons with no apparent link between the two proteins except their intertwined function in mRNA processing. By combining analyses in cellular context and at high resolution in vitro, we unraveled that TDP-43 is specifically recruited in FUS assemblies to form TDP-43-rich subcompartments but without reciprocity. The presence of mRNA provides an additional scaffold to promote the mixing between TDP-43 and FUS. Accordingly, we also found that the pathological truncated form of TDP-43, TDP-25, which has an impaired RNA-binding ability, no longer mixes with FUS. Together, these results suggest that the binding of FUS along nascent mRNAs enables TDP-43, which is highly aggregation-prone, to mix with FUS phase to form mRNA-rich subcompartments. A functional link between FUS and TDP-43 may explain their common implication in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Clément Demongin
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | - Samuel Tranier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vandana Joshi
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | - Léa Ceschi
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | | | - David Pastré
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | - Loic Hamon
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France.
| |
Collapse
|
10
|
Mellios N, Papageorgiou G, Gorgievski V, Maxson G, Hernandez M, Otero M, Varangis M, Dell'Orco M, Perrone-Bizzozero N, Tzavara E. Regulation of neuronal circHomer1 biogenesis by PKA/CREB/ERK-mediated pathways and effects of glutamate and dopamine receptor blockade. RESEARCH SQUARE 2024:rs.3.rs-3547375. [PMID: 38260249 PMCID: PMC10802743 DOI: 10.21203/rs.3.rs-3547375/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There are currently only very few efficacious drug treatments for SCZ and BD, none of which can significantly ameliorate cognitive symptoms. Thus, further research is needed in elucidating molecular pathways linked to cognitive function and antipsychotic treatment. Circular RNAs (circRNAs) are stable brain-enriched non-coding RNAs, derived from the covalent back-splicing of precursor mRNA molecules. CircHomer1 is a neuronal-enriched, activity-dependent circRNA, derived from the precursor of the long HOMER1B mRNA isoform, which is significantly downregulated in the prefrontal cortex of subjects with psychosis and is able to regulate cognitive function. Even though its relevance to psychiatric disorders and its role in brain function and synaptic plasticity have been well established, little is known about the molecular mechanisms that underlie circHomer1 biogenesis in response to neuronal activity and psychiatric drug treatment. Here we suggest that the RNA-binding protein (RBP) FUS positively regulates neuronal circHomer1 expression. Furthermore, we show that the MEK/ERK and PKA/CREB pathways positively regulate neuronal circHomer1 expression, as well as promote the transcription of Fus and Eif4a3, another RBP previously shown to activate circHomer1 biogenesis. We then demonstrate via both in vitro and in vivo studies that NMDA and mGluR5 receptors are upstream modulators of circHomer1 expression. Lastly, we report that in vivo D2R antagonism increases circHomer1 expression, whereas 5HT2AR blockade reduces circHomer1 levels in multiple brain regions. Taken together, this study allows us to gain novel insights into the molecular circuits that underlie the biogenesis of a psychiatric disease-associated circRNA.
Collapse
|
11
|
Rezvykh A, Shteinberg D, Bronovitsky E, Ustyugov A, Funikov S. Animal Models of FUS-Proteinopathy: A Systematic Review. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S34-S56. [PMID: 38621743 DOI: 10.1134/s0006297924140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 04/17/2024]
Abstract
Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.
Collapse
Affiliation(s)
- Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Daniil Shteinberg
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | | | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
12
|
Ho WY, Chak LL, Hor JH, Liu F, Diaz-Garcia S, Chang JC, Sanford E, Rodriguez MJ, Alagappan D, Lim SM, Cho YL, Shimizu Y, Sun AX, Tyan SH, Koo E, Kim SH, Ravits J, Ng SY, Okamura K, Ling SC. FUS-dependent microRNA deregulations identify TRIB2 as a druggable target for ALS motor neurons. iScience 2023; 26:108152. [PMID: 37920668 PMCID: PMC10618709 DOI: 10.1016/j.isci.2023.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
MicroRNAs (miRNAs) modulate mRNA expression, and their deregulation contributes to various diseases including amyotrophic lateral sclerosis (ALS). As fused in sarcoma (FUS) is a causal gene for ALS and regulates biogenesis of miRNAs, we systematically analyzed the miRNA repertoires in spinal cords and hippocampi from ALS-FUS mice to understand how FUS-dependent miRNA deregulation contributes to ALS. miRNA profiling identified differentially expressed miRNAs between different central nervous system (CNS) regions as well as disease states. Among the up-regulated miRNAs, miR-1197 targets the pro-survival pseudokinase Trib2. A reduced TRIB2 expression was observed in iPSC-derived motor neurons from ALS patients. Pharmacological stabilization of TRIB2 protein with a clinically approved cancer drug rescues the survival of iPSC-derived human motor neurons, including those from a sporadic ALS patient. Collectively, our data indicate that miRNA profiling can be used to probe the molecular mechanisms underlying selective vulnerability, and TRIB2 is a potential therapeutic target for ALS.
Collapse
Affiliation(s)
- Wan Yun Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Li-Ling Chak
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Temasek Lifesciences Laboratory, Singapore 117604, Singapore
| | - Jin-Hui Hor
- Institute of Molecular and Cellular Biology, A∗STAR Research Entities, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Fujia Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Sandra Diaz-Garcia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jer-Cherng Chang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Emma Sanford
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Maria J. Rodriguez
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Durgadevi Alagappan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Su Min Lim
- Department of Neurology, Biomedical Research Institute, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Yuji Shimizu
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Alfred Xuyang Sun
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sheue-Houy Tyan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Edward Koo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Seung Hyun Kim
- Department of Neurology, Biomedical Research Institute, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shi-Yan Ng
- Institute of Molecular and Cellular Biology, A∗STAR Research Entities, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Katsutomo Okamura
- Temasek Lifesciences Laboratory, Singapore 117604, Singapore
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
13
|
Pelaez MC, Desmeules A, Gelon PA, Glasson B, Marcadet L, Rodgers A, Phaneuf D, Pozzi S, Dutchak PA, Julien JP, Sephton CF. Neuronal dysfunction caused by FUSR521G promotes ALS-associated phenotypes that are attenuated by NF-κB inhibition. Acta Neuropathol Commun 2023; 11:182. [PMID: 37974279 PMCID: PMC10652582 DOI: 10.1186/s40478-023-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are related neurodegenerative diseases that belong to a common disease spectrum based on overlapping clinical, pathological and genetic evidence. Early pathological changes to the morphology and synapses of affected neuron populations in ALS/FTD suggest a common underlying mechanism of disease that requires further investigation. Fused in sarcoma (FUS) is a DNA/RNA-binding protein with known genetic and pathological links to ALS/FTD. Expression of ALS-linked FUS mutants in mice causes cognitive and motor defects, which correlate with loss of motor neuron dendritic branching and synapses, in addition to other pathological features of ALS/FTD. The role of ALS-linked FUS mutants in causing ALS/FTD-associated disease phenotypes is well established, but there are significant gaps in our understanding of the cell-autonomous role of FUS in promoting structural changes to motor neurons, and how these changes relate to disease progression. Here we generated a neuron-specific FUS-transgenic mouse model expressing the ALS-linked human FUSR521G variant, hFUSR521G/Syn1, to investigate the cell-autonomous role of FUSR521G in causing loss of dendritic branching and synapses of motor neurons, and to understand how these changes relate to ALS-associated phenotypes. Longitudinal analysis of mice revealed that cognitive impairments in juvenile hFUSR521G/Syn1 mice coincide with reduced dendritic branching of cortical motor neurons in the absence of motor impairments or changes in the neuromorphology of spinal motor neurons. Motor impairments and dendritic attrition of spinal motor neurons developed later in aged hFUSR521G/Syn1 mice, along with FUS cytoplasmic mislocalisation, mitochondrial abnormalities and glial activation. Neuroinflammation promotes neuronal dysfunction and drives disease progression in ALS/FTD. The therapeutic effects of inhibiting the pro-inflammatory nuclear factor kappa B (NF-κB) pathway with an analog of Withaferin A, IMS-088, were assessed in symptomatic hFUSR521G/Syn1 mice and were found to improve cognitive and motor function, increase dendritic branches and synapses of motor neurons, and attenuate other ALS/FTD-associated pathological features. Treatment of primary cortical neurons expressing FUSR521G with IMS-088 promoted the restoration of dendritic mitochondrial numbers and mitochondrial activity to wild-type levels, suggesting that inhibition of NF-κB permits the restoration of mitochondrial stasis in our models. Collectively, this work demonstrates that FUSR521G has a cell-autonomous role in causing early pathological changes to dendritic and synaptic structures of motor neurons, and that these changes precede motor defects and other well-known pathological features of ALS/FTD. Finally, these findings provide further support that modulation of the NF-κB pathway in ALS/FTD is an important therapeutic approach to attenuate disease.
Collapse
Affiliation(s)
- Mari Carmen Pelaez
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Antoine Desmeules
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Pauline A Gelon
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Bastien Glasson
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Laetitia Marcadet
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Alicia Rodgers
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Daniel Phaneuf
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Paul A Dutchak
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
14
|
Mamontova EM, Clément MJ, Sukhanova MV, Joshi V, Bouhss A, Rengifo-Gonzalez JC, Desforges B, Hamon L, Lavrik OI, Pastré D. FUS RRM regulates poly(ADP-ribose) levels after transcriptional arrest and PARP-1 activation on DNA damage. Cell Rep 2023; 42:113199. [PMID: 37804508 DOI: 10.1016/j.celrep.2023.113199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023] Open
Abstract
PARP-1 activation at DNA damage sites leads to the synthesis of long poly(ADP-ribose) (PAR) chains, which serve as a signal for DNA repair. Here we show that FUS, an RNA-binding protein, is specifically directed to PAR through its RNA recognition motif (RRM) to increase PAR synthesis by PARP-1 in HeLa cells after genotoxic stress. Using a structural approach, we also identify specific residues located in the FUS RRM, which can be PARylated by PARP-1 to control the level of PAR synthesis. Based on the results of this work, we propose a model in which, following a transcriptional arrest that releases FUS from nascent mRNA, FUS can be recruited by PARP-1 activated by DNA damage to stimulate PAR synthesis. We anticipate that this model offers new perspectives to understand the role of FET proteins in cancers and in certain neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Evgeniya M Mamontova
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
| | - Marie-Jeanne Clément
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia
| | - Vandana Joshi
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ahmed Bouhss
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | | | - Bénédicte Desforges
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Loic Hamon
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia.
| | - David Pastré
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France.
| |
Collapse
|
15
|
Motaln H, Čerček U, Yamoah A, Tripathi P, Aronica E, Goswami A, Rogelj B. Abl kinase-mediated FUS Tyr526 phosphorylation alters nucleocytoplasmic FUS localization in FTLD-FUS. Brain 2023; 146:4088-4104. [PMID: 37071594 PMCID: PMC10545532 DOI: 10.1093/brain/awad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
Nuclear to cytoplasmic mislocalization and aggregation of multiple RNA-binding proteins (RBPs), including FUS, are the main neuropathological features of the majority of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobular degeneration (FTLD). In ALS-FUS, these aggregates arise from disease-associated mutations in FUS, whereas in FTLD-FUS, the cytoplasmic inclusions do not contain mutant FUS, suggesting different molecular mechanisms of FUS pathogenesis in FTLD that remain to be investigated. We have previously shown that phosphorylation of the C-terminal Tyr526 of FUS results in increased cytoplasmic retention of FUS due to impaired binding to the nuclear import receptor TNPO1. Inspired by the above notions, in the current study we developed a novel antibody against the C-terminally phosphorylated Tyr526 FUS (FUSp-Y526) that is specifically capable of recognizing phosphorylated cytoplasmic FUS, which is poorly recognized by other commercially available FUS antibodies. Using this FUSp-Y526 antibody, we demonstrated a FUS phosphorylation-specific effect on the cytoplasmic distribution of soluble and insoluble FUSp-Y526 in various cells and confirmed the involvement of the Src kinase family in Tyr526 FUS phosphorylation. In addition, we found that FUSp-Y526 expression pattern correlates with active pSrc/pAbl kinases in specific brain regions of mice, indicating preferential involvement of cAbl in the cytoplasmic mislocalization of FUSp-Y526 in cortical neurons. Finally, the pattern of immunoreactivity of active cAbl kinase and FUSp-Y526 revealed altered cytoplasmic distribution of FUSp-Y526 in cortical neurons of post-mortem frontal cortex tissue from FTLD patients compared with controls. The overlap of FUSp-Y526 and FUS signals was found preferentially in small diffuse inclusions and was absent in mature aggregates, suggesting possible involvement of FUSp-Y526 in the formation of early toxic FUS aggregates in the cytoplasm that are largely undetected by commercially available FUS antibodies. Given the overlapping patterns of cAbl activity and FUSp-Y526 distribution in cortical neurons, and cAbl induced sequestration of FUSp-Y526 into G3BP1 positive granules in stressed cells, we propose that cAbl kinase is actively involved in mediating cytoplasmic mislocalization and promoting toxic aggregation of wild-type FUS in the brains of FTLD patients, as a novel putative underlying mechanism of FTLD-FUS pathophysiology and progression.
Collapse
Affiliation(s)
- Helena Motaln
- Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Urša Čerček
- Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Alfred Yamoah
- Institute of Neuropathology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Priyanka Tripathi
- Institute of Neuropathology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of Neuropathology, Amsterdam Neuroscience, 1105 Amsterdam, The Netherlands
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University Medical School, 52074 Aachen, Germany
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Eleanor and Lou Gherig ALS Center, Columbia University, New York, NY 10032, USA
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Thompson VF, Wieland DR, Mendoza-Leon V, Janis HI, Lay MA, Harrell LM, Schwartz JC. Binding of the nuclear ribonucleoprotein family member FUS to RNA prevents R-loop RNA:DNA hybrid structures. J Biol Chem 2023; 299:105237. [PMID: 37690693 PMCID: PMC10556777 DOI: 10.1016/j.jbc.2023.105237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
The protein FUS (FUSed in sarcoma) is a metazoan RNA-binding protein that influences RNA production by all three nuclear polymerases. FUS also binds nascent transcripts, RNA processing factors, RNA polymerases, and transcription machinery. Here, we explored the role of FUS binding interactions for activity during transcription. In vitro run-off transcription assays revealed FUS-enhanced RNA produced by a non-eukaryote polymerase. The activity also reduced the formation of R-loops between RNA products and their DNA template. Analysis by domain mutation and deletion indicated RNA-binding was required for activity. We interpret that FUS binds and sequesters nascent transcripts to prevent R-loops from forming with nearby DNA. DRIP-seq analysis showed that a knockdown of FUS increased R-loop enrichment near expressed genes. Prevention of R-loops by FUS binding to nascent transcripts has the potential to affect transcription by any RNA polymerase, highlighting the broad impact FUS can have on RNA metabolism in cells and disease.
Collapse
Affiliation(s)
- Valery F Thompson
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Daniel R Wieland
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Vivian Mendoza-Leon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Helen I Janis
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Michelle A Lay
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Lucas M Harrell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Jacob C Schwartz
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA.
| |
Collapse
|
17
|
Rajan SS, Ebegboni VJ, Pichling P, Ludwig KR, Jones TL, Chari R, Tran A, Kruhlak MJ, Loncarek J, Caplen NJ. EWSR1's visual modalities are defined by its association with nucleic acids and RNA polymerase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553246. [PMID: 37645932 PMCID: PMC10462028 DOI: 10.1101/2023.08.16.553246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We report systematic analysis of endogenous EWSR1's cellular organization. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Interestingly, EWSR1 and FUS, another FET protein, exhibit distinct spatial organizations. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Vernon J. Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Patricio Pichling
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program at the Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Andy Tran
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael J. Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jadranka Loncarek
- Centrosome Biology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| |
Collapse
|
18
|
Barry A, Samuel SF, Hosni I, Moursi A, Feugere L, Sennett CJ, Deepak S, Achawal S, Rajaraman C, Iles A, Wollenberg Valero KC, Scott IS, Green V, Stead LF, Greenman J, Wade MA, Beltran-Alvarez P. Investigating the effects of arginine methylation inhibitors on microdissected brain tumour biopsies maintained in a miniaturised perfusion system. LAB ON A CHIP 2023; 23:2664-2682. [PMID: 37191188 DOI: 10.1039/d3lc00204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arginine methylation is a post-translational modification that consists of the transfer of one or two methyl (CH3) groups to arginine residues in proteins. Several types of arginine methylation occur, namely monomethylation, symmetric dimethylation and asymmetric dimethylation, which are catalysed by different protein arginine methyltransferases (PRMTs). Inhibitors of PRMTs have recently entered clinical trials to target several types of cancer, including gliomas (NCT04089449). People with glioblastoma (GBM), the most aggressive form of brain tumour, are among those with the poorest quality of life and likelihood of survival of anyone diagnosed with cancer. There is currently a lack of (pre)clinical research on the possible application of PRMT inhibitors to target brain tumours. Here, we set out to investigate the effects of clinically-relevant PRMT inhibitors on GBM biopsies. We present a new, low-cost, easy to fabricate perfusion device that can maintain GBM tissue in a viable condition for at least eight days post-surgical resection. The miniaturised perfusion device enables the treatment of GBM tissue with PRMT inhibitors ex vivo, and we observed a two-fold increase in apoptosis in treated samples compared to parallel control experiments. Mechanistically, we show thousands of differentially expressed genes after treatment, and changes in the type of arginine methylation of the RNA binding protein FUS that are consistent with hundreds of differential gene splicing events. This is the first time that cross-talk between different types of arginine methylation has been observed in clinical samples after treatment with PRMT inhibitors.
Collapse
Affiliation(s)
- Antonia Barry
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Sabrina F Samuel
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Ines Hosni
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Amr Moursi
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | | | - Srihari Deepak
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Shailendra Achawal
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Chittoor Rajaraman
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | | | | | - Ian S Scott
- Neuroscience Laboratories, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Vicky Green
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Lucy F Stead
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - John Greenman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Mark A Wade
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | | |
Collapse
|
19
|
Bertrand E, Demongin C, Dobra I, Rengifo-Gonzalez JC, Singatulina AS, Sukhanova MV, Lavrik OI, Pastré D, Hamon L. FUS fibrillation occurs through a nucleation-based process below the critical concentration required for liquid-liquid phase separation. Sci Rep 2023; 13:7772. [PMID: 37179431 PMCID: PMC10183042 DOI: 10.1038/s41598-023-34558-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
FUS is an RNA-binding protein involved in familiar forms of ALS and FTLD that also assembles into fibrillar cytoplasmic aggregates in some neurodegenerative diseases without genetic causes. The self-adhesive prion-like domain in FUS generates reversible condensates via the liquid-liquid phase separation process (LLPS) whose maturation can lead to the formation of insoluble fibrillar aggregates in vitro, consistent with the appearance of cytoplasmic inclusions in ageing neurons. Using a single-molecule imaging approach, we reveal that FUS can assemble into nanofibrils at concentrations in the nanomolar range. These results suggest that the formation of fibrillar aggregates of FUS could occur in the cytoplasm at low concentrations of FUS, below the critical ones required to trigger the liquid-like condensate formation. Such nanofibrils may serve as seeds for the formation of pathological inclusions. Interestingly, the fibrillation of FUS at low concentrations is inhibited by its binding to mRNA or after the phosphorylation of its prion-like domain, in agreement with previous models.
Collapse
Affiliation(s)
- Emilie Bertrand
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Clément Demongin
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Ioana Dobra
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | | | - Anastasia S Singatulina
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia, 630090
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia, 630090
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia, 630090
| | - David Pastré
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Loic Hamon
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France.
| |
Collapse
|
20
|
Zimyanin VL, Pielka AM, Glaß H, Japtok J, Großmann D, Martin M, Deussen A, Szewczyk B, Deppmann C, Zunder E, Andersen PM, Boeckers TM, Sterneckert J, Redemann S, Storch A, Hermann A. Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons. Cells 2023; 12:1352. [PMID: 37408187 PMCID: PMC10216752 DOI: 10.3390/cells12101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 07/07/2023] Open
Abstract
Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Vitaly L Zimyanin
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna-Maria Pielka
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dajana Großmann
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Melanie Martin
- Institute of Physiology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Barbara Szewczyk
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Chris Deppmann
- Department of Biology, Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22902, USA
| | - Eli Zunder
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, VA 22902, USA
| | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Tobias M Boeckers
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm Site, 89081 Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Jared Sterneckert
- Centre for Regenerative Therapie, Technische Universität Dresden, 01307 Dresden, Germany
- Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22902, USA
| | - Alexander Storch
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Centre, University of Rostock, 18147 Rostock, Germany
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Centre, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
21
|
Wang JY, Ma GM, Tang XQ, Shi QL, Yu MC, Lou MM, He KW, Wang WY. Brain region-specific synaptic function of FUS underlies the FTLD-linked behavioural disinhibition. Brain 2023; 146:2107-2119. [PMID: 36345573 DOI: 10.1093/brain/awac411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/10/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Synaptic dysfunction is one of the earliest pathological processes that contribute to the development of many neurological disorders, including Alzheimer's disease and frontotemporal lobar degeneration. However, the synaptic function of many disease-causative genes and their contribution to the pathogenesis of the related diseases remain unclear. In this study, we investigated the synaptic role of fused in sarcoma, an RNA-binding protein linked to frontotemporal lobar degeneration and amyotrophic lateral sclerosis, and its potential pathological role in frontotemporal lobar degeneration using pyramidal neuron-specific conditional knockout mice (FuscKO). We found that FUS regulates the expression of many genes associated with synaptic function in a hippocampal subregion-specific manner, concomitant with the frontotemporal lobar degeneration-linked behavioural disinhibition. Electrophysiological study and molecular pathway analyses further reveal that fused in sarcoma differentially regulates synaptic and neuronal properties in the ventral hippocampus and medial prefrontal cortex, respectively. Moreover, fused in sarcoma selectively modulates the ventral hippocampus-prefrontal cortex projection, which is known to mediate the anxiety-like behaviour. Our findings unveil the brain region- and synapse-specific role of fused in sarcoma, whose impairment might lead to the emotional symptoms associated with frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Jun-Ying Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Ming Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qiang Tang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
| | - Qi-Li Shi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
| | - Ming-Can Yu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
| | - Min-Min Lou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai-Wen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
| | - Wen-Yuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Animal Center of Zoology, Institute of Neuroscience, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
22
|
Djaja NA, Chang MT, Beinart FR, Morris VM, Ganser LR, Myong S. Nucleation and dissolution mechanism underlying amyotrophic lateral sclerosis/frontotemporal lobar dementia-linked fused in sarcoma condensates. iScience 2023; 26:106537. [PMID: 37123224 PMCID: PMC10139993 DOI: 10.1016/j.isci.2023.106537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Fused in sarcoma (FUS) is a nuclear RNA-binding protein. Mutations in FUS lead to the mislocalization of FUS from the nucleus to the cytosol and formation of pathogenic aggregates in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), yet with unknown molecular mechanisms. Using mutant and stress conditions, we visualized FUS localization and aggregate formation in cells. We used single-molecule pull-down (SiMPull) to quantify the native oligomerization states of wildtype (WT) and mutant FUS in cells. We demonstrate that the NLS mutants exhibited the highest oligomerization (>3) followed by other FUS mutants (>2) and WT FUS which is primarily monomeric. Strikingly, the mutant FUS oligomers are extremely stable and resistant to treatment by high salt, hexanediol, RNase, and Karyopherin-β2 and only soluble in GdnHCl and SDS. We propose that the increased oligomerization units of mutant FUS and their high stability may contribute to ALS/FTLD pathogenesis.
Collapse
Affiliation(s)
- Nathalie A. Djaja
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Matthew T. Chang
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Freya R. Beinart
- Department of Biology, Kenyon College, 106 College Park Dr, Gambler, OH 43022, USA
| | - Vivian M. Morris
- Lymphoid Malignancy Branch, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20814, USA
| | - Laura R. Ganser
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sua Myong
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
23
|
Assoni AF, Foijer F, Zatz M. Amyotrophic Lateral Sclerosis, FUS and Protein Synthesis Defects. Stem Cell Rev Rep 2022; 19:625-638. [PMID: 36515764 DOI: 10.1007/s12015-022-10489-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that mainly affects the motor system. It is a very heterogeneous disorder, so far more than 40 genes have been described as responsible for ALS. The cause of motor neuron degeneration is not yet fully understood, but there is consensus in the literature that it is the result of a complex interplay of several pathogenic processes, which include alterations in nucleocytoplasmic transport, defects in transcription and splicing, altered formation and/or disassembly of stress granules and impaired proteostasis. These defects result in protein aggregation, impaired DNA repair, mitochondrial dysfunction and oxidative stress, neuroinflammation, impaired axonal transport, impaired vesicular transport, excitotoxicity, as well as impaired calcium influx. We argue here that all the above functions ultimately lead to defects in protein synthesis. Fused in Sarcoma (FUS) is one of the genes associated with ALS. It causes ALS type 6 when mutated and is found mislocalized to the cytoplasm in the motor neurons of sporadic ALS patients (without FUS mutations). In addition, FUS plays a role in all cellular functions that are impaired in degenerating motor neurons. Moreover, ALS patients with FUS mutations present the first symptoms significantly earlier than in other forms of the disease. Therefore, the aim of this review is to further discuss ALS6, detail the cellular functions of FUS, and suggest that the localization of FUS, as well as protein synthesis rates, could be hallmarks of the ALS phenotype and thus good therapeutic targets.
Collapse
Affiliation(s)
- Amanda Faria Assoni
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 055080-090, CidadeUniversitária, São Paulo, Brazil.,European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 055080-090, CidadeUniversitária, São Paulo, Brazil.
| |
Collapse
|
24
|
Zou H, Wang JY, Ma GM, Xu MM, Luo F, Zhang L, Wang WY. The function of FUS in neurodevelopment revealed by the brain and spinal cord organoids. Mol Cell Neurosci 2022; 123:103771. [PMID: 36064132 DOI: 10.1016/j.mcn.2022.103771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/30/2022] Open
Abstract
The precise control of proliferation and differentiation of neural progenitors is crucial for the development of the central nervous system. Fused in sarcoma (FUS) is an RNA-binding protein pathogenetically linked to Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD) disease, yet the function of FUS on neurodevelopment is remained to be defined. Here we report a pivotal role of FUS in regulating the human cortical brain and spinal cord development via the human iPSCs-derived organoids. We found that depletion of FUS via CRISPR/CAS9 leads to an enhancement of neural proliferation and differentiation in cortical brain-organoids, but intriguingly an impairment of these phenotypes in spinal cord-organoids. In addition, FUS binds to the mRNA of a Trk tyrosine kinase receptor of neurotrophin-3 (Ntrk3) and regulates the expression of the different isoforms of Ntrk3 in a tissue-specific manner. Finally, alleviated Ntrk3 level via shRNA rescued the effects of FUS-knockout on the development of the brain- and spinal cord-organoids, suggesting that Ntrk3 is involved in FUS-regulated organoids developmental changes. Our findings uncovered the role of FUS in the neurodevelopment of the human CNS.
Collapse
Affiliation(s)
- Huan Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Ying Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Ming Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei-Mei Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China
| | - Lin Zhang
- Obstetrics Department, International Peace Maternity and Child Health Hospital of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Yuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China; Department of Rehabilitation Medicine, Hua-Shan Hospital, Fudan University, Shanghai 200040, China; Animal Center of Zoology, Institute of Neuroscience, Kunming medical University, Kunming, China.
| |
Collapse
|
25
|
Taylor R, Hamid F, Fielding T, Gordon PM, Maloney M, Makeyev EV, Houart C. Prematurely terminated intron-retaining mRNAs invade axons in SFPQ null-driven neurodegeneration and are a hallmark of ALS. Nat Commun 2022; 13:6994. [PMID: 36414621 PMCID: PMC9681851 DOI: 10.1038/s41467-022-34331-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Loss of SFPQ is a hallmark of motor degeneration in ALS and prevents maturation of motor neurons when occurring during embryogenesis. Here, we show that in zebrafish, developing motor neurons lacking SFPQ exhibit axon extension, branching and synaptogenesis defects, prior to degeneration. Subcellular transcriptomics reveals that loss of SFPQ in neurons produces a complex set of aberrant intron-retaining (IR) transcripts coding for neuron-specific proteins that accumulate in neurites. Some of these local IR mRNAs are prematurely terminated within the retained intron (PreT-IR). PreT-IR mRNAs undergo intronic polyadenylation, nuclear export, and localise to neurites in vitro and in vivo. We find these IR and PreT-IR mRNAs enriched in RNAseq datasets of tissue from patients with familial and sporadic ALS. This shared signature, between SFPQ-depleted neurons and ALS, functionally implicates SFPQ with the disease and suggests that neurite-centred perturbation of alternatively spliced isoforms drives the neurodegenerative process.
Collapse
Affiliation(s)
- Richard Taylor
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK.
| | - Fursham Hamid
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Triona Fielding
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Patricia M Gordon
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Megan Maloney
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
26
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
27
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
28
|
Abstract
Biomolecular condensates are intracellular organelles that are not bounded by membranes and often show liquid-like, dynamic material properties. They typically contain various types of proteins and nucleic acids. How the interaction of proteins and nucleic acids finally results in dynamic condensates is not fully understood. Here we use optical tweezers and fluorescence microscopy to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) condenses with individual molecules of single- and double-stranded DNA. We find that FUS adsorbs on DNA in a monolayer and hence generates an effectively sticky FUS–DNA polymer that collapses and finally forms a dynamic, reversible FUS–DNA co-condensate. We speculate that protein monolayer-based protein–nucleic acid co-condensation is a general mechanism for forming intracellular membraneless organelles. Biomolecular condensates provide distinct compartments that can localize and organize biochemistry inside cells. Recent evidence suggests that condensate formation is prevalent in the cell nucleus. To understand how different components of the nucleus interact during condensate formation is an important challenge. In particular, the physics of co-condensation of proteins together with nucleic acids remains elusive. Here we use optical tweezers to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) forms liquid-like assemblies in vitro, by co-condensing together with individual DNA molecules. Through progressive force-induced peeling of dsDNA, buffer exchange, and force measurements, we show that FUS adsorbing in a single layer on DNA effectively generates a sticky FUS–DNA polymer that can collapse to form a liquid-like FUS–DNA co-condensate. Condensation occurs at constant DNA tension for double-stranded DNA, which is a signature of phase separation. We suggest that co-condensation mediated by protein monolayer adsorption on nucleic acids is an important mechanism for intracellular compartmentalization.
Collapse
|
29
|
Nicolas G, Sévigny M, Lecoquierre F, Marguet F, Deschênes A, del Pelaez MC, Feuillette S, Audebrand A, Lecourtois M, Rousseau S, Richard AC, Cassinari K, Deramecourt V, Duyckaerts C, Boland A, Deleuze JF, Meyer V, Clarimon Echavarria J, Gelpi E, Akiyama H, Hasegawa M, Kawakami I, Wong TH, Van Rooij JGJ, Van Swieten JC, Campion D, Dutchak PA, Wallon D, Lavoie-Cardinal F, Laquerrière A, Rovelet-Lecrux A, Sephton CF. A postzygotic de novo NCDN mutation identified in a sporadic FTLD patient results in neurochondrin haploinsufficiency and altered FUS granule dynamics. Acta Neuropathol Commun 2022; 10:20. [PMID: 35151370 PMCID: PMC8841087 DOI: 10.1186/s40478-022-01314-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
Frontotemporal dementia (FTD) is a heterogeneous clinical disorder characterized by progressive abnormalities in behavior, executive functions, personality, language and/or motricity. A neuropathological subtype of FTD, frontotemporal lobar degeneration (FTLD)-FET, is characterized by protein aggregates consisting of the RNA-binding protein fused in sarcoma (FUS). The cause of FTLD-FET is not well understood and there is a lack of genetic evidence to aid in the investigation of mechanisms of the disease. The goal of this study was to identify genetic variants contributing to FTLD-FET and to investigate their effects on FUS pathology. We performed whole-exome sequencing on a 50-year-old FTLD patient with ubiquitin and FUS-positive neuronal inclusions and unaffected parents, and identified a de novo postzygotic nonsense variant in the NCDN gene encoding Neurochondrin (NCDN), NM_014284.3:c.1206G > A, p.(Trp402*). The variant was associated with a ~ 31% reduction in full-length protein levels in the patient’s brain, suggesting that this mutation leads to NCDN haploinsufficiency. We examined the effects of NCDN haploinsufficiency on FUS and found that depleting primary cortical neurons of NCDN causes a reduction in the total number of FUS-positive cytoplasmic granules. Moreover, we found that these granules were significantly larger and more highly enriched with FUS. We then examined the effects of a loss of FUS function on NCDN in neurons and found that depleting cells of FUS leads to a decrease in NCDN protein and mRNA levels. Our study identifies the NCDN protein as a likely contributor of FTLD-FET pathophysiology. Moreover, we provide evidence for a negative feedback loop of toxicity between NCDN and FUS, where loss of NCDN alters FUS cytoplasmic dynamics, which in turn has an impact on NCDN expression.
Collapse
|
30
|
Carey JL, Guo L. Liquid-Liquid Phase Separation of TDP-43 and FUS in Physiology and Pathology of Neurodegenerative Diseases. Front Mol Biosci 2022; 9:826719. [PMID: 35187086 PMCID: PMC8847598 DOI: 10.3389/fmolb.2022.826719] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation of RNA-binding proteins mediates the formation of numerous membraneless organelles with essential cellular function. However, aberrant phase transition of these proteins leads to the formation of insoluble protein aggregates, which are pathological hallmarks of neurodegenerative diseases including ALS and FTD. TDP-43 and FUS are two such RNA-binding proteins that mislocalize and aggregate in patients of ALS and FTD. They have similar domain structures that provide multivalent interactions driving their phase separation in vitro and in the cellular environment. In this article, we review the factors that mediate and regulate phase separation of TDP-43 and FUS. We also review evidences that connect the phase separation property of TDP-43 and FUS to their functional roles in cells. Aberrant phase transition of TDP-43 and FUS leads to protein aggregation and disrupts their regular cell function. Therefore, restoration of functional protein phase of TDP-43 and FUS could be beneficial for neuronal cells. We discuss possible mechanisms for TDP-43 and FUS aberrant phase transition and aggregation while reviewing the methods that are currently being explored as potential therapeutic strategies to mitigate aberrant phase transition and aggregation of TDP-43 and FUS.
Collapse
Affiliation(s)
| | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract 2022; 4:2. [PMID: 34983696 PMCID: PMC8725368 DOI: 10.1186/s42466-021-00162-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. MAIN BODY Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. CONCLUSION RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| |
Collapse
|
32
|
Sahadevan S, Pérez-Berlanga M, Polymenidou M. Identification of RNA-RBP Interactions in Subcellular Compartments by CLIP-Seq. Methods Mol Biol 2022; 2428:305-323. [PMID: 35171488 DOI: 10.1007/978-1-0716-1975-9_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) allows the identification of RNA targets bound by a specific RNA-binding protein (RBP) in in vivo and ex vivo experimental models with high specificity. Due to the little RNA yield obtained after cross-linking, immunoprecipitation, polyacrylamide gel electrophoresis, membrane transfer, and RNA extraction, CLIP-seq is usually performed from relatively large amounts of starting material, like cell lysates or tissue homogenates. However, RBP binding of its specific RNA targets depends on its subcellular localization, and a different set of RNAs may be bound by the same RBP within distinct subcellular sites. To uncover these RNA subsets, preparation of CLIP-seq libraries from specific subcellular compartments and comparison to CLIP-seq datasets from total lysates is necessary, yet there are currently no available protocols for this. Here we describe the adaptation of CLIP-seq to identify the specific RNA targets of an RBP (FUS) at a small subcompartment, that is, neuronal synapses, including subcompartment isolation, RBP-RNA complex enrichment, and upscaling steps.
Collapse
Affiliation(s)
- Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
33
|
Jutzi D, Ruepp MD. Alternative Splicing in Human Biology and Disease. Methods Mol Biol 2022; 2537:1-19. [PMID: 35895255 DOI: 10.1007/978-1-0716-2521-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative pre-mRNA splicing allows for the production of multiple mRNAs from an individual gene, which not only expands the protein-coding potential of the genome but also enables complex mechanisms for the post-transcriptional control of gene expression. Regulation of alternative splicing entails a combinatorial interplay between an abundance of trans-acting splicing factors, cis-acting regulatory sequence elements and their concerted effects on the core splicing machinery. Given the extent and biological significance of alternative splicing in humans, it is not surprising that aberrant splicing patterns can cause or contribute to a wide range of diseases. In this introductory chapter, we outline the mechanisms that govern alternative pre-mRNA splicing and its regulation and discuss how dysregulated splicing contributes to human diseases affecting the motor system and the brain.
Collapse
Affiliation(s)
- Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| |
Collapse
|
34
|
Cao D. An autoregulation loop in fust-1 for circular RNA regulation in Caenorhabditis elegans. Genetics 2021; 219:iyab145. [PMID: 34740247 PMCID: PMC8570788 DOI: 10.1093/genetics/iyab145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Many circular RNAs (circRNAs) are differentially expressed in different tissues or cell types, suggestive of specific factors that regulate their biogenesis. Here, taking advantage of available mutation strains of RNA-binding proteins (RBPs) in Caenorhabditis elegans, I performed a screening of circRNA regulation in 13 conserved RBPs. Among them, loss of FUST-1, the homolog of Fused in Sarcoma (FUS), caused downregulation of multiple circRNAs. By rescue experiments, I confirmed FUST-1 as a circRNA regulator. Through RNA sequencing using circRNA-enriched samples, circRNAs targets regulated by FUST-1 were identified globally, with hundreds of them significantly altered. Furthermore, I showed that FUST-1 regulates circRNA formation with only small to little effect on the cognate linear mRNAs. When recognizing circRNA pre-mRNAs, FUST-1 can affect both exon-skipping and circRNA in the same genes. Moreover, I identified an autoregulation loop in fust-1, where FUST-1, isoform a (FUST-1A) promotes the skipping of exon 5 of its own pre-mRNA, which produces FUST-1, isoform b (FUST-1B) with different N-terminal sequences. FUST-1A is the functional isoform in circRNA regulation. Although FUST-1B has the same functional domains as FUST-1A, it cannot regulate either exon-skipping or circRNA formation. This study provided an in vivo investigation of circRNA regulation, which will be helpful to understand the mechanisms that govern circRNA formation.
Collapse
Affiliation(s)
- Dong Cao
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
35
|
Yoneda R, Ueda N, Kurokawa R. m 6A Modified Short RNA Fragments Inhibit Cytoplasmic TLS/FUS Aggregation Induced by Hyperosmotic Stress. Int J Mol Sci 2021; 22:ijms222011014. [PMID: 34681673 PMCID: PMC8539258 DOI: 10.3390/ijms222011014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Translocated in LipoSarcoma/Fused in Sarcoma (TLS/FUS) is a nuclear RNA binding protein whose mutations cause amyotrophic lateral sclerosis. TLS/FUS undergoes LLPS and forms membraneless particles with other proteins and nucleic acids. Interaction with RNA alters conformation of TLS/FUS, which affects binding with proteins, but the effect of m6A RNA modification on the TLS/FUS–RNA interaction remains elusive. Here, we investigated the binding specificity of TLS/FUS to m6A RNA fragments by RNA pull down assay, and elucidated that both wild type and ALS-related TLS/FUS mutants strongly bound to m6A modified RNAs. TLS/FUS formed cytoplasmic foci by treating hyperosmotic stress, but the cells transfected with m6A-modified RNAs had a smaller number of foci. Moreover, m6A-modified RNA transfection resulted in the cells obtaining higher resistance to the stress. In summary, we propose TLS/FUS as a novel candidate of m6A recognition protein, and m6A-modified RNA fragments diffuse cytoplasmic TLS/FUS foci and thereby enhance cell viability.
Collapse
|
36
|
Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci 2021; 78:6143-6160. [PMID: 34322715 PMCID: PMC11072332 DOI: 10.1007/s00018-021-03905-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Via dei Taurini 19, 00185, Rome, Italy.
| |
Collapse
|
37
|
Novak V, Rogelj B, Župunski V. Therapeutic Potential of Polyphenols in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Antioxidants (Basel) 2021; 10:antiox10081328. [PMID: 34439576 PMCID: PMC8389294 DOI: 10.3390/antiox10081328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are severe neurodegenerative disorders that belong to a common disease spectrum. The molecular and cellular aetiology of the spectrum is a highly complex encompassing dysfunction in many processes, including mitochondrial dysfunction and oxidative stress. There is a paucity of treatment options aside from therapies with subtle effects on the post diagnostic lifespan and symptom management. This presents great interest and necessity for the discovery and development of new compounds and therapies with beneficial effects on the disease. Polyphenols are secondary metabolites found in plant-based foods and are well known for their antioxidant activity. Recent research suggests that they also have a diverse array of neuroprotective functions that could lead to better treatments for neurodegenerative diseases. We present an overview of the effects of various polyphenols in cell line and animal models of ALS/FTD. Furthermore, possible mechanisms behind actions of the most researched compounds (resveratrol, curcumin and green tea catechins) are discussed.
Collapse
Affiliation(s)
- Valentina Novak
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
| | - Boris Rogelj
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Vera Župunski
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
- Correspondence:
| |
Collapse
|
38
|
Birsa N, Ule AM, Garone MG, Tsang B, Mattedi F, Chong PA, Humphrey J, Jarvis S, Pisiren M, Wilkins OG, Nosella ML, Devoy A, Bodo C, de la Fuente RF, Fisher EMC, Rosa A, Viero G, Forman-Kay JD, Schiavo G, Fratta P. FUS-ALS mutants alter FMRP phase separation equilibrium and impair protein translation. SCIENCE ADVANCES 2021; 7:7/30/eabf8660. [PMID: 34290090 PMCID: PMC8294762 DOI: 10.1126/sciadv.abf8660] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
FUsed in Sarcoma (FUS) is a multifunctional RNA binding protein (RBP). FUS mutations lead to its cytoplasmic mislocalization and cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Here, we use mouse and human models with endogenous ALS-associated mutations to study the early consequences of increased cytoplasmic FUS. We show that in axons, mutant FUS condensates sequester and promote the phase separation of fragile X mental retardation protein (FMRP), another RBP associated with neurodegeneration. This leads to repression of translation in mouse and human FUS-ALS motor neurons and is corroborated in vitro, where FUS and FMRP copartition and repress translation. Last, we show that translation of FMRP-bound RNAs is reduced in vivo in FUS-ALS motor neurons. Our results unravel new pathomechanisms of FUS-ALS and identify a novel paradigm by which mutations in one RBP favor the formation of condensates sequestering other RBPs, affecting crucial biological functions, such as protein translation.
Collapse
Affiliation(s)
- Nicol Birsa
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Agnieszka M Ule
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Maria Giovanna Garone
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Brian Tsang
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Francesca Mattedi
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Institute of Biophysics, CNR, Trento, Italy
| | - P Andrew Chong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jack Humphrey
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Seth Jarvis
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Melis Pisiren
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Oscar G Wilkins
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Micheal L Nosella
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anny Devoy
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London SE5 9RT, UK
| | - Cristian Bodo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | | | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
- MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
39
|
Sahadevan S, Hembach KM, Tantardini E, Pérez-Berlanga M, Hruska-Plochan M, Megat S, Weber J, Schwarz P, Dupuis L, Robinson MD, De Rossi P, Polymenidou M. Synaptic FUS accumulation triggers early misregulation of synaptic RNAs in a mouse model of ALS. Nat Commun 2021; 12:3027. [PMID: 34021139 PMCID: PMC8140117 DOI: 10.1038/s41467-021-23188-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mutations disrupting the nuclear localization of the RNA-binding protein FUS characterize a subset of amyotrophic lateral sclerosis patients (ALS-FUS). FUS regulates nuclear RNAs, but its role at the synapse is poorly understood. Using super-resolution imaging we determined that the localization of FUS within synapses occurs predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosomes, we identified synaptic FUS RNA targets, encoding proteins associated with synapse organization and plasticity. Significant increase of synaptic FUS during early disease in a mouse model of ALS was accompanied by alterations in density and size of GABAergic synapses. mRNAs abnormally accumulated at the synapses of 6-month-old ALS-FUS mice were enriched for FUS targets and correlated with those depicting increased short-term mRNA stability via binding primarily on multiple exonic sites. Our study indicates that synaptic FUS accumulation in early disease leads to synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Collapse
Affiliation(s)
- Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Katharina M Hembach
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | | | | - Salim Megat
- Inserm, University of Strasbourg, Strasbourg, France
| | - Julien Weber
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, Zürich, Switzerland
| | - Luc Dupuis
- Inserm, University of Strasbourg, Strasbourg, France
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | |
Collapse
|
40
|
Scekic-Zahirovic J, Sanjuan-Ruiz I, Kan V, Megat S, De Rossi P, Dieterlé S, Cassel R, Jamet M, Kessler P, Wiesner D, Tzeplaeff L, Demais V, Sahadevan S, Hembach KM, Muller HP, Picchiarelli G, Mishra N, Antonucci S, Dirrig-Grosch S, Kassubek J, Rasche V, Ludolph A, Boutillier AL, Roselli F, Polymenidou M, Lagier-Tourenne C, Liebscher S, Dupuis L. Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects. Nat Commun 2021; 12:3028. [PMID: 34021132 PMCID: PMC8140148 DOI: 10.1038/s41467-021-23187-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gene mutations causing cytoplasmic mislocalization of the RNA-binding protein FUS lead to severe forms of amyotrophic lateral sclerosis (ALS). Cytoplasmic accumulation of FUS is also observed in other diseases, with unknown consequences. Here, we show that cytoplasmic mislocalization of FUS drives behavioral abnormalities in knock-in mice, including locomotor hyperactivity and alterations in social interactions, in the absence of widespread neuronal loss. Mechanistically, we identified a progressive increase in neuronal activity in the frontal cortex of Fus knock-in mice in vivo, associated with altered synaptic gene expression. Synaptic ultrastructural and morphological defects were more pronounced in inhibitory than excitatory synapses and associated with increased synaptosomal levels of FUS and its RNA targets. Thus, cytoplasmic FUS triggers synaptic deficits, which is leading to increased neuronal activity in frontal cortex and causing related behavioral phenotypes. These results indicate that FUS mislocalization may trigger deleterious phenotypes beyond motor neuron impairment in ALS, likely relevant also for other neurodegenerative diseases characterized by FUS mislocalization.
Collapse
Affiliation(s)
- Jelena Scekic-Zahirovic
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Inmaculada Sanjuan-Ruiz
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Vanessa Kan
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
- BioMedical Center, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Salim Megat
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Stéphane Dieterlé
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Raphaelle Cassel
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
| | - Marguerite Jamet
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Pascal Kessler
- Université de Strasbourg, Inserm, Unité mixte de service du CRBS, UMS 038, Strasbourg, France
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Laura Tzeplaeff
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
| | - Valérie Demais
- Plateforme Imagerie In Vitro, CNRS UPS-3156, NeuroPôle, Strasbourg, France
| | - Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Katharina M Hembach
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | | - Gina Picchiarelli
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Nibha Mishra
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Stefano Antonucci
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Sylvie Dirrig-Grosch
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
| | - Volker Rasche
- Ulm University Medical Center, Department of Internal Medicine II, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Anne-Laurence Boutillier
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | | | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany.
- BioMedical Center, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France.
| |
Collapse
|
41
|
Harley J, Clarke BE, Patani R. The Interplay of RNA Binding Proteins, Oxidative Stress and Mitochondrial Dysfunction in ALS. Antioxidants (Basel) 2021; 10:antiox10040552. [PMID: 33918215 PMCID: PMC8066094 DOI: 10.3390/antiox10040552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Jasmine Harley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin E. Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Correspondence: (B.E.C.); (R.P.)
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Hospital for Neurology and Neurosurgery, University College London NHS, London WC1N 3BG, UK
- Correspondence: (B.E.C.); (R.P.)
| |
Collapse
|
42
|
Strittmatter LM, Capitanchik C, Newman AJ, Hallegger M, Norman CM, Fica SM, Oubridge C, Luscombe NM, Ule J, Nagai K. psiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation. Nat Commun 2021; 12:1488. [PMID: 33674615 PMCID: PMC7935899 DOI: 10.1038/s41467-021-21745-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
RNA helicases remodel the spliceosome to enable pre-mRNA splicing, but their binding and mechanism of action remain poorly understood. To define helicase-RNA contacts in specific spliceosomal states, we develop purified spliceosome iCLIP (psiCLIP), which reveals dynamic helicase-RNA contacts during splicing catalysis. The helicase Prp16 binds along the entire available single-stranded RNA region between the branchpoint and 3'-splice site, while Prp22 binds diffusely downstream of the branchpoint before exon ligation, but then switches to more narrow binding in the downstream exon after exon ligation, arguing against a mechanism of processive translocation. Depletion of the exon-ligation factor Prp18 destabilizes Prp22 binding to the pre-mRNA, suggesting that proofreading by Prp22 may sense the stability of the spliceosome during exon ligation. Thus, psiCLIP complements structural studies by providing key insights into the binding and proofreading activity of spliceosomal RNA helicases.
Collapse
Affiliation(s)
| | | | | | - Martina Hallegger
- The Francis Crick Institute, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | | | | | | | - Nicholas M Luscombe
- The Francis Crick Institute, London, UK
- UCL Genetics Institute, Department of Genetics, Environment and Evolution, University College London, London, UK
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| | | |
Collapse
|
43
|
Hafner M, Katsantoni M, Köster T, Marks J, Mukherjee J, Staiger D, Ule J, Zavolan M. CLIP and complementary methods. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00018-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Malnar M, Rogelj B. SFPQ regulates the accumulation of RNA foci and dipeptide repeat proteins from the expanded repeat mutation in C9orf72. J Cell Sci 2021; 134:jcs.256602. [PMID: 33495278 PMCID: PMC7904093 DOI: 10.1242/jcs.256602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
The expanded GGGGCC repeat mutation in the C9orf72 gene is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansion is transcribed to sense and antisense RNA, which form RNA foci and bind cellular proteins. This mechanism of action is considered cytotoxic. Translation of the expanded RNA transcripts also leads to the accumulation of toxic dipeptide repeat proteins (DPRs). The RNA-binding protein splicing factor proline and glutamine rich (SFPQ), which is being increasingly associated with ALS and FTD pathology, binds to sense RNA foci. Here, we show that SFPQ plays an important role in the C9orf72 mutation. Overexpression of SFPQ resulted in higher numbers of both sense and antisense RNA foci and DPRs in transfected human embryonic kidney (HEK) cells. Conversely, reduced SPFQ levels resulted in lower numbers of RNA foci and DPRs in both transfected HEK cells and C9orf72 mutation-positive patient-derived fibroblasts and lymphoblasts. Therefore, we have revealed a role of SFPQ in regulating the C9orf72 mutation that has implications for understanding and developing novel therapeutic targets for ALS and FTD. This article has an associated First Person interview with the first author of the paper. Summary: Expression level modulation of the core paraspeckle protein SFPQ regulates sense and antisense RNA foci and dipeptide repeat protein accumulation in the C9orf72 mutation; SFPQ could be a therapeutic target in C9orf72 ALS and FTD.
Collapse
Affiliation(s)
- Mirjana Malnar
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.,Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia .,Biomedical Research Institute, 1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
45
|
Ryan VH, Perdikari TM, Naik MT, Saueressig CF, Lins J, Dignon GL, Mittal J, Hart AC, Fawzi NL. Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning and reduces neurodegeneration. EMBO J 2021; 40:e105001. [PMID: 33349959 PMCID: PMC7849316 DOI: 10.15252/embj.2020105001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
mRNA transport in neurons requires formation of transport granules containing many protein components, and subsequent alterations in phosphorylation status can release transcripts for translation. Further, mutations in a structurally disordered domain of the transport granule protein hnRNPA2 increase its aggregation and cause hereditary proteinopathy of neurons, myocytes, and bone. We examine in vitro hnRNPA2 granule component phase separation, partitioning specificity, assembly/disassembly, and the link to neurodegeneration. Transport granule components hnRNPF and ch-TOG interact weakly with hnRNPA2 yet partition specifically into liquid phase droplets with the low complexity domain (LC) of hnRNPA2, but not FUS LC. In vitro hnRNPA2 tyrosine phosphorylation reduces hnRNPA2 phase separation, prevents partitioning of hnRNPF and ch-TOG into hnRNPA2 LC droplets, and decreases aggregation of hnRNPA2 disease variants. The expression of chimeric hnRNPA2 D290V in Caenorhabditis elegans results in stress-induced glutamatergic neurodegeneration; this neurodegeneration is rescued by loss of tdp-1, suggesting gain-of-function toxicity. The expression of Fyn, a tyrosine kinase that phosphorylates hnRNPA2, reduces neurodegeneration associated with chimeric hnRNPA2 D290V. These data suggest a model where phosphorylation alters LC interaction specificity, aggregation, and toxicity.
Collapse
Affiliation(s)
- Veronica H Ryan
- Neuroscience Graduate ProgramBrown UniversityProvidenceRIUSA
| | | | - Mandar T Naik
- Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceRIUSA
| | | | - Jeremy Lins
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Gregory L Dignon
- Department of Chemical and Biomolecular EngineeringLehigh UniversityBethlehemPAUSA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular EngineeringLehigh UniversityBethlehemPAUSA
| | - Anne C Hart
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceRIUSA
| |
Collapse
|
46
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
47
|
Ho WY, Agrawal I, Tyan SH, Sanford E, Chang WT, Lim K, Ong J, Tan BSY, Moe AAK, Yu R, Wong P, Tucker-Kellogg G, Koo E, Chuang KH, Ling SC. Dysfunction in nonsense-mediated decay, protein homeostasis, mitochondrial function, and brain connectivity in ALS-FUS mice with cognitive deficits. Acta Neuropathol Commun 2021; 9:9. [PMID: 33407930 PMCID: PMC7789430 DOI: 10.1186/s40478-020-01111-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of the same disease spectrum of adult-onset neurodegenerative diseases that affect the motor and cognitive functions, respectively. Multiple common genetic loci such as fused in sarcoma (FUS) have been identified to play a role in ALS and FTD etiology. Current studies indicate that FUS mutations incur gain-of-toxic functions to drive ALS pathogenesis. However, how the disease-linked mutations of FUS affect cognition remains elusive. Using a mouse model expressing an ALS-linked human FUS mutation (R514G-FUS) that mimics endogenous expression patterns, we found that FUS proteins showed an age-dependent accumulation of FUS proteins despite the downregulation of mouse FUS mRNA by the R514G-FUS protein during aging. Furthermore, these mice developed cognitive deficits accompanied by a reduction in spine density and long-term potentiation (LTP) within the hippocampus. At the physiological expression level, mutant FUS is distributed in the nucleus and cytosol without apparent FUS aggregates or nuclear envelope defects. Unbiased transcriptomic analysis revealed a deregulation of genes that cluster in pathways involved in nonsense-mediated decay, protein homeostasis, and mitochondrial functions. Furthermore, the use of in vivo functional imaging demonstrated widespread reduction in cortical volumes but enhanced functional connectivity between hippocampus, basal ganglia and neocortex in R514G-FUS mice. Hence, our findings suggest that disease-linked mutation in FUS may lead to changes in proteostasis and mitochondrial dysfunction that in turn affect brain structure and connectivity resulting in cognitive deficits.
Collapse
Affiliation(s)
- Wan Yun Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Ira Agrawal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Sheue-Houy Tyan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emma Sanford
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Wei-Tang Chang
- Agency for Science, Technology and Research, Singapore Bioimaging Consortium, Singapore, Singapore
- Present Address: University of North Carolina, Chapel Hill, NC USA
| | - Kenneth Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jolynn Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Bernice Siu Yan Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Aung Aung Kywe Moe
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Regina Yu
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Peiyan Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Greg Tucker-Kellogg
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Edward Koo
- Agency for Science, Technology and Research, Singapore Bioimaging Consortium, Singapore, Singapore
- Department of Neurosciences, University of California at San Diego, La Jolla, USA
| | - Kai-Hsiang Chuang
- Agency for Science, Technology and Research, Singapore Bioimaging Consortium, Singapore, Singapore
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
- Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
49
|
Bochukova EG. Transcriptomics of the Prader-Willi syndrome hypothalamus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:369-379. [PMID: 34238471 DOI: 10.1016/b978-0-12-820683-6.00027-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder, arising from a loss of paternity expressed genetic material on the imprinted chromosome locus 15q11-q13. Despite increasing clarity on the underlying genetic defects, the molecular basis of the condition remains poorly understood. Hypothalamic dysfunction is widely recognized as the basis of the core symptoms of PWS, which include a deficiency in growth hormone and reproductive hormones, circadian rhythm abnormalities, and a lack of satiety, leading to an extreme obesity, among others. Genome-wide gene expression analysis (transcriptomics) offers an unbiased interrogation of complex disease pathogenesis and a potential window into the dysregulated pathways involved in disease. In this chapter, we review the findings from recent work investigating the PWS hypothalamic transcriptome, discuss the significance of the findings in relation to the clinical presentation and molecular underpinnings of PWS, and highlight future research directions.
Collapse
Affiliation(s)
- Elena G Bochukova
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
50
|
Sévigny M, Bourdeau Julien I, Venkatasubramani JP, Hui JB, Dutchak PA, Sephton CF. FUS contributes to mTOR-dependent inhibition of translation. J Biol Chem 2020; 295:18459-18473. [PMID: 33082139 PMCID: PMC7939483 DOI: 10.1074/jbc.ra120.013801] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
The amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)-linked RNA-binding protein called FUS (fused in sarcoma) has been implicated in several aspects of RNA regulation, including mRNA translation. The mechanism by which FUS affects the translation of polyribosomes has not been established. Here we show that FUS can associate with stalled polyribosomes and that this association is sensitive to mTOR (mammalian target of rapamycin) kinase activity. Specifically, we show that FUS association with polyribosomes is increased by Torin1 treatment or when cells are cultured in nutrient-deficient media, but not when cells are treated with rapamycin, the allosteric inhibitor of mTORC1. Moreover, we report that FUS is necessary for efficient stalling of translation because deficient cells are refractory to the inhibition of mTOR-dependent signaling by Torin1. We also show that ALS-linked FUS mutants R521G and P525L associate abundantly with polyribosomes and decrease global protein synthesis. Importantly, the inhibitory effect on translation by FUS is impaired by mutations that reduce its RNA-binding affinity. These findings demonstrate that FUS is an important RNA-binding protein that mediates translational repression through mTOR-dependent signaling and that ALS-linked FUS mutants can cause a toxic gain of function in the cytoplasm by repressing the translation of mRNA at polyribosomes.
Collapse
Affiliation(s)
- Myriam Sévigny
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Isabelle Bourdeau Julien
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Janani Priya Venkatasubramani
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Jeremy B Hui
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Paul A Dutchak
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|