1
|
Polara R, Ganesan R, Pitson SM, Robinson N. Cell autonomous functions of CD47 in regulating cellular plasticity and metabolic plasticity. Cell Death Differ 2024; 31:1255-1266. [PMID: 39039207 PMCID: PMC11445524 DOI: 10.1038/s41418-024-01347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
CD47 is a ubiquitously expressed cell surface receptor, which is widely known for preventing macrophage-mediated phagocytosis by interacting with signal regulatory protein α (SIRPα) on the surface of macrophages. In addition to its role in phagocytosis, emerging studies have reported numerous noncanonical functions of CD47 that include regulation of various cellular processes such as proliferation, migration, apoptosis, differentiation, stress responses, and metabolism. Despite lacking an extensive cytoplasmic signaling domain, CD47 binds to several cytoplasmic proteins, particularly upon engaging with its secreted matricellular ligand, thrombospondin 1. Indeed, the regulatory functions of CD47 are greatly influenced by its interacting partners. These interactions are often cell- and context-specific, adding a further level of complexity. This review addresses the downstream cell-intrinsic signaling pathways regulated by CD47 in various cell types and environments. Some of the key pathways modulated by this receptor include the PI3K/AKT, MAPK/ERK, and nitric oxide signaling pathways, as well as those implicated in glucose, lipid, and mitochondrial metabolism. These pathways play vital roles in maintaining tissue homeostasis, highlighting the importance of understanding the phagocytosis-independent functions of CD47. Given that CD47 expression is dysregulated in a variety of cancers, improving our understanding of the cell-intrinsic signals regulated by this molecule will help advance the development of CD47-targeted therapies.
Collapse
Affiliation(s)
- Ruhi Polara
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Institute for Molecular Immunology, CECAD Research Center, University Hospital Cologne, Cologne, Germany
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Park JI, Jung SY, Song KH, Lee DH, Ahn J, Hwang SG, Jung IS, Lim DS, Song JY. Predictive DNA damage signaling for low‑dose ionizing radiation. Int J Mol Med 2024; 53:56. [PMID: 38695243 DOI: 10.3892/ijmm.2024.5380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Numerous studies have attempted to develop biological markers for the response to radiation for broad and straightforward application in the field of radiation. Based on a public database, the present study selected several molecules involved in the DNA damage repair response, cell cycle regulation and cytokine signaling as promising candidates for low‑dose radiation‑sensitive markers. The HuT 78 and IM‑9 cell lines were irradiated in a concentration‑dependent manner, and the expression of these molecules was analyzed using western blot analysis. Notably, the activation of ataxia telangiectasia mutated (ATM), checkpoint kinase 2 (CHK2), p53 and H2A histone family member X (H2AX) significantly increased in a concentration‑dependent manner, which was also observed in human peripheral blood mononuclear cells. To determine the radioprotective effects of cinobufagin, as an ATM and CHK2 activator, an in vivo model was employed using sub‑lethal and lethal doses in irradiated mice. Treatment with cinobufagin increased the number of bone marrow cells in sub‑lethal irradiated mice, and slightly elongated the survival of lethally irradiated mice, although the difference was not statistically significant. Therefore, KU60019, BML‑277, pifithrin‑α, and nutlin‑3a were evaluated for their ability to modulate radiation‑induced cell death. The use of BML‑277 led to a decrease in radiation‑induced p‑CHK2 and γH2AX levels and mitigated radiation‑induced apoptosis. On the whole, the present study provides a novel approach for developing drug candidates based on the profiling of biological radiation‑sensitive markers. These markers hold promise for predicting radiation exposure and assessing the associated human risk.
Collapse
Affiliation(s)
- Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dong-Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - In-Su Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi‑do 13488, Republic of Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| |
Collapse
|
3
|
Cordani M, Strippoli R, Trionfetti F, Barzegar Behrooz A, Rumio C, Velasco G, Ghavami S, Marcucci F. Immune checkpoints between epithelial-mesenchymal transition and autophagy: A conflicting triangle. Cancer Lett 2024; 585:216661. [PMID: 38309613 DOI: 10.1016/j.canlet.2024.216661] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy.
| |
Collapse
|
4
|
Isenberg JS, Montero E. Tolerating CD47. Clin Transl Med 2024; 14:e1584. [PMID: 38362603 PMCID: PMC10870051 DOI: 10.1002/ctm2.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cluster of differentiation 47 (CD47) occupies the outer membrane of human cells, where it binds to soluble and cell surface receptors on the same and other cells, sculpting their topography and resulting in a pleiotropic receptor-multiligand interaction network. It is a focus of drug development to temper and accentuate CD47-driven immune cell liaisons, although consideration of on-target CD47 effects remain neglected. And yet, a late clinical trial of a CD47-blocking antibody was discontinued, existent trials were restrained, and development of CD47-targeting agents halted by some pharmaceutical companies. At this point, if CD47 can be exploited for clinical advantage remains to be determined. Herein an airing is made of the seemingly conflicting actions of CD47 that reflect its position as a junction connecting receptors and signalling pathways that impact numerous human cell types. Prospects of CD47 boosting and blocking are considered along with potential therapeutic implications for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Department of Diabetes Complications & MetabolismArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Enrique Montero
- Department of Molecular & Cellular EndocrinologyArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
5
|
Lau APY, Khavkine Binstock SS, Thu KL. CD47: The Next Frontier in Immune Checkpoint Blockade for Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:5229. [PMID: 37958404 PMCID: PMC10649163 DOI: 10.3390/cancers15215229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The success of PD-1/PD-L1-targeted therapy in lung cancer has resulted in great enthusiasm for additional immunotherapies in development to elicit similar survival benefits, particularly in patients who do not respond to or are ineligible for PD-1 blockade. CD47 is an immunosuppressive molecule that binds SIRPα on antigen-presenting cells to regulate an innate immune checkpoint that blocks phagocytosis and subsequent activation of adaptive tumor immunity. In lung cancer, CD47 expression is associated with poor survival and tumors with EGFR mutations, which do not typically respond to PD-1 blockade. Given its prognostic relevance, its role in facilitating immune escape, and the number of agents currently in clinical development, CD47 blockade represents a promising next-generation immunotherapy for lung cancer. In this review, we briefly summarize how tumors disrupt the cancer immunity cycle to facilitate immune evasion and their exploitation of immune checkpoints like the CD47-SIRPα axis. We also discuss approved immune checkpoint inhibitors and strategies for targeting CD47 that are currently being investigated. Finally, we review the literature supporting CD47 as a promising immunotherapeutic target in lung cancer and offer our perspective on key obstacles that must be overcome to establish CD47 blockade as the next standard of care for lung cancer therapy.
Collapse
Affiliation(s)
- Asa P. Y. Lau
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Sharon S. Khavkine Binstock
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
6
|
Bhatia D, Choi ME. Autophagy and mitophagy: physiological implications in kidney inflammation and diseases. Am J Physiol Renal Physiol 2023; 325:F1-F21. [PMID: 37167272 PMCID: PMC10292977 DOI: 10.1152/ajprenal.00012.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Autophagy is a ubiquitous intracellular cytoprotective quality control program that maintains cellular homeostasis by recycling superfluous cytoplasmic components (lipid droplets, protein, or glycogen aggregates) and invading pathogens. Mitophagy is a selective form of autophagy that by recycling damaged mitochondrial material, which can extracellularly act as damage-associated molecular patterns, prevents their release. Autophagy and mitophagy are indispensable for the maintenance of kidney homeostasis and exert crucial functions during both physiological and disease conditions. Impaired autophagy and mitophagy can negatively impact the pathophysiological state and promote its progression. Autophagy helps in maintaining structural integrity of the kidney. Mitophagy-mediated mitochondrial quality control is explicitly critical for regulating cellular homeostasis in the kidney. Both autophagy and mitophagy attenuate inflammatory responses in the kidney. An accumulating body of evidence highlights that persistent kidney injury-induced oxidative stress can contribute to dysregulated autophagic and mitophagic responses and cell death. Autophagy and mitophagy also communicate with programmed cell death pathways (apoptosis and necroptosis) and play important roles in cell survival by preventing nutrient deprivation and regulating oxidative stress. Autophagy and mitophagy are activated in the kidney after acute injury. However, their aberrant hyperactivation can be deleterious and cause tissue damage. The findings on the functions of autophagy and mitophagy in various models of chronic kidney disease are heterogeneous and cell type- and context-specific dependent. In this review, we discuss the roles of autophagy and mitophagy in the kidney in regulating inflammatory responses and during various pathological manifestations.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
7
|
Hao Y, Zhou X, Li Y, Li B, Cheng L. The CD47-SIRPα axis is a promising target for cancer immunotherapies. Int Immunopharmacol 2023; 120:110255. [PMID: 37187126 DOI: 10.1016/j.intimp.2023.110255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Cluster of differentiation 47(CD47) is a transmembrane protein that is ubiquitously found on the surface of many cells in the body and uniquely overexpressed by both solid and hematologic malignant cells. CD47 interacts with signal-regulatory protein α (SIRPα), to trigger a "don't eat me" signal and thereby achieve cancer immune escape by inhibiting macrophage-mediated phagocytosis. Thus, blocking the CD47-SIRPα phagocytosis checkpoint, for release of the innate immune system, is a current research focus. Indeed, targeting the CD47-SIRPα axis as a cancer immunotherapy has shown promising efficacies in pre-clinical outcomes. Here, we first reviewed the origin, structure, and function of the CD47-SIRPα axis. Then, we reviewed its role as a target for cancer immunotherapies, as well as the factors regulating CD47-SIRPα axis-based immunotherapies. We specifically focused on the mechanism and progress of CD47-SIRPα axis-based immunotherapies and their combination with other treatment strategies. Finally, we discussed the challenges and directions for future research and identified potential CD47-SIRPα axis-based therapies that are suitable for clinical application.
Collapse
Affiliation(s)
- Yu Hao
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Yiling Li
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Ghantous L, Volman Y, Hefez R, Wald O, Stern E, Friehmann T, Chajut A, Bremer E, Elhalel MD, Rachmilewitz J. The DNA damage response pathway regulates the expression of the immune checkpoint CD47. Commun Biol 2023; 6:245. [PMID: 36882648 PMCID: PMC9992352 DOI: 10.1038/s42003-023-04615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
CD47 is a cell surface ligand expressed on all nucleated cells. It is a unique immune checkpoint protein acting as "don't eat me" signal to prevent phagocytosis and is constitutively overexpressed in many tumors. However, the underlying mechanism(s) for CD47 overexpression is not clear. Here, we show that irradiation (IR) as well as various other genotoxic agents induce elevated expression of CD47. This upregulation correlates with the extent of residual double-strand breaks (DSBs) as determined by γH2AX staining. Interestingly, cells lacking mre-11, a component of the MRE11-RAD50-NBS1 (MRN) complex that plays a central role in DSB repair, or cells treated with the mre-11 inhibitor, mirin, fail to elevate the expression of CD47 upon DNA damage. On the other hand, both p53 and NF-κB pathways or cell-cycle arrest do not play a role in CD47 upregualtion upon DNA damage. We further show that CD47 expression is upregulated in livers harvested from mice treated with the DNA-damage inducing agent Diethylnitrosamine (DEN) and in cisplatin-treated mesothelioma tumors. Hence, our results indicate that CD47 is upregulated following DNA damage in a mre-11-dependent manner. Chronic DNA damage response in cancer cells might contribute to constitutive elevated expression of CD47 and promote immune evasion.
Collapse
Affiliation(s)
- Lucy Ghantous
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Nephrology and Hypertension, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Volman
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Hefez
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cardiothoracic Surgery, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Stern
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomer Friehmann
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Michal Dranitzki Elhalel
- Department of Nephrology and Hypertension, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Jacob Rachmilewitz
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
9
|
Gao L, He Z, Wu Y. Advances in Anti-metabolic Disease Treatments Targeting CD47. Curr Pharm Des 2022; 28:3720-3728. [PMID: 36201266 DOI: 10.2174/1381612828666221006123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Metabolic disorders include a cluster of conditions that result from hyperglycemia, hyperlipidemia, insulin resistance, obesity, and hepatic steatosis, which cause the dysfunction of immune cells and innate cells, such as macrophages, natural killer cells, vascular endothelial cells, hepatocytes, and human kidney tubular epithelial cells. Besides targeting the derangements in lipid metabolism, therapeutic modulations to regulate abnormal responses in the immune system and innate cell dysfunctions may prove to be promising strategies in the management of metabolic diseases. In recent years, several targets have been explored for the CD47 molecule (CD47), a glycosylated protein, which was originally reported to transmit an anti-phagocytic signal known as "don't eat me" in the atherosclerotic environment, hindering the efferocytosis of immune cells and promoting arterial plaque accumulation. Subsequently, the role of CD47 has been explored in obesity, fatty liver, and lipotoxic nephropathy, and its utility as a therapeutic target has been investigated using anti-CD47 antibodies or inhibitors of the THBS1/CD47 axis and the CD47/SIRPα signaling pathway. This review summarizes the mechanisms of action of CD47 in different cell types during metabolic diseases and the clinical research progress to date, providing a reference for the comprehensive targeting of CD47 to treat metabolic diseases and the devising of potential improvements to possible side effects.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| | - Zhe He
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
10
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
11
|
Therapy Strategy of CD47 in Diffuse Large B-Cell Lymphoma (DLBCL). DISEASE MARKERS 2021; 2021:4894022. [PMID: 34567285 PMCID: PMC8463246 DOI: 10.1155/2021/4894022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
At present, the use of the common chemotherapy regimen CHOP/R-CHOP for diffuse large B-cell lymphoma (DLBCL) has some shortcomings, especially for relapsed and refractory DLBCL. CD47 is now considered as a prominent target in cancer therapies, and CD47 blockade mainly inhibits the CD47-SIRPα axis to prevent tumor immune escape. Here, we evaluated the effects of the latest CD47 antibodies reported and the correlations of closely related genes with CD47 in this disease. In the future, therapeutic strategies for DLBCL will focus on multitarget antibody combined treatment and multigene joint attacks.
Collapse
|
12
|
Ma S, Jin Z, Liu Y, Liu L, Feng H, Li P, Tian Z, Ren M, Liu X. Furazolidone Increases Survival of Mice Exposed to Lethal Total Body Irradiation through the Antiapoptosis and Antiautophagy Mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6610726. [PMID: 33613823 PMCID: PMC7878070 DOI: 10.1155/2021/6610726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022]
Abstract
Exposure to total body irradiation (TBI) causes dose- and tissue-specific lethality. However, there are few effective and nontoxic radiation countermeasures for the radiation injury. In the current study, mice were pretreated with a traditional antimicrobial agent, FZD, before TBI; the protective effects of FZD on radiation injury were evaluated by using parameters such as the spleen index and thymus index, immunohistochemical staining of intestinal tissue, and frequency of micronuclei in polychromatophilic erythrocytes of bone marrow. The intestinal epithelial cell line IEC-6 was used to investigate the underlying mechanisms. Our results indicated that FZD administration significantly improved the survival of lethal dose-irradiated mice, decreased the number of micronuclei, upregulated the number of leukocytes and immune organ indices, and restored intestinal integrity in mice after TBI. TUNEL and western blot showed that FZD protected intestinal tissue by downregulating radiation-induced apoptosis and autophagy. Meanwhile, FZD protected IEC-6 cells from radiation-induced cell death by inhibiting apoptosis and autophagy. To sum up, FZD protected against radiation-induced cell death both in vitro and in vivo through antiapoptosis and antiautophagy mechanisms.
Collapse
Affiliation(s)
- Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhao Jin
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yi Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lin Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Feng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ping Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhujun Tian
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minghua Ren
- Department of Urinary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
13
|
Kaur S, Isenberg JS, Roberts DD. CD47 (Cluster of Differentiation 47). ATLAS OF GENETICS AND CYTOGENETICS IN ONCOLOGY AND HAEMATOLOGY 2021; 25:83-102. [PMID: 34707698 PMCID: PMC8547767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CD47, also known as integrin-associated protein, is a constitutively and ubiquitously expressed transmembrane receptor. CD47 is conserved across amniotes including mammals, reptiles, and birds. Expression is increased in many cancers and, in non-malignant cells, by stress and with aging. The up-regulation of CD47 expression is generally epigenetic, whereas gene amplification occurs with low frequency in some cancers. CD47 is a high affinity signaling receptor for the secreted protein thrombospondin-1 (THBS1) and the counter-receptor for signal regulatory protein-α (SIRPA, SIRPα) and SIRPγ (SIRPG). CD47 interaction with SIRPα serves as a marker of self to innate immune cells and thereby protects cancer cells from phagocytic clearance. Consequently, higher CD47 correlates with a poor prognosis in some cancers, and therapeutic blockade can suppress tumor growth by enhancing innate antitumor immunity. CD47 expressed on cytotoxic T cells, dendritic cells, and NK cells mediates inhibitory THBS1 signaling that further limits antitumor immunity. CD47 laterally associates with several integrins and thereby regulates cell adhesion and migration. CD47 has additional lateral binding partners in specific cell types, and ligation of CD47 in some cases modulates their function. THBS1-CD47 signaling in non-malignant cells inhibits nitric oxide/cGMP, calcium, and VEGF signaling, mitochondrial homeostasis, stem cell maintenance, protective autophagy, and DNA damage response, and promotes NADPH oxidase activity. CD47 signaling is a physiological regulator of platelet activation, angiogenesis and blood flow. THBS1/CD47 signaling is frequently dysregulated in chronic diseases.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| | | | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Comparative proteomic analysis of serum from nonhuman primates administered BIO 300: a promising radiation countermeasure. Sci Rep 2020; 10:19343. [PMID: 33168863 PMCID: PMC7653926 DOI: 10.1038/s41598-020-76494-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
Hematopoietic acute radiation syndrome (H-ARS) and delayed effects of acute radiation exposure (DEARE) are detrimental health effects that occur after exposure to high doses of ionizing radiation. BIO 300, a synthetic genistein nanosuspension, was previously proven safe and effective against H-ARS when administered (via the oral (po) or intramuscular (im) route) prior to exposure to lethal doses of total-body radiation. In this study, we evaluated the proteomic changes in serum of nonhuman primates (NHP) after administering BIO 300 by different routes (po and im). We utilized nanoflow-ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (NanoUPLC-MS/MS) methods for comprehensive global profiling and quantification of serum proteins. The results corroborate previous findings that suggest a very similar metabolic profile following both routes of drug administration. Furthermore, we observed minor alterations in protein levels, 2 hours after drug administration, which relates to the Cmax of BIO 300 for both routes of administration. Taken together, this assessment may provide an insight into the mechanism of radioprotection of BIO 300 and a reasonable illustration of the pharmacodynamics of this radiation countermeasure.
Collapse
|
15
|
Wang F, Liu Y, Zhang T, Gao J, Xu Y, Xie G, Zhao W, Wang H, Yang Y. Aging-associated changes in CD47 arrangement and interaction with thrombospondin-1 on red blood cells visualized by super-resolution imaging. Aging Cell 2020; 19:e13224. [PMID: 32866348 PMCID: PMC7576236 DOI: 10.1111/acel.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
CD47 serves as a ligand for signaling regulatory protein α (SIRPα) and as a receptor for thrombospondin-1 (TSP-1). Although CD47, TSP-1, and SIRPα are thought to be involved in the clearance of aged red blood cells (RBCs), aging-associated changes in the expression and interaction of these molecules on RBCs have been elusive. Using direct stochastic optical reconstruction microscopy (dSTORM)-based imaging and quantitative analysis, we can report that CD47 molecules on young RBCs reside as nanoclusters with little binding to TSP-1, suggesting a minimal role for TSP-1/CD47 signaling in normal RBCs. On aged RBCs, CD47 molecules decreased in number but formed bigger and denser clusters, with increased ability to bind TSP-1. Exposure of aged RBCs to TSP-1 resulted in a further increase in the size of CD47 clusters via a lipid raft-dependent mechanism. Furthermore, CD47 cluster formation was dramatically inhibited on thbs1-/- mouse RBCs and associated with a significantly prolonged RBC lifespan. These results indicate that the strength of CD47 binding to its ligand TSP-1 is predominantly determined by the distribution pattern and not the amount of CD47 molecules on RBCs, and offer direct evidence for the role of TSP-1 in phagocytosis of aged RBCs. This study provides clear nanoscale pictures of aging-associated changes in CD47 distribution and TSP-1/CD47 interaction on the cell surface, and insights into the molecular basis for how these molecules coordinate to remove aged RBCs.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
| | - Yan‐Hou Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
| | - Ting Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
| | - Jing Gao
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
| | - Yangyue Xu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
| | - Guang‐Yao Xie
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
| | - Wen‐Jie Zhao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
| | - Hongda Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
| | - Yong‐Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First HospitalInstitute of ImmunologyJilin UniversityChangchunChina
- National‐local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
- International Center of Future ScienceJilin UniversityChangchunChina
| |
Collapse
|
16
|
Nekrasov MD, Lukyanenko ER, Kurkin AV. Synthesis of N-substituted morpholine nucleoside derivatives. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1223-1244. [PMID: 32744921 DOI: 10.1080/15257770.2020.1788078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein, we report the synthesis of substituted morpholino nucleoside derivatives starting from ribonucleosides. The present protocol shows high functional group tolerance, uses mild reaction conditions, and gives moderate to good yields. This transformation is based on two sequential pathways: (i) the oxidation of the ribonucleosides to the corresponding dialdehyde using sodium periodate and (ii) the reductive amination of the in situ generated dialdehydes with the hydrochloride salts of various the alkylamines.
Collapse
Affiliation(s)
- Mikhail D Nekrasov
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia.,Marlin Biotech LLC, Research Department, Moscow, Russia
| | | | - Alexander V Kurkin
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| |
Collapse
|
17
|
Isenberg JS, Roberts DD. Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. Am J Physiol Cell Physiol 2020; 319:C45-C63. [PMID: 32374675 DOI: 10.1152/ajpcell.00089.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous age-dependent alterations at the molecular, cellular, tissue and organ systems levels underlie the pathophysiology of aging. Herein, the focus is upon the secreted protein thrombospondin-1 (TSP1) as a promoter of aging and age-related diseases. TSP1 has several physiological functions in youth, including promoting neural synapse formation, mediating responses to ischemic and genotoxic stress, minimizing hemorrhage, limiting angiogenesis, and supporting wound healing. These acute functions of TSP1 generally require only transient expression of the protein. However, accumulating basic and clinical data reinforce the view that chronic diseases of aging are associated with accumulation of TSP1 in the extracellular matrix, which is a significant maladaptive contributor to the aging process. Identification of the relevant cell types that chronically produce and respond to TSP1 and the molecular mechanisms that mediate the resulting maladaptive responses could direct the development of therapeutic agents to delay or revert age-associated maladies.
Collapse
Affiliation(s)
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Sun F, Wang J, Wu X, Yang CS, Zhang J. Selenium nanoparticles act as an intestinal p53 inhibitor mitigating chemotherapy-induced diarrhea in mice. Pharmacol Res 2019; 149:104475. [PMID: 31593755 DOI: 10.1016/j.phrs.2019.104475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022]
Abstract
Selenium, at high-dose levels approaching its toxicity, protects tissues from dose-limiting toxicities of many cancer chemotherapeutics without compromising their therapeutic effects on tumors, there by allowing the delivery of higher chemotherapeutic doses to achieve increased cure rate. In this regard, selenium nanoparticles (SeNPs), which show the lowest toxicity among extensively investigated selenium compounds including methylselenocysteine and selenomethionine, are more promising for application. The key issue remains to be resolved is whether low-toxicity SeNPs possess a selective protective mechanism. p53 or p53-regulated thrombospondin-1 has each been confirmed to be an appropriate target for therapeutic suppression to reduce side effects of anticancer therapy. The present study demonstrated that SeNPs transiently suppressed the expression of many intestinal p53-associated genes in healthy mice. SeNPs did not interfere with tumor-suppressive effect of nedaplatin, a cisplatin analogue; however, effectively reduced nedaplatin-evoked diarrhea. Nedaplatin-induced diarrhea was associated with activation of intestinal p53 and high expression of intestinal thrombospondin-1. The preventive effect of SeNPs on nedaplatin-induced diarrhea was correlated with a powerful concomitant suppression of p53 and thrombospondin-1. Moreover, the high-dose SeNPs used in the present study did not suppress growth nor caused liver and kidney injuries as well as alterations of hematological parameters in healthy mice. Overall, the present study reveals that chemotherapeutic selectivity conferred by SeNPs involves a dual suppression of two well-documented targets, the p53 and thrombospondin-1, providing mechanistic and pharmacologic insights on low-toxicity SeNPs as a potential chemoprotectant for mitigating chemotherapy-induced diarrhea.
Collapse
Affiliation(s)
- Feng Sun
- Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiajia Wang
- Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Ximing Wu
- Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jinsong Zhang
- Laboratory of Redox Biology, School of Tea & Food Science, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
19
|
Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun 2019; 10:5004. [PMID: 31676794 PMCID: PMC6825175 DOI: 10.1038/s41467-019-12968-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
CD47 is a ubiquitously expressed transmembrane glycoprotein that regulates inflammatory responses and tissue repair. Here, we show that normal mice treated with anti-CD47 antibodies, and Cd47-null mice have impaired intestinal mucosal wound healing. Furthermore, intestinal epithelial cell (IEC)-specific loss of CD47 does not induce spontaneous immune-mediated intestinal barrier disruption but results in defective mucosal repair after biopsy-induced colonic wounding or Dextran Sulfate Sodium (DSS)-induced mucosal damage. In vitro analyses using primary cultures of CD47-deficient murine colonic IEC or human colonoid-derived IEC treated with CD47-blocking antibodies demonstrate impaired epithelial cell migration in wound healing assays. Defective wound repair after CD47 loss is linked to decreased epithelial β1 integrin and focal adhesion signaling, as well as reduced thrombospondin-1 and TGF-β1. These results demonstrate a critical role for IEC-expressed CD47 in regulating mucosal repair and raise important considerations for possible alterations in wound healing secondary to therapeutic targeting of CD47. The role of the transmembrane glycoprotein CD47 in healing injured intestinal mucosa is unclear. Here, the authors show that selective loss of CD47 in the murine intestinal epithelium results in defective mucosal repair after colonic wounding, with suggested impaired cell migration in vitro.
Collapse
|
20
|
Antisense targeting of CD47 enhances human cytotoxic T-cell activity and increases survival of mice bearing B16 melanoma when combined with anti-CTLA4 and tumor irradiation. Cancer Immunol Immunother 2019; 68:1805-1817. [PMID: 31628526 DOI: 10.1007/s00262-019-02397-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/14/2019] [Indexed: 12/15/2022]
Abstract
Antibodies targeting the T-cell immune checkpoint cytotoxic T-lymphocyte antigen-4 (CTLA4) enhance the effectiveness of radiotherapy for melanoma patients, but many remain resistant. To further improve response rates, we explored combining anti-CTLA4 blockade with antisense suppression of CD47, an inhibitory receptor on T cells that limit T-cell receptor signaling and killing of irradiated target cells. Human melanoma data from The Cancer Genome Atlas revealed positive correlations between CD47 mRNA expression and expression of T-cell regulators including CTLA4 and its counter receptors CD80 and CD86. Antisense suppression of CD47 on human T cells in vitro using a translational blocking morpholino (CD47 m) alone or combined with anti-CTLA4 enhanced antigen-dependent killing of irradiated melanoma cells. Correspondingly, the treatment of locally irradiated B16F10 melanomas in C57BL/6 mice using combined blockade of CD47 and CTLA4 significantly increased the survival of mice relative to either treatment alone. CD47 m alone or in combination with anti-CTLA4 increased CD3+ T-cell infiltration in irradiated tumors. Anti-CTLA4 also increased CD3+ and CD8+ T-cell infiltration as well as markers of NK cells in non-irradiated tumors. Anti-CTLA4 combined with CD47 m resulted in the greatest increase in intratumoral granzyme B, interferon-γ, and NK-cell marker mRNA expression. These data suggest that combining CTLA4 and CD47 blockade could provide a survival benefit by enhancing adaptive T- and NK-cell immunity in irradiated tumors.
Collapse
|
21
|
Stirling ER, Cook KL, Roberts DD, Soto-Pantoja DR. Metabolomic Analysis Reveals Unique Biochemical Signatures Associated with Protection from Radiation Induced Lung Injury by Lack of cd47 Receptor Gene Expression. Metabolites 2019; 9:E218. [PMID: 31597291 PMCID: PMC6835245 DOI: 10.3390/metabo9100218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 01/10/2023] Open
Abstract
The goal of this study was to interrogate biochemical profiles manifested in mouse lung tissue originating from wild type (WT) and cd47 null mice with the aim of revealing the in vivo role of CD47 in the metabolic response to ionizing radiation, especially changes related to the known association of CD47 deficiency with increased tissue viability and survival. For this objective, we performed global metabolomic analysis in mouse lung tissue collected from (C57Bl/6 background) WT and cd47 null mice with and without exposure to 7.6 Gy whole body radiation. Principal component analysis and hierarchical clustering revealed a consistent separation between genotypes following radiation exposure. Random forest analysis also revealed a unique biochemical signature in WT and cd47 null mice following treatment. Our data show that cd47 null irradiated lung tissue activates a unique set of metabolic pathways that facilitate the handling of reactive oxygen species, lipid metabolism, nucleotide metabolism and nutrient metabolites which may be regulated by microbial processing. Given that cd47 has pleiotropic effects on responses to ionizing radiation, we not only propose this receptor as a therapeutic target but postulate that the biomarkers regulated in this study associated with radioprotection are potential mitigators of radiation-associated pathologies, including the onset of pulmonary disease.
Collapse
Affiliation(s)
- Elizabeth R Stirling
- Department of Cancer Biology, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27101, USA.
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27101, USA.
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27101, USA.
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27101, USA.
- Department of Surgery, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27101, USA.
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David R Soto-Pantoja
- Department of Cancer Biology, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27101, USA.
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27101, USA.
- Department of Surgery, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27101, USA.
- Department of Radiation Oncology, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27101, USA.
| |
Collapse
|
22
|
Kaur S, Schwartz AL, Jordan DG, Soto-Pantoja DR, Kuo B, Elkahloun AG, Mathews Griner L, Thomas CJ, Ferrer M, Thomas A, Tang SW, Rajapakse VN, Pommier Y, Roberts DD. Identification of Schlafen-11 as a Target of CD47 Signaling That Regulates Sensitivity to Ionizing Radiation and Topoisomerase Inhibitors. Front Oncol 2019; 9:994. [PMID: 31632920 PMCID: PMC6781860 DOI: 10.3389/fonc.2019.00994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023] Open
Abstract
Knockdown or gene disruption of the ubiquitously expressed cell surface receptor CD47 protects non-malignant cells from genotoxic stress caused by ionizing radiation or cytotoxic chemotherapy but sensitizes tumors in an immune competent host to genotoxic stress. The selective radioprotection of non-malignant cells is mediated in part by enhanced autophagy and protection of anabolic metabolism pathways, but differential H2AX activation kinetics suggested that the DNA damage response is also CD47-dependent. A high throughput screen of drug sensitivities indicated that CD47 expression selectively sensitizes Jurkat T cells to inhibitors of topoisomerases, which are known targets of Schlafen-11 (SLFN11). CD47 mRNA expression positively correlated with schlafen-11 mRNA expression in a subset of human cancers but not the corresponding non-malignant tissues. CD47 mRNA expression was also negatively correlated with SLFN11 promoter methylation in some cancers. CD47 knockdown, gene disruption, or treatment with a CD47 function-blocking antibody decreased SLFN11 expression in Jurkat cells. The CD47 signaling ligand thrombospondin-1 also suppressed schlafen-11 expression in wild type but not CD47-deficient T cells. Re-expressing SLFN11 restored radiosensitivity to a CD47-deficient Jurkat cells. Disruption of CD47 in PC3 prostate cancer cells similarly decreased schlafen-11 expression and was associated with a CD47-dependent decrease in acetylation and increased methylation of histone H3 in the SLFN11 promoter region. The ability of histone deacetylase or topoisomerase inhibitors to induce SLFN11 expression in PC3 cells was lost when CD47 was targeted in these cells. Disrupting CD47 in PC3 cells increased resistance to etoposide but, in contrast to Jurkat cells, not to ionizing radiation. These data identify CD47 as a context-dependent regulator of SLFN11 expression and suggest an approach to improve radiotherapy and chemotherapy responses by combining with CD47-targeted therapeutics.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Anthony L. Schwartz
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David G. Jordan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David R. Soto-Pantoja
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bethany Kuo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Abdel G. Elkahloun
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lesley Mathews Griner
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Craig J. Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Anish Thomas
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sai-Wen Tang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Vinodh N. Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
23
|
Guillon J, Petit C, Toutain B, Guette C, Lelièvre E, Coqueret O. Chemotherapy-induced senescence, an adaptive mechanism driving resistance and tumor heterogeneity. Cell Cycle 2019; 18:2385-2397. [PMID: 31397193 DOI: 10.1080/15384101.2019.1652047] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Senescence is activated in response to chemotherapy to prevent the propagation of cancer cells. In transformed cells, recent studies have shown that this response is not always definitive and that persistent populations can use senescence as an adaptive pathway to restart proliferation and become more aggressive. Here we discuss the results showing that an incomplete and heterogeneous senescence response plays a key role in chemotherapy resistance. Surviving to successive chemotherapy regimens, chronically existing senescent cells can create a survival niche through paracrine cooperations with neighboring cells. This favors chemotherapy escape of premalignant clones but might also allow the survival of adjacent clones presenting a lower fitness. A better characterization of senescence heterogeneity in transformed cells is therefore necessary. This will help us to understand this incomplete response to therapy and how it could generate clones with increased tumor capacity leading to disease relapse.
Collapse
Affiliation(s)
- Jordan Guillon
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers , Angers , France.,SIRIC ILIAD , Nantes, Angers , France
| | - Coralie Petit
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers , Angers , France.,SIRIC ILIAD , Nantes, Angers , France
| | - Bertrand Toutain
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers , Angers , France.,SIRIC ILIAD , Nantes, Angers , France
| | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers , Angers , France.,SIRIC ILIAD , Nantes, Angers , France
| | - Eric Lelièvre
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers , Angers , France.,SIRIC ILIAD , Nantes, Angers , France
| | - Olivier Coqueret
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers , Angers , France.,SIRIC ILIAD , Nantes, Angers , France
| |
Collapse
|
24
|
Li Q, Zhang Y, Jiang Q. SETD3 reduces KLC4 expression to improve the sensitization of cervical cancer cell to radiotherapy. Biochem Biophys Res Commun 2019; 516:619-625. [DOI: 10.1016/j.bbrc.2019.06.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/30/2022]
|
25
|
Nath PR, Gangaplara A, Pal-Nath D, Mandal A, Maric D, Sipes JM, Cam M, Shevach EM, Roberts DD. CD47 Expression in Natural Killer Cells Regulates Homeostasis and Modulates Immune Response to Lymphocytic Choriomeningitis Virus. Front Immunol 2018; 9:2985. [PMID: 30643501 PMCID: PMC6320676 DOI: 10.3389/fimmu.2018.02985] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
CD47 is a ubiquitous cell surface receptor that directly regulates T cell immunity by interacting with its inhibitory ligand thrombospondin-1 and limits clearance of cells by phagocytes that express its counter-receptor signal-regulatory protein-α. Murine natural killer (NK) cells express higher levels of CD47 than other lymphocytes, but the role of CD47 in regulating NK cell homeostasis and immune function remains unclear. Cd47 -/- mice exhibited depletion of NK precursors in bone marrow, consistent with the antiphagocytic function of CD47. In contrast, antisense CD47 knockdown or gene disruption resulted in a dose dependent accumulation of immature and mature NK cells in spleen. Mature Cd47 -/- NK cells exhibited increased expression of NK effector and interferon gene signatures and an increased proliferative response to interleukin-15 in vitro. Cd47 -/- mice showed no defect in their early response to acute Armstrong lymphocytic choriomeningitis virus (LCMV) infection but were moderately impaired in controlling chronic Clone-13 LCMV infection, which was associated with depletion of splenic NK cells and loss of effector cytokine and interferon response gene expression in Cd47 -/- NK cells. Broad CD47-dependent differences in NK activation, survival, and exhaustion pathways were observed in NK cell transcriptional signatures in LCMV infected mice. These data identify CD47 as a cell-intrinsic and systemic regulator of NK cell homeostasis and NK cell function in responding to a viral infection.
Collapse
Affiliation(s)
- Pulak Ranjan Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Arunakumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ajeet Mandal
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute and Leidos Biomedical Research, Inc., National Institutes of Health, Bethesda, MD, United States
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - John M Sipes
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute and Leidos Biomedical Research, Inc., National Institutes of Health, Bethesda, MD, United States
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Feliz-Mosquea YR, Christensen AA, Wilson AS, Westwood B, Varagic J, Meléndez GC, Schwartz AL, Chen QR, Mathews Griner L, Guha R, Thomas CJ, Ferrer M, Merino MJ, Cook KL, Roberts DD, Soto-Pantoja DR. Combination of anthracyclines and anti-CD47 therapy inhibit invasive breast cancer growth while preventing cardiac toxicity by regulation of autophagy. Breast Cancer Res Treat 2018; 172:69-82. [PMID: 30056566 PMCID: PMC6195817 DOI: 10.1007/s10549-018-4884-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND A perennial challenge in systemic cytotoxic cancer therapy is to eradicate primary tumors and metastatic disease while sparing normal tissue from off-target effects of chemotherapy. Anthracyclines such as doxorubicin are effective chemotherapeutic agents for which dosing is limited by development of cardiotoxicity. Our published evidence shows that targeting CD47 enhances radiation-induced growth delay of tumors while remarkably protecting soft tissues. The protection of cell viability observed with CD47 is mediated autonomously by activation of protective autophagy. However, whether CD47 protects cancer cells from cytotoxic chemotherapy is unknown. METHODS We tested the effect of CD47 blockade on cancer cell survival using a 2-dimensional high-throughput cell proliferation assay in 4T1 breast cancer cell lines. To evaluate blockade of CD47 in combination with chemotherapy in vivo, we employed the 4T1 breast cancer model and examined tumor and cardiac tissue viability as well as autophagic flux. RESULTS Our high-throughput screen revealed that blockade of CD47 does not interfere with the cytotoxic activity of anthracyclines against 4T1 breast cancer cells. Targeting CD47 enhanced the effect of doxorubicin chemotherapy in vivo by reducing tumor growth and metastatic spread by activation of an anti-tumor innate immune response. Moreover, systemic suppression of CD47 protected cardiac tissue viability and function in mice treated with doxorubicin. CONCLUSIONS Our experiments indicate that the protective effects observed with CD47 blockade are mediated through upregulation of autophagic flux. However, the absence of CD47 in did not elicit a protective effect in cancer cells, but it enhanced macrophage-mediated cancer cell cytolysis. Therefore, the differential responses observed with CD47 blockade are due to autonomous activation of protective autophagy in normal tissue and enhancement immune cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Yismeilin R Feliz-Mosquea
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Ashley A Christensen
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Adam S Wilson
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Brian Westwood
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Jasmina Varagic
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Giselle C Meléndez
- Internal Medicine, Section on Cardiovascular Medicine, Pathology Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony L Schwartz
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qing-Rong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lesley Mathews Griner
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Craig J Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria J Merino
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katherine L Cook
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
- Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David R Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
- Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
27
|
Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, Carew JS, Nawrocki ST, Persky D, Anwer F. Blocking "don't eat me" signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev 2018; 32:480-489. [PMID: 29709247 PMCID: PMC6186508 DOI: 10.1016/j.blre.2018.04.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/17/2018] [Accepted: 04/12/2018] [Indexed: 01/14/2023]
Abstract
Hematological malignancies express high levels of CD47 as a mechanism of immune evasion. CD47-SIRPα triggers a cascade of events that inhibit phagocytosis. Preclinical research supports several models of antibody-mediated blockade of CD47-SIRPα resulting in cell death signaling, phagocytosis of cells bearing stress signals, and priming of tumor-specific T cell responses. Four different antibody molecules designed to target the CD47-SIRPα interaction in malignancy are currently being studied in clinical trials: Hu5F9-G4, CC-90002, TTI-621, and ALX-148. Hu5F9-G4, a humanized anti-CD47 blocking antibody is currently being studied in four different Phase I trials. These studies may lay the groundwork for therapeutic bispecific antibodies. Bispecific antibody (CD20-CD47SL) fusion of anti-CD20 (Rituximab) and anti-CD47 also demonstrated a synergistic effect against lymphoma in preclinical models. This review summarizes the large body of preclinical evidence and emerging clinical data supporting the use of antibodies designed to target the CD47-SIRPα interaction in leukemia, lymphoma and multiple myeloma.
Collapse
Affiliation(s)
- Atlantis Russ
- Department of Medicine, University of Arizona, Tucson, AZ, USA.
| | - Anh B Hua
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA.
| | | | - Bushra Rahman
- Department of Medicine, University of Arizona, Tucson, AZ, USA.
| | - Irbaz Bin Riaz
- Department of Medicine, Hematology Oncology, Mayo Clinic, Rochester, MN, USA.
| | - Muhammad Umar Khalid
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Jennifer S Carew
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Steffan T Nawrocki
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Daniel Persky
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | - Faiz Anwer
- Department of Medicine, Division of Hematology, Oncology, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
28
|
Khan SM, Gumus A, Nassar JM, Hussain MM. CMOS Enabled Microfluidic Systems for Healthcare Based Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705759. [PMID: 29484725 DOI: 10.1002/adma.201705759] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/19/2017] [Indexed: 05/12/2023]
Abstract
With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen.
Collapse
Affiliation(s)
- Sherjeel M Khan
- Integrated Nanotechnology Lab and Integrated Disruptive Electronic Applications (IDEA) Lab, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdurrahman Gumus
- Integrated Nanotechnology Lab and Integrated Disruptive Electronic Applications (IDEA) Lab, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Electrical and Electronics Engineering, Izmir Institute of Technology, Urla, 35430, Izmir, Turkey
| | - Joanna M Nassar
- Integrated Nanotechnology Lab and Integrated Disruptive Electronic Applications (IDEA) Lab, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad M Hussain
- Integrated Nanotechnology Lab and Integrated Disruptive Electronic Applications (IDEA) Lab, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
29
|
Zhang X, Chen W, Fan J, Wang S, Xian Z, Luan J, Li Y, Wang Y, Nan Y, Luo M, Li S, Tian W, Ju D. Disrupting CD47-SIRPα axis alone or combined with autophagy depletion for the therapy of glioblastoma. Carcinogenesis 2018. [DOI: 10.1093/carcin/bgy041] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xuyao Zhang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiajun Fan
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Shaofei Wang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zongshu Xian
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jingyun Luan
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yubin Li
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yichen Wang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyang Nan
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Man Luo
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Song Li
- ImmuneOnco Biopharma (Shanghai) Co., Ltd., Shanghai, China
| | - Wenzhi Tian
- ImmuneOnco Biopharma (Shanghai) Co., Ltd., Shanghai, China
| | - Dianwen Ju
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Roberts DD, Kaur S, Isenberg JS. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer. Antioxid Redox Signal 2017; 27:874-911. [PMID: 28712304 PMCID: PMC5653149 DOI: 10.1089/ars.2017.7140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H2S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H2S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. CRITICAL ISSUES Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. FUTURE DIRECTIONS Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.
Collapse
Affiliation(s)
- David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Cook KL, Soto-Pantoja DR. "UPRegulation" of CD47 by the endoplasmic reticulum stress pathway controls anti-tumor immune responses. Biomark Res 2017; 5:26. [PMID: 28815041 PMCID: PMC5557514 DOI: 10.1186/s40364-017-0105-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
We recently demonstrated that targeting the unfolded protein response (UPR) protein GRP78 down-regulates CD47 expression, resulting in increased tumor macrophage infiltration and inhibited resistance to anti-estrogen therapy. We now show new data indicating that anti-estrogen therapy regulates CD47 expression and implicates its ligand, thrombospondin-1, in regulation of tumor macrophage infiltration. Moreover, GRP78 and CD47 co-expression is associated with poor prognosis in breast cancer patients, suggesting the existence of crosstalk between UPR and immunity that regulates therapeutic responses in breast cancer.
Collapse
Affiliation(s)
- Katherine L Cook
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - David R Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.,Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
32
|
Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, Luan J, Wang Z, Song P, Chen Q, Tian W, Ju D. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non–Small Cell Lung Cancer. Cancer Immunol Res 2017; 5:363-375. [DOI: 10.1158/2326-6066.cir-16-0398] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/10/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
|
33
|
Liu Y, Zhang C, Li Z, Wang C, Jia J, Gao T, Hildebrandt G, Zhou D, Bondada S, Ji P, St Clair D, Liu J, Zhan C, Geiger H, Wang S, Liang Y. Latexin Inactivation Enhances Survival and Long-Term Engraftment of Hematopoietic Stem Cells and Expands the Entire Hematopoietic System in Mice. Stem Cell Reports 2017; 8:991-1004. [PMID: 28330618 PMCID: PMC5390104 DOI: 10.1016/j.stemcr.2017.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
Natural genetic diversity offers an important yet largely untapped resource to decipher the molecular mechanisms regulating hematopoietic stem cell (HSC) function. Latexin (Lxn) is a negative stem cell regulatory gene identified on the basis of genetic diversity. By using an Lxn knockout mouse model, we found that Lxn inactivation in vivo led to the physiological expansion of the entire hematopoietic hierarchy. Loss of Lxn enhanced the competitive repopulation capacity and survival of HSCs in a cell-intrinsic manner. Gene profiling of Lxn-null HSCs showed altered expression of genes enriched in cell-matrix and cell-cell interactions. Thrombospondin 1 (Thbs1) was a potential downstream target with a dramatic downregulation in Lxn-null HSCs. Enforced expression of Thbs1 restored the Lxn inactivation-mediated HSC phenotypes. This study reveals that Lxn plays an important role in the maintenance of homeostatic hematopoiesis, and it may lead to development of safe and effective approaches to manipulate HSCs for clinical benefit.
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Cuiping Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building Room 340, 1095 V.A. Drive, Lexington, KY 40536, USA
| | - Zhenyu Li
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Department of Cancer Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Jianhang Jia
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Tianyan Gao
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Gerhard Hildebrandt
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Subbarao Bondada
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Peng Ji
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| | - Daret St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building Room 340, 1095 V.A. Drive, Lexington, KY 40536, USA
| | - Jinze Liu
- Department of Computer Science, University of Kentucky, Lexington, KY 40536, USA
| | - Changguo Zhan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Hartmut Geiger
- Cincinnati Children's Hospital Medical Center, Experimental Hematology and Cancer Biology, Cincinnati, OH 45229, USA; Institute for Molecular Medicine, University of Ulm, 89081 Ulm, Germany
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ying Liang
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building Room 340, 1095 V.A. Drive, Lexington, KY 40536, USA.
| |
Collapse
|
34
|
Torres A, Gubbiotti MA, Iozzo RV. Decorin-inducible Peg3 Evokes Beclin 1-mediated Autophagy and Thrombospondin 1-mediated Angiostasis. J Biol Chem 2017; 292:5055-5069. [PMID: 28174297 PMCID: PMC5377817 DOI: 10.1074/jbc.m116.753632] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/06/2017] [Indexed: 01/31/2023] Open
Abstract
We previously discovered that systemic delivery of decorin for treatment of breast carcinoma xenografts induces paternally expressed gene 3 (Peg3), an imprinted gene encoding a zinc finger transcription factor postulated to function as a tumor suppressor. Here we found that de novo expression of Peg3 increased Beclin 1 promoter activity and protein expression. This process required the full-length Peg3 as truncated mutants lacking either the N-terminal SCAN domain or the zinc fingers failed to translocate to the nucleus and promote Beclin 1 transcription. Importantly, overexpression of Peg3 in endothelial cells stimulated autophagy and concurrently inhibited endothelial cell migration and evasion from a 3D matrix. Mechanistically, we found that Peg3 induced the secretion of the powerful angiostatic glycoprotein Thrombospondin 1 independently of Beclin 1 transcriptional induction. Thus, we provide a new mechanism whereby Peg3 can simultaneously evoke autophagy in endothelial cells and attenuate angiogenesis.
Collapse
Affiliation(s)
- Annabel Torres
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Maria A Gubbiotti
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V Iozzo
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
35
|
He LX, Wang JB, Sun B, Zhao J, Li L, Xu T, Li H, Sun JQ, Ren J, Liu R, Chen QH, Zhang ZF, Li Y. Suppression of TNF-α and free radicals reduces systematic inflammatory and metabolic disorders: Radioprotective effects of ginseng oligopeptides on intestinal barrier function and antioxidant defense. J Nutr Biochem 2016; 40:53-61. [PMID: 27863345 DOI: 10.1016/j.jnutbio.2016.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022]
Abstract
Irradiation therapy is markedly associated with intestinal injure and oxidant stress. This study aimed to investigate the effects of ginseng (Panax ginseng C.A. Mey.) oligopeptides (GOP) on irradiation-induced intestinal injury and antioxidant defense in mice. BALB/c mice (8 weeks old) were randomly divided into six groups: vehicle control, irradiation control (IR), IR+whey protein [0.30 g/kg body weight (BW)], IR+GOP 0.15 g/kg BW, IR+GOP 0.30 g/kg BW and IR+GOP 0.60 g/kg BW. Postirradiation 30-day survival trial, white blood cells count and bone marrow hematopoietic system damage were performed to identify the injury degree induced by irradiation. Then, histopathology analysis was observed and intestinal permeability in vivo was quantified with fluorescein isothiocyanate-dextran. The enzyme-linked immunosorbent assay was used to determine antioxidant ability, plasma inflammatory cytokines, diamine oxidase (DAO) and endotoxin (LPS) levels. The immunohistochemistry assay was used to analyze the expression levels of tight junction proteins. We found that GOP-treated mice exhibited lower concentrations of plasma LPS and DAO and decreased instructors of inflammatory and oxidative stress which were linked to the lower intestinal permeability and higher tight junction proteins expression. The blockage of GOP was linked with the reduction of TNF-α and free radicals. The 15-day pretreatment of GOP could exhibit radioprotective effects, and another 15-day posttreatment benefited the quick repair of irradiation-induced injury. We confirm that GOP would exhibit effective therapeutic value on attenuating irradiation-induced hematopoietic, gastrointestinal and oxidative injury in cancer patients.
Collapse
Affiliation(s)
- Li-Xia He
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Jun-Bo Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Bin Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Jian Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Lin Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Teng Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Jing-Qin Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Jinwei Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Qi-He Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Zhao-Feng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, PR China.
| |
Collapse
|
36
|
Fahie K, Zachara NE. Molecular Functions of Glycoconjugates in Autophagy. J Mol Biol 2016; 428:3305-3324. [PMID: 27345664 DOI: 10.1016/j.jmb.2016.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023]
Abstract
Glycoconjugates, glycans, carbohydrates, and sugars: these terms encompass a class of biomolecules that are diverse in both form and function ranging from free oligosaccharides, glycoproteins, and proteoglycans, to glycolipids that make up a complex glycan code that impacts normal physiology and disease. Recent data suggest that one mechanism by which glycoconjugates impact physiology is through the regulation of the process of autophagy. Autophagy is a degradative pathway necessary for differentiation, organism development, and the maintenance of cell and tissue homeostasis. In this review, we will highlight what is known about the regulation of autophagy by glycoconjugates focusing on signaling mechanisms from the extracellular surface and the regulatory roles of intracellular glycans. Glycan signaling from the extracellular matrix converges on "master" regulators of autophagy including AMPK and mTORC1, thus impacting their localization, activity, and/or expression. Within the intracellular milieu, gangliosides are constituents of the autophagosome membrane, a subset of proteins composing the autophagic machinery are regulated by glycosylation, and oligosaccharide exposure in the cytosol triggers an autophagic response. The examples discussed provide some mechanistic insights into glycan regulation of autophagy and reveal areas for future investigation.
Collapse
Affiliation(s)
- Kamau Fahie
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185, USA.
| |
Collapse
|
37
|
Divergent modulation of normal and neoplastic stem cells by thrombospondin-1 and CD47 signaling. Int J Biochem Cell Biol 2016; 81:184-194. [PMID: 27163531 DOI: 10.1016/j.biocel.2016.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/27/2016] [Accepted: 05/04/2016] [Indexed: 01/19/2023]
Abstract
Thrombospondin-1 is a secreted matricellular protein that regulates the differentiation and function of many cell types. Thrombospondin-1 is not required for embryonic development, but studies using lineage-committed adult stem cells have identified positive and negative effects of thrombospondin-1 on stem cell differentiation and self-renewal and identified several thrombospondin-1 receptors that mediate these responses. Genetic studies in mice reveal a broad inhibitory role of thrombospondin-1 mediated by its receptor CD47. Cells and tissues lacking thrombospondin-1 or CD47 exhibit an increased capacity for self-renewal associated with increased expression of the stem cell transcription factors c-Myc, Sox2, Klf4, and Oct4. Thrombospondin-1 inhibits expression of these transcription factors in a CD47-dependent manner. However, this regulation differs in some neoplastic cells. Tumor initiating/cancer stem cells express high levels of CD47, but in contrast to nontransformed stem cells CD47 signaling supports cancer stem cells. Suppression of CD47 expression in cancer stem cells or ligation of CD47 by function blocking antibodies or thrombospondin-1 results in loss of self-renewal. Therefore, the therapeutic CD47 antagonists that are in clinical development for stimulating innate anti-tumor immunity may also inhibit tumor growth by suppressing cancer stem cells. These and other therapeutic modulators of thrombospondin-1 and CD47 signaling may also have applications in regenerative medicine to enhance the function of normal stem cells.
Collapse
|
38
|
Jeanne A, Schneider C, Martiny L, Dedieu S. Original insights on thrombospondin-1-related antireceptor strategies in cancer. Front Pharmacol 2015; 6:252. [PMID: 26578962 PMCID: PMC4625054 DOI: 10.3389/fphar.2015.00252] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Thrombospondin-1 (TSP-1) is a large matricellular glycoprotein known to be overexpressed within tumor stroma in several cancer types. While mainly considered as an endogenous angiogenesis inhibitor, TSP-1 exhibits multifaceted functionalities in a tumor context depending both on TSP-1 concentration as well as differential receptor expression by cancer cells and on tumor-associated stromal cells. Besides, the complex modular structure of TSP-1 along with the wide variety of its soluble ligands and membrane receptors considerably increases the complexity of therapeutically targeting interactions involving TSP-1 ligation of cell-surface receptors. Despite the pleiotropic nature of TSP-1, many different antireceptor strategies have been developed giving promising results in preclinical models. However, transition to clinical trials often led to nuanced outcomes mainly due to frequent severe adverse effects. In this review, we will first expose the intricate and even sometimes opposite effects of TSP-1-related signaling on tumor progression by paying particular attention to modulation of angiogenesis and tumor immunity. Then, we will provide an overview of current developments and prospects by focusing particularly on the cell-surface molecules CD47 and CD36 that function as TSP-1 receptors; including antibody-based approaches, therapeutic gene modulation and the use of peptidomimetics. Finally, we will discuss original approaches specifically targeting TSP-1 domains, as well as innovative combination strategies with a view to producing an overall anticancer response.
Collapse
Affiliation(s)
- Albin Jeanne
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France ; SATT Nord Lille, France
| | - Christophe Schneider
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| | - Laurent Martiny
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| | - Stéphane Dedieu
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| |
Collapse
|
39
|
Thomas DD, Heinecke JL, Ridnour LA, Cheng RY, Kesarwala AH, Switzer CH, McVicar DW, Roberts DD, Glynn S, Fukuto JM, Wink DA, Miranda KM. Signaling and stress: The redox landscape in NOS2 biology. Free Radic Biol Med 2015; 87:204-25. [PMID: 26117324 PMCID: PMC4852151 DOI: 10.1016/j.freeradbiomed.2015.06.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/31/2023]
Abstract
Nitric oxide (NO) has a highly diverse range of biological functions from physiological signaling and maintenance of homeostasis to serving as an effector molecule in the immune system. However, deleterious as well as beneficial roles of NO have been reported. Many of the dichotomous effects of NO and derivative reactive nitrogen species (RNS) can be explained by invoking precise interactions with different targets as a result of concentration and temporal constraints. Endogenous concentrations of NO span five orders of magnitude, with levels near the high picomolar range typically occurring in short bursts as compared to sustained production of low micromolar levels of NO during immune response. This article provides an overview of the redox landscape as it relates to increasing NO concentrations, which incrementally govern physiological signaling, nitrosative signaling and nitrosative stress-related signaling. Physiological signaling by NO primarily occurs upon interaction with the heme protein soluble guanylyl cyclase. As NO concentrations rise, interactions with nonheme iron complexes as well as indirect modification of thiols can stimulate additional signaling processes. At the highest levels of NO, production of a broader range of RNS, which subsequently interact with more diverse targets, can lead to chemical stress. However, even under such conditions, there is evidence that stress-related signaling mechanisms are triggered to protect cells or even resolve the stress. This review therefore also addresses the fundamental reactions and kinetics that initiate signaling through NO-dependent pathways, including processes that lead to interconversion of RNS and interactions with molecular targets.
Collapse
Affiliation(s)
- Douglas D Thomas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Julie L Heinecke
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa A Ridnour
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Y Cheng
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aparna H Kesarwala
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher H Switzer
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel W McVicar
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - David D Roberts
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharon Glynn
- Prostate Cancer Institute, NUI Galway, Ireland, USA
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA
| | - David A Wink
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Katrina M Miranda
- Department of Chemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA.
| |
Collapse
|
40
|
Miller TW, Soto-Pantoja DR, Schwartz AL, Sipes JM, DeGraff WG, Ridnour LA, Wink DA, Roberts DD. CD47 Receptor Globally Regulates Metabolic Pathways That Control Resistance to Ionizing Radiation. J Biol Chem 2015; 290:24858-74. [PMID: 26311851 DOI: 10.1074/jbc.m115.665752] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/06/2022] Open
Abstract
Modulating tissue responses to stress is an important therapeutic objective. Oxidative and genotoxic stresses caused by ionizing radiation are detrimental to healthy tissues but beneficial for treatment of cancer. CD47 is a signaling receptor for thrombospondin-1 and an attractive therapeutic target because blocking CD47 signaling protects normal tissues while sensitizing tumors to ionizing radiation. Here we utilized a metabolomic approach to define molecular mechanisms underlying this radioprotective activity. CD47-deficient cells and cd47-null mice exhibited global advantages in preserving metabolite levels after irradiation. Metabolic pathways required for controlling oxidative stress and mediating DNA repair were enhanced. Some cellular energetics pathways differed basally in CD47-deficient cells, and the global declines in the glycolytic and tricarboxylic acid cycle metabolites characteristic of normal cell and tissue responses to irradiation were prevented in the absence of CD47. Thus, CD47 mediates signaling from the extracellular matrix that coordinately regulates basal metabolism and cytoprotective responses to radiation injury.
Collapse
Affiliation(s)
- Thomas W Miller
- From the Laboratory of Pathology and Paradigm Shift Therapeutics, Rockville, Maryland 20852, and
| | - David R Soto-Pantoja
- From the Laboratory of Pathology and Departments of Cancer Biology and Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | - William G DeGraff
- Radiation Biology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Lisa A Ridnour
- Radiation Biology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - David A Wink
- Radiation Biology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
41
|
Tan M, Zhu L, Zhuang H, Hao Y, Gao S, Liu S, Liu Q, Liu D, Liu J, Lin B. Lewis Y antigen modified CD47 is an independent risk factor for poor prognosis and promotes early ovarian cancer metastasis. Am J Cancer Res 2015; 5:2777-2787. [PMID: 26609483 PMCID: PMC4633904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/08/2015] [Indexed: 06/05/2023] Open
Abstract
CD47 is a membrane receptor that belongs to the immunoglobulin superfamily and plays an important role in the mechanisms of tumor immune escape. CD47 participates in tumor immune escape by combining with SIRPα to reduce the phagocytic activity of macrophages. There are six potential N-glycosylation sites on CD47, and glycosylation is known to be necessary for its membrane localization. However, it is still unknown to what extent glycosylation influences CD47 ligand binding properties and subsequent signaling. By using immunoprecipitation and confocal laser scanning microscopy, we showed that CD47 contains Lewis y antigen. Immunohistochemical analysis demonstrated that both the positive expression and the overexpression of CD47 and Lewis y antigen in cancer tissues and borderline tumors were significantly higher than those in benign ovarian tumors and normal ovarian tissues (P < 0.05). A linear correlation between the expression patterns of CD47 and Lewis y antigen was evident (r = 0.47, P < 0.01). The high expression of CD47 and Lewis y antigen showed significant correlations with the clinical pathological parameters of ovarian cancer [International Federation of Gynecology and Obstetrics (FIGO) standards, lymph node metastasis, and degree of differentiation] (P < 0.05). The Cox model and Kaplan-Meier tests showed that high expression of CD47 was an independent adverse risk factor for the prognosis of ovarian cancer. Cases with both high CD47 and Lewis y antigen expression had poor prognoses. Our study demonstrates that Lewis y antigens of CD47 may play a crucial role in the development of ovarian cancer, and could be new targets for immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Mingzi Tan
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Liancheng Zhu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Huiyu Zhuang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Yingying Hao
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Song Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Shuice Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Qing Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Dawo Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Juanjuan Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| | - Bei Lin
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, China
| |
Collapse
|
42
|
Lin W, Yuan N, Wang Z, Cao Y, Fang Y, Li X, Xu F, Song L, Wang J, Zhang H, Yan L, Xu L, Zhang X, Zhang S, Wang J. Autophagy confers DNA damage repair pathways to protect the hematopoietic system from nuclear radiation injury. Sci Rep 2015; 5:12362. [PMID: 26197097 PMCID: PMC4508834 DOI: 10.1038/srep12362] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/26/2015] [Indexed: 12/23/2022] Open
Abstract
Autophagy is essentially a metabolic process, but its in vivo role in nuclear radioprotection remains unexplored. We observed that ex vivo autophagy activation reversed the proliferation inhibition, apoptosis, and DNA damage in irradiated hematopoietic cells. In vivo autophagy activation improved bone marrow cellularity following nuclear radiation exposure. In contrast, defective autophagy in the hematopoietic conditional mouse model worsened the hematopoietic injury, reactive oxygen species (ROS) accumulation and DNA damage caused by nuclear radiation exposure. Strikingly, in vivo defective autophagy caused an absence or reduction in regulatory proteins critical to both homologous recombination (HR) and non-homologous end joining (NHEJ) DNA damage repair pathways, as well as a failure to induce these proteins in response to nuclear radiation. In contrast, in vivo autophagy activation increased most of these proteins in hematopoietic cells. DNA damage assays confirmed the role of in vivo autophagy in the resolution of double-stranded DNA breaks in total bone marrow cells as well as bone marrow stem and progenitor cells upon whole body irradiation. Hence, autophagy protects the hematopoietic system against nuclear radiation injury by conferring and intensifying the HR and NHEJ DNA damage repair pathways and by removing ROS and inhibiting apoptosis.
Collapse
Affiliation(s)
- Weiwei Lin
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Zhen Wang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Yan Cao
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Xin Li
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Fei Xu
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Lin Song
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Jian Wang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Han Zhang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Lili Yan
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Xiaoying Zhang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Soochow University School of Medicine, Suzhou 215123, China
| |
Collapse
|
43
|
NO to cancer: The complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001. Redox Biol 2015; 6:1-8. [PMID: 26164533 PMCID: PMC4529402 DOI: 10.1016/j.redox.2015.07.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/18/2023] Open
Abstract
The endogenous mediator of vasodilation, nitric oxide (NO), has been shown to be a potent radiosensitizer. However, the underlying mode of action for its role as a radiosensitizer – while not entirely understood – is believed to arise from increased tumor blood flow, effects on cellular respiration, on cell signaling, and on the production of reactive oxygen and nitrogen species (RONS), that can act as radiosensitizers in their own right. NO activity is surprisingly long-lived and more potent in comparison to oxygen. Reports of the effects of NO with radiation have often been contradictory leading to confusion about the true radiosensitizing nature of NO. Whether increasing or decreasing tumor blood flow, acting as radiosensitizer or radioprotector, the effects of NO have been controversial. Key to understanding the role of NO as a radiosensitizer is to recognize the importance of biological context. With a very short half-life and potent activity, the local effects of NO need to be carefully considered and understood when using NO as a radiosensitizer. The systemic effects of NO donors can cause extensive side effects, and also affect the local tumor microenvironment, both directly and indirectly. To minimize systemic effects and maximize effects on tumors, agents that deliver NO on demand selectively to tumors using hypoxia as a trigger may be of greater interest as radiosensitizers. Herein we discuss the multiple effects of NO and focus on the clinical molecule RRx-001, a hypoxia-activated NO donor currently being investigated as a radiosensitizer in the clinic. . NO radiosensitizes by reaction with DNA radicals, by its metabolites and by impact on the vasculature. Understanding the local and context-specific activity of NO is key for radiosensitizer development RRx-001 induces NO production under hypoxia with promising radiosensitizing activity.
Collapse
|
44
|
Park SA, Platt J, Lee JW, López-Giráldez F, Herbst RS, Koo JS. E2F8 as a Novel Therapeutic Target for Lung Cancer. J Natl Cancer Inst 2015; 107:djv151. [PMID: 26089541 DOI: 10.1093/jnci/djv151] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The E2F members have been divided into transcription activators (E2F1-E2F3) and repressors (E2F4-E2F8). E2F8 with E2F7 has been known to play an important physiologic role in embryonic development and cell cycle regulation by repressing E2F1. However, the function of E2F8 in cancer cells is unknown. METHODS E2F8 expression was assessed by immunoblotting or immunofluorescence staining in human lung cancer (LC) cells and tissues from LC patients (n = 45). Cell proliferation, colony formation, and invasion analysis were performed to evaluate the role of E2F8 in LC. Microarray analysis was used to determine the target genes of E2F8. The regulation of E2F8 on the expression of ubiquitin-like PHD and RING domain-containing 1 (UHRF1), one of E2F8 target genes, was determined using chromatin immunoprecipitation and promoter activity assays. Human LC xenograft models were used to determine the effects of inhibiting E2F8 by siRNAs (n = 7 per group) or antisense morpholino (n = 8 per group) on tumor growth. Survival was analyzed using the Kaplan-Meier method and group differences by the Student's t test. All statistical tests were two-sided. RESULTS LC tumors overexpressed E2F8 compared with normal lung tissues. Depletion of E2F8 inhibited cell proliferation and tumor growth. E2F8 knockdown statistically significantly reduced the expression of UHRF1 (~60%-70%, P < .001), and the direct binding of E2F8 on the promoter of UHRF1 was identified. Kaplan-Meier analysis with a public database showed prognostic significance of aberrant E2F8 expression in LC (HR = 1.91 95% CI = 1.21 to 3.01 in chemo-naïve patients, P = .0047). CONCLUSIONS We demonstrated that E2F8 is overexpressed in LC and is required for the growth of LC cells. These findings implicate E2F8 as a novel therapeutic target for LC treatment.
Collapse
Affiliation(s)
- Sin-Aye Park
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - James Platt
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Jong Woo Lee
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Francesc López-Giráldez
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Roy S Herbst
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Ja Seok Koo
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG).
| |
Collapse
|
45
|
Ridnour LA, Cheng RYS, Weiss JM, Kaur S, Soto-Pantoja DR, Basudhar D, Heinecke JL, Stewart CA, DeGraff W, Sowers AL, Thetford A, Kesarwala AH, Roberts DD, Young HA, Mitchell JB, Trinchieri G, Wiltrout RH, Wink DA. NOS Inhibition Modulates Immune Polarization and Improves Radiation-Induced Tumor Growth Delay. Cancer Res 2015; 75:2788-99. [PMID: 25990221 DOI: 10.1158/0008-5472.can-14-3011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/08/2015] [Indexed: 12/24/2022]
Abstract
Nitric oxide synthases (NOS) are important mediators of progrowth signaling in tumor cells, as they regulate angiogenesis, immune response, and immune-mediated wound healing. Ionizing radiation (IR) is also an immune modulator and inducer of wound response. We hypothesized that radiation therapeutic efficacy could be improved by targeting NOS following tumor irradiation. Herein, we show enhanced radiation-induced (10 Gy) tumor growth delay in a syngeneic model (C3H) but not immunosuppressed (Nu/Nu) squamous cell carcinoma tumor-bearing mice treated post-IR with the constitutive NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME). These results suggest a requirement of T cells for improved radiation tumor response. In support of this observation, tumor irradiation induced a rapid increase in the immunosuppressive Th2 cytokine IL10, which was abated by post-IR administration of L-NAME. In vivo suppression of IL10 using an antisense IL10 morpholino also extended the tumor growth delay induced by radiation in a manner similar to L-NAME. Further examination of this mechanism in cultured Jurkat T cells revealed L-NAME suppression of IR-induced IL10 expression, which reaccumulated in the presence of exogenous NO donor. In addition to L-NAME, the guanylyl cyclase inhibitors ODQ and thrombospondin-1 also abated IR-induced IL10 expression in Jurkat T cells and ANA-1 macrophages, which further suggests that the immunosuppressive effects involve eNOS. Moreover, cytotoxic Th1 cytokines, including IL2, IL12p40, and IFNγ, as well as activated CD8(+) T cells were elevated in tumors receiving post-IR L-NAME. Together, these results suggest that post-IR NOS inhibition improves radiation tumor response via Th1 immune polarization within the tumor microenvironment.
Collapse
Affiliation(s)
- Lisa A Ridnour
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Robert Y S Cheng
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jonathan M Weiss
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David R Soto-Pantoja
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Debashree Basudhar
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Julie L Heinecke
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - C Andrew Stewart
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - William DeGraff
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Anastasia L Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Angela Thetford
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Aparna H Kesarwala
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Howard A Young
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Giorgio Trinchieri
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Robert H Wiltrout
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - David A Wink
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
46
|
Martinez-Torres AC, Quiney C, Attout T, Boullet H, Herbi L, Vela L, Barbier S, Chateau D, Chapiro E, Nguyen-Khac F, Davi F, Le Garff-Tavernier M, Moumné R, Sarfati M, Karoyan P, Merle-Béral H, Launay P, Susin SA. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans. PLoS Med 2015; 12:e1001796. [PMID: 25734483 PMCID: PMC4348493 DOI: 10.1371/journal.pmed.1001796] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL), the most common adulthood leukemia, is characterized by the accumulation of abnormal CD5+ B lymphocytes, which results in a progressive failure of the immune system. Despite intense research efforts, drug resistance remains a major cause of treatment failure in CLL, particularly in patients with dysfunctional TP53. The objective of our work was to identify potential approaches that might overcome CLL drug refractoriness by examining the pro-apoptotic potential of targeting the cell surface receptor CD47 with serum-stable agonist peptides. METHODS AND FINDINGS In peripheral blood samples collected from 80 patients with CLL with positive and adverse prognostic features, we performed in vitro genetic and molecular analyses that demonstrate that the targeting of CD47 with peptides derived from the C-terminal domain of thrombospondin-1 efficiently kills the malignant CLL B cells, including those from high-risk individuals with a dysfunctional TP53 gene, while sparing the normal T and B lymphocytes from the CLL patients. Further studies reveal that the differential response of normal B lymphocytes, collected from 20 healthy donors, and leukemic B cells to CD47 peptide targeting results from the sustained activation in CLL B cells of phospholipase C gamma-1 (PLCγ1), a protein that is significantly over-expressed in CLL. Once phosphorylated at tyrosine 783, PLCγ1 enables a Ca2+-mediated, caspase-independent programmed cell death (PCD) pathway that is not down-modulated by the lymphocyte microenvironment. Accordingly, down-regulation of PLCγ1 or pharmacological inhibition of PLCγ1 phosphorylation abolishes CD47-mediated killing. Additionally, in a CLL-xenograft model developed in NOD/scid gamma mice, we demonstrate that the injection of CD47 agonist peptides reduces tumor burden without inducing anemia or toxicity in blood, liver, or kidney. The limitations of our study are mainly linked to the affinity of the peptides targeting CD47, which might be improved to reach the standard requirements in drug development, and the lack of a CLL animal model that fully mimics the human disease. CONCLUSIONS Our work provides substantial progress in (i) the development of serum-stable CD47 agonist peptides that are highly effective at inducing PCD in CLL, (ii) the understanding of the molecular events regulating a novel PCD pathway that overcomes CLL apoptotic avoidance, (iii) the identification of PLCγ1 as an over-expressed protein in CLL B cells, and (iv) the description of a novel peptide-based strategy against CLL.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Apoptosis/drug effects
- B-Lymphocytes/metabolism
- CD47 Antigen/metabolism
- Drug Resistance, Neoplasm
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Mice
- Mice, Inbred NOD
- Middle Aged
- Peptides/pharmacology
- Peptides/therapeutic use
- Phospholipase C gamma/metabolism
- Thrombospondin 1/therapeutic use
Collapse
Affiliation(s)
- Ana-Carolina Martinez-Torres
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
| | - Claire Quiney
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
| | - Tarik Attout
- INSERM U1149, Paris, France
- Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Heloïse Boullet
- Laboratoire des Biomolécules, UMR 7203 and FR 2769, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 7203, Paris, France
- Département de Chimie, École Normale Supérieure, Paris, France
| | - Linda Herbi
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
| | - Laura Vela
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
| | - Sandrine Barbier
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
| | - Danielle Chateau
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Intestine: Nutrition, Barrier, and Diseases Team, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Elise Chapiro
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Service d’Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Florence Nguyen-Khac
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Service d’Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Frédéric Davi
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Service d’Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Magali Le Garff-Tavernier
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Service d’Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Roba Moumné
- Laboratoire des Biomolécules, UMR 7203 and FR 2769, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 7203, Paris, France
- Département de Chimie, École Normale Supérieure, Paris, France
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| | - Philippe Karoyan
- Laboratoire des Biomolécules, UMR 7203 and FR 2769, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Centre National de la Recherche Scientifique, UMR 7203, Paris, France
- Département de Chimie, École Normale Supérieure, Paris, France
| | - Hélène Merle-Béral
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Service d’Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Pierre Launay
- INSERM U1149, Paris, France
- Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Santos A. Susin
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMRS1138, Centre de Recherche des Cordeliers, Paris, France
- * E-mail:
| |
Collapse
|
47
|
Soto-Pantoja DR, Kaur S, Roberts DD. CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol 2015; 50:212-30. [PMID: 25708195 DOI: 10.3109/10409238.2015.1014024] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD47 is a widely expressed integral membrane protein that serves as the counter-receptor for the inhibitory phagocyte receptor signal-regulatory protein-α (SIRPα) and as a signaling receptor for the secreted matricellular protein thrombospondin-1. Recent studies employing mice and somatic cells lacking CD47 have revealed important pathophysiological functions of CD47 in cardiovascular homeostasis, immune regulation, resistance of cells and tissues to stress and chronic diseases of aging including cancer. With the emergence of experimental therapeutics targeting CD47, a more thorough understanding of CD47 signal transduction is essential. CD47 lacks a substantial cytoplasmic signaling domain, but several cytoplasmic binding partners have been identified, and lateral interactions of CD47 with other membrane receptors play important roles in mediating signaling resulting from the binding of thrombospondin-1. This review addresses recent advances in identifying the lateral binding partners, signal transduction pathways and downstream transcription networks regulated through CD47 in specific cell lineages. Major pathways regulated by CD47 signaling include calcium homeostasis, cyclic nucleotide signaling, nitric oxide and hydrogen sulfide biosynthesis and signaling and stem cell transcription factors. These pathways and other undefined proximal mediators of CD47 signaling regulate cell death and protective autophagy responses, mitochondrial biogenesis, cell adhesion and motility and stem cell self-renewal. Although thrombospondin-1 is the best characterized agonist of CD47, the potential roles of other members of the thrombospondin family, SIRPα and SIRPγ binding and homotypic CD47 interactions as agonists or antagonists of signaling through CD47 should also be considered.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- a Laboratory of Pathology , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | | | | |
Collapse
|
48
|
Wang Q, Wang Y, Zhao Y, Zhang B, Niu Y, Xiang X, Chen R. Fabricating roughened surfaces on halloysite nanotubes via alkali etching for deposition of high-efficiency Pt nanocatalysts. CrystEngComm 2015. [DOI: 10.1039/c5ce00189g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Roughened halloysite nanotubes (RHNTs) were fabricated by etching the wall of HNTs in a molten-salt system.
Collapse
Affiliation(s)
- Qiuru Wang
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001, People's Republic of China
| | - Yanyan Wang
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001, People's Republic of China
| | - Yafei Zhao
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001, People's Republic of China
| | - Bing Zhang
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001, People's Republic of China
| | - Yunyin, Niu
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001, People's Republic of China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029, People's Republic of China
| | - Rongfeng Chen
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001, People's Republic of China
| |
Collapse
|
49
|
Tena A, Kurtz J, Leonard DA, Dobrinsky JR, Terlouw SL, Mtango N, Verstegen J, Germana S, Mallard C, Arn JS, Sachs DH, Hawley RJ. Transgenic expression of human CD47 markedly increases engraftment in a murine model of pig-to-human hematopoietic cell transplantation. Am J Transplant 2014; 14:2713-22. [PMID: 25278264 PMCID: PMC4236244 DOI: 10.1111/ajt.12918] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/16/2014] [Accepted: 07/06/2014] [Indexed: 01/25/2023]
Abstract
Mixed chimerism approaches for induction of tolerance of solid organ transplants have been applied successfully in animal models and in the clinic. However, in xenogeneic models (pig-to-primate), host macrophages participate in the rapid clearance of porcine hematopoietic progenitor cells, hindering the ability to achieve mixed chimerism. CD47 is a cell-surface molecule that interacts in a species-specific manner with SIRPα receptors on macrophages to inhibit phagocytosis and expression of human CD47 (hCD47) on porcine cells has been shown to inhibit phagocytosis by primate macrophages. We report here the generation of hCD47 transgenic GalT-KO miniature swine that express hCD47 in all blood cell lineages. The effect of hCD47 expression on xenogeneic hematopoietic engraftment was tested in an in vivo mouse model of human hematopoietic cell engraftment. High-level porcine chimerism was observed in the bone marrow of hCD47 progenitor cell recipients and smaller but readily measurable chimerism levels were observed in the peripheral blood of these recipients. In contrast, transplantation of WT progenitor cells resulted in little or no bone marrow engraftment and no detectable peripheral chimerism. These results demonstrate a substantial protective effect of hCD47 expression on engraftment and persistence of porcine cells in this model, presumably by modulation of macrophage phagocytosis.
Collapse
Affiliation(s)
- Aseda Tena
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - Josef Kurtz
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA,Department of Biology, Emmanuel College, Boston, MA
| | - David A. Leonard
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA
| | | | | | | | | | - Sharon Germana
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - Christopher Mallard
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - J. Scott Arn
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - David H. Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - Robert J. Hawley
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
50
|
Oncology scan--Autophagy and the radiation response. Int J Radiat Oncol Biol Phys 2014; 90:7-10. [PMID: 25195985 DOI: 10.1016/j.ijrobp.2014.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Indexed: 11/20/2022]
|