1
|
Xie Z, Song W, Meng Z, Ma A, Zhu J, Liang Y, Lin H, Lei C, Tan M. The interaction between KATNA1 and CRMP3 modulates microtubule dynamics and neurite outgrowth. Biochem Biophys Res Commun 2025; 752:151426. [PMID: 39938451 DOI: 10.1016/j.bbrc.2025.151426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/24/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
The polymerization and severing of microtubules are fundamental to the growth and branching of neurites in hippocampal neurons. The catalytic ATPase-containing A-subunit of katanin p60 (p60, KATNA1) promotes growth and development of hippocampal neurites by severing microtubules, while collapsing response mediator protein 3 (CRMP3) assembles microtubules to regulate neurite outgrowth. However, whether microtubule severing and assembling proteins would work together to regulate neurite outgrowth, especially for KATNA1 and CRMP3 remains to be elucidated. In this study, we revealed the interaction between KATNA1 and CRMP3 through GST-pulldown and co-immunoprecipitation assays and identified the binding domains between KATNA1 and CRMP3 as the MIT of KATNA1 (residues 1-77) and the D region of CRMP3 (residues 64-413). Furthermore, we demonstrated that CRMP3 enhances the microtubule-severing efficiency of KATNA1. In cultured hippocampal neurons, overexpression of KATNA1 and CRMP3 increased neurite length and branch number, and co-expression of both proteins further enhanced the promoting effect. Moreover, genetic knockout of KATNA1 or/and CRMP3 significantly inhibited neurite outgrowth. Overall, our data suggest that the CRMP3 interaction enhances the severing activity of KATNA1, thereby promoting hippocampal neurite outgrowth.
Collapse
Affiliation(s)
- Zhiyao Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, 999078, Macau
| | - Wei Song
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhichao Meng
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ao Ma
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiehao Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yaozhong Liang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hongsheng Lin
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Changbin Lei
- Department of Orthopedics, Affiliated Hospital of Xiangnan University (Clinical College), Chenzhou, Hunan, 423000, China.
| | - Minghui Tan
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Hung YH, Lai MD, Hung WC, Chen LT. Semaphorin 4C promotes motility and immunosuppressive activity of cancer cells via CRMP3 and PD-L1. Am J Cancer Res 2022; 12:713-728. [PMID: 35261797 PMCID: PMC8899990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023] Open
Abstract
Semaphorins (SEMAs) are membrane-bound or soluble proteins that participate in organ development and cancer progression, however, the detailed role of SEMAs in carcinogenesis is not fully elucidated yet. Our in silico analysis showed among the differentially expressed SEMAs in colon cancer tissues, patients with higher SEMA4C expression tumors had worse survival. The migration and invasion of the HCT116 and CT26 colon cancer cells were significantly suppressed by SEMA4C neutralizing antibody treatment; while enhanced by ectopic expression of SEMA4C. Subsequently, RNA sequencing study revealed microtubule polymerization- and nucleation-related genes are highly enriched in SEMA4C overexpression HCT116 cells. Western blotting showed the negative correlation between the levels of SEMA4C expression and tubulin acetylation. Mechanistic study showed SEMA4C interacted with and stabilized collapsin response mediator protein 3 (CRMP3), a novel deacetylase, to increase α-tubulin deacetylation and cell motility, which could be effectively attenuated after HDAC inhibitors treatment. We also found that a tumor-suppressive miRNA let-7b can target SEMA4C and act synergistically with SEMA4C neutralizing antibody to suppress the motility of colon cancer cells. In addition, blockade of SEMA4C could attenuate the expression of program death ligand 1 (PD-L1). Collectively, our results highlight that SEMA4C may promote colon cancer progression through modulating CRMP3-mediated tubulin deacetylation and PD-L1-mediated immunosuppression.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan 704, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University HospitalKaohsiung 807, Taiwan
| |
Collapse
|
3
|
Zheng L, Xie C, Zheng J, Dong Q, Si T, Zhang J, Hou ST. An imbalanced ratio between PC(16:0/16:0) and LPC(16:0) revealed by lipidomics supports the role of the Lands cycle in ischemic brain injury. J Biol Chem 2021; 296:100151. [PMID: 33288676 PMCID: PMC7900749 DOI: 10.1074/jbc.ra120.016565] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/31/2022] Open
Abstract
Promoting brain recovery after stroke is challenging as a plethora of inhibitory molecules are produced in the brain preventing it from full healing. Moreover, the full scope of inhibitory molecules produced is not well understood. Here, using a high-sensitivity UPLC-MS-based shotgun lipidomics strategy, we semiquantitively measured the differential lipid contents in the mouse cerebral cortex recovering from a transient middle cerebral artery occlusion (MCAO). The lipidomic data were interrogated using the soft independent modeling of class analogy (SIMCA) method involving principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Statistics of the 578 confirmed lipids revealed 84 species were differentially changed during MCAO/reperfusion. The most dynamic changes in lipids occurred between 1 and 7 days post-MCAO, whereas concentrations had subsided to the Sham group level at 14 and 28 days post-MCAO. Quantitative analyses revealed a strong monotonic relationship between the reduction in phosphatidylcholine (PC)(16:0/16:0) and the increase in lysophosphatidylcholine (LPC)(16:0) levels (Spearman's Rs = -0.86) during the 1 to 7 days reperfusion period. Inhibition of cPLA2 prevented changes in the ratio between PC(16:0/16:0) and LPC(16:0), indicating altered Land's cycle of PC. A series of in vitro studies showed that LPC(16:0), but not PC(16:0/16:0), was detrimental to the integrity of neuronal growth cones and neuronal viability through evoking intracellular calcium influx. In contrast, PC(16:0/16:0) significantly suppressed microglial secretion of IL-1β and TNF-α, limiting neuroinflammation pathways. Together, these data support the role of the imbalanced ratio between PC(16:0/16:0) and LPC(16:0), maintained by Lands' cycle, in neuronal damage and microglia-mediated inflammatory response during ischemic recovery.
Collapse
Affiliation(s)
- Lifeng Zheng
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Chengbin Xie
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ju Zheng
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qiangrui Dong
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Tengxiao Si
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jing Zhang
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
4
|
Hou ST. The regulatory and enzymatic functions of CRMPs in neuritogenesis, synaptic plasticity, and gene transcription. Neurochem Int 2020; 139:104795. [PMID: 32652266 DOI: 10.1016/j.neuint.2020.104795] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are ubiquitously expressed in neurons from worms to humans. A cardinal feature of CRMPs is to mediate growth cone collapse in response to Semaphorin-3A signaling through interactions with cytoskeletal proteins. These are critical regulatory roles that CRMPs play during neuritogenesis and neural network formation. Through post-translational modifications, such as phosphorylation, O-GlcNAcylation, SUMOylation, and proteolytic cleavage, CRMPs participate in synaptic plasticity by modulating NMDA receptors, L- and N-type voltage-gated calcium channels (VGCCs), thus affecting neurotransmitter release. CRMPs also possess histone deacetylase (HDAC) activity, which deacetylates histone H4 during neuronal death. Calcium-dependent proteolytic cleavage of CRMPs results in the truncation of CRMPs, producing a large 54 kD fragment (p54). Translocation of the p54 fragment into the nucleus leads to deacetylation of nuclear histone H4 and de-repression of transcription factor E2F1 expression. Increased expression of E2F1 elevates the expression of genes in cell cycle and death. These new and exciting studies lead to the realization that CRMPs are multifunctional proteins with both regulatory and enzymatic functions. Increasing numbers of studies associate these functions of CRMPs with the development of mental and neurological disorders, such as schizophrenia, Alzheimer's diseases, brain trauma, and stroke. This review focuses on new evidence showing the regulatory and enzymatic functions of CRMPs and highlights recent understandings of CRMPs' roles in neurological diseases.
Collapse
Affiliation(s)
- Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province, 518055, PR China; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Nakamura F, Ohshima T, Goshima Y. Collapsin Response Mediator Proteins: Their Biological Functions and Pathophysiology in Neuronal Development and Regeneration. Front Cell Neurosci 2020; 14:188. [PMID: 32655376 PMCID: PMC7325199 DOI: 10.3389/fncel.2020.00188] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs), which consist of five homologous cytosolic proteins, are one of the major phosphoproteins in the developing nervous system. The prominent feature of the CRMP family proteins is a new class of microtubule-associated proteins that play important roles in the whole process of developing the nervous system, such as axon guidance, synapse maturation, cell migration, and even in adult brain function. The CRMP C-terminal region is subjected to posttranslational modifications such as phosphorylation, which, in turn, regulates the interaction between the CRMPs and various kinds of proteins including receptors, ion channels, cytoskeletal proteins, and motor proteins. The gene-knockout of the CRMP family proteins produces different phenotypes, thereby showing distinct roles of all CRMP family proteins. Also, the phenotypic analysis of a non-phosphorylated form of CRMP2-knockin mouse model, and studies of pharmacological responses to CRMP-related drugs suggest that the phosphorylation/dephosphorylation process plays a pivotal role in pathophysiology in neuronal development, regeneration, and neurodegenerative disorders, thus showing CRMPs as promising target molecules for therapeutic intervention.
Collapse
Affiliation(s)
- Fumio Nakamura
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
6
|
Yu M, Chen X, Liu J, Ma Q, Zhuo Z, Chen H, Zhou L, Yang S, Zheng L, Ning C, Xu J, Gao T, Hou ST. Gallic acid disruption of Aβ 1-42 aggregation rescues cognitive decline of APP/PS1 double transgenic mouse. Neurobiol Dis 2018; 124:67-80. [PMID: 30447302 DOI: 10.1016/j.nbd.2018.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) treatment represents one of the largest unmet medical needs. Developing small molecules targeting Aβ aggregation is an effective approach to prevent and treat AD. Here, we show that gallic acid (GA), a naturally occurring polyphenolic small molecule rich in grape seeds and fruits, has the capacity to alleviate cognitive decline of APP/PS1 transgenic mouse through reduction of Aβ1-42 aggregation and neurotoxicity. Oral administration of GA not only improved the spatial reference memory and spatial working memory of 4-month-old APP/PS1 mice, but also significantly reduced the more severe deficits developed in the 9-month-old APP/PS1 mice in terms of spatial learning, reference memory, short-term recognition and spatial working memory. The hippocampal long-term-potentiation (LTP) was also significantly elevated in the GA-treated 9-month-old APP/PS1 mice with increased expression of synaptic marker proteins. Evidence from atomic force microscopy (AFM), dynamic light scattering (DLS) and thioflavin T (ThT) fluorescence densitometry analyses showed that GA significantly reduces Aβ1-42 aggregation both in vitro and in vivo. Further, pre-incubating GA with oligomeric Aβ1-42 reduced Aβ1-42-mediated intracellular calcium influx and neurotoxicity. Molecular docking studies identified that the 3,4,5-hydroxyle groups of GA were essential in noncovalently stabilizing GA binding to the Lys28-Ala42 salt bridge and the -COOH group is critical for disrupting the salt bridge of Aβ1-42. The predicated covalent interaction through Schiff-base formation between the carbonyl group of the oxidized product and ε-amino group of Lys16 is also critical for the disruption of Aβ1-42 S-shaped triple-β-motif and toxicity. Together, these studies demonstrated that GA can be further developed as a drug to treat AD through disrupting the formation of Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Mei Yu
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Xuwei Chen
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Jihong Liu
- Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou 510515, PR China
| | - Quan Ma
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Zhan Zhuo
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Hao Chen
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Lin Zhou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Sen Yang
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Lifeng Zheng
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Chengqing Ning
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Jing Xu
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China
| | - Tianming Gao
- Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou 510515, PR China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, PR China.
| |
Collapse
|
7
|
Gao X, Mao YH, Xiao C, Li K, Liu W, Li LY, Pang J. Calpain-2 triggers prostate cancer metastasis via enhancing CRMP4 promoter methylation through NF-κB/DNMT1 signaling pathway. Prostate 2018; 78:682-690. [PMID: 29601651 DOI: 10.1002/pros.23512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/27/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Metastasis is the major cause of cancer-specific death in patients with prostate cancer (PCa). We previously reported that collapsing response mediator protein-4 (CRMP4) is a PCa metastasis-suppressor gene and the hypermethylation in CRMP4 promoter is responsible for the transcription repression in metastatic PCa. However, the underlying mechanisms remain unknown. In this study, we aimed to investigate the role of calpain-2 in CRMP4 promoter hypermethylation and its functional modulation in PCa metastasis. METHODS Calpain-2 expression in PCa tissues (n = 87) and its specific mechanisms of functional modulation in CRMP4 expression via limited enzymatic cleavage was investigated. We then focused on the cooperative crosstalk of calpain-2 and NF-κB RelA/p65 in CRMP4 promoter methylation for the initiation of PCa metastasis. Statistical differences between groups were determined using a two-tailed Student's t-test. P < 0.05 indicated statistically significant. RESULTS Calpain-2 was differentially upregulated in metastatic PCa compared with localized PCa. Moreover, calpain-2 cleaved CRMP4 into the N-terminally fragment which promoted migration and invasion in PCa cells via nuclear translocation and activation of E2F1-mediated DNA methyltransferase 1 (DNMT1) expression. NF-κB RelA/p65 recruited DNMT1 to bind to and methylate CRMP4 promoter in which Serine276 phosphorylation of p65 was essential. Furthermore, CRMP4 exhibited anti-metastatic function via inhibiting the expression of VEGFC through Semaphorin3B-Neuropilin2 signaling. CONCLUSION Calpain-2 may contribute to the promoter methylation of CRMP4 to repress its transcription, leading to the metastasis of PCa via enhancing VEGFC expression.
Collapse
Affiliation(s)
- Xin Gao
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Yun-Hua Mao
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Chutian Xiao
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Ke Li
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Liu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Liao-Yuan Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jun Pang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
8
|
Moruno-Manchon JF, Uzor NE, Ambati CR, Shetty V, Putluri N, Jagannath C, McCullough LD, Tsvetkov AS. Sphingosine kinase 1-associated autophagy differs between neurons and astrocytes. Cell Death Dis 2018; 9:521. [PMID: 29743513 PMCID: PMC5943283 DOI: 10.1038/s41419-018-0599-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
Autophagy is a degradative pathway for removing aggregated proteins, damaged organelles, and parasites. Evidence indicates that autophagic pathways differ between cell types. In neurons, autophagy plays a homeostatic role, compared to a survival mechanism employed by starving non-neuronal cells. We investigated if sphingosine kinase 1 (SK1)-associated autophagy differs between two symbiotic brain cell types-neurons and astrocytes. SK1 synthesizes sphingosine-1-phosphate, which regulates autophagy in non-neuronal cells and in neurons. We found that benzoxazine autophagy inducers upregulate SK1 and neuroprotective autophagy in neurons, but not in astrocytes. Starvation enhances SK1-associated autophagy in astrocytes, but not in neurons. In astrocytes, SK1 is cytoprotective and promotes the degradation of an autophagy substrate, mutant huntingtin, the protein that causes Huntington's disease. Overexpressed SK1 is unexpectedly toxic to neurons, and its toxicity localizes to the neuronal soma, demonstrating an intricate relationship between the localization of SK1's activity and neurotoxicity. Our results underscore the importance of cell type-specific autophagic differences in any efforts to target autophagy therapeutically.
Collapse
Affiliation(s)
- Jose F Moruno-Manchon
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Ndidi-Ese Uzor
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Chandrashekar R Ambati
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vivekananda Shetty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Louise D McCullough
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Andrey S Tsvetkov
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
- UT Health Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Han KA, Shin WH, Jung S, Seol W, Seo H, Ko C, Chung KC. Leucine-rich repeat kinase 2 exacerbates neuronal cytotoxicity through phosphorylation of histone deacetylase 3 and histone deacetylation. Hum Mol Genet 2017; 26:1-18. [PMID: 27798112 DOI: 10.1093/hmg/ddw363] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is characterized by slow, progressive degeneration of dopaminergic neurons in the substantia nigra. The cause of neuronal death in PD is largely unknown, but several genetic loci, including leucine-rich repeat kinase 2 (LRRK2), have been identified. LRRK2 has guanosine triphosphatase (GTPase) and kinase activities, and mutations in LRRK2 are the major cause of autosomal-dominant familial PD. Histone deacetylases (HDACs) remove acetyl groups from lysine residues on histone tails, promoting transcriptional repression via condensation of chromatin. Here, we demonstrate that LRRK2 binds to and directly phosphorylates HDAC3 at Ser-424, thereby stimulating HDAC activity. Specifically, LRRK2 promoted the deacetylation of Lys-5 and Lys-12 on histone H4, causing repression of gene transcription. Moreover, LRRK2 stimulated nuclear translocation of HDAC3 via the phoshorylation of karyopherin subunit α2 and α6. HDAC3 phosphorylation and its nuclear translocation were increased in response to 6-hydroxydopamine (6-OHDA) treatment. LRRK2 also inhibited myocyte-specific enhancer factor 2D activity, which is required for neuronal survival. LRRK2 ultimately promoted 6-OHDA-induced cell death via positive modulation of HDAC3. These findings suggest that LRRK2 affects epigenetic histone modification and neuronal survival by facilitating HDAC3 activity and regulating its localization.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Woo Hyun Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sungyeon Jung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Gyeonggi-do, Republic of Korea
| | - Hyemyung Seo
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan-si, Gyeonggi-do, Republic of Korea
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Limited role of sessile acidophiles in pyrite oxidation below redox potential of 650 mV. Sci Rep 2017; 7:5032. [PMID: 28694428 PMCID: PMC5504038 DOI: 10.1038/s41598-017-04420-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 05/16/2017] [Indexed: 12/02/2022] Open
Abstract
Pyrite oxidation by mixed mesophilic acidophiles was conducted under conditions of controlled and non-controlled redox potential to investigate the role of sessile microbes in pyrite oxidation. Microbes attached on pyrite surfaces by extracellular polymeric substances (EPS), and their high coverage rate was characterized by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM). The dissolution of pyrite was negligible if the redox potential was controlled below 650 mV (near the rest potential of pyrite), even though the bacteria were highly active and a high coverage rate was observed on pyrite surfaces. However, with un-controlled redox potential the rate of pyrite oxidation increased greatly with an increasing redox potential. This study demonstrates that sessile microbes play a limited role in pyrite oxidation at a redox potential below 650 mV, and highlight the importance of solution redox potential for pyrite oxidation. This has implications for acid mine drainage control and pyrite oxidation control in biometallurgy practice.
Collapse
|
11
|
Collapsin response mediator protein 2: high-resolution crystal structure sheds light on small-molecule binding, post-translational modifications, and conformational flexibility. Amino Acids 2017; 49:747-759. [PMID: 28044206 DOI: 10.1007/s00726-016-2376-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Collapsin response mediator protein 2 (CRMP-2) is a neuronal protein involved in axonal pathfinding. Intense research is focusing on its role in various neurological diseases. Despite a wealth of studies, not much is known about the molecular mechanisms of CRMP-2 function in vivo. The detailed structure-function relationships of CRMP-2 have also largely remained unknown, in part due to the fact that the available crystal structures lack the C-terminal tail, which is known to be a target for many post-translational modifications and protein interactions. Although CRMP-2, and other CRMPs, belong to the dihydropyrimidinase family, they have lost the enzymatic active site. Drug candidates for CRMP-2-related processes have come up during the recent years, but no reports of CRMP-2 complexes with small molecules have emerged. Here, CRMP-2 was studied at 1.25-Å resolution using X-ray crystallography. In addition, ligands were docked into the homotetrameric structure, and the C-terminal tail of CRMP-2 was produced recombinantly and analyzed. We have obtained the human CRMP-2 crystal structure at atomic resolution and could identify small-molecule binding pockets in the protein. Structures obtained in different crystal forms highlight flexible regions near possible ligand-binding pockets. We also used the CRMP-2 structure to analyze known or suggested post-translational modifications at the 3D structural level. The high-resolution CRMP-2 structure was also used for docking experiments with the sulfur amino acid metabolite lanthionine ketimine and its ester. We show that the C-terminal tail is intrinsically disordered, but it has conserved segments that may act as interaction sites. Our data provide the most accurate structural data on CRMPs to date and will be useful in further computational and experimental studies on CRMP-2, its function, and its binding to small-molecule ligands.
Collapse
|
12
|
Hou ST, Jiang SX, Zaharia LI, Han X, Benson CL, Slinn J, Abrams SR. Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain. J Biol Chem 2016; 291:27007-27022. [PMID: 27864367 DOI: 10.1074/jbc.m116.756429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/18/2016] [Indexed: 01/17/2023] Open
Abstract
Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (-)-PA in mouse and rat brains. (-)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (-)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (-)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (-)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (-)-PA level in the brain reduced ischemic brain injury, whereas reducing the (-)-PA level using a monoclonal antibody against (-)-PA increased ischemic injury. Collectively, these studies showed for the first time that (-)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury.
Collapse
Affiliation(s)
- Sheng Tao Hou
- From the Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, 518055 Guangdong Province, China, .,Experimental NeuroTherapeutics, Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Building M54, Ottawa K1A 0R6, Ontario, Canada.,the Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada
| | - Susan X Jiang
- Experimental NeuroTherapeutics, Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Building M54, Ottawa K1A 0R6, Ontario, Canada
| | - L Irina Zaharia
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada, and
| | - Xiumei Han
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada, and
| | - Chantel L Benson
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada, and
| | - Jacqueline Slinn
- Experimental NeuroTherapeutics, Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Building M54, Ottawa K1A 0R6, Ontario, Canada
| | - Suzanne R Abrams
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada, and
| |
Collapse
|
13
|
Hoque A, Hossain MI, Ameen SS, Ang CS, Williamson N, Ng DCH, Chueh AC, Roulston C, Cheng HC. A beacon of hope in stroke therapy-Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies. Pharmacol Ther 2016; 160:159-79. [PMID: 26899498 DOI: 10.1016/j.pharmthera.2016.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimer's and Huntington's diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological conditions are urgently needed. One avenue to achieve this goal is to clearly define the intracellular events mediating the neurotoxic signals originating from the over-stimulated glutamate receptors in neurons. In this review, we first focus on the key cellular events directing neuronal death but not involved in normal physiological processes in the neurotoxic signalling pathways. These events, referred to as pathologically activated events, are potential targets for the development of neuroprotectant therapeutics. Inhibitors blocking some of the known pathologically activated cellular events have been proven to be effective in reducing stroke-induced brain damage in animal models. Notable examples are inhibitors suppressing the ion channel activity of neurotoxic glutamate receptors and those disrupting interactions of specific cellular proteins occurring only in neurons undergoing excitotoxic cell death. Among them, Tat-NR2B9c and memantine are clinically effective in reducing brain damage caused by some acute and chronic neurological conditions. Our second focus is evaluation of the suitability of the other inhibitors for use as neuroprotective therapeutics. We also discuss the experimental approaches suitable for bridging our knowledge gap in our current understanding of the excitotoxic signalling mechanism in neurons and discovery of new pathologically activated cellular events as potential targets for neuroprotection.
Collapse
Affiliation(s)
- Ashfaqul Hoque
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - M Iqbal Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - S Sadia Ameen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Dominic C H Ng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Anderly C Chueh
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Carli Roulston
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
14
|
Hou ST, Nilchi L, Li X, Gangaraju S, Jiang SX, Aylsworth A, Monette R, Slinn J. Semaphorin3A elevates vascular permeability and contributes to cerebral ischemia-induced brain damage. Sci Rep 2015; 5:7890. [PMID: 25601765 PMCID: PMC4298747 DOI: 10.1038/srep07890] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/16/2014] [Indexed: 12/25/2022] Open
Abstract
Semaphorin 3A (Sema3A) increased significantly in mouse brain following cerebral ischemia. However, the role of Sema3A in stroke brain remains unknown. Our aim was to determine wether Sema3A functions as a vascular permeability factor and contributes to ischemic brain damage. Recombinant Sema3A injected intradermally to mouse skin, or stereotactically into the cerebral cortex, caused dose- and time-dependent increases in vascular permeability, with a degree comparable to that caused by injection of a known vascular permeability factor vascular endothelial growth factor receptors (VEGF). Application of Sema3A to cultured endothelial cells caused disorganization of F-actin stress fibre bundles and increased endothelial monolayer permeability, confirming Sema3A as a permeability factor. Sema3A-mediated F-actin changes in endothelial cells were through binding to the neuropilin2/VEGFR1 receptor complex, which in turn directly activates Mical2, a F-actin modulator. Down-regulation of Mical2, using specific siRNA, alleviated Sema3A-induced F-actin disorganization, cellular morphology changes and endothelial permeability. Importantly, ablation of Sema3A expression, cerebrovascular permeability and brain damage were significantly reduced in response to transient middle cerebral artery occlusion (tMCAO) and in a mouse model of cerebral ischemia/haemorrhagic transformation. Together, these studies demonstrated that Sema3A is a key mediator of cerebrovascular permeability and contributes to brain damage caused by cerebral ischemia.
Collapse
Affiliation(s)
- Sheng Tao Hou
- 1] Department of Biology, South University of Science and Technology of China, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, P.R. China, 518055 [2] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada [3] Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Ladan Nilchi
- 1] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada [2] Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Xuesheng Li
- 1] Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada [2] Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Sandhya Gangaraju
- Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Susan X Jiang
- Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Amy Aylsworth
- Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Robert Monette
- Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| | - Jacqueline Slinn
- Human Health Therapeutics Portfolio, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, Ontario, K1A 0R6, Canada
| |
Collapse
|
15
|
Ponnusamy R, Lebedev AA, Pahlow S, Lohkamp B. Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1680-94. [PMID: 24914979 PMCID: PMC4051505 DOI: 10.1107/s1399004714006634] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs.
Collapse
Affiliation(s)
- Rajesh Ponnusamy
- Instituto de Technologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, EAN, 2781-901 Oeiras, Portugal
| | - Andrey A. Lebedev
- Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA, England
| | - Steffen Pahlow
- Biozentrum Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Bernhard Lohkamp
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 6, 4tr, 17177 Stockholm, Sweden
| |
Collapse
|
16
|
Ting JH, Marks DR, Schleidt SS, Wu JN, Zyskind JW, Lindl KA, Blendy JA, Pierce RC, Jordan-Sciutto KL. Targeted gene mutation of E2F1 evokes age-dependent synaptic disruption and behavioral deficits. J Neurochem 2014; 129:850-63. [PMID: 24460902 DOI: 10.1111/jnc.12655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/21/2013] [Accepted: 01/10/2014] [Indexed: 02/05/2023]
Abstract
Aberrant expression and activation of the cell cycle protein E2F1 in neurons has been implicated in many neurodegenerative diseases. As a transcription factor regulating G1 to S phase progression in proliferative cells, E2F1 is often up-regulated and activated in models of neuronal death. However, despite its well-studied functions in neuronal death, little is known regarding the role of E2F1 in the mature brain. In this study, we used a combined approach to study the effect of E2F1 gene disruption on mouse behavior and brain biochemistry. We identified significant age-dependent olfactory and memory-related deficits in E2f1 mutant mice. In addition, we found that E2F1 exhibits punctated staining and localizes closely to the synapse. Furthermore, we found a mirroring age-dependent loss of post-synaptic protein-95 in the hippocampus and olfactory bulb as well as a global loss of several other synaptic proteins. Coincidently, E2F1 expression is significantly elevated at the ages, in which behavioral and synaptic perturbations were observed. Finally, we show that deficits in adult neurogenesis persist late in aged E2f1 mutant mice which may partially contribute to the behavior phenotypes. Taken together, our data suggest that the disruption of E2F1 function leads to specific age-dependent behavioral deficits and synaptic perturbations. E2F1 is a transcription factor regulating cell cycle progression and apoptosis. Although E2F1 dysregulation under toxic conditions can lead to neuronal death, little is known about its physiologic activity in the healthy brain. Here, we report significant age-dependent olfactory and memory deficits in mice with dysfunctional E2F1. Coincident with these behavioral changes, we also found age-matched synaptic disruption and persisting reduction in adult neurogenesis. Our study demonstrates that E2F1 contributes to physiologic brain structure and function.
Collapse
Affiliation(s)
- Jenhao H Ting
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|