1
|
Charman M, Weitzman MD. Mysteries of adenovirus packaging. J Virol 2025; 99:e0018025. [PMID: 40243339 PMCID: PMC12090768 DOI: 10.1128/jvi.00180-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
It is conventionally held that most DNA viruses package their genomes by one of two fundamental mechanisms: described by the sequential or concurrent models of assembly and packaging. Sequential packaging involves the translocation of a viral genome into a pre-formed capsid, often referred to as the pro-capsid. In contrast, concurrent packaging does not require the assembly of a pro-capsid. Instead, the genome is condensed, and the capsid shell is formed around the genome. The accumulation of empty particles in adenovirus infected cells has led to the assumption that adenovirus packaging may be best described by the sequential model. However, existing models fail to adequately explain all experimental observations, leaving many mysteries of adenovirus genome packaging unresolved. In this review, we describe key findings in adenovirus assembly and packaging, and we discuss them in the context of the competing models of sequential versus concurrent packaging. We discuss recent findings that have redefined our understanding of adenovirus packaging, including the role of viral biomolecular condensates and visualization of viral assembly and packaging in situ. These advances have renewed interest in the concurrent model of packaging. We anticipate that lessons learned from adenovirus packaging will be highly valuable for the advancement of viral vectors and gene-delivery technologies. In reviewing this topic, we hope to stimulate discussion and facilitate future investigation that will ultimately resolve gaps in knowledge and expand our understanding of DNA virus genome packaging.
Collapse
Affiliation(s)
- Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew D. Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Center for Genome Integrity, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Greber UF. Clicking viruses-with chemistry toward mechanisms in infection. J Virol 2025:e0047125. [PMID: 40366176 DOI: 10.1128/jvi.00471-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Viruses subvert cells and evade host defense. They emerge unpredictably and threaten humans and livestock through their genetic and phenotypic diversity. Despite more than 100 years since the discovery of viruses, the molecular underpinnings of virus infections are incompletely understood. The introduction of new methodologies into the field, such as that of click chemistry some 10 years ago, keeps uncovering new facets of viruses. Click chemistry uses bio-orthogonal reactions on chemical probes and couples nucleic acids, proteins, and lipids with tractable labels, such as fluorophores for single-cell and single-molecule imaging, or biotin for biochemical profiling of infections. Its applications in single cells often achieve single-molecule resolution and provide important insights into the widely known phenomenon of cell-to-cell infection variability. This review describes click chemistry advances to unravel infection mechanisms of a select set of enveloped and nonenveloped DNA and RNA viruses, including adenovirus, herpesvirus, and human immunodeficiency virus. It highlights recent click chemistry breakthroughs with viral DNA, viral RNA, protein, as well as host-derived lipid functions in both live and chemically fixed cells. It discusses new insights on specific processes including virus entry, uncoating, transcription, replication, packaging, and assembly and provides a perspective for click chemistry to explore viral cell biology, infection variability, and genome organization in the particle.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Ray A, Simpson JD, Demir I, Gisbert VG, Gomes DB, Amadei F, Alsteens D. From viral assembly to host interaction: AFM's contributions to virology. J Virol 2025; 99:e0087324. [PMID: 39655953 PMCID: PMC11784315 DOI: 10.1128/jvi.00873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Viruses represent a diverse pool of obligate parasites that infect virtually every known organism, as such, their study is incredibly valuable for a range of fields including public health, medicine, agriculture, and ecology, and the development of biomedical technologies. Having evolved over millions of years, each virus has a unique and often complicated biology, that must be characterized on a case-by-case basis, even between strains of the same taxon. Owing to its nanoscale spatial resolution, atomic force microscopy (AFM) represents a powerful tool for exploring virus biology, including structural features, kinetics of binding to host cell ligands, virion self-assembly, and budding behaviors. Through the availability of numerous chemistries and advances in imaging modes, AFM is able to explore the complex web of host-virus interactions and life-cycle at a single virus level, exploring features at the level of individual bonds and molecules. Due to the wide array of techniques developed and data analysis approaches available, AFM can provide information that cannot be furnished by other modalities, especially at a single virus level. Here, we highlight the unique methods and information that can be obtained through the use of AFM, demonstrating both its utility and versatility in the study of viruses. As the technology continues to rapidly evolve, AFM is likely to remain an integral part of research, providing unique and important insight into many aspects of virology.
Collapse
Affiliation(s)
- Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Joshua D. Simpson
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Irem Demir
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Victor G. Gisbert
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David B. Gomes
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Federico Amadei
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
4
|
Mariangeli M, Moreno A, Delcanale P, Abbruzzetti S, Diaspro A, Viappiani C, Bianchini P. Insights on the Mechanical Properties of SARS-CoV-2 Particles and the Effects of the Photosensitizer Hypericin. Int J Mol Sci 2024; 25:8724. [PMID: 39201411 PMCID: PMC11354238 DOI: 10.3390/ijms25168724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
SARS-CoV-2 is a highly pathogenic virus responsible for the COVID-19 disease. It belongs to the Coronaviridae family, characterized by a phospholipid envelope, which is crucial for viral entry and replication in host cells. Hypericin, a lipophilic, naturally occurring photosensitizer, was reported to effectively inactivate enveloped viruses, including SARS-CoV-2, upon light irradiation. In addition to its photodynamic activity, Hyp was found to exert an antiviral action also in the dark. This study explores the mechanical properties of heat-inactivated SARS-CoV-2 viral particles using Atomic Force Microscopy (AFM). Results reveal a flexible structure under external stress, potentially contributing to the virus pathogenicity. Although the fixation protocol causes damage to some particles, correlation with fluorescence demonstrates colocalization of partially degraded virions with their genome. The impact of hypericin on the mechanical properties of the virus was assessed and found particularly relevant in dark conditions. These preliminary results suggest that hypericin can affect the mechanical properties of the viral envelope, an effect that warrants further investigation in the context of antiviral therapies.
Collapse
Affiliation(s)
- Matteo Mariangeli
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 43124 Parma, Italy; (M.M.); (P.D.); (S.A.)
- Nanoscopy and NIC@IIT, Center for Human Technology, Istituto Italiano di Tecnologia, 16152 Genova, Italy;
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy;
| | - Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 43124 Parma, Italy; (M.M.); (P.D.); (S.A.)
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 43124 Parma, Italy; (M.M.); (P.D.); (S.A.)
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Center for Human Technology, Istituto Italiano di Tecnologia, 16152 Genova, Italy;
- DIFILAB, Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 43124 Parma, Italy; (M.M.); (P.D.); (S.A.)
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 43124 Parma, Italy; (M.M.); (P.D.); (S.A.)
- Nanoscopy and NIC@IIT, Center for Human Technology, Istituto Italiano di Tecnologia, 16152 Genova, Italy;
- DIFILAB, Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy
| |
Collapse
|
5
|
Xue Y, Ma Y, Sun Z, Liu X, Zhang M, Zhang J, Xi N. Identification and Measurement of Biomarkers at Single Microorganism Level for In Situ Monitoring Deep Ultraviolet Disinfection Process. IEEE Trans Nanobioscience 2024; 23:242-251. [PMID: 37676797 DOI: 10.1109/tnb.2023.3312754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Since the COVID-19 disease has been further aggravated, the prevention of pathogen transmission becomes a vital issue to restrain casualties. Recent research outcomes have shown the possibilities of the viruses existing on inanimate surfaces up to few days, which carry the risk of touch propagation of the disease. Deep ultraviolet germicide irradiation (UVGI) with the wavelength of 255-280nm has been verified to efficiently disinfect various types of bacteria and virus, which could prevent the aggravation of pandemic spread. Even though considerable experiments and approaches have been applied to evaluate the disinfection effects, there are only few reports about how the individual bio-organism behaves after ultraviolet C (UVC) irradiation, especially in the aspect of mechanical changes. Furthermore, since the standard pathway of virus transmission and reproduction requires the host cell to assemble and transport newly generated virus, the dynamic response of infectious cell is always the vital aspect of virology study. In this work, high power LEDs array has been established with 270nm UVC irradiation to evaluate disinfection capability on various types of bio-organism, and incubator embedded atomic force microscopy (AFM) is used to investigate the single bacterium and virus under UVGI. The real-time tracking of the living Vero cells infected with adenovirus has also been presented in this study. The results show that after sufficient UVGI, the outer shell of bacteria and viruses remain intact in structure, however the bio-organisms lost the capability of reproduction and normal metabolism. The experiment results also indicate that once the host cell is infected with adenovirus, the rapid production of newborn virus capsid will gradually destroy the cellular normal metabolism and lose mechanical integrity.
Collapse
|
6
|
Brown C, Agarwal A, Luque A. pyCapsid: identifying dominant dynamics and quasi-rigid mechanical units in protein shells. Bioinformatics 2024; 40:btad761. [PMID: 38113434 PMCID: PMC10786678 DOI: 10.1093/bioinformatics/btad761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
SUMMARY pyCapsid is a Python package developed to facilitate the characterization of the dynamics and quasi-rigid mechanical units of protein shells and other protein complexes. The package was developed in response to the rapid increase of high-resolution structures, particularly capsids of viruses, requiring multiscale biophysical analyses. Given a protein shell, pyCapsid generates the collective vibrations of its amino-acid residues, identifies quasi-rigid mechanical regions associated with the disassembly of the structure, and maps the results back to the input proteins for interpretation. pyCapsid summarizes the main results in a report that includes publication-quality figures. AVAILABILITY AND IMPLEMENTATION pyCapsid's source code is available under MIT License on GitHub. It is compatible with Python 3.8-3.10 and has been deployed in two leading Python package-management systems, PIP and Conda. Installation instructions and tutorials are available in the online documentation and in the pyCapsid's YouTube playlist. In addition, a cloud-based implementation of pyCapsid is available as a Google Colab notebook. pyCapsid Colab does not require installation and generates the same report and outputs as the installable version. Users can post issues regarding pyCapsid in the repository's issues section.
Collapse
Affiliation(s)
- Colin Brown
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Department of Physics, San Diego State University, San Diego, CA 92116, United States
| | - Anuradha Agarwal
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
| | - Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92116, United States
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| |
Collapse
|
7
|
de Pablo PJ, Mateu MG. Mechanical Properties of Viruses. Subcell Biochem 2024; 105:629-691. [PMID: 39738960 DOI: 10.1007/978-3-031-65187-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Structural biology techniques have greatly contributed to unveiling the interplay between molecular structure, physico-chemical properties, and biological function of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical features of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength, and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of "soft" biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of some physical properties of viruses and their contribution to virus function. Virus particles are subjected to internal and external forces and they may have adapted to withstand, and even use those forces. This chapter focuses on the mechanical properties of virus particles, their structural determinants, their use to study virus function, and some possible biological implications, of which several examples are provided.
Collapse
Affiliation(s)
- Pedro J de Pablo
- Department of Physics of the Condensed Matter, C03, and IFIMAC (Instituto de Física de la Materia Condensada), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Cantero M, Rodríguez-Espinosa MJ, Strobl K, Ibáñez P, Díez-Martínez A, Martín-González N, Jiménez-Zaragoza M, Ortega-Esteban A, de Pablo PJ. Atomic Force Microscopy of Viruses: Stability, Disassembly, and Genome Release. Methods Mol Biol 2024; 2694:317-338. [PMID: 37824011 DOI: 10.1007/978-1-0716-3377-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages but also the evaluation of each physicochemical property which is able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In this chapter, we start revising some recipes for adsorbing protein shells on surfaces and how the geometrical dilation of tips can affect to the AFM topographies. This work also deals with the abilities of AFM to monitor TGEV coronavirus under changing conditions of the liquid environment. Subsequently, we describe several AFM approaches to study cargo release, aging, and multilayered viruses with single indentation and fatigue assays. Finally, we comment on a combined AFM/fluorescence application to study the influence of crowding on GFP packed within individual P22 bacteriophage capsids.
Collapse
Affiliation(s)
- Miguel Cantero
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jesús Rodríguez-Espinosa
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Klara Strobl
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Ibáñez
- Department of Theoretical Physics of Condensed Matter, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro Díez-Martínez
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuel Jiménez-Zaragoza
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alvaro Ortega-Esteban
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pedro José de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
- Solid Condensed Matter Institute IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
9
|
Rodríguez-Espinosa MJ, Rodríguez JM, Castón JR, de Pablo PJ. Mechanical disassembly of human picobirnavirus like particles indicates that cargo retention is tuned by the RNA-coat protein interaction. NANOSCALE HORIZONS 2023; 8:1665-1676. [PMID: 37842804 DOI: 10.1039/d3nh00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Here we investigate the cargo retention of individual human picobirnavirus (hPBV) virus-like particles (VLPs) which differ in the N-terminal of their capsid protein (CP): (i) hPBV CP contains the full-length CP sequence; (ii) hPBV Δ45-CP lacks the first 45 N-terminal residues; and (iii) hPBV Ht-CP is the full-length CP with a N-terminal 36-residue tag that includes a 6-His segment. Consequently, each VLP variant holds a different interaction with the ssRNA cargo. We used atomic force microscopy (AFM) to induce and monitor the mechanical disassembly of individual hPBV particles. First, while Δ45-CP particles that lack ssRNA allowed a fast tip indentation after breakage, CP and Ht-CP particles that pack heterologous ssRNA showed a slower tip penetration after being fractured. Second, mechanical fatigue experiments revealed that the increased length in 8% of the N-terminal (Ht-CP) makes the virus particles to crumble ∼10 times slower than the wild type N-terminal CP, indicating enhanced RNA cargo retention. Our results show that the three differentiated N-terminal topologies of the capsid result in distinct cargo release dynamics during mechanical disassembly experiments because of the different interaction with RNA.
Collapse
Affiliation(s)
- María J Rodríguez-Espinosa
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| | - Javier M Rodríguez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| | - José R Castón
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus Cantoblanco, 28049 Madrid, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
10
|
Cantero M, Cvirkaite-Krupovic V, Krupovic M, de Pablo PJ. Mechanical tomography of an archaeal lemon-shaped virus reveals membrane-like fluidity of the capsid and liquid nucleoprotein cargo. Proc Natl Acad Sci U S A 2023; 120:e2307717120. [PMID: 37824526 PMCID: PMC10589707 DOI: 10.1073/pnas.2307717120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Archaeal lemon-shaped viruses have unique helical capsids composed of highly hydrophobic protein strands which can slide past each other resulting in remarkable morphological reorganization. Here, using atomic force microscopy, we explore the biomechanical properties of the lemon-shaped virions of Sulfolobus monocaudavirus 1 (SMV1), a double-stranded DNA virus which infects hyperthermophilic (~80 °C) and acidophilic (pH ~ 2) archaea. Our results reveal that SMV1 virions are extremely soft and withstand repeated extensive deformations, reaching remarkable strains of 80% during multiple cycles of consecutive mechanical assaults, yet showing scarce traces of disruption. SMV1 virions can reversibly collapse wall-to-wall, reducing their volume by ~90%. Beyond revealing the exceptional malleability of the SMV1 protein shell, our data also suggest a fluid-like nucleoprotein cargo which can flow inside the capsid, resisting and accommodating mechanical deformations without further alteration. Our experiments suggest a packing fraction of the virus core to be as low as 11%, with the amount of the accessory proteins almost four times exceeding that of the viral genome. Our findings indicate that SMV1 protein capsid displays biomechanical properties of lipid membranes, which is not found among protein capsids of other viruses. The remarkable malleability and fluidity of the SMV1 virions are likely necessary for the structural transformations during the infection and adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Miguel Cantero
- Departamento de Física de la Materia Condensada C03, Universidad Autónoma de Madrid, Madrid28049, Spain
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris75015, France
| | - Pedro J. de Pablo
- Departamento de Física de la Materia Condensada C03, Universidad Autónoma de Madrid, Madrid28049, Spain
- Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid28049, Spain
| |
Collapse
|
11
|
Cardoso-Lima R, Santos-Oliveira R, Souza PFN, Barbosa LRS, Wuite GJL, Alencar LMR. Physical virology: how physics is enabling a better understanding of recent viral invaders. Biophys Rev 2023; 15:611-623. [PMID: 37681101 PMCID: PMC10480132 DOI: 10.1007/s12551-023-01075-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 09/09/2023] Open
Abstract
The world is frequently afflicted by several viral outbreaks that bring diseases and health crises. It is vital to comprehend how viral assemblies' fundamental components work to counteract them. Determining the ultrastructure and nanomechanical characteristics of viruses from a physical standpoint helps categorize their mechanical characteristics, offers insight into new treatment options, and/or shows weak spots that can clarify methods for medication targeting. This study compiles the findings from studies on the ultrastructure and nanomechanical behavior of SARS-CoV-2, ZIKV (Zika virus), and CHIKV (Chikungunya virus) viral particles. With results that uncovered aspects of the organization and the spatial distribution of the proteins on the surface of the viral particle as well as the deformation response of the particles when applied a recurring loading force, this review aims to provide further discussion on the mechanical properties of viral particles at the nanoscale, offering new prospects that could be employed for designing strategies for the prevention and treatment of viral diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01075-4.
Collapse
Affiliation(s)
- Ruana Cardoso-Lima
- Physics Department, Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, São Luís, MA Brazil
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro, 23070200 Brazil
| | - Pedro Filho Noronha Souza
- Department of Biochemistry, Federal University of Ceará, Fortaleza, CE Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE Brazil
| | - Leandro R. S. Barbosa
- Department of General Physics, Institute of Physics, University of São Paulo, São Paulo, SP 05508-000 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100 Brazil
| | - Gijs J. L. Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
12
|
Maksudov F, Kliuchnikov E, Marx KA, Purohit PK, Barsegov V. Mechanical fatigue testing in silico: Dynamic evolution of material properties of nanoscale biological particles. Acta Biomater 2023; 166:326-345. [PMID: 37142109 DOI: 10.1016/j.actbio.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Biological particles have evolved to possess mechanical characteristics necessary to carry out their functions. We developed a computational approach to "fatigue testing in silico", in which constant-amplitude cyclic loading is applied to a particle to explore its mechanobiology. We used this approach to describe dynamic evolution of nanomaterial properties and low-cycle fatigue in the thin spherical encapsulin shell, thick spherical Cowpea Chlorotic Mottle Virus (CCMV) capsid, and thick cylindrical microtubule (MT) fragment over 20 cycles of deformation. Changing structures and force-deformation curves enabled us to describe their damage-dependent biomechanics (strength, deformability, stiffness), thermodynamics (released and dissipated energies, enthalpy, and entropy) and material properties (toughness). Thick CCMV and MT particles experience material fatigue due to slow recovery and damage accumulation over 3-5 loading cycles; thin encapsulin shells show little fatigue due to rapid remodeling and limited damage. The results obtained challenge the existing paradigm: damage in biological particles is partially reversible owing to particle's partial recovery; fatigue crack may or may not grow with each loading cycle and may heal; and particles adapt to deformation amplitude and frequency to minimize the energy dissipated. Using crack size to quantitate damage is problematic as several cracks might form simultaneously in a particle. Dynamic evolution of strength, deformability, and stiffness, can be predicted by analyzing the cycle number (N) dependent damage, [Formula: see text] , where α is a power law and Nf is fatigue life. Fatigue testing in silico can now be used to explore damage-induced changes in the material properties of other biological particles. STATEMENT OF SIGNIFICANCE: Biological particles possess mechanical characteristics necessary to perform their functions. We developed "fatigue testing in silico" approach, which employes Langevin Dynamics simulations of constant-amplitude cyclic loading of nanoscale biological particles, to explore dynamic evolution of the mechanical, energetic, and material properties of the thin and thick spherical particles of encapsulin and Cowpea Chlorotic Mottle Virus, and the microtubule filament fragment. Our study of damage growth and fatigue development challenge the existing paradigm. Damage in biological particles is partially reversible as fatigue crack might heal with each loading cycle. Particles adapt to deformation amplitude and frequency to minimize energy dissipation. The evolution of strength, deformability, and stiffness, can be accurately predicted by analyzing the damage growth in particle structure.
Collapse
Affiliation(s)
- Farkhad Maksudov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Evgenii Kliuchnikov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, PA, United States
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States.
| |
Collapse
|
13
|
Petkidis A, Andriasyan V, Greber UF. Label-free microscopy for virus infections. Microscopy (Oxf) 2023; 72:204-212. [PMID: 37079744 PMCID: PMC10250014 DOI: 10.1093/jmicro/dfad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
Microscopy has been essential to elucidate micro- and nano-scale processes in space and time and has provided insights into cell and organismic functions. It is widely employed in cell biology, microbiology, physiology, clinical sciences and virology. While label-dependent microscopy, such as fluorescence microscopy, provides molecular specificity, it has remained difficult to multiplex in live samples. In contrast, label-free microscopy reports on overall features of the specimen at minimal perturbation. Here, we discuss modalities of label-free imaging at the molecular, cellular and tissue levels, including transmitted light microscopy, quantitative phase imaging, cryogenic electron microscopy or tomography and atomic force microscopy. We highlight how label-free microscopy is used to probe the structural organization and mechanical properties of viruses, including virus particles and infected cells across a wide range of spatial scales. We discuss the working principles of imaging procedures and analyses and showcase how they open new avenues in virology. Finally, we discuss orthogonal approaches that enhance and complement label-free microscopy techniques.
Collapse
Affiliation(s)
- Anthony Petkidis
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| |
Collapse
|
14
|
Martín-González N, Gómez-González A, Hernando-Pérez M, Bauer M, Greber UF, San Martín C, de Pablo PJ. Adenovirus core protein V reinforces the capsid and enhances genome release from disrupted particles. SCIENCE ADVANCES 2023; 9:eade9910. [PMID: 37027464 PMCID: PMC10081844 DOI: 10.1126/sciadv.ade9910] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Out of the three core proteins in human adenovirus, protein V is believed to connect the inner capsid surface to the outer genome layer. Here, we explored mechanical properties and in vitro disassembly of particles lacking protein V (Ad5-ΔV). Ad5-ΔV particles were softer and less brittle than the wild-type ones (Ad5-wt), but they were more prone to release pentons under mechanical fatigue. In Ad5-ΔV, core components did not readily diffuse out of partially disrupted capsids, and the core appeared more condensed than in Ad5-wt. These observations suggest that instead of condensing the genome, protein V antagonizes the condensing action of the other core proteins. Protein V provides mechanical reinforcement and facilitates genome release by keeping DNA connected to capsid fragments that detach during disruption. This scenario is in line with the location of protein V in the virion and its role in Ad5 cell entry.
Collapse
Affiliation(s)
- Natalia Martín-González
- Departament of Condensed Matter Physics, Universidad Autónoma de Madrid and Institute of Condensed Matter Physics (IFIMAC), 28049 Madrid, Spain
| | - Alfonso Gómez-González
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Pedro J. de Pablo
- Departament of Condensed Matter Physics, Universidad Autónoma de Madrid and Institute of Condensed Matter Physics (IFIMAC), 28049 Madrid, Spain
| |
Collapse
|
15
|
Strobl K, Mateu MG, de Pablo PJ. Exploring nucleic acid condensation and release from individual parvovirus particles with different physicochemical cues. Virology 2023; 581:1-7. [PMID: 36842268 DOI: 10.1016/j.virol.2023.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
In the infection cycle, viruses release their genome in the host cell during uncoating. Here we use a variety of physicochemical procedures to induce and monitor the in vitro uncoating of ssDNA from individual Minute Virus of Mice (MVM) particles. Our experiments revealed two pathways of genome release: i) filamentous ssDNA appearing around intact virus particles when using gradual mechanical fatigue and heating at moderate temperature (50 °C). ii) thick structures of condensed ssDNA appearing when the virus particle is disrupted by mechanical nanoindentations, denaturing agent guanidinium chloride and high temperature (70 °C). We propose that in the case of filamentous ssDNA, when the capsid integrity is conserved, the genome is externalized through one channel of the capsid pores. However, the disruption of virus particles revealed a native structure of condensed genome. The mechanical analysis of intact particles after DNA strands ejection confirm the stabilization role of ssDNA in MVM.
Collapse
Affiliation(s)
- K Strobl
- Department of Condensed Matter Physics Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - M G Mateu
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Pedro J de Pablo
- Department of Condensed Matter Physics Universidad Autónoma de Madrid, 28049, Madrid, Spain; Instituto de Física de la Materia Condensada (IFIMAC) Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
16
|
Surface characterization of alkane viral anchoring films prepared by titanate-assisted organosilanization. Colloids Surf B Biointerfaces 2023; 222:113136. [PMID: 36641873 DOI: 10.1016/j.colsurfb.2023.113136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Studies of virus adsorption on surfaces with optimized properties have attracted a lot of interest, mainly due to the influence of the surface in the retention, orientation and stability of the viral capsids. Besides, viruses in whole or in parts can be used as cages or vectors in different areas, such as biomedicine and materials science. A key requirement for virus nanocage application is their physical properties, i.e. their mechanical response and the distribution of surface charge, which determine virus-substrate interactions and stability. In the present work we show two examples of viruses exhibiting strong surface interactions on homogeneous hydrophobic surfaces. The surfaces were prepared by titanate assisted organosilanization, a sol-gel spin coating process, followed by a mild annealing step. We show by surface and interface spectroscopies that the process allows trapping triethoxy-octylsilane (OCTS) molecules, exhibiting a hydrophobic alkane rich surface finishing. Furthermore, the surfaces remain flat and behave as more efficient sorptive surfaces for virus particles than mica or graphite (HOPG). Also, we determine by atomic force microscopy (AFM) the mechanical properties of two types of viruses (human adenovirus and reovirus) and compare the results obtained on the OCTS functionalized surfaces with those obtained on mica and HOPG. Finally, the TIPT+OCTS surfaces were validated as platforms for the morphological and mechanical characterization of virus particles by using adenovirus as initial model and using HOPG and mica as standard control surfaces. Then, the same characteristics were determined on reovirus using TIPT+OCTS and HOPG, as an original contribution to the catalogue of physical properties of viral particles.
Collapse
|
17
|
Monitoring SARS-CoV-2 Surrogate TGEV Individual Virions Structure Survival under Harsh Physicochemical Environments. Cells 2022; 11:cells11111759. [PMID: 35681454 PMCID: PMC9179875 DOI: 10.3390/cells11111759] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Effective airborne transmission of coronaviruses via liquid microdroplets requires a virion structure that must withstand harsh environmental conditions. Due to the demanding biosafety requirements for the study of human respiratory viruses, it is important to develop surrogate models to facilitate their investigation. Here we explore the mechanical properties and nanostructure of transmissible gastroenteritis virus (TGEV) virions in liquid milieu and their response to different chemical agents commonly used as biocides. Our data provide two-fold results on virus stability: First, while particles with larger size and lower packing fraction kept their morphology intact after successive mechanical aggressions, smaller viruses with higher packing fraction showed conspicuous evidence of structural damage and content release. Second, monitoring the structure of single TGEV particles in the presence of detergent and alcohol in real time revealed the stages of gradual degradation of the virus structure in situ. These data suggest that detergent is three orders of magnitude more efficient than alcohol in destabilizing TGEV virus particles, paving the way for optimizing hygienic protocols for viruses with similar structure, such as SARS-CoV-2.
Collapse
|
18
|
de Pablo PJ, San Martín C. Seeing and touching adenovirus: complementary approaches for understanding assembly and disassembly of a complex virion. Curr Opin Virol 2021; 52:112-122. [PMID: 34906758 DOI: 10.1016/j.coviro.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022]
Abstract
Understanding adenovirus assembly and disassembly poses many challenges due to the virion complexity. A distinctive feature of adenoviruses is the large amount of virus-encoded proteins packed together with the dsDNA genome. Cryo-electron microscopy (cryo-EM) structures are broadening our understanding of capsid variability along evolution, but little is known about the organization of the non-icosahedral nucleoproteic core and its influence in adenovirus function. Atomic force microscopy (AFM) probes the biomechanics of virus particles, while simultaneously inducing and monitoring their disassembly in real time. Synergistic combination of AFM with EM shows that core proteins play unexpected key roles in maturation and entry, and uncoating dynamics are finely tuned to ensure genome release at the appropriate time and place for successful infection.
Collapse
Affiliation(s)
- Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid and IFIMAC, 28049 Madrid, Spain.
| | - Carmen San Martín
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
19
|
Acidification induces condensation of the adenovirus core. Acta Biomater 2021; 135:534-542. [PMID: 34407472 DOI: 10.1016/j.actbio.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
The adenovirus (AdV) icosahedral capsid encloses a nucleoprotein core formed by the dsDNA genome bound to numerous copies of virus-encoded, positively charged proteins. For an efficient delivery of its genome, AdV must undergo a cascade of dismantling events from the plasma membrane to the nuclear pore. Throughout this uncoating process, the virion moves across potentially disruptive environments whose influence in particle stability is poorly understood. In this work we analyze the effect of acidic conditions on AdV particles by exploring their mechanical properties, genome accessibility and capsid disruption. Our results show that under short term acidification the AdV virion becomes softer and its genome less accessible to an intercalating dye, even in the presence of capsid openings. The AFM tip penetrates deeper in virions at neutral pH, and mechanical properties of genome-less particles are not altered upon acidification. Altogether, these results indicate that the main effect of acidification is the compaction of the nucleoproteic core, revealing a previously unknown role for chemical cues in AdV uncoating. STATEMENT OF SIGNIFICANCE: Studying the behavior of virus particles under changing environmental conditions is key to understand cell entry and propagation. One such change is the acidification undergone in certain cell compartments, which is thought to play a role in the programmed uncoating of virus genomes. Mild acidification in the early endosome has been proposed as a trigger signal for human AdV uncoating. However, the actual effect of low pH in AdV stability and entry is not well defined. Understanding the consequences of acidification in AdV structure and stability is also relevant to define storage conditions for therapeutic vectors, or design AdV variants resistant to intestinal conditions for oral administration of vaccines.
Collapse
|
20
|
Adenovirus Structure: What Is New? Int J Mol Sci 2021; 22:ijms22105240. [PMID: 34063479 PMCID: PMC8156859 DOI: 10.3390/ijms22105240] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses are large (~950 Å) and complex non-enveloped, dsDNA icosahedral viruses. They have a pseudo-T = 25 triangulation number with at least 12 different proteins composing the virion. These include the major and minor capsid proteins, core proteins, maturation protease, terminal protein, and packaging machinery. Although adenoviruses have been studied for more than 60 years, deciphering their architecture has presented a challenge for structural biology techniques. An outstanding event was the first near-atomic resolution structure of human adenovirus type 5 (HAdV-C5), solved by cryo-electron microscopy (cryo-EM) in 2010. Discovery of new adenovirus types, together with methodological advances in structural biology techniques, in particular cryo-EM, has lately produced a considerable amount of new, high-resolution data on the organization of adenoviruses belonging to different species. In spite of these advances, the organization of the non-icosahedral core is still a great unknown. Nevertheless, alternative techniques such as atomic force microscopy (AFM) are providing interesting glimpses on the role of the core proteins in genome condensation and virion stability. Here we summarize the current knowledge on adenovirus structure, with an emphasis on high-resolution structures obtained since 2010.
Collapse
|
21
|
Maksudov F, Kononova O, Llauró A, Ortega-Esteban A, Douglas T, Condezo GN, Martín CS, Marx KA, Wuite GJL, Roos WH, de Pablo PJ, Barsegov V. Fluctuating nonlinear spring theory: Strength, deformability, and toughness of biological nanoparticles from theoretical reconstruction of force-deformation spectra. Acta Biomater 2021; 122:263-277. [PMID: 33359294 PMCID: PMC7897321 DOI: 10.1016/j.actbio.2020.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
We developed the Fluctuating Nonlinear Spring (FNS) model to describe the dynamics of mechanical deformation of biological particles, such as virus capsids. The theory interprets the force-deformation spectra in terms of the "Hertzian stiffness" (non-linear regime of a particle's small-amplitude deformations), elastic constant (large-amplitude elastic deformations), and force range in which the particle's fracture occurs. The FNS theory enables one to quantify the particles' elasticity (Young's moduli for Hertzian and bending deformations), and the limits of their strength (critical forces, fracture toughness) and deformability (critical deformations) as well as the probability distributions of these properties, and to calculate the free energy changes for the particle's Hertzian, elastic, and plastic deformations, and eventual fracture. We applied the FNS theory to describe the protein capsids of bacteriophage P22, Human Adenovirus, and Herpes Simplex virus characterized by deformations before fracture that did not exceed 10-19% of their size. These nanoshells are soft (~1-10-GPa elastic modulus), with low ~50-480-kPa toughness - a regime of material behavior that is not well understood, and with the strength increasing while toughness decreases with their size. The particles' fracture is stochastic, with the average values of critical forces, critical deformations, and fracture toughness comparable with their standard deviations. The FNS theory predicts 0.7-MJ/mol free energy for P22 capsid maturation, and it could be extended to describe uniaxial deformation of cylindrical microtubules and ellipsoidal cellular organelles.
Collapse
Affiliation(s)
- Farkhad Maksudov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Olga Kononova
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Aida Llauró
- Department of Condensed Matter Physics and Condensed Matter Physics Center, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alvaro Ortega-Esteban
- Department of Condensed Matter Physics and Condensed Matter Physics Center, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Gabriela N Condezo
- Department of Macromolecular Structures and NanoBioMedicine Initiative, Centro Nacional de Biotecnología (CNB-CIC), Darwin 3, 28049 Madrid, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures and NanoBioMedicine Initiative, Centro Nacional de Biotecnología (CNB-CIC), Darwin 3, 28049 Madrid, Spain
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| | - Pedro J de Pablo
- Department of Condensed Matter Physics and Condensed Matter Physics Center, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States.
| |
Collapse
|
22
|
Bruinsma RF, Wuite GJL, Roos WH. Physics of viral dynamics. NATURE REVIEWS. PHYSICS 2021; 3:76-91. [PMID: 33728406 PMCID: PMC7802615 DOI: 10.1038/s42254-020-00267-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 05/12/2023]
Abstract
Viral capsids are often regarded as inert structural units, but in actuality they display fascinating dynamics during different stages of their life cycle. With the advent of single-particle approaches and high-resolution techniques, it is now possible to scrutinize viral dynamics during and after their assembly and during the subsequent development pathway into infectious viruses. In this Review, the focus is on the dynamical properties of viruses, the different physical virology techniques that are being used to study them, and the physical concepts that have been developed to describe viral dynamics.
Collapse
Affiliation(s)
- Robijn F. Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, California, USA
| | - Gijs J. L. Wuite
- Fysica van levende systemen, Vrije Universiteit, Amsterdam, the Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| |
Collapse
|
23
|
Martín-González N, Vieira Gonçalves L, Condezo GN, San Martín C, Rubiano M, Fallis I, Rubino JR, Ijaz MK, Maillard JY, De Pablo PJ. Virucidal Action Mechanism of Alcohol and Divalent Cations Against Human Adenovirus. Front Mol Biosci 2020; 7:570914. [PMID: 33392252 PMCID: PMC7773831 DOI: 10.3389/fmolb.2020.570914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/25/2020] [Indexed: 01/02/2023] Open
Abstract
Hygiene and disinfection practices play an important role at preventing spread of viral infections in household, industrial and clinical settings. Although formulations based on >70% ethanol are virucidal, there is a currently a need to reformulate products with much lower alcohol concentrations. It has been reported that zinc can increase the virucidal activity of alcohols, although the reasons for such potentiation is unclear. One approach in developing virucidal formulations is to understand the mechanisms of action of active ingredients and formulation excipients. Here, we investigated the virucidal activity of alcohol (40% w/v) and zinc sulfate (0.1% w/v) combinations and their impact on a human adenovirus (HAdV) using, nucleic acid integrity assays, atomic force microscopy (AFM) and transmission electron microscopy (TEM). We observed no difference in virucidal activity (5 log10 reduction in 60 min) against between an ethanol only based formulation and a formulation combining ethanol and zinc salt. Furthermore, TEM imaging showed that the ethanol only formulation produced gross capsid damage, whilst zinc-based formulation or formulation combining both ethanol and zinc did not affect HAdV DNA. Unexpectedly, the addition of nickel salt (5 mM NiCl2) to the ethanol-zinc formulation contributed to a weakening of the capsid and alteration of the capsid mechanics exemplified by AFM imaging, together with structural capsid damage. The addition of zinc sulfate to the ethanol formulation did not add the formulation efficacy, but the unexpected mechanistic synergy between NiCl2 and the ethanol formulation opens an interesting perspective for the possible potentiation of an alcohol-based formulation. Furthermore, we show that AFM can be an important tool for understanding the mechanistic impact of virucidal formulation.
Collapse
Affiliation(s)
| | - Leonam Vieira Gonçalves
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Rubiano
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ian Fallis
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Joseph R Rubino
- Center of Innovation, Reckitt Benckiser Inc., Montvale, NJ, United States
| | - M Khalid Ijaz
- Center of Innovation, Reckitt Benckiser Inc., Montvale, NJ, United States
| | - Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Pedro J De Pablo
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Kiss B, Mudra D, Török G, Mártonfalvi Z, Csík G, Herényi L, Kellermayer M. Single-particle virology. Biophys Rev 2020; 12:1141-1154. [PMID: 32880826 PMCID: PMC7471434 DOI: 10.1007/s12551-020-00747-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
The development of advanced experimental methodologies, such as optical tweezers, scanning-probe and super-resolved optical microscopies, has led to the evolution of single-molecule biophysics, a field of science that allows direct access to the mechanistic detail of biomolecular structure and function. The extension of single-molecule methods to the investigation of particles such as viruses permits unprecedented insights into the behavior of supramolecular assemblies. Here we address the scope of viral exploration at the level of individual particles. In an era of increased awareness towards virology, single-particle approaches are expected to facilitate the in-depth understanding, and hence combating, of viral diseases.
Collapse
Affiliation(s)
- Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Dorottya Mudra
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - György Török
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Levente Herényi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
25
|
Dynamic competition for hexon binding between core protein VII and lytic protein VI promotes adenovirus maturation and entry. Proc Natl Acad Sci U S A 2020; 117:13699-13707. [PMID: 32467158 DOI: 10.1073/pnas.1920896117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adenovirus minor coat protein VI contains a membrane-disrupting peptide that is inactive when VI is bound to hexon trimers. Protein VI must be released during entry to ensure endosome escape. Hexon:VI stoichiometry has been uncertain, and only fragments of VI have been identified in the virion structure. Recent findings suggest an unexpected relationship between VI and the major core protein, VII. According to the high-resolution structure of the mature virion, VI and VII may compete for the same binding site in hexon; and noninfectious human adenovirus type 5 particles assembled in the absence of VII (Ad5-VII-) are deficient in proteolytic maturation of protein VI and endosome escape. Here we show that Ad5-VII- particles are trapped in the endosome because they fail to increase VI exposure during entry. This failure was not due to increased particle stability, because capsid disruption happened at lower thermal or mechanical stress in Ad5-VII- compared to wild-type (Ad5-wt) particles. Cryoelectron microscopy difference maps indicated that VII can occupy the same binding pocket as VI in all hexon monomers, strongly arguing for binding competition. In the Ad5-VII- map, density corresponding to the immature amino-terminal region of VI indicates that in the absence of VII the lytic peptide is trapped inside the hexon cavity, and clarifies the hexon:VI stoichiometry conundrum. We propose a model where dynamic competition between proteins VI and VII for hexon binding facilitates the complete maturation of VI, and is responsible for releasing the lytic protein from the hexon cavity during entry and stepwise uncoating.
Collapse
|
26
|
Buzón P, Maity S, Roos WH. Physical virology: From virus self-assembly to particle mechanics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1613. [PMID: 31960585 PMCID: PMC7317356 DOI: 10.1002/wnan.1613] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/01/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Viruses are highly ordered supramolecular complexes that have evolved to propagate by hijacking the host cell's machinery. Although viruses are very diverse, spreading through cells of all kingdoms of life, they share common functions and properties. Next to the general interest in virology, fundamental viral mechanisms are of growing importance in other disciplines such as biomedicine and (bio)nanotechnology. However, in order to optimally make use of viruses and virus-like particles, for instance as vehicle for targeted drug delivery or as building blocks in electronics, it is essential to understand their basic chemical and physical properties and characteristics. In this context, the number of studies addressing the mechanisms governing viral properties and processes has recently grown drastically. This review summarizes a specific part of these scientific achievements, particularly addressing physical virology approaches aimed to understand the self-assembly of viruses and the mechanical properties of viral particles. Using a physicochemical perspective, we have focused on fundamental studies providing an overview of the molecular basis governing these key aspects of viral systems. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Pedro Buzón
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Pied N, Wodrich H. Imaging the adenovirus infection cycle. FEBS Lett 2019; 593:3419-3448. [PMID: 31758703 DOI: 10.1002/1873-3468.13690] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Incoming adenoviruses seize control of cytosolic transport mechanisms to relocate their genome from the cell periphery to specialized sites in the nucleoplasm. The nucleus is the site for viral gene expression, genome replication, and the production of progeny for the next round of infection. By taking control of the cell, adenoviruses also suppress cell-autonomous immunity responses. To succeed in their production cycle, adenoviruses rely on well-coordinated steps, facilitated by interactions between viral proteins and cellular factors. Interactions between virus and host can impose remarkable morphological changes in the infected cell. Imaging adenoviruses has tremendously influenced how we delineate individual steps in the viral life cycle, because it allowed the development of specific optical markers to label these morphological changes in space and time. As technology advances, innovative imaging techniques and novel tools for specimen labeling keep uncovering previously unseen facets of adenovirus biology emphasizing why imaging adenoviruses is as attractive today as it was in the past. This review will summarize past achievements and present developments in adenovirus imaging centered on fluorescence microscopy approaches.
Collapse
Affiliation(s)
- Noémie Pied
- CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, France
| | - Harald Wodrich
- CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, France
| |
Collapse
|
28
|
Martín-González N, Hernando-Pérez M, Condezo GN, Pérez-Illana M, Šiber A, Reguera D, Ostapchuk P, Hearing P, San Martín C, de Pablo PJ. Adenovirus major core protein condenses DNA in clusters and bundles, modulating genome release and capsid internal pressure. Nucleic Acids Res 2019; 47:9231-9242. [PMID: 31396624 PMCID: PMC6755088 DOI: 10.1093/nar/gkz687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022] Open
Abstract
Some viruses package dsDNA together with large amounts of positively charged proteins, thought to help condense the genome inside the capsid with no evidence. Further, this role is not clear because these viruses have typically lower packing fractions than viruses encapsidating naked dsDNA. In addition, it has recently been shown that the major adenovirus condensing protein (polypeptide VII) is dispensable for genome encapsidation. Here, we study the morphology and mechanics of adenovirus particles with (Ad5-wt) and without (Ad5-VII-) protein VII. Ad5-VII- particles are stiffer than Ad5-wt, but DNA-counterions revert this difference, indicating that VII screens repulsive DNA-DNA interactions. Consequently, its absence results in increased internal pressure. The core is slightly more ordered in the absence of VII and diffuses faster out of Ad5-VII– than Ad5-wt fractured particles. In Ad5-wt unpacked cores, dsDNA associates in bundles interspersed with VII-DNA clusters. These results indicate that protein VII condenses the adenovirus genome by combining direct clustering and promotion of bridging by other core proteins. This condensation modulates the virion internal pressure and DNA release from disrupted particles, which could be crucial to keep the genome protected inside the semi-disrupted capsid while traveling to the nuclear pore.
Collapse
Affiliation(s)
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Marta Pérez-Illana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | | | - David Reguera
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Patrick Hearing
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Pedro J de Pablo
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid 28049, Spain.,Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
29
|
The application of atomic force microscopy for viruses and protein shells: Imaging and spectroscopy. Adv Virus Res 2019; 105:161-187. [PMID: 31522704 DOI: 10.1016/bs.aivir.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atomic force microscopy (AFM) probes surface-adsorbed samples at the nanoscale by using a sharp stylus of nanometric size located at the end of a micro-cantilever. This technique can also work in a liquid environment and offers unique possibilities to study individual protein assemblies, such as viruses, under conditions that resemble their natural liquid milieu. Here, I show how AFM can be used to explore the topography of viruses and protein cages, including that of structures lacking a well-defined symmetry. AFM is not limited for imaging and allows the manipulation of individual viruses with force spectroscopy approaches, such as single indentation and mechanical fatigue assays. These pushing experiments deform the protein cages to obtain their mechanical information and can be used to monitor the structural changes induced by maturation or the exposure to different biochemical environments, such as pH variation. We discuss how studying capsid rupture and self-healing events offers insight into virus uncoating pathways. On the other hand, pulling tests can provide information about the virus-host interaction established between the viral fibers and the cell membrane.
Collapse
|
30
|
Lherbette M, Redlingshöfer L, Brodsky FM, Schaap IAT, Dannhauser PN. The AP2 adaptor enhances clathrin coat stiffness. FEBS J 2019; 286:4074-4085. [PMID: 31199077 PMCID: PMC6852553 DOI: 10.1111/febs.14961] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/22/2019] [Accepted: 06/10/2019] [Indexed: 12/30/2022]
Abstract
Deformation of the plasma membrane into clathrin-coated vesicles is a critical step in clathrin-mediated endocytosis and requires the orchestrated assembly of clathrin and endocytic adaptors into a membrane-associated protein coat. The individual role of these membrane-bending and curvature-stabilizing factors is subject to current debate. As such, it is unclear whether the clathrin coat itself is stiff enough to impose curvature and if so, whether this could be effectively transferred to the membrane by the linking adaptor proteins. We have recently demonstrated that clathrin alone is sufficient to form membrane buds in vitro. Here, we use atomic force microscopy to assess the contributions of clathrin and its membrane adaptor protein 2 (AP2) to clathrin coat stiffness, which determines the mechanics of vesicle formation. We found that clathrin coats are less than 10-fold stiffer than the membrane they enclose, suggesting a delicate balance between the forces harnessed from clathrin coat formation and those required for membrane bending. We observed that clathrin adaptor protein AP2 increased the stiffness of coats formed from native clathrin, but did not affect less-flexible coats formed from clathrin lacking the light chain subunits. We thus propose that clathrin light chains are important for clathrin coat flexibility and that AP2 facilitates efficient cargo sequestration during coated vesicle formation by modulating clathrin coat stiffness.
Collapse
Affiliation(s)
- Michael Lherbette
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Lisa Redlingshöfer
- Division of Biosciences, Research Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, UK
| | - Frances M Brodsky
- Division of Biosciences, Research Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, UK
| | - Iwan A T Schaap
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Philip N Dannhauser
- Division of Biosciences, Research Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, UK
| |
Collapse
|
31
|
Collett S, Torresi J, Earnest-Silveira L, Christiansen D, Elbourne A, Ramsland PA. Probing and pressing surfaces of hepatitis C virus-like particles. J Colloid Interface Sci 2019; 545:259-268. [DOI: 10.1016/j.jcis.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 02/09/2023]
|
32
|
Denning D, Bennett S, Mullen T, Moyer C, Vorselen D, Wuite GJL, Nemerow G, Roos WH. Maturation of adenovirus primes the protein nano-shell for successful endosomal escape. NANOSCALE 2019; 11:4015-4024. [PMID: 30768112 DOI: 10.1039/c8nr10182e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ability of adenoviruses to infect a broad range of species has spurred a growing interest in nanomedicine to use adenovirus as a cargo delivery vehicle. While successful maturation of adenovirus and controlled disassembly are critical for efficient infection, the underlying mechanisms regulating these processes are not well understood. Here, we present Atomic Force Microscopy nanoindentation and fatigue studies of adenovirus capsids at different maturation stages to scrutinize their dynamic uncoating properties. Surprisingly, we find that the early intermediate immature (lacking DNA) capsid is mechanically indistinguishable in both break force and spring constant from the mature (containing DNA) capsid. However, mature and immature capsids do display distinct disassembly pathways, as revealed by our mechanically-induced fatigue analysis. The mature capsid first loses the pentons, followed by either long-term capsid stability or abrupt and complete disassembly. However, the immature capsid has a stable penton region and undergoes a stochastic disassembly mechanism, thought to be due to the absence of genomic pressure. Strikingly, the addition of the genome alone is not sufficient to achieve penton destabilization as indicated by the penton stability of the maturation-intermediate mutant, G33A. Full penton destabilization was achieved only when the genome was present in addition to the successful maturation-linked proteolytic cleavage of preprotein VI. Therefore these findings strongly indicate that maturation of adenovirus in concert with genomic pressure induces penton destabilization and thus, primes the capsid for controlled disassembly. This latter aspect is critical for efficient infection and successful cargo delivery.
Collapse
Affiliation(s)
- D Denning
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, The Netherlands and Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands.
| | - S Bennett
- Department of Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | - T Mullen
- Department of Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | - C Moyer
- Department of Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | - D Vorselen
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands.
| | - G J L Wuite
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands.
| | - G Nemerow
- Department of Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | - W H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, The Netherlands
| |
Collapse
|
33
|
Ortega-Esteban Á, Martín-González N, Moreno-Madrid F, Llauró A, Hernando-Pérez M, MartÚn CS, de Pablo PJ. Structural and Mechanical Characterization of Viruses with AFM. Methods Mol Biol 2019; 1886:259-278. [PMID: 30374873 DOI: 10.1007/978-1-4939-8894-5_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM) the probe is a nanometric tip located at the end of a micro cantilever which palpates the specimen under study as a blind person manages a walking stick. In this way AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In this chapter we start revising some recipes for adsorbing protein shells on surfaces. Then we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted for extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking.
Collapse
Affiliation(s)
- Álvaro Ortega-Esteban
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Natália Martín-González
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Moreno-Madrid
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Aida Llauró
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Mercedes Hernando-Pérez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Cármen San MartÚn
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
- Solid Condensed Matter Institute IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
34
|
de Pablo PJ, Schaap IAT. Atomic Force Microscopy of Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:159-179. [PMID: 31317500 DOI: 10.1007/978-3-030-14741-9_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Atomic force microscopy employs a nanometric tip located at the end of a micro-cantilever to probe surface-mounted samples at nanometer resolution. Because the technique can also work in a liquid environment it offers unique possibilities to study individual viruses under conditions that mimic their natural milieu. Here, we review how AFM imaging can be used to study the surface structure of viruses including that of viruses lacking a well-defined symmetry. Beyond imaging, AFM enables the manipulation of single viruses by force spectroscopy experiments. Pulling experiments can provide information about the early events of virus-host interaction between the viral fibers and the cell membrane receptors. Pushing experiments measure the mechanical response of the viral capsid and its contents and can be used to show how virus maturation and exposure to different pH values change the mechanical response of the viruses and the interaction between the capsid and genome. Finally, we discuss how studying capsid rupture and self-healing events offers insight in virus uncoating pathways.
Collapse
Affiliation(s)
- P J de Pablo
- Department of Condensed Matter Physics and Solid Condensed Matter Institute IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
35
|
San Martín C. Virus Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:129-158. [DOI: 10.1007/978-3-030-14741-9_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Garcia PD, Garcia R. Determination of the viscoelastic properties of a single cell cultured on a rigid support by force microscopy. NANOSCALE 2018; 10:19799-19809. [PMID: 30334057 DOI: 10.1039/c8nr05899g] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding the relationship between the mechanical properties of living cells and physiology is a central issue in mechanobiology. Mechanical properties are used as fingerprints of the pathological state of a single cell. The force exerted on a cell is influenced by the stiffness of the solid support needed to culture it. This effect is a consequence of the cell's boundary conditions. It causes a cell to appear with mechanical properties different from their real values. Here we develop a bottom effect viscoelastic theory to determine the viscoelastic response of a cell. The theory transforms a force-distance curve into the cell's Young's modulus, loss modulus, relaxation time or viscosity coefficient with independence of the stiffness of the rigid support. The theory predicts that, for a given indentation, the force exerted on the cell's periphery will be larger than on a perinuclear region. Results based on the use of semi-infinite contact mechanics models introduce large numerical errors in the determination of the mechanical properties. Finite element simulations confirm the theory and define its range of applicability.
Collapse
Affiliation(s)
- Pablo D Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
| | | |
Collapse
|
37
|
Jiménez-Zaragoza M, Yubero MP, Martín-Forero E, Castón JR, Reguera D, Luque D, de Pablo PJ, Rodríguez JM. Biophysical properties of single rotavirus particles account for the functions of protein shells in a multilayered virus. eLife 2018; 7:37295. [PMID: 30201094 PMCID: PMC6133545 DOI: 10.7554/elife.37295] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
The functions performed by the concentric shells of multilayered dsRNA viruses require specific protein interactions that can be directly explored through their mechanical properties. We studied the stiffness, breaking force, critical strain and mechanical fatigue of individual Triple, Double and Single layered rotavirus (RV) particles. Our results, in combination with Finite Element simulations, demonstrate that the mechanics of the external layer provides the resistance needed to counteract the stringent conditions of extracellular media. Our experiments, in combination with electrostatic analyses, reveal a strong interaction between the two outer layers and how it is suppressed by the removal of calcium ions, a key step for transcription initiation. The intermediate layer presents weak hydrophobic interactions with the inner layer that allow the assembly and favor the conformational dynamics needed for transcription. Our work shows how the biophysical properties of the three shells are finely tuned to produce an infective RV virion.
Collapse
Affiliation(s)
- Manuel Jiménez-Zaragoza
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marina Pl Yubero
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Jose R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - David Reguera
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Luque
- Centro Nacional de Microbiología/ISCIII, Majadahonda, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
38
|
Aznar M, Roca-Bonet S, Reguera D. Viral nanomechanics with a virtual atomic force microscope. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:264001. [PMID: 29769436 PMCID: PMC7104910 DOI: 10.1088/1361-648x/aac57a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 05/22/2023]
Abstract
One of the most important components of a virus is the protein shell or capsid that encloses its genetic material. The main role of the capsid is to protect the viral genome against external aggressions, facilitating its safe and efficient encapsulation and delivery. As a consequence, viral capsids have developed astonishing mechanical properties that are crucial for viral function. These remarkable properties have started to be unveiled in single-virus nanoindentation experiments, and are opening the door to the use of viral-derived artificial nanocages for promising bio- and nano-technological applications. However, the interpretation of nanoindentation experiments is often difficult, requiring the support of theoretical and simulation analysis. Here we present a 'Virtual AFM' (VAFM), a Brownian Dynamics simulation of a coarse-grained model of virus aimed to mimic the standard setup of atomic force microscopy (AFM) nanoindentation experiments. Despite the heavy level of coarse-graining, these simulations provide valuable information which is not accessible in experiments. Rather than focusing on a specific virus, the VAFM will be used to analyze how the mechanical response and breaking of viruses depend on different parameters controlling the effective interactions between capsid's structural units. In particular, we will discuss the influence of adsorption, the tip radius, and the rigidity and shape of the shell on its mechanical response.
Collapse
Affiliation(s)
- María Aznar
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Sergi Roca-Bonet
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - David Reguera
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
39
|
Azinas S, Bano F, Torca I, Bamford DH, Schwartz GA, Esnaola J, Oksanen HM, Richter RP, Abrescia NG. Membrane-containing virus particles exhibit the mechanics of a composite material for genome protection. NANOSCALE 2018; 10:7769-7779. [PMID: 29658555 PMCID: PMC5944389 DOI: 10.1039/c8nr00196k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
The protection of the viral genome during extracellular transport is an absolute requirement for virus survival and replication. In addition to the almost universal proteinaceous capsids, certain viruses add a membrane layer that encloses their double-stranded (ds) DNA genome within the protein shell. Using the membrane-containing enterobacterial virus PRD1 as a prototype, and a combination of nanoindentation assays by atomic force microscopy and finite element modelling, we show that PRD1 provides a greater stability against mechanical stress than that achieved by the majority of dsDNA icosahedral viruses that lack a membrane. We propose that the combination of a stiff and brittle proteinaceous shell coupled with a soft and compliant membrane vesicle yields a tough composite nanomaterial well-suited to protect the viral DNA during extracellular transport.
Collapse
Affiliation(s)
- S. Azinas
- Molecular recognition and host–pathogen interactions programme , CIC bioGUNE , CIBERehd , Derio , Spain
- Biosurfaces Lab , CIC biomaGUNE , San Sebastian , Spain
| | - F. Bano
- Biosurfaces Lab , CIC biomaGUNE , San Sebastian , Spain
| | - I. Torca
- Mechanical and Industrial Production Department , Mondragon University , Arrasate-Mondragón , Spain
| | - D. H. Bamford
- Molecular and Integrative Biosciences Research Programme , Faculty of Biological and Environmental Sciences , Viikki Biocenter , University of Helsinki , Finland
| | - G. A. Schwartz
- Centro de Física de Materiales , (CSIC-UPV/EHU) & Donostia International Physics Center , San Sebastian , Spain
| | - J. Esnaola
- Mechanical and Industrial Production Department , Mondragon University , Arrasate-Mondragón , Spain
| | - H. M. Oksanen
- Molecular and Integrative Biosciences Research Programme , Faculty of Biological and Environmental Sciences , Viikki Biocenter , University of Helsinki , Finland
| | - R. P. Richter
- Biosurfaces Lab , CIC biomaGUNE , San Sebastian , Spain
- School of Biomedical Sciences , Faculty of Biological Sciences , School of Physics and Astronomy , Faculty of Mathematics and Physical Sciences , and Astbury Centre for Structural Molecular Biology University of Leeds , Leeds , UK . ; Tel: +44 113 3431969
| | - N. G. Abrescia
- Molecular recognition and host–pathogen interactions programme , CIC bioGUNE , CIBERehd , Derio , Spain
- IKERBASQUE , Basque Foundation for Science , Bilbao , Spain . ; Fax: +34 946572502 ; Tel: +34 946572523
| |
Collapse
|
40
|
Direct visualization of single virus restoration after damage in real time. J Biol Phys 2018; 44:225-235. [PMID: 29654426 DOI: 10.1007/s10867-018-9492-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022] Open
Abstract
We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode. The normal behavior is that these cracks persist in time. However, in very rare occasions they self-recuperate to retrieve apparently unaltered virus particles. In this work, we show the topographical evolution of three of these exceptional events occurring in T7 bacteriophage capsids. Our data show that single nanoindentation produces a local recoverable fracture that corresponds to the deepening of a capsomer. In contrast, imaging in dynamic mode induced cracks that separate the virus morphological subunits. In both cases, the breakage patterns follow intratrimeric loci.
Collapse
|
41
|
Martín-González N, Guérin Darvas SM, Durana A, Marti GA, Guérin DMA, de Pablo PJ. Exploring the role of genome and structural ions in preventing viral capsid collapse during dehydration. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:104001. [PMID: 29350623 PMCID: PMC7104708 DOI: 10.1088/1361-648x/aaa944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Even though viruses evolve mainly in liquid milieu, their horizontal transmission routes often include episodes of dry environment. Along their life cycle, some insect viruses, such as viruses from the Dicistroviridae family, withstand dehydrated conditions with presently unknown consequences to their structural stability. Here, we use atomic force microscopy to monitor the structural changes of viral particles of Triatoma virus (TrV) after desiccation. Our results demonstrate that TrV capsids preserve their genome inside, conserving their height after exposure to dehydrating conditions, which is in stark contrast with other viruses that expel their genome when desiccated. Moreover, empty capsids (without genome) resulted in collapsed particles after desiccation. We also explored the role of structural ions in the dehydration process of the virions (capsid containing genome) by chelating the accessible cations from the external solvent milieu. We observed that ion suppression helps to keep the virus height upon desiccation. Our results show that under drying conditions, the genome of TrV prevents the capsid from collapsing during dehydration, while the structural ions are responsible for promoting solvent exchange through the virion wall.
Collapse
Affiliation(s)
- Natalia Martín-González
- Departamento de Física de la Materia Condensada C-III and Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Sofía M Guérin Darvas
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Aritz Durana
- Instituto Biofisika (IBF, UPV/EHU, CSIC), Parque Científico de la UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
- Fundación Biofísica Bizkaia, Edificio Biblioteca Central UPV/EHU, Bº Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Gerardo A Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina
| | - Diego M A Guérin
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
- Instituto Biofisika (IBF, UPV/EHU, CSIC), Parque Científico de la UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Vizcaya, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada C-III and Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| |
Collapse
|
42
|
Kellermayer MSZ, Vörös Z, Csík G, Herényi L. Forced phage uncorking: viral DNA ejection triggered by a mechanically sensitive switch. NANOSCALE 2018; 10:1898-1904. [PMID: 29318247 DOI: 10.1039/c7nr05897g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The foremost event of bacteriophage infection is the ejection of genomic material into the host bacterium after virus binding to surface receptor sites. How ejection is triggered is yet unknown. Here we show, in single mature T7 phage particles, that tapping the capsid wall with an oscillating atomic-force-microscope cantilever triggers rapid DNA ejection via the tail complex. The triggering rate increases exponentially as a function of force, following transition-state theory, across an activation barrier of 23 kcal mol-1 at 1.2 nm along the reaction coordinate. The conformation of the ejected DNA molecule revealed that it had been exposed to a propulsive force. This force, arising from intra-capsid pressure, assists in initiating the ejection process and the transfer of DNA across spatial dimensions beyond that of the virion. Chemical immobilization of the tail fibers also resulted in enhanced DNA ejection, suggesting that the triggering process might involve a conformational switch that can be mechanically activated either by external forces or via the tail-fiber complex.
Collapse
Affiliation(s)
- Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest H-1094, Hungary.
| | | | | | | |
Collapse
|
43
|
Martín-González N, Ortega-Esteban A, Moreno-Madrid F, Llauró A, Hernando-Pérez M, de Pablo PJ. Atomic Force Microscopy of Protein Shells: Virus Capsids and Beyond. Methods Mol Biol 2018; 1665:281-296. [PMID: 28940075 DOI: 10.1007/978-1-4939-7271-5_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In Atomic Force Microscopy (AFM) the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person uses a white cane. In this way AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables the manipulation of single protein cages, and the characterization a variety physicochemical properties able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In this chapter we start revising some recipes for adsorbing protein shells on surfaces. Then we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted to extracting physical information, such as mechanical and electrostatic properties.
Collapse
Affiliation(s)
- Natalia Martín-González
- Departamento de Física de la Materia Condensada, C-3, Universidad Autónoma de Madrid, Ctra. de Colmenar Viejo, Km 15, 28049, Madrid, Spain
| | - Alvaro Ortega-Esteban
- Departamento de Física de la Materia Condensada, C-3, Universidad Autónoma de Madrid, Ctra. de Colmenar Viejo, Km 15, 28049, Madrid, Spain
| | - F Moreno-Madrid
- Departamento de Física de la Materia Condensada, C-3, Universidad Autónoma de Madrid, Ctra. de Colmenar Viejo, Km 15, 28049, Madrid, Spain
| | - Aida Llauró
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Mercedes Hernando-Pérez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, C-3, Universidad Autónoma de Madrid, Ctra. de Colmenar Viejo, Km 15, 28049, Madrid, Spain. .,Solid Condensed Matter Institute IFIMAC, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
44
|
Abstract
An implicit aim in cellular infection biology is to understand the mechanisms how viruses, microbes, eukaryotic parasites, and fungi usurp the functions of host cells and cause disease. Mechanistic insight is a deep understanding of the biophysical and biochemical processes that give rise to an observable phenomenon. It is typically subject to falsification, that is, it is accessible to experimentation and empirical data acquisition. This is different from logic and mathematics, which are not empirical, but built on systems of inherently consistent axioms. Here, we argue that modeling and computer simulation, combined with mechanistic insights, yields unprecedented deep understanding of phenomena in biology and especially in virus infections by providing a way of showing sufficiency of a hypothetical mechanism. This ideally complements the necessity statements accessible to empirical falsification by additional positive evidence. We discuss how computational implementations of mathematical models can assist and enhance the quantitative measurements of infection dynamics of enveloped and non-enveloped viruses and thereby help generating causal insights into virus infection biology.
Collapse
|
45
|
A single point mutation in precursor protein VI doubles the mechanical strength of human adenovirus. J Biol Phys 2017; 44:119-132. [PMID: 29243050 PMCID: PMC5928017 DOI: 10.1007/s10867-017-9479-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/10/2017] [Indexed: 12/23/2022] Open
Abstract
Viruses are extensively studied as vectors for vaccine applications and gene therapies. For these applications, understanding the material properties of viruses is crucial for creating optimal functionality. Using atomic force microscopy (AFM) nanoindentation, we studied the mechanical properties of human adenovirus type 5 with the fiber of type 35 (Ad5F35) and compared it to viral capsids with a single point mutation in the protein VI precursor protein (pVI-S28C). Surprisingly, the pVI-S28C mutant turned out to be twice as stiff as the Ad5F35 capsids. We suggest that this major increase in strength is the result of the DNA crosslinking activity of precursor protein VII, as this protein was detected in the pVI-S28C mutant capsids. The infectivity was similar for both capsids, indicating that mutation did not affect the ability of protein VI to lyse the endosomal membrane. This study highlights that it is possible to increase the mechanical stability of a capsid even with a single point mutation while not affecting the viral life cycle. Such insight can help enable the development of more stable vectors for therapeutic applications.
Collapse
|
46
|
Marion S, San Martín C, Šiber A. Role of Condensing Particles in Polymer Confinement: A Model for Virus-Packed "Minichromosomes". Biophys J 2017; 113:1643-1653. [PMID: 29045859 PMCID: PMC5647577 DOI: 10.1016/j.bpj.2017.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/18/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
Confined mixtures of a polymer and nonspecifically binding particles (condensers) are studied as models for viruses containing double-stranded DNA (polymer) and condensing proteins (particles). We explore a model in which all interactions between the packed content (polymer and particles) and its confinement are purely repulsive, with only a short-range attraction between the condensers and polymer to simulate binding. In the range of physical parameters applicable to viruses, the model predicts reduction of pressure in the system effected by the condensers, despite the reduction in free volume. Condensers are found to be interspersed throughout the spherical confinement and only partially wrapped in the polymer, which acts as an effective medium for the condenser interactions. Crowding of the viral interior influences the DNA and protein organization, producing a picture inconsistent with a chromatin-like, beads-on-a-string structure. The model predicts an organization of the confined interior compatible with experimental data on unperturbed adenoviruses and polyomaviruses, at the same time providing insight into the role of condensing proteins in the viral infectious cycles of related viral families.
Collapse
Affiliation(s)
- Sanjin Marion
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Zagreb, Croatia; Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Antonio Šiber
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Zagreb, Croatia.
| |
Collapse
|
47
|
de Pablo PJ. Atomic force microscopy of virus shells. Semin Cell Dev Biol 2017; 73:199-208. [PMID: 28851598 DOI: 10.1016/j.semcdb.2017.08.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 11/29/2022]
Abstract
Microscopes are used to characterize small specimens with the help of probes, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM) the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person manages a white cane to explore the surrounding. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables the manipulation of single protein cages, and the characterization of every physico-chemical property able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. Here we describe several AFM approaches to study individual protein cages, including imaging and spectroscopic methodologies for extracting mechanical and electrostatic properties. In addition, AFM allows discovering and testing the self-healing capabilities of protein cages because occasionally they may recover fractures induced by the AFM tip. Beyond the protein shells, AFM also is able of exploring the genome inside, obtaining, for instance, the condensation state of dsDNA and measuring its diffusion when the protein cage breaks.
Collapse
Affiliation(s)
- Pedro J de Pablo
- Departamento de Física de la Materia Condensada and Solid Condensed Matter Institute IFIMAC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
48
|
AFM nanoindentation of protein shells, expanding the approach beyond viruses. Semin Cell Dev Biol 2017; 73:145-152. [PMID: 28774579 DOI: 10.1016/j.semcdb.2017.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 02/01/2023]
Abstract
The archetypical protein nanoshell is the capsid that surrounds viral genomes. These capsids protect the viral RNA or DNA and function as transport vehicle for their nucleic acid. The material properties of a variety of viral capsids have been probed by Atomic Force Microscopy. In particular nanoindentation measurements revealed the complex mechanics of these shells and the intricate interplay of the capsid with its genomic content. Furthermore, effects of capsid protein mutations, capsid maturation and the effect of environmental changes have been probed. In addition, biological questions have been addressed by AFM nanoindentation of viruses and a direct link between mechanics and infectivity has been revealed. Recently, non-viral protein nanoshells have come under intense scrutiny and now the nanoindentation approach has been expanded to such particles as well. Both natural as well as engineered non-viral protein shells have been probed by this technique. Next to the material properties of viruses, therefor also the mechanics of encapsulins, carboxysomes, vault particles, lumazine synthase and artificial protein nanoshells is discussed here.
Collapse
|
49
|
Abstract
The Adenovirus (Ad) genome within the capsid is tightly associated with a virus-encoded, histone-like core protein—protein VII. Two other Ad core proteins, V and X/μ, also are located within the virion and are loosely associated with viral DNA. Core protein VII remains associated with the Ad genome during the early phase of infection. It is not known if naked Ad DNA is packaged into the capsid, as with dsDNA bacteriophage and herpesviruses, followed by the encapsidation of viral core proteins, or if a unique packaging mechanism exists with Ad where a DNA-protein complex is simultaneously packaged into the virion. The latter model would require an entirely new molecular mechanism for packaging compared to known viral packaging motors. We characterized a virus with a conditional knockout of core protein VII. Remarkably, virus particles were assembled efficiently in the absence of protein VII. No changes in protein composition were evident with VII−virus particles, including the abundance of core protein V, but changes in the proteolytic processing of some capsid proteins were evident. Virus particles that lack protein VII enter the cell, but incoming virions did not escape efficiently from endosomes. This greatly diminished all subsequent aspects of the infectious cycle. These results reveal that the Ad major core protein VII is not required to condense viral DNA within the capsid, but rather plays an unexpected role during virus maturation and the early stages of infection. These results establish a new paradigm pertaining to the Ad assembly mechanism and reveal a new and important role of protein VII in early stages of infection. The Ad major core protein VII protects the viral genome from recognition by a cellular DNA damage response during the early stages of infection and alters cellular chromatin to block innate signaling mechanisms. The packaging of the Ad genome into the capsid is thought to follow the paradigm of dsDNA bacteriophage where viral DNA is inserted into a preassembled capsid using a packaging motor. How this process occurs if Ad packages a DNA-core protein complex is unknown. We analyzed an Ad mutant that lacks core protein VII and demonstrated that virus assembly and DNA packaging takes place normally, but that the mutant is deficient in the maturation of several capsid proteins and displays a defect in the escape of virions from the endosome. These results have profound implications for the Ad assembly mechanism and for the role of protein VII during infection.
Collapse
|
50
|
Atomic force microscopy of virus shells. Biochem Soc Trans 2017; 45:499-511. [PMID: 28408490 DOI: 10.1042/bst20160316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/17/2022]
Abstract
Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study just as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in a liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property capable of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In the present revision, we start revising some recipes for adsorbing protein shells on surfaces. Then, we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted to extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking.
Collapse
|