1
|
Zeniou A, Kefallinou D, Dimitrakellis P, Xenogiannopoulou E, Grigoriou M, Dimoulas A, Boumpas DT, Tserepi A, Gogolides E. Atmospheric Pressure Plasma Functionalization of Sealed PDMS Microfluidics: Application to Capillary Pumping and Enhanced Cell Growth. Chempluschem 2024; 89:e202400290. [PMID: 39085045 PMCID: PMC11639632 DOI: 10.1002/cplu.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Microfluidic devices serve as essential tools across diverse fields like medicine, biotechnology, and chemistry, enabling advancements in analytical techniques, point-of-care diagnostics, microfluidic cell cultures, and organ-on-chip models. While polymeric microfluidics are favoured for their cost-effectiveness and ease of fabrication, their inherent hydrophobic properties necessitate surface functionalization, often post-sealing. Here, we introduce a versatile apparatus for functionalizing sealed microfluidic devices using atmospheric plasma processing, with a focus on PDMS (polydimethylsiloxane) microfluidics. Through meticulous analysis of surface properties and capillary speed, before and after plasma treatment, along with a comparison between vacuum and atmospheric plasma functionalization methods, we demonstrate the efficacy of our approach. Subsequent experimentation within 3D PDMS microfluidic chambers, combining atmospheric pressure plasma treatment with collagen coating to facilitate mesenchymal stem cells (MSCs) growth over five days, reveals enhanced initial cell adhesion and proliferation, highlighting the potential of our method for improving cell-based applications within microfluidic systems.
Collapse
Affiliation(s)
- A. Zeniou
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - D. Kefallinou
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - P. Dimitrakellis
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - E. Xenogiannopoulou
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - M. Grigoriou
- Laboratory of Inflammation and AutoimmunityBiomedical Research Foundation, Academy of AthensAthens11527Greece
| | - A. Dimoulas
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - D. T. Boumpas
- Laboratory of Inflammation and AutoimmunityBiomedical Research Foundation, Academy of AthensAthens11527Greece
- 4th Department of Internal MedicineAttikon University Hospital and Joint Rheumatology ProgramNational and Kapodistrian University of AthensAthensGreece
| | - A. Tserepi
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - E. Gogolides
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| |
Collapse
|
2
|
Wang C, Qiu J, Liu M, Wang Y, Yu Y, Liu H, Zhang Y, Han L. Microfluidic Biochips for Single-Cell Isolation and Single-Cell Analysis of Multiomics and Exosomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401263. [PMID: 38767182 PMCID: PMC11267386 DOI: 10.1002/advs.202401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Single-cell multiomic and exosome analyses are potent tools in various fields, such as cancer research, immunology, neuroscience, microbiology, and drug development. They facilitate the in-depth exploration of biological systems, providing insights into disease mechanisms and aiding in treatment. Single-cell isolation, which is crucial for single-cell analysis, ensures reliable cell isolation and quality control for further downstream analyses. Microfluidic chips are small lightweight systems that facilitate efficient and high-throughput single-cell isolation and real-time single-cell analysis on- or off-chip. Therefore, most current single-cell isolation and analysis technologies are based on the single-cell microfluidic technology. This review offers comprehensive guidance to researchers across different fields on the selection of appropriate microfluidic chip technologies for single-cell isolation and analysis. This review describes the design principles, separation mechanisms, chip characteristics, and cellular effects of various microfluidic chips available for single-cell isolation. Moreover, this review highlights the implications of using this technology for subsequent analyses, including single-cell multiomic and exosome analyses. Finally, the current challenges and future prospects of microfluidic chip technology are outlined for multiplex single-cell isolation and multiomic and exosome analyses.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Jiaoyan Qiu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Mengqi Liu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yihe Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yang Yu
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinan250100China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Yu Zhang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Lin Han
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence ApplicationJinan250100China
| |
Collapse
|
3
|
Maged A, Mabrouk M, Nour El-Din HT, Osama L, Badr-Eldin SM, Mahmoud AA. PLGA and PDMS-based in situ forming implants loaded with rosuvastatin and copper-selenium nanoparticles: a promising dual-effect formulation with augmented antimicrobial and cytotoxic activity in breast cancer cells. Front Pharmacol 2024; 15:1397639. [PMID: 38895619 PMCID: PMC11183308 DOI: 10.3389/fphar.2024.1397639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancer is among the most prevalent tumors worldwide. In this study, in-situ forming implants (ISFIs) containing rosuvastatin calcium were prepared using three types of poly (D, L-lactic-co-glycolic acid) (PLGA), namely, PLGA 50/50 with ester terminal and PLGA 75/25 with ester or acid terminal. Additionally, polydimethylsiloxane (PDMS) was added in concentrations of 0, 10, 20, and 30% w/v to accelerate matrix formation. The prepared ISFIs were characterized for their rheological behaviors, rate of matrix formation, and in-vitro drug release. All the prepared formulations revealed a Newtonian flow with a matrix formation rate between 0.017 and 0.059 mm/min. Generally, increasing the concentration of PDMS increased the matrix formation rate. The prepared implants' release efficiency values ranged between 46.39 and 89.75%. The ISFI containing PLGA 50/50 with 30% PDMS was selected for further testing, as it has the highest matrix formation rate and a promising release efficiency value. Copper-selenium nanoparticles were prepared with two different particle sizes (560 and 383 nm for CS1 and CS2, respectively) and loaded into the selected formulation to enhance its anticancer activity. The unloaded and loaded implants with rosuvastatin and copper-selenium nanoparticles were evaluated for their antibacterial activity, against Gram-positive and negative microorganisms, and anticancer efficacy, against MCF-7 and MDA-MB-231 cell lines. The results confirmed the potency of rosuvastatin calcium against cancer cells and the synergistic effect when loaded with smaller particle sizes of copper-selenium nanoparticles. This formulation holds a considerable potential for efficient breast cancer therapy.
Collapse
Affiliation(s)
- Amr Maged
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
- Pharmaceutical Factory, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, Giza, Egypt
| | - Hanzada T. Nour El-Din
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamyaa Osama
- Refractories, Ceramics and Building Materials Department, National Research Centre, Giza, Egypt
| | - Shaimaa M. Badr-Eldin
- Pharmaceutics Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azza A. Mahmoud
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
4
|
Kashyap R, Boro PR, Yasmin R, Nath J, Sonowal D, Doley R, Mondal B. Multiple protein-patterned surface plasmon resonance biochip for the detection of human immunoglobulin-G. JOURNAL OF BIOPHOTONICS 2023; 16:e202200263. [PMID: 36683194 DOI: 10.1002/jbio.202200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 05/17/2023]
Abstract
A portable surface plasmon resonance (SPR) measurement prototype integrated with a multiple protein-patterned SPR biochip is introduced for label-free and selective detection of human immunoglobulin-G (H-IgG). The polyclonal anti-H-IgG antibodies derived from goat, rabbit, and mouse were immobilized through polydimethylsiloxane (PDMS) microchannels to fabricate the patterned SPR biochip. The PDMS surface was functionalized using 3-aminopropyltrimethoxysilane and bonded to carbodiimide-activated gold substrates to construct irreversibly bonded hydrophilic microfluidic chip at room temperature. For SPR measurement, a custom-made system is developed with a high angular scanning accuracy of 0.005° and a wide scanning range of 30°-80° that avoids the conventional requirement of expensive goniometric stages and detector arrays. The SPR biochip immobilized with 750 μg/mL goat anti-H-IgG demonstrated detection of H-IgG with a detection limits of 15 μg/mL, and linear response through a wide concentration range (15-225 μg/mL) of high coefficient of determination (R2 = 0.99661). The selectivity of the sensor was investigated by exposing them to two different non-specific targets (bovine serum albumin and polyvalent antivenom). The results indicate negligible sensor response towards nonspecific targets (0.25° for 30 μg/mL bovine serum albumin (BSA) and 0.25° for 30 μg/mL polyvalent antivenom) in comparison to H-IgG (1.5° for 30 μg/mL).
Collapse
Affiliation(s)
- Ritayan Kashyap
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Pearleshwari Rani Boro
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Rafika Yasmin
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Jugabrat Nath
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Durlav Sonowal
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Biplob Mondal
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
5
|
Ma Y, Zhang X, Tang S, Xue L, Wang J, Zhang X. Extended preconditioning on soft matrices directs human mesenchymal stem cell fate via YAP transcriptional activity and chromatin organization. APL Bioeng 2023; 7:016110. [PMID: 36845904 PMCID: PMC9949900 DOI: 10.1063/5.0124424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Dynamic extracellular matrix (ECM) mechanics plays a crucial role in tissue development and disease progression through regulation of stem cell behavior, differentiation, and fate determination. Periodontitis is a typical case characterized by decreased ECM stiffness within diseased periodontal tissues as well as with irreversible loss of osteogenesis capacity of periodontal tissue-derived human periodontal tissue-derived MSCs (hMSCs) even returning back to a physiological mechanical microenvironment. We hypothesized that the hMSCs extendedly residing in the soft ECM of diseased periodontal tissues may memorize the mechanical information and have further effect on ultimate cell fate besides the current mechanical microenvironment. Using a soft priming and subsequent stiff culture system based on collagen-modified polydimethylsiloxane substrates, we were able to discover that extended preconditioning on soft matrices (e.g., 7 days of exposure) led to approximately one-third decrease in cell spreading, two-third decrease in osteogenic markers (e.g., RUNX2 and OPN) of hMSCs, and one-thirteenth decrease in the production of mineralized nodules. The significant loss of osteogenic ability may attribute to the long-term residing of hMSCs in diseased periodontal tissue featured with reduced stiffness. This is associated with the regulation of transcriptional activity through alterations of subcellular localization of yes-associated protein and nuclear feature-mediated chromatin organization. Collectively, we reconstructed phenomena of irreversible loss of hMSC osteogenesis capacity in diseased periodontal tissues in our system and revealed the critical effect of preconditioning duration on soft matrices as well as the potential mechanisms in determining ultimate hMSC fate.
Collapse
Affiliation(s)
- Yufei Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xu Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shaoxin Tang
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Li Xue
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jing Wang
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
6
|
Afthinos A, Bera K, Chen J, Ozcelikkale A, Amitrano A, Choudhury MI, Huang R, Pachidis P, Mistriotis P, Chen Y, Konstantopoulos K. Migration and 3D Traction Force Measurements inside Compliant Microchannels. NANO LETTERS 2022; 22:7318-7327. [PMID: 36112517 PMCID: PMC9872269 DOI: 10.1021/acs.nanolett.2c01261] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cells migrate in vivo through channel-like tracks. While polydimethylsiloxane devices emulate such tracks in vitro, their channel walls are impermeable and have supraphysiological stiffness. Existing hydrogel-based platforms address these issues but cannot provide high-throughput analysis of cell motility in independently controllable stiffness and confinement. We herein develop polyacrylamide (PA)-based microchannels of physiological stiffness and prescribed dimensions for high-throughput analysis of cell migration and identify a biphasic dependence of speed upon confinement and stiffness. By utilizing novel four-walled microchannels with heterogeneous stiffness, we reveal the distinct contributions of apicolateral versus basal microchannel wall stiffness to confined versus unconfined migration. While the basal wall stiffness dictates unconfined migration, apicolateral stiffness controls confined migration. By tracking nanobeads embedded within channel walls, we innovate three-dimensional traction force measurements around spatially confining cells at subcellular resolution. Our unique and highly customizable device fabrication strategy provides a physiologically relevant in vitro platform to study confined cells.
Collapse
Affiliation(s)
- Alexandros Afthinos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Junjie Chen
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Center for Cell Dynamics, The Johns Hopkins University, Baltimore MD, 21205, USA
| | - Altug Ozcelikkale
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Mechanical Engineering, Middle East Technical University, 06531 Ankara, Turkey
| | - Alice Amitrano
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Mohammad Ikbal Choudhury
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Randy Huang
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Center for Cell Dynamics, The Johns Hopkins University, Baltimore MD, 21205, USA
| | - Pavlos Pachidis
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Chemical Engineering, Auburn University, Auburn AL, 36849, USA
| | - Yun Chen
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Center for Cell Dynamics, The Johns Hopkins University, Baltimore MD, 21205, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore MD, 21205, USA
| |
Collapse
|
7
|
Missirlis D, Heckmann L, Haraszti T, Spatz JP. Fibronectin anchoring to viscoelastic poly(dimethylsiloxane) elastomers controls fibroblast mechanosensing and directional motility. Biomaterials 2022; 287:121646. [PMID: 35785752 DOI: 10.1016/j.biomaterials.2022.121646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
Abstract
The established link between deregulated tissue mechanics and various pathological states calls for the elucidation of the processes through which cells interrogate and interpret the mechanical properties of their microenvironment. In this work, we demonstrate that changes in the presentation of the extracellular matrix protein fibronectin on the surface of viscoelastic silicone elastomers have an overarching effect on cell mechanosensing, that is independent of bulk mechanics. Reduction of surface hydrophilicity resulted in altered fibronectin adsorption strength as monitored using atomic force microscopy imaging and pulling experiments. Consequently, primary human fibroblasts were able to remodel the fibronectin coating, adopt a polarized phenotype and migrate directionally even on soft elastomers, that otherwise were not able to resist the applied traction forces. The findings presented here provide valuable insight on how cellular forces are regulated by ligand presentation and used by cells to probe their mechanical environment, and have implications on biomaterial design for cell guidance.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany.
| | - Lara Heckmann
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, Postal Address: Forkenbeckstr. 50, D-52056, Aachen, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany; Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University, Postal Address: INF 253, D-69120, Heidelberg, Germany
| |
Collapse
|
8
|
Galateanu B, Hudita A, Biru EI, Iovu H, Zaharia C, Simsensohn E, Costache M, Petca RC, Jinga V. Applications of Polymers for Organ-on-Chip Technology in Urology. Polymers (Basel) 2022; 14:1668. [PMID: 35566836 PMCID: PMC9105302 DOI: 10.3390/polym14091668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Organ-on-chips (OOCs) are microfluidic devices used for creating physiological organ biomimetic systems. OOC technology brings numerous advantages in the current landscape of preclinical models, capable of recapitulating the multicellular assemblage, tissue-tissue interaction, and replicating numerous human pathologies. Moreover, in cancer research, OOCs emulate the 3D hierarchical complexity of in vivo tumors and mimic the tumor microenvironment, being a practical cost-efficient solution for tumor-growth investigation and anticancer drug screening. OOCs are compact and easy-to-use microphysiological functional units that recapitulate the native function and the mechanical strain that the cells experience in the human bodies, allowing the development of a wide range of applications such as disease modeling or even the development of diagnostic devices. In this context, the current work aims to review the scientific literature in the field of microfluidic devices designed for urology applications in terms of OOC fabrication (principles of manufacture and materials used), development of kidney-on-chip models for drug-toxicity screening and kidney tumors modeling, bladder-on-chip models for urinary tract infections and bladder cancer modeling and prostate-on-chip models for prostate cancer modeling.
Collapse
Affiliation(s)
- Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Elena Iuliana Biru
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
| | - Horia Iovu
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
- Academy of Romanian Scientists, Ilfov Street, 50044 Bucharest, Romania
| | - Catalin Zaharia
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
| | - Eliza Simsensohn
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Razvan-Cosmin Petca
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| | - Viorel Jinga
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| |
Collapse
|
9
|
Wang C, Wang C, Wu Y, Gao J, Han Y, Chu Y, Qiang L, Qiu J, Gao Y, Wang Y, Song F, Wang Y, Shao X, Zhang Y, Han L. High-Throughput, Living Single-Cell, Multiple Secreted Biomarker Profiling Using Microfluidic Chip and Machine Learning for Tumor Cell Classification. Adv Healthc Mater 2022; 11:e2102800. [PMID: 35368151 DOI: 10.1002/adhm.202102800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Secreted proteins provide abundant functional information on living cells and can be used as important tumor diagnostic markers, of which profiling at the single-cell level is helpful for accurate tumor cell classification. Currently, achieving living single-cell multi-index, high-sensitivity, and quantitative secretion biomarker profiling remains a great challenge. Here, a high-throughput living single-cell multi-index secreted biomarker profiling platform is proposed, combined with machine learning, to achieve accurate tumor cell classification. A single-cell culture microfluidic chip with self-assembled graphene oxide quantum dots (GOQDs) enables high-activity single-cell culture, ensuring normal secretion of biomarkers and high-throughput single-cell separation, providing sufficient statistical data for machine learning. At the same time, the antibody barcode chip with self-assembled GOQDs performs multi-index, highly sensitive, and quantitative detection of secreted biomarkers, in which each cell culture chamber covers a whole barcode array. Importantly, by combining the K-means strategy with machine learning, thousands of single tumor cell secretion data are analyzed, enabling tumor cell classification with a recognition accuracy of 95.0%. In addition, further profiling of the grouping results reveals the unique secretion characteristics of subgroups. This work provides an intelligent platform for high-throughput living single-cell multiple secretion biomarker profiling, which has broad implications for cancer investigation and biomedical research.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Chunhua Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yu Wu
- Obstetrics and Gynecology Department Peking University Third Hospital Beijing 100191 China
| | - Jianwei Gao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yingkuan Han
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yujin Chu
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Le Qiang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yakun Gao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yanhao Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Fangteng Song
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yihe Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Xiaowei Shao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yu Zhang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Lin Han
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| |
Collapse
|
10
|
Zhou Z, Cui F, Wen Q, Susan Zhou H. Effect of vimentin on cell migration in collagen-coated microchannels: A mimetic physiological confined environment. BIOMICROFLUIDICS 2021; 15:034105. [PMID: 34025897 PMCID: PMC8133791 DOI: 10.1063/5.0045197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness.
Collapse
Affiliation(s)
- Zhiru Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, USA
| | - Feiyun Cui
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - H. Susan Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, USA
| |
Collapse
|
11
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Asencio IO. The Use of Microfabrication Techniques for the Design and Manufacture of Artificial Stem Cell Microenvironments for Tissue Regeneration. Bioengineering (Basel) 2021; 8:50. [PMID: 33922428 PMCID: PMC8146165 DOI: 10.3390/bioengineering8050050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The recapitulation of the stem cell microenvironment is an emerging area of research that has grown significantly in the last 10 to 15 years. Being able to understand the underlying mechanisms that relate stem cell behavior to the physical environment in which stem cells reside is currently a challenge that many groups are trying to unravel. Several approaches have attempted to mimic the biological components that constitute the native stem cell niche, however, this is a very intricate environment and, although promising advances have been made recently, it becomes clear that new strategies need to be explored to ensure a better understanding of the stem cell niche behavior. The second strand in stem cell niche research focuses on the use of manufacturing techniques to build simple but functional models; these models aim to mimic the physical features of the niche environment which have also been demonstrated to play a big role in directing cell responses. This second strand has involved a more engineering approach in which a wide set of microfabrication techniques have been explored in detail. This review aims to summarize the use of these microfabrication techniques and how they have approached the challenge of mimicking the native stem cell niche.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
12
|
Akther F, Yakob SB, Nguyen NT, Ta HT. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices. BIOSENSORS 2020; 10:E182. [PMID: 33228050 PMCID: PMC7699314 DOI: 10.3390/bios10110182] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Microfluidic lab-on-a-chip cell culture techniques have been gaining popularity by offering the possibility of reducing the amount of samples and reagents and greater control over cellular microenvironment. Polydimethylsiloxane (PDMS) is the commonly used polymer for microfluidic cell culture devices because of the cheap and easy fabrication techniques, non-toxicity, biocompatibility, high gas permeability, and optical transparency. However, the intrinsic hydrophobic nature of PDMS makes cell seeding challenging when applied on PDMS surface. The hydrophobicity of the PDMS surface also allows the non-specific absorption/adsorption of small molecules and biomolecules that might affect the cellular behaviour and functions. Hydrophilic modification of PDMS surface is indispensable for successful cell seeding. This review collates different techniques with their advantages and disadvantages that have been used to improve PDMS hydrophilicity to facilitate endothelial cells seeding in PDMS devices.
Collapse
Affiliation(s)
- Fahima Akther
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
| | - Shazwani Binte Yakob
- School of Pharmacy, the University of Queensland, Brisbane, QLD 4102, Australia;
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
13
|
Characterising a PDMS based 3D cell culturing microfluidic platform for screening chemotherapeutic drug cytotoxic activity. Sci Rep 2020; 10:15915. [PMID: 32985610 PMCID: PMC7522244 DOI: 10.1038/s41598-020-72952-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) spheroidal cell cultures are now recognised as better models of cancers as compared to traditional cell cultures. However, established 3D cell culturing protocols and techniques are time-consuming, manually laborious and often expensive due to the excessive consumption of reagents. Microfluidics allows for traditional laboratory-based biological experiments to be scaled down into miniature custom fabricated devices, where cost-effective experiments can be performed through the manipulation and flow of small volumes of fluid. In this study, we characterise a 3D cell culturing microfluidic device fabricated from a 3D printed master. HT29 cells were seeded into the device and 3D spheroids were generated and cultured through the perfusion of cell media. Spheroids were treated with 5-Fluorouracil for five days through continuous perfusion and cell viability was analysed on-chip at different time points using fluorescence microscopy and Lactate dehydrogenase (LDH) assay on the supernatant. Increasing cell death was observed in the HT29 spheroids over the five-day period. The 3D cell culturing microfluidic device described in this study, permits on-chip anti-cancer treatment and viability analysis, and forms the basis of an effective platform for the high-throughput screening of anti-cancer drugs in 3D tumour spheroids.
Collapse
|
14
|
Najmina M, Uto K, Ebara M. Fluidic substrate as a tool to probe breast cancer cell adaptive behavior in response to fluidity level. Polym J 2020. [DOI: 10.1038/s41428-020-0345-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Dhamecha D, Le D, Movsas R, Gonsalves A, Menon JU. Porous Polymeric Microspheres With Controllable Pore Diameters for Tissue Engineered Lung Tumor Model Development. Front Bioeng Biotechnol 2020; 8:799. [PMID: 32754585 PMCID: PMC7365955 DOI: 10.3389/fbioe.2020.00799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Complex cell cultures are more representative of in vivo conditions than conventionally used monolayer cultures, and are hence being investigated for predictive screening of therapeutic agents. Poly lactide co-glycolide (PLGA) polymer is frequently used in the development of porous substrates for complex cell culture. Substrates or scaffolds with highly interconnected, micrometric pores have been shown to positively impact tissue model formation by enhancing cell attachment and infiltration. We report a novel alginate microsphere (AMS)-based controlled pore formation method for the development of porous, biodegradable PLGA microspheres (PPMS), for tissue engineered lung tumor model development. The AMS porogen, non-porous PLGA microspheres (PLGAMS) and PPMS had spherical morphology (mean diameters: 10.3 ± 4, 79 ± 21.8, and 103 ± 30 μm, respectively). The PPMS had relatively uniform pores and a porosity of 45.5%. Degradation studies show that PPMS effectively maintained their structural integrity with time whereas PLGAMS showed shrunken morphology. The optimized cell seeding density on PPMS was 25 × 103 cells/mg of particles/well. Collagen coating on PPMS significantly enhanced the attachment and proliferation of co-cultures of A549 lung adenocarcinoma and MRC-5 lung fibroblast cells. Preliminary proof-of-concept drug screening studies using mono- and combination anti-cancer therapies demonstrated that the tissue-engineered lung tumor model had a significantly higher resistance to the tested drugs than the monolayer co-cultures. These studies indicate that the PPMS with controllable pore diameters may be a suitable platform for the development of complex tumor cultures for early in vitro drug screening applications.
Collapse
Affiliation(s)
| | | | | | | | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
16
|
Castillo EA, Lane KV, Pruitt BL. Micromechanobiology: Focusing on the Cardiac Cell-Substrate Interface. Annu Rev Biomed Eng 2020; 22:257-284. [PMID: 32501769 DOI: 10.1146/annurev-bioeng-092019-034950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered, in vitro cardiac cell and tissue systems provide test beds for the study of cardiac development, cellular disease processes, and drug responses in a dish. Much effort has focused on improving the structure and function of engineered cardiomyocytes and heart tissues. However, these parameters depend critically on signaling through the cellular microenvironment in terms of ligand composition, matrix stiffness, and substrate mechanical properties-that is, matrix micromechanobiology. To facilitate improvements to in vitro microenvironment design, we review how cardiomyocytes and their microenvironment change during development and disease in terms of integrin expression and extracellular matrix (ECM) composition. We also discuss strategies used to bind proteins to common mechanobiology platforms and describe important differences in binding strength to the substrate. Finally, we review example biomaterial approaches designed to support and probe cell-ECM interactions of cardiomyocytes in vitro, as well as open questions and challenges.
Collapse
Affiliation(s)
- Erica A Castillo
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA; .,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Kerry V Lane
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Beth L Pruitt
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93117, USA;
| |
Collapse
|
17
|
Amit C, Padmanabhan P, Elchuri SV, Narayanan J. Probing the effect of matrix stiffness in endocytic signalling pathway of corneal epithelium. Biochem Biophys Res Commun 2020; 525:280-285. [PMID: 32087964 DOI: 10.1016/j.bbrc.2020.02.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 11/30/2022]
Abstract
Matrix stiffness regulates the physiology of the cells and plays an important role in maintaining its homeostasis. It has been reported to regulate cell division, proliferation, migration, extracellular uptake and various other physiological processes. The alteration in matrix stiffness has also been well reported in various disease pathologies. However, in ocular system, Keratoconus (KC) is an ideal model to study the effect of matrix stiffness on endocytosis since the progression of the disease is controlled by increasing the stromal elasticity. Our study using corneal epithelial and retinal pigment epithelial cell lines showed that ocular cells do respond to matrix stiffness by altering their morphology and endocytic uptake of FITC-Dextran 20 kDa. Further, by using KC epithelium as a clinical model, we hypothesize that change in stromal elasticity may also affect the endocytosis of KC epithelium. Our results clearly showed alteration in the expression of actin binding proteins such as Phosphorylated Cofilin, Profilin, Focal adhesion kinase, and Vinculin. Apart from cytoskeletal rearrangement proteins, we also observed endocytic proteins such as Clathrin, Caveolin1 and Rab 11 to be affected by matrix stiffness. Our study thus establishes connecting role between endocytosis and matrix stiffness which could be used to understand the pathophysiology of keratoconus that it is influenced by both mechanical and biochemical factors.
Collapse
Affiliation(s)
- Chatterjee Amit
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Tanjore, Tamil Nadu, India
| | - Prema Padmanabhan
- Department of Cornea, Medical Research Foundation, Sankara Nethralaya Campus, Chennai, Tamil Nadu, India
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, Tamil Nadu, India
| | - Janakiraman Narayanan
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, Tamil Nadu, India.
| |
Collapse
|
18
|
Liu Y, Li L, Chen X, Wang Y, Liu MN, Yan J, Cao L, Wang L, Wang ZB. Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2329-2337. [PMID: 31886109 PMCID: PMC6902897 DOI: 10.3762/bjnano.10.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/24/2019] [Indexed: 05/15/2023]
Abstract
The stiffness and the topography of the substrate at the cell-substrate interface are two key properties influencing cell behavior. In this paper, atomic force acoustic microscopy (AFAM) is used to investigate the influence of substrate stiffness and substrate topography on the responses of L929 fibroblasts. This combined nondestructive technique is able to characterize materials at high lateral resolution. To produce substrates of tunable stiffness and topography, we imprint nanostripe patterns on undeveloped and developed SU-8 photoresist films using electron-beam lithography (EBL). Elastic deformations of the substrate surfaces and the cells are revealed by AFAM. Our results show that AFAM is capable of imaging surface elastic deformations. By immunofluorescence experiments, we find that the L929 cells significantly elongate on the patterned stiffness substrate, whereas the elasticity of the pattern has only little effect on the spreading of the L929 cells. The influence of the topography pattern on the cell alignment and morphology is even more pronounced leading to an arrangement of the cells along the nanostripe pattern. Our method is useful for the quantitative characterization of cell-substrate interactions and provides guidance for the tissue regeneration therapy in biomedicine.
Collapse
Affiliation(s)
- Yan Liu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Computer Department, Changchun Medical College, Changchun 130031, China
| | - Li Li
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Xing Chen
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Ying Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Meng-Nan Liu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Jin Yan
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Liang Cao
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Lu Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuo-Bin Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
19
|
Kim D, Kim SH, Park JY. Floating-on-water Fabrication Method for Thin Polydimethylsiloxane Membranes. Polymers (Basel) 2019; 11:polym11081264. [PMID: 31370158 PMCID: PMC6722912 DOI: 10.3390/polym11081264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 11/26/2022] Open
Abstract
Polydimethylsiloxane (PDMS) membranes are used in various applications, such as microvalves, micropumps, microlenses, and cell culture substrates, with various thicknesses from microscale to nanoscale. In this study, we propose a simple fabrication method for PDMS membranes on a water surface, referred to as the floating-on-water (FoW) method. FoW can be used to easily fabricate PDMS membranes with thicknesses of a few micrometers (minimum 3 μm) without special equipment. In addition, as the membrane is fabricated on the water surface, it can be easily handled without damage. In addition, alternative membrane structures were demonstrated, such as membrane-on-pins and droplet-shaped membranes. FoW can be widely used in various applications that require PDMS membranes with microscale thicknesses.
Collapse
Affiliation(s)
- Daehan Kim
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Sung-Hwan Kim
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| |
Collapse
|
20
|
Portone A, Sciancalepore AG, Melle G, Netti GS, Greco G, Persano L, Gesualdo L, Pisignano D. Quasi-3D morphology and modulation of focal adhesions of human adult stem cells through combinatorial concave elastomeric surfaces with varied stiffness. SOFT MATTER 2019; 15:5154-5162. [PMID: 31192342 DOI: 10.1039/c9sm00481e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In vivo cell niches are complex architectures that provide a wide range of biochemical and mechanical stimuli to control cell behavior and fate. With the aim to provide in vitro microenvironments mimicking physiological niches, microstructured substrates have been exploited to support cell adhesion and to control cell shape as well as three dimensional morphology. At variance with previous methods, we propose a simple and rapid protein subtractive soft lithographic method to obtain microstructured polydimethylsiloxane substrates for studying stem cell adhesion and growth. The shape of adult renal stem cells and nuclei is found to depend predominantly on micropatterning of elastomeric surfaces and only weakly on the substrate mechanical properties. Differently, focal adhesions in their shape and density but not in their alignment mainly depend on the elastomer stiffness almost regardless of microscale topography. Local surface topography with concave microgeometry enhancing adhesion drives stem cells in a quasi-three dimensional configuration where stiffness might significantly steer mechanosensing as highlighted by focal adhesion properties.
Collapse
Affiliation(s)
- A Portone
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee G, Han SB, Lee JH, Kim HW, Kim DH. Cancer Mechanobiology: Microenvironmental Sensing and Metastasis. ACS Biomater Sci Eng 2019; 5:3735-3752. [PMID: 33405888 DOI: 10.1021/acsbiomaterials.8b01230] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cellular microenvironment plays an important role in regulating cancer progress. Cancer can physically and chemically remodel its surrounding extracellular matrix (ECM). Critical cellular behaviors such as recognition of matrix geometry and rigidity, cell polarization and motility, cytoskeletal reorganization, and proliferation can be changed as a consequence of these ECM alternations. Here, we present an overview of cancer mechanobiology in detail, focusing on cancer microenvironmental sensing of exogenous cues and quantification of cancer-substrate interactions. In addition, mechanics of metastasis classified with tumor progression will be discussed. The mechanism underlying cancer mechanosensation and tumor progression may provide new insights into therapeutic strategies to alleviate cancer malignancy.
Collapse
Affiliation(s)
- GeonHui Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
22
|
Tsai CW, Wang JH, Young TH. Core/shell multicellular spheroids on chitosan as in vitro 3D coculture tumor models. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S651-S660. [PMID: 30311795 DOI: 10.1080/21691401.2018.1505744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
An ideal in vitro drug screening model is important for the drug development. In addition to monoculture systems, 3 dimensional (3D) coculture systems are extensively used to simulate the in vivo tumor microenvironment as cell-cell and cell-extracellular matrix interactions within the tumor tissues can be mimicked. In this study, in vitro 3D suspension coculture multicellular spheroids with core/shell cell distribution were developed on chitosan-coated surfaces. Based on the characteristic of chitosan inhibiting cell adhesion, SW620 (colon cancer cell line), 3A6 (mesenchymal stem-like cell line) and Hs68 (foreskin fibroblast line) cells could aggregate to form 3D coculture spheroids with intimate cell contacts. When cells were cocultured on chitosan, 3A6 and Hs68 cells always located in the core of spheroids and were completely enveloped by SW620 cells due to their N-cadherin protein expression following the differential adhesion hypothesis. The core cells could be the feeder layers to stimulate the shell SW620 cells to enhance their mitochondria activity. Moreover, 3D coculture core/shell multicellular spheroids could enhance the resistance of SW620 cells against the cytotoxicity effect of chemotherapy drugs. To sum up, based on the specificity of the core/shell coculture multicellular spheroids, a novel in vitro tumor model was proposed in this study.
Collapse
Affiliation(s)
- Ching-Wen Tsai
- a Institute of Biomedical Engineering , National Taiwan University , Taipei , Taiwan
| | - Jyh-Horng Wang
- b Department of Orthopedic Surgery , National Taiwan University Hospital , Taipei , Taiwan
| | - Tai-Horng Young
- a Institute of Biomedical Engineering , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
23
|
Jastrzebska E, Zuchowska A, Flis S, Sokolowska P, Bulka M, Dybko A, Brzozka Z. Biological characterization of the modified poly(dimethylsiloxane) surfaces based on cell attachment and toxicity assays. BIOMICROFLUIDICS 2018; 12:044105. [PMID: 30034568 PMCID: PMC6039296 DOI: 10.1063/1.5035176] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/17/2018] [Indexed: 05/08/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) is a material applicable for tissue and biomedical engineering, especially based on microfluidic devices. PDMS is a material used in studies aimed at understanding cell behavior and analyzing the cell adhesion mechanism. In this work, biological characterization of the modified PDMS surfaces based on cell attachment and toxicity assays was performed. We studied Balb 3T3/c, HMEC-1, and HT-29 cell adhesion on poly(dimethylsiloxane) surfaces modified by different proteins, with and without pre-activation with plasma oxygen and UV irradiation. Additionally, we studied how changing of a base and a curing agent ratios influence cell proliferation. We observed that cell type has a high impact on cell adhesion, proliferation, as well as viability after drug exposure. It was tested that the carcinoma cells do not require a highly specific microenvironment for their proliferation. Cytotoxicity assays with celecoxib and oxaliplatin on the modified PDMS surfaces showed that normal cells, cultured on the modified PDMS, are more sensitive to drugs than cancer cells. Cell adhesion was also tested in the microfluidic systems made of the modified PDMS layers. Thanks to that, we studied how the surface area to volume ratio influences cell behavior. The results presented in this manuscript could be helpful for creation of proper culture conditions during in vitro tests as well as to understand cell response in different states of disease depending on drug exposure.
Collapse
Affiliation(s)
- Elzbieta Jastrzebska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Agnieszka Zuchowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Sylwia Flis
- Department of Pharmacology, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| | - Patrycja Sokolowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Bulka
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Artur Dybko
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Brzozka
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
24
|
Leivo J, Virjula S, Vanhatupa S, Kartasalo K, Kreutzer J, Miettinen S, Kallio P. A durable and biocompatible ascorbic acid-based covalent coating method of polydimethylsiloxane for dynamic cell culture. J R Soc Interface 2018; 14:rsif.2017.0318. [PMID: 28747398 DOI: 10.1098/rsif.2017.0318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/28/2017] [Indexed: 11/12/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is widely used in dynamic biological microfluidic applications. As a highly hydrophobic material, native PDMS does not support cell attachment and culture, especially in dynamic conditions. Previous covalent coating methods use glutaraldehyde (GA) which, however, is cytotoxic. This paper introduces a novel and simple method for binding collagen type I covalently on PDMS using ascorbic acid (AA) as a cross-linker instead of GA. We compare the novel method against physisorption and GA cross-linker-based methods. The coatings are characterized by immunostaining, contact angle measurement, atomic force microscopy and infrared spectroscopy, and evaluated in static and stretched human adipose stem cell (hASC) cultures up to 13 days. We found that AA can replace GA as a cross-linker in the covalent coating method and that the coating is durable after sonication and after 6 days of stretching. Furthermore, we show that hASCs attach and proliferate better on AA cross-linked samples compared with physisorbed or GA-based methods. Thus, in this paper, we provide a new PDMS coating method for studying cells, such as hASCs, in static and dynamic conditions. The proposed method is an important step in the development of PDMS-based devices in cell and tissue engineering applications.
Collapse
Affiliation(s)
- Joni Leivo
- Micro- and Nanosystems Research Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Sanni Virjula
- Adult Stem Cell Group, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Science Centre, Tampere University Hospital, Tampere, Finland
| | - Sari Vanhatupa
- Adult Stem Cell Group, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Science Centre, Tampere University Hospital, Tampere, Finland
| | - Kimmo Kartasalo
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland.,Computational Biology Research Group, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Joose Kreutzer
- Micro- and Nanosystems Research Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Science Centre, Tampere University Hospital, Tampere, Finland
| | - Pasi Kallio
- Micro- and Nanosystems Research Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
25
|
Khayamian MA, Ansaryan S, Moghtaderi H, Abdolahad M. Applying VHB acrylic elastomer as a cell culture and stretchable substrate. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1419244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mohammad Ali Khayamian
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Saeid Ansaryan
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Hassan Moghtaderi
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
26
|
Ozbolat V, Dey M, Ayan B, Povilianskas A, Demirel MC, Ozbolat IT. 3D Printing of PDMS Improves Its Mechanical and Cell Adhesion Properties. ACS Biomater Sci Eng 2018; 4:682-693. [PMID: 33418756 DOI: 10.1021/acsbiomaterials.7b00646] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite extensive use of polydimethylsiloxane (PDMS) in medical applications, such as lab-on-a-chip or tissue/organ-on-a-chip devices, point-of-care devices, and biological machines, the manufacturing of PDMS devices is limited to soft-lithography and its derivatives, which prohibits the fabrication of geometrically complex shapes. With the recent advances in three-dimensional (3D) printing, use of PDMS for fabrication of such complex shapes has gained considerable interest. This research presents a detailed investigation on printability of PDMS elastomers over three concentrations for mechanical and cell adhesion studies. The results demonstrate that 3D printing of PDMS improved the mechanical properties of fabricated samples up to three fold compared to that of cast ones because of the decreased porosity of bubble entrapment. Most importantly, 3D printing facilitates the adhesion of breast cancer cells, whereas cast samples do not allow cellular adhesion without the use of additional coatings such as extracellular matrix proteins. Cells are able to adhere and grow in the grooves along the printed filaments demonstrating that 3D printed devices can be engineered with superior cell adhesion qualities compared to traditionally manufactured PDMS devices.
Collapse
Affiliation(s)
- Veli Ozbolat
- Mechanical Engineering Department, Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | | | | | | | | | | |
Collapse
|
27
|
Wala J, Maji D, Das S. Influence of physico-mechanical properties of elastomeric material for different cell growth. ACTA ACUST UNITED AC 2017; 12:065002. [PMID: 28691693 DOI: 10.1088/1748-605x/aa7e81] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The tunable mechanical and physical properties of polydimethylsiloxane (PDMS) are commonly utilized for studying cellular dynamics. However, the inherent hydrophobic nature of PDMS limits its application as a cell culture film. Various surface modification techniques render PDMS films hydrophilic, altering their surface chemistry, elasticity, roughness and the cell attachment of anchorage-dependent cell types to the films. The surface properties of thin films lead to the alteration of the biomechano-physical properties of cells, so they can be used as a mechanical signature for the viability testing of different types of cell, such as normal and cancerous ones. In this study, 3T3 fibroblast and HaCaT keratinocyte cells were grown on different pristine and oxidized PDMS compositions by varying their base-to-curing-agent ratios (w/w). The enhanced wettability favors the cell spreading and growth rate of both 3T3 and HaCaT cells, and it varies with the film's surface chemistry and elasticity. This study focuses on the importance of understanding how various surface modification methods, like oxygen plasma and piranha treatment, can impact cell-cell and cell-substrate interaction for different cell types, thereby assisting in the preparation of various PDMS-based biomedical devices.
Collapse
Affiliation(s)
- Jyoti Wala
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | | | | |
Collapse
|
28
|
Marshall J, Qiao X, Baumbach J, Xie J, Dong L, Bhattacharyya MK. Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean. Sci Rep 2017; 7:44365. [PMID: 28295054 PMCID: PMC5353701 DOI: 10.1038/srep44365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 11/08/2022] Open
Abstract
Time-lapse microscopic-photography allows in-depth phenotyping of microorganisms. Here we report development of such a system using a microfluidic device, generated from polydimethylsiloxane and glass slide, placed on a motorized stage of a microscope for conducting time-lapse microphotography of multiple observations in 20 channels simultaneously. We have demonstrated the utility of the device in studying growth, germination and sporulation in Fusarium virguliforme that causes sudden death syndrome in soybean. To measure the growth differences, we developed a polyamine oxidase fvpo1 mutant in this fungus that fails to grow in minimal medium containing polyamines as the sole nitrogen source. Using this system, we demonstrated that the conidiospores of the pathogen take an average of five hours to germinate. During sporulation, it takes an average of 10.5 h for a conidiospore to mature and get detached from its conidiophore for the first time. Conidiospores are developed in a single conidiophore one after another. The microfluidic device enabled quantitative time-lapse microphotography reported here should be suitable for screening compounds, peptides, micro-organisms to identify fungitoxic or antimicrobial agents for controlling serious plant pathogens. The device could also be applied in identifying suitable target genes for host-induced gene silencing in pathogens for generating novel disease resistance in crop plants.
Collapse
Affiliation(s)
- Jill Marshall
- G303 Agronomy Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Xuan Qiao
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Jordan Baumbach
- G303 Agronomy Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Jingyu Xie
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Liang Dong
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | | |
Collapse
|
29
|
Li S, Kuddannaya S, Chuah YJ, Bao J, Zhang Y, Wang D. Combined effects of multi-scale topographical cues on stable cell sheet formation and differentiation of mesenchymal stem cells. Biomater Sci 2017; 5:2056-2067. [DOI: 10.1039/c7bm00134g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To decipher specific cell responses to diverse and complex in vivo signals, it is essential to emulate specific surface chemicals, extra cellular matrix (ECM) components and topographical signals through reliable and easily reproducible in vitro systems.
Collapse
Affiliation(s)
- Sisi Li
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Shreyas Kuddannaya
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yon Jin Chuah
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jingnan Bao
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Dongan Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
30
|
Antibacterial and anticancer PDMS surface for mammalian cell growth using the Chinese herb extract paeonol(4-methoxy-2-hydroxyacetophenone). Sci Rep 2016; 6:38973. [PMID: 27941867 PMCID: PMC5150582 DOI: 10.1038/srep38973] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Polydimethylsiloxane (PDMS) is widely used as a cell culture platform to produce micro- and nano-technology based microdevices. However, the native PDMS surface is not suitable for cell adhesion and is always subject to bacterial pollution and cancer cell invasion. Coating the PDMS surface with antibacterial or anticancer materials often causes considerable harm to the non-cancer mammalian cells on it. We have developed a method to fabricate a biocompatible PDMS surface which not only promotes non-cancer mammalian cell growth but also has antibacterial and anticancer activities, by coating the PDMS surface with a Chinese herb extract, paeonol. Coating changes the wettability and the elemental composition of the PDMS surface. Molecular dynamic simulation indicates that the absorption of paeonol onto the PDMS surface is an energy favourable process. The paeonol-coated PDMS surface exhibits good antibacterial activity against both Gram-positive and Gram-negative bacteria. Moreover considerable antibacterial activity is maintained after the coated surface is rinsed or incubated in water. The coated PDMS surface inhibits bacterial growth on the contact surface and promotes non-cancer mammalian cell growth with low cell toxicity; meanwhile the growth of cancer cells is significantly inhibited. Our study will potentially guide PDMS surface modification approaches to produce biomedical devices.
Collapse
|
31
|
Bian X, Lan Y, Wang B, Zhang YS, Liu B, Yang P, Zhang W, Qiao L. Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification. Anal Chem 2016; 88:11504-11512. [DOI: 10.1021/acs.analchem.6b02708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaojun Bian
- College
of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Ying Lan
- College
of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Bing Wang
- College
of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Yu Shrike Zhang
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Baohong Liu
- Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Pengyuan Yang
- Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Weijia Zhang
- College
of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Liang Qiao
- Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| |
Collapse
|
32
|
Guo S, Zhu X, Li M, Shi L, Ong JLT, Jańczewski D, Neoh KG. Parallel Control over Surface Charge and Wettability Using Polyelectrolyte Architecture: Effect on Protein Adsorption and Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30552-30563. [PMID: 27762557 DOI: 10.1021/acsami.6b09481] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Surface charge and wettability, the two prominent physical factors governing protein adsorption and cell adhesion, have been extensively investigated in the literature. However, a comparison between these driving forces in terms of their independent and cooperative effects in affecting adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol that features two-dimensional control over both surface charge and wettability with limited cross-parameter influence. This strategy is implemented by controlling both the polyion charge density in the layer-by-layer (LbL) assembly process and the polyion side-chain chemical structures. The 2D property matrix spans surface isoelectric points ranging from 5 to 9 and water contact angles from 35 to 70°, with other interferential factors (e.g., roughness) eliminated. The interplay between these two surface variables influences protein (bovine serum albumin, lysozyme) adsorption and 3T3 fibroblast cell adhesion. For proteins, we observe the presence of thresholds for surface wettability and electrostatic driving forces necessary to affect adhesion. Beyond these thresholds, the individual effects of electrostatic forces and wettability are observed. For fibroblast, both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity lead to the highest cell adhesion, whereas negative charge and hydrophobicity lead to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serve as a reference in future studies assessing protein adsorption and cell adhesion to surfaces with known charge and wettability within the property range studied here.
Collapse
Affiliation(s)
- Shanshan Guo
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore , Kent Ridge, Singapore 117576
| | - Xiaoying Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research , 2 Fusionopolis Way, Singapore 138634
- Department of Environmental Science, Zhejiang University , Hangzhou, China 310058
| | - Min Li
- Department of Chemical & Biomolecular Engineering, National University of Singapore , Kent Ridge, Singapore 119260
| | - Liya Shi
- Department of Chemical & Biomolecular Engineering, National University of Singapore , Kent Ridge, Singapore 119260
| | - June Lay Ting Ong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research , 2 Fusionopolis Way, Singapore 138634
| | - Dominik Jańczewski
- Laboratory of Technological Processes, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Koon Gee Neoh
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore , Kent Ridge, Singapore 117576
- Department of Chemical & Biomolecular Engineering, National University of Singapore , Kent Ridge, Singapore 119260
| |
Collapse
|
33
|
Hartmann SB, Mohanty S, Skovgaard K, Brogaard L, Flagstad FB, Emnéus J, Wolff A, Summerfield A, Jungersen G. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells. PLoS One 2016; 11:e0158503. [PMID: 27362493 PMCID: PMC4928952 DOI: 10.1371/journal.pone.0158503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/16/2016] [Indexed: 01/09/2023] Open
Abstract
In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today.
Collapse
Affiliation(s)
- Sofie Bruun Hartmann
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Soumyaranjan Mohanty
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kerstin Skovgaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Louise Brogaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | | | - Jenny Emnéus
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders Wolff
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Artur Summerfield
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland
| | - Gregers Jungersen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
34
|
Razafiarison T, Silván U, Meier D, Snedeker JG. Surface-Driven Collagen Self-Assembly Affects Early Osteogenic Stem Cell Signaling. Adv Healthc Mater 2016; 5:1481-92. [PMID: 27125602 DOI: 10.1002/adhm.201600128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/18/2016] [Indexed: 11/10/2022]
Abstract
This study reports how extracellular matrix (ECM) ligand self-assembly on biomaterial surfaces and the resulting nanoscale architecture can drive stem cell behavior. To isolate the biological effects of surface wettability on protein deposition, folding, and ligand activity, a polydimethylsiloxane (PDMS)-based platform was developed and characterized with the ability to tune wettability of elastomeric substrates with otherwise equivalent topology, ligand loading, and mechanical properties. Using this platform, markedly different assembly of covalently bound type I collagen monomers was observed depending on wettability, with hydrophobic substrates yielding a relatively rough layer of collagen aggregates compared to a smooth collagen layer on more hydrophilic substrates. Cellular and molecular investigations with human bone marrow stromal cells revealed higher osteogenic differentiation and upregulation of focal adhesion-related components on the resulting smooth collagen layer coated substrates. The initial collagen assembly driven by the PDMS surface directly affected α1β1 integrin/discoidin domain receptor 1 signaling, activation of the extracellular signal-regulated kinase/mitogen activated protein kinase pathway, and ultimately markers of osteogenic stem cell differentiation. We demonstrate for the first time that surface-driven ligand assembly on material surfaces, even on materials with otherwise identical starting topographies and mechanical properties, can dominate the biomaterial surface-driven cell response.
Collapse
Affiliation(s)
- Tojo Razafiarison
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
- Laboratory for Orthopedic Biomechanics ETH Zurich Lengghalde 5 8008 Zürich Switzerland
| | - Unai Silván
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
- Laboratory for Orthopedic Biomechanics ETH Zurich Lengghalde 5 8008 Zürich Switzerland
| | - Daniela Meier
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
| | - Jess G. Snedeker
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
- Laboratory for Orthopedic Biomechanics ETH Zurich Lengghalde 5 8008 Zürich Switzerland
| |
Collapse
|
35
|
Vecchione R, Pitingolo G, Guarnieri D, Falanga AP, Netti PA. From square to circular polymeric microchannels by spin coating technology: a low cost platform for endothelial cell culture. Biofabrication 2016; 8:025005. [DOI: 10.1088/1758-5090/8/2/025005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Abstract
Stem cells have the ability to self-renew and differentiate into specialized cell types, and, in the human body, they reside in specialized microenvironments called "stem cell niches." Although several niches have been described and studied in vivo, their functional replication in vitro is still incomplete. The in vitro culture of pluripotent stem cells may represent one of the most advanced examples in the effort to create an artificial or synthetic stem cell niche. A focus has been placed on the development of human stem cell microenvironments due to their significant clinical implications, in addition to the potential differences between animal and human cells. In this concise review we describe the advances in human pluripotent stem cell culture, and explore the idea that the knowledge gained from this model could be replicated to create synthetic niches for other human stem cell populations, which have proven difficult to maintain in vitro.
Collapse
|
37
|
Kuddannaya S, Bao J, Zhang Y. Enhanced In Vitro Biocompatibility of Chemically Modified Poly(dimethylsiloxane) Surfaces for Stable Adhesion and Long-term Investigation of Brain Cerebral Cortex Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25529-38. [PMID: 26506436 DOI: 10.1021/acsami.5b09032] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Studies on the mammalian brain cerebral cortex have gained increasing importance due to the relevance of the region in controlling critical higher brain functions. Interactions between the cortical cells and surface extracellular matrix (ECM) proteins play a pivotal role in promoting stable cell adhesion, growth, and function. Poly(dimethylsiloxane) (PDMS) based platforms have been increasingly used for on-chip in vitro cellular system analysis. However, the inherent hydrophobicity of the PDMS surface has been unfavorable for any long-term cell system investigations due to transitory physical adsorption of ECM proteins on PDMS surfaces followed by eventual cell dislodgement due to poor anchorage and viability. To address this critical issue, we employed the (3-aminopropyl)triethoxysilane (APTES) based cross-linking strategy to stabilize ECM protein immobilization on PDMS. The efficiency of surface modification in supporting adhesion and long-term viability of neuronal and glial cells was analyzed. The chemically modified surfaces showed a relatively higher cell survival with an increased neurite length and neurite branching. These changes were understood in terms of an increase in surface hydrophilicity, protein stability, and cell-ECM protein interactions. The modification strategy could be successfully applied for stable cortical cell culture on the PDMS microchip for up to 3 weeks in vitro.
Collapse
Affiliation(s)
- Shreyas Kuddannaya
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, N3.2-02-65, Singapore 639798, Singapore
| | - Jingnan Bao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, N3.2-02-65, Singapore 639798, Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, N3.2-02-65, Singapore 639798, Singapore
| |
Collapse
|
38
|
Kawano Y, Otsuka C, Sanzo J, Higgins C, Nirei T, Schilling T, Ishikawa T. Expanding imaging capabilities for microfluidics: applicability of darkfield internal reflection illumination (DIRI) to observations in microfluidics. PLoS One 2015; 10:e0116925. [PMID: 25748425 PMCID: PMC4352060 DOI: 10.1371/journal.pone.0116925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/16/2014] [Indexed: 01/09/2023] Open
Abstract
Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics.
Collapse
Affiliation(s)
- Yoshihiro Kawano
- The Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan; Olympus Corporation, Shinjuku-Ku, Tokyo, Japan
| | | | - James Sanzo
- Olympus Scientific Solutions Americas, Waltham, Massachusetts, United States of America
| | - Christopher Higgins
- Olympus Scientific Solutions Americas, Waltham, Massachusetts, United States of America
| | | | | | - Takuji Ishikawa
- Department of Bioengineering and Robotics, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
39
|
Moustafa ME, Gadepalli VS, Elmak AA, Lee W, Rao RR, Yadavalli VK. Large area micropatterning of cells on polydimethylsiloxane surfaces. J Biol Eng 2014; 8:24. [PMID: 25383093 PMCID: PMC4223844 DOI: 10.1186/1754-1611-8-24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Precise spatial control and patterning of cells is an important area of research with numerous applications in tissue engineering, as well as advancing an understanding of fundamental cellular processes. Poly (dimethyl siloxane) (PDMS) has long been used as a flexible, biocompatible substrate for cell culture with tunable mechanical characteristics. However, fabrication of suitable physico-chemical barriers for cells on PDMS substrates over large areas is still a challenge. RESULTS Here, we present an improved technique which integrates photolithography and cell culture on PDMS substrates wherein the barriers to cell adhesion are formed using the photo-activated graft polymerization of polyethylene glycol diacrylate (PEG-DA). PDMS substrates with varying stiffness were prepared by varying the base to crosslinker ratio from 5:1 to 20:1. All substrates show controlled cell attachment confined to fibronectin coated PDMS microchannels with a resistance to non-specific adhesion provided by the covalently immobilized, hydrophilic PEG-DA. CONCLUSIONS Using photolithography, it is possible to form patterns of high resolution stable at 37°C over 2 weeks, and microstructural complexity over large areas of a few cm(2). As a robust and scalable patterning method, this technique showing homogenous and stable cell adhesion and growth over macroscales can bring microfabrication a step closer to mass production for biomedical applications.
Collapse
Affiliation(s)
- Mahmoud E Moustafa
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Venkat S Gadepalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Ahmed A Elmak
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Woomin Lee
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Raj R Rao
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
40
|
Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 2014; 63:218-231. [PMID: 25105943 DOI: 10.1016/j.bios.2014.07.029] [Citation(s) in RCA: 608] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/03/2014] [Accepted: 07/12/2014] [Indexed: 02/06/2023]
Abstract
Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture.
Collapse
Affiliation(s)
- Skarphedinn Halldorsson
- Center for Systems Biology and Biomedical Center, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | - Edinson Lucumi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Rafael Gómez-Sjöberg
- Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, United States of America
| | - Ronan M T Fleming
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
41
|
Wang Z, Volinsky AA, Gallant ND. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J Appl Polym Sci 2014. [DOI: 10.1002/app.41050] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhixin Wang
- Department of Mechanical Engineering; University of South Florida; Tampa Florida 33620
| | - Alex A. Volinsky
- Department of Mechanical Engineering; University of South Florida; Tampa Florida 33620
| | - Nathan D. Gallant
- Department of Mechanical Engineering; University of South Florida; Tampa Florida 33620
| |
Collapse
|
42
|
Ataollahi F, Pramanik S, Moradi A, Dalilottojari A, Pingguan-Murphy B, Wan Abas WAB, Abu Osman NA. Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates. J Biomed Mater Res A 2014; 103:2203-13. [DOI: 10.1002/jbm.a.35186] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/26/2014] [Accepted: 03/31/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Forough Ataollahi
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Sumit Pramanik
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Ali Moradi
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Adel Dalilottojari
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| |
Collapse
|
43
|
Tondon A, Kaunas R. The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress. PLoS One 2014; 9:e89592. [PMID: 24586898 PMCID: PMC3933569 DOI: 10.1371/journal.pone.0089592] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/21/2014] [Indexed: 01/04/2023] Open
Abstract
Cell structure depends on both matrix strain and stiffness, but their interactive effects are poorly understood. We investigated the interactive roles of matrix properties and stretching patterns on cell structure by uniaxially stretching U2OS cells expressing GFP-actin on silicone rubber sheets supporting either a surface-adsorbed coating or thick hydrogel of type-I collagen. Cells and their actin stress fibers oriented perpendicular to the direction of cyclic stretch on collagen-coated sheets, but oriented parallel to the stretch direction on collagen gels. There was significant alignment parallel to the direction of a steady increase in stretch for cells on collagen gels, while cells on collagen-coated sheets did not align in any direction. The extent of alignment was dependent on both strain rate and duration. Stretch-induced alignment on collagen gels was blocked by the myosin light-chain kinase inhibitor ML7, but not by the Rho-kinase inhibitor Y27632. We propose that active orientation of the actin cytoskeleton perpendicular and parallel to direction of stretch on stiff and soft substrates, respectively, are responses that tend to maintain intracellular tension at an optimal level. Further, our results indicate that cells can align along directions of matrix stress without collagen fibril alignment, indicating that matrix stress can directly regulate cell morphology.
Collapse
Affiliation(s)
- Abhishek Tondon
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Culbertson CT, Mickleburgh TG, Stewart-James SA, Sellens KA, Pressnall M. Micro total analysis systems: fundamental advances and biological applications. Anal Chem 2014; 86:95-118. [PMID: 24274655 PMCID: PMC3951881 DOI: 10.1021/ac403688g] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Tom G. Mickleburgh
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | - Kathleen A. Sellens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Melissa Pressnall
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
45
|
|