1
|
Chu YH, Katabi N, Sukhadia P, Mullaney KA, Zaidinski M, Cracchiolo JR, Xu B, Ghossein RA, Ho AL, DiNapoli SE, Ladanyi M, Dogan S. Targeted RNA sequencing in diagnostically challenging head and neck carcinomas identifies novel MON2::STAT6, NFATC2::NUTM2B, POC5::RAF1, and NSD3::NCOA2 gene fusions. Histopathology 2025; 86:728-741. [PMID: 39628352 DOI: 10.1111/his.15380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 03/14/2025]
Abstract
AIMS Although molecular tests developed for a growing list of oncogenic alterations have significantly aided in the classification of head and neck carcinomas, tumours in which prototypical histologic and immunophenotypic features are lacking or only partially developed continue to pose diagnostic challenges. Searching for known diagnostic and therapeutic targets by clinical next-generation sequencing (NGS) assays can often lead to new discoveries. METHODS AND RESULTS We present our institutional experience in applying targeted RNA NGS in 36 head and neck carcinomas that were morphologically difficult to classify between 2016 and 2023. The patients ranged in age from 5 to 83 years (median, 64), with the majority of tumors occurring in the major salivary glands and the sinonasal tract. Overall, seven (19%) cases showed unusual gene rearrangements, including five novel alterations: MON2::STAT6 in a hard palate adenocarcinoma with mucinous features, POC5::RAF1 in apocrine intraductal carcinoma of the lacrimal gland, EWSR1::CDADC1 fusion in a basaloid carcinoma of the submandibular gland, NFATC2::NUTM2B in myoepithelial carcinoma, and NSD3::NCOA2 fusion in a peculiar high-grade carcinoma with a peritheliomatous growth pattern, and focal myogenic differentiation. Potential therapeutic actionability was identified in three cases (RAF1 and FGFR2 fusions). CONCLUSION These findings broaden the current spectrum of gene rearrangements in head and neck carcinomas and support the utility of clinical NGS in identifying unusual, actionable alterations in diagnostically challenging cases.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nora Katabi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Purvil Sukhadia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kerry A Mullaney
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael Zaidinski
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeniffer R Cracchiolo
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Bin Xu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ronald A Ghossein
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sara E DiNapoli
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Snjezana Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Yin Y, Kan X, Miao X, Sun Y, Chen S, Qin T, Ding C, Peng D, Liu X. H5 subtype avian influenza virus induces Golgi apparatus stress response via TFE3 pathway to promote virus replication. PLoS Pathog 2024; 20:e1012748. [PMID: 39652582 PMCID: PMC11627363 DOI: 10.1371/journal.ppat.1012748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
During infection, avian influenza virus (AIV) triggers endoplasmic reticulum (ER) stress, a well-established phenomenon in previous research. The Golgi apparatus, situated downstream of the ER and crucial for protein trafficking, may be impacted by AIV infection. However, it remains unclear whether this induces Golgi apparatus stress (GAS) and its implications for AIV replication. We investigated the morphological changes in the Golgi apparatus and identified GAS response pathways following infection with the H5 subtype AIV strain A/Mallard/Huadong/S/2005. The results showed that AIV infection induced significant swelling and fragmentation of the Golgi apparatus in A549 cells, indicating the presence of GAS. Among the analyzed GAS response pathways, TFE3 was significantly activated during AIV infection, while HSP47 was activated early in the infection process, and CREB3-ARF4 remained inactive. The blockade of the TFE3 pathway effectively inhibited AIV replication in A549 cells and attenuated AIV virulence in mice. Additionally, activation of the TFE3 pathway promoted endosome acidification and upregulated transcription levels of glycosylation enzymes, facilitating AIV replication. These findings highlight the crucial role of the TFE3 pathway in mediating GAS response during AIV infection, shedding light on its significance in viral replication.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Xianjin Kan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Chan Ding
- Shanghai Jiaotong University School of Agriculture and Biology, Shanghai, PR China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, PR China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| |
Collapse
|
3
|
Dementieva NV, Dysin AP, Shcherbakov YS, Nikitkina EV, Musidray AA, Petrova AV, Mitrofanova OV, Plemyashov KV, Azovtseva AI, Griffin DK, Romanov MN. Risk of Sperm Disorders and Impaired Fertility in Frozen-Thawed Bull Semen: A Genome-Wide Association Study. Animals (Basel) 2024; 14:251. [PMID: 38254422 PMCID: PMC10812825 DOI: 10.3390/ani14020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Cryopreservation is a widely used method of semen conservation in animal breeding programs. This process, however, can have a detrimental effect on sperm quality, especially in terms of its morphology. The resultant sperm disorders raise the risk of reduced sperm fertilizing ability, which poses a serious threat to the long-term efficacy of livestock reproduction and breeding. Understanding the genetic factors underlying these effects is critical for maintaining sperm quality during cryopreservation, and for animal fertility in general. In this regard, we performed a genome-wide association study to identify genomic regions associated with various cryopreservation sperm abnormalities in Holstein cattle, using single nucleotide polymorphism (SNP) markers via a high-density genotyping assay. Our analysis revealed a significant association of specific SNPs and candidate genes with absence of acrosomes, damaged cell necks and tails, as well as wrinkled acrosomes and decreased motility of cryopreserved sperm. As a result, we identified candidate genes such as POU6F2, LPCAT4, DPYD, SLC39A12 and CACNB2, as well as microRNAs (bta-mir-137 and bta-mir-2420) that may play a critical role in sperm morphology and disorders. These findings provide crucial information on the molecular mechanisms underlying acrosome integrity, motility, head abnormalities and damaged cell necks and tails of sperm after cryopreservation. Further studies with larger sample sizes, genome-wide coverage and functional validation are needed to explore causal variants in more detail, thereby elucidating the mechanisms mediating these effects. Overall, our results contribute to the understanding of genetic architecture in cryopreserved semen quality and disorders in bulls, laying the foundation for improved animal reproduction and breeding.
Collapse
Affiliation(s)
- Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Elena V. Nikitkina
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem A. Musidray
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Anna V. Petrova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Olga V. Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Kirill V. Plemyashov
- Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State University of Veterinary Medicine”, 196084 St. Petersburg, Russia;
| | - Anastasiia I. Azovtseva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | | | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| |
Collapse
|
4
|
Traa A, Shields H, AlOkda A, Rudich ZD, Ko B, Van Raamsdonk JM. Endosomal trafficking protein TBC-2 is required for the longevity of long-lived mitochondrial mutants. FRONTIERS IN AGING 2023; 4:1145198. [PMID: 37261067 PMCID: PMC10228650 DOI: 10.3389/fragi.2023.1145198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Mutations that result in a mild impairment of mitochondrial function can extend longevity. Previous studies have shown that the increase in lifespan is dependent on stress responsive transcription factors, including DAF-16/FOXO, which exhibits increased nuclear localization in long-lived mitochondrial mutants. We recently found that the localization of DAF-16 within the cell is dependent on the endosomal trafficking protein TBC-2. Based on the important role of DAF-16 in both longevity and resistance to stress, we examined the effect of disrupting tbc-2 on lifespan and stress resistance in the long-lived mitochondrial mutants nuo-6 and isp-1 in Caenorhabditis elegans. Loss of tbc-2 markedly reduced the long lifespans of both mitochondrial mutants. Disruption of tbc-2 also decreased resistance to chronic oxidative stress in nuo-6 and isp-1 mutants but had little or no detrimental effect on resistance to other stressors. In contrast, tbc-2 inhibition had no effect on oxidative stress resistance or lifespan in isp-1 worms when DAF-16 is absent, suggesting that the effect of tbc-2 on mitochondrial mutant lifespan may be mediated by mislocalization of DAF-16. However, this result is complicated by the fact that deletion of daf-16 markedly decreases both phenotypes in isp-1 worms, which could result in a floor effect. In exploring the contribution of DAF-16 further, we found that disruption of tbc-2 did not affect the nuclear localization of DAF-16 in isp-1 worms or prevent the upregulation of DAF-16 target genes in the long-lived mitochondrial mutants. This suggests the possibility that the effect of tbc-2 on lifespan and stress resistance in the long-lived mitochondrial mutants is at least partially independent of its effects on DAF-16 localization. Overall, this work demonstrates the importance of endosomal trafficking for the extended longevity and enhanced stress resistance resulting from mild impairment of mitochondrial function.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Hazel Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Zenith D. Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bokang Ko
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M. Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Molière A, Beer KB, Wehman AM. Dopey proteins are essential but overlooked regulators of membrane trafficking. J Cell Sci 2022; 135:274973. [PMID: 35388894 DOI: 10.1242/jcs.259628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Dopey family proteins play crucial roles in diverse processes from morphogenesis to neural function and are conserved from yeast to mammals. Understanding the mechanisms behind these critical functions could have major clinical significance, as dysregulation of Dopey proteins has been linked to the cognitive defects in Down syndrome, as well as neurological diseases. Dopey proteins form a complex with the non-essential GEF-like protein Mon2 and an essential lipid flippase from the P4-ATPase family. Different combinations of Dopey, Mon2 and flippases have been linked to regulating membrane remodeling, from endosomal recycling to extracellular vesicle formation, through their interactions with lipids and other membrane trafficking regulators, such as ARL1, SNX3 and the kinesin-1 light chain KLC2. Despite these important functions and their likely clinical significance, Dopey proteins remain understudied and their roles elusive. Here, we review the major scientific discoveries relating to Dopey proteins and detail key open questions regarding their function to draw attention to these fascinating enigmas.
Collapse
Affiliation(s)
- Adrian Molière
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Katharina B Beer
- Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.,Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| |
Collapse
|
6
|
Li Y, Yang C, Liu Z, Du S, Can S, Zhang H, Zhang L, Huang X, Xiao Z, Li X, Fang J, Qin W, Sun C, Wang C, Chen J, Chen H. Integrative analysis of CRISPR screening data uncovers new opportunities for optimizing cancer immunotherapy. Mol Cancer 2022; 21:2. [PMID: 34980132 PMCID: PMC8722047 DOI: 10.1186/s12943-021-01462-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background In recent years, the application of functional genetic immuno-oncology screens has showcased the striking ability to identify potential regulators engaged in tumor-immune interactions. Although these screens have yielded substantial data, few studies have attempted to systematically aggregate and analyze them. Methods In this study, a comprehensive data collection of tumor immunity-associated functional screens was performed. Large-scale genomic data sets were exploited to conduct integrative analyses. Results We identified 105 regulator genes that could mediate resistance or sensitivity to immune cell-induced tumor elimination. Further analysis identified MON2 as a novel immune-oncology target with considerable therapeutic potential. In addition, based on the 105 genes, a signature named CTIS (CRISPR screening-based tumor-intrinsic immune score) for predicting response to immune checkpoint blockade (ICB) and several immunomodulatory agents with the potential to augment the efficacy of ICB were also determined. Conclusion Overall, our findings provide insights into immune oncology and open up novel opportunities for improving the efficacy of current immunotherapy agents. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01462-z.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shangce Du
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Susan Can
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Hailin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Linmeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Xiaowen Huang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhenyu Xiao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaobo Li
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jingyuan Fang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Chong Sun
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.
| | - Jun Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Huimin Chen
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
7
|
Jung Y, Artan M, Kim N, Yeom J, Hwang AB, Jeong DE, Altintas Ö, Seo K, Seo M, Lee D, Hwang W, Lee Y, Sohn J, Kim EJE, Ju S, Han SK, Nam HJ, Adams L, Ryu Y, Moon DJ, Kang C, Yoo JY, Park SK, Ha CM, Hansen M, Kim S, Lee C, Park SY, Lee SJV. MON-2, a Golgi protein, mediates autophagy-dependent longevity in Caenorhabditis elegans. SCIENCE ADVANCES 2021; 7:eabj8156. [PMID: 34860542 PMCID: PMC8641931 DOI: 10.1126/sciadv.abj8156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/14/2021] [Indexed: 06/02/2023]
Abstract
The Golgi apparatus plays a central role in trafficking cargoes such as proteins and lipids. Defects in the Golgi apparatus lead to various diseases, but its role in organismal longevity is largely unknown. Using a quantitative proteomic approach, we found that a Golgi protein, MON-2, was up-regulated in long-lived Caenorhabditis elegans mutants with mitochondrial respiration defects and was required for their longevity. Similarly, we showed that DOP1/PAD-1, which acts with MON-2 to traffic macromolecules between the Golgi and endosome, contributed to the longevity of respiration mutants. Furthermore, we demonstrated that MON-2 was required for up-regulation of autophagy, a longevity-associated recycling process, by activating the Atg8 ortholog GABARAP/LGG-1 in C. elegans. Consistently, we showed that mammalian MON2 activated GABARAPL2 through physical interaction, which increased autophagic flux in mammalian cells. Thus, the evolutionarily conserved role of MON2 in trafficking between the Golgi and endosome is an integral part of autophagy-mediated longevity.
Collapse
Affiliation(s)
- Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Murat Artan
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Jeonghun Yeom
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Ara B. Hwang
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Özlem Altintas
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Mihwa Seo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Eun Ji E. Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hyun-Jun Nam
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Linnea Adams
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Youngjae Ryu
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, South Korea
| | - Dong Jin Moon
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Chanhee Kang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, South Korea
| | - Malene Hansen
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
8
|
Sun X, Tie HC, Chen B, Lu L. Glycans function as a Golgi export signal to promote the constitutive exocytic trafficking. J Biol Chem 2020; 295:14750-14762. [PMID: 32826314 PMCID: PMC7586228 DOI: 10.1074/jbc.ra120.014476] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/17/2020] [Indexed: 11/15/2022] Open
Abstract
Most proteins in the secretory pathway are glycosylated. However, the role of glycans in membrane trafficking is still unclear. Here, we discovered that transmembrane secretory cargos, such as interleukin 2 receptor α subunit or Tac, transferrin receptor, and cluster of differentiation 8a, unexpectedly displayed substantial Golgi localization when their O-glycosylation was compromised. By quantitatively measuring their Golgi residence times, we found that the observed Golgi localization of O-glycan–deficient cargos is due to their slow Golgi export. Using a superresolution microscopy method that we previously developed, we revealed that O-glycan–deficient Tac chimeras localize at the interior of the trans-Golgi cisternae. O-Glycans were observed to be both necessary and sufficient for the efficient Golgi export of Tac chimeras. By sequentially introducing O-glycosylation sites to ST6GAL1, we demonstrated that O-glycan's effect on Golgi export is probably additive. Finally, the finding that N-glycosylated GFP substantially reduces the Golgi residence time of a Tac chimera suggests that N-glycans might have a similar effect. Therefore, both O- and N-glycans might function as a generic Golgi export signal at the trans-Golgi to promote the constitutive exocytic trafficking.
Collapse
Affiliation(s)
- Xiuping Sun
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
9
|
Dopey1-Mon2 complex binds to dual-lipids and recruits kinesin-1 for membrane trafficking. Nat Commun 2019; 10:3218. [PMID: 31324769 PMCID: PMC6642134 DOI: 10.1038/s41467-019-11056-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/14/2019] [Indexed: 11/18/2022] Open
Abstract
Proteins are transported among eukaryotic organelles along the cytoskeleton in membrane carriers. The mechanism regarding the motility of carriers and the positioning of organelles is a fundamental question in cell biology that remains incompletely understood. Here, we find that Dopey1 and Mon2 assemble into a complex and localize to the Golgi, endolysosome and endoplasmic reticulum exit site. The Golgi localization of Dopey1 and Mon2 requires their binding to phosphatidylinositol-4-phosphate and phosphatidic acid, respectively, two lipids known for the biogenesis of membrane carriers and the specification of organelle identities. The N-terminus of Dopey1 further interacts with kinesin-1, a plus-end or centrifugal-direction microtubule motor. Dopey1-Mon2 complex functions as a dual-lipid-regulated cargo-adaptor to recruit kinesin-1 to secretory and endocytic organelles or membrane carriers for centrifugally biased bidirectional transport. Dopey1-Mon2 complex therefore provides an important missing link to coordinate the budding of a membrane carrier and subsequent bidirectional transport along the microtubule. Proteins are transported among eukaryotic organelles along the cytoskeleton in membrane carriers. Here authors find that the Dopey1-Mon2 complex functions as a dual-lipid-regulated cargo-adaptor to recruit kinesin-1 to secretory and endocytic organelles or membrane carriers.
Collapse
|
10
|
Tie HC, Ludwig A, Sandin S, Lu L. The spatial separation of processing and transport functions to the interior and periphery of the Golgi stack. eLife 2018; 7:41301. [PMID: 30499774 PMCID: PMC6294550 DOI: 10.7554/elife.41301] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
It is unclear how the two principal functions of the Golgi complex, processing and transport, are spatially organized. Studying such spatial organization by optical imaging is challenging, partially due to the dense packing of stochastically oriented Golgi stacks. Using super-resolution microscopy and markers such as Giantin, we developed a method to identify en face and side views of individual nocodazole-induced Golgi mini-stacks. Our imaging uncovered that Golgi enzymes preferentially localize to the cisternal interior, appearing as a central disk or inner-ring, whereas components of the trafficking machinery reside at the periphery of the stack, including the cisternal rim. Interestingly, conventional secretory cargos appeared at the cisternal interior during their intra-Golgi trafficking and transiently localized to the cisternal rim before exiting the Golgi. In contrast, bulky cargos were found only at the rim. Our study therefore directly demonstrates the spatial separation of processing and transport functions within the Golgi complex.
Collapse
Affiliation(s)
- Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Amino acids stimulate the endosome-to-Golgi trafficking through Ragulator and small GTPase Arl5. Nat Commun 2018; 9:4987. [PMID: 30478271 PMCID: PMC6255761 DOI: 10.1038/s41467-018-07444-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/31/2018] [Indexed: 11/22/2022] Open
Abstract
The endosome-to-Golgi or endocytic retrograde trafficking pathway is an important post-Golgi recycling route. Here we show that amino acids (AAs) can stimulate the retrograde trafficking and regulate the cell surface localization of certain Golgi membrane proteins. By testing components of the AA-stimulated mTORC1 signaling pathway, we demonstrate that SLC38A9, v-ATPase and Ragulator, but not Rag GTPases and mTORC1, are essential for the AA-stimulated trafficking. Arl5, an ARF-like family small GTPase, interacts with Ragulator in an AA-regulated manner and both Arl5 and its effector, the Golgi-associated retrograde protein complex (GARP), are required for the AA-stimulated trafficking. We have therefore identified a mechanistic connection between the nutrient signaling and the retrograde trafficking pathway, whereby SLC38A9 and v-ATPase sense AA-sufficiency and Ragulator might function as a guanine nucleotide exchange factor to activate Arl5, which, together with GARP, a tethering factor, probably facilitates the endosome-to-Golgi trafficking. Amino acid levels are known to regulate anabolic and catabolic pathways. Here, the authors report that amino acids also affect membrane trafficking by stimulating endosome-to-Golgi retrograde trafficking and regulating cell surface localization of certain Golgi proteins through Ragulator and Arl5.
Collapse
|
12
|
Gilbert CE, Sztul E, Machamer CE. Commonly used trafficking blocks disrupt ARF1 activation and the localization and function of specific Golgi proteins. Mol Biol Cell 2018; 29:937-947. [PMID: 29467256 PMCID: PMC5896932 DOI: 10.1091/mbc.e17-11-0622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cold temperature blocks used to synchronize protein trafficking inhibit GBF1 function, leading to a decrease in ARF1-GTP levels and mislocalization of the ARF1 effector golgin-160. Several other, but not all, Golgi proteins including ARL1 also mislocalize. ARF1 activity and golgin-160 localization require more than 30 min to recover from these blocks. ADP-ribosylation factor (ARF) proteins are key regulators of the secretory pathway. ARF1, through interacting with its effectors, regulates protein trafficking by facilitating numerous events at the Golgi. One unique ARF1 effector is golgin-160, which promotes the trafficking of only a specific subset of cargo proteins through the Golgi. While studying this role of golgin-160, we discovered that commonly used cold temperature blocks utilized to synchronize cargo trafficking (20 and 16°C) caused golgin-160 dispersal from Golgi membranes. Here, we show that the loss of golgin-160 localization correlates with a decrease in the levels of activated ARF1, and that golgin-160 dispersal can be prevented by expression of a GTP-locked ARF1 mutant. Overexpression of the ARF1 activator Golgi brefeldin A–resistant guanine nucleotide exchange factor 1 (GBF1) did not prevent golgin-160 dispersal, suggesting that GBF1 may be nonfunctional at lower temperatures. We further discovered that several other Golgi resident proteins had altered localization at lower temperatures, including proteins recruited by ARF-like GTPase 1 (ARL1), a small GTPase that also became dispersed in the cold. Although cold temperature blocks are useful for synchronizing cargo trafficking through the Golgi, our data indicate that caution must be taken when interpreting results from these assays.
Collapse
Affiliation(s)
- Catherine E Gilbert
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35924
| | - Carolyn E Machamer
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
13
|
Makaraci P, Kim K. trans-Golgi network-bound cargo traffic. Eur J Cell Biol 2018; 97:137-149. [PMID: 29398202 DOI: 10.1016/j.ejcb.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Cargo following the retrograde trafficking are sorted at endosomes to be targeted the trans-Golgi network (TGN), a central receiving organelle. Though molecular requirements and their interaction networks have been somewhat established, the complete understanding of the intricate nature of their action mechanisms in every step of the retrograde traffic pathway remains unachieved. This review focuses on elucidating known functions of key regulators, including scission factors at the endosome and tethering/fusion mediators at the receiving dock, TGN, as well as a diverse range of cargo.
Collapse
Affiliation(s)
- Pelin Makaraci
- Department of Biology, Missouri State University, 901 S National Ave., Springfield, MO 65807, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National Ave., Springfield, MO 65807, USA.
| |
Collapse
|
14
|
Extracellular vesicle budding is inhibited by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry. Proc Natl Acad Sci U S A 2018; 115:E1127-E1136. [PMID: 29367422 PMCID: PMC5819400 DOI: 10.1073/pnas.1714085115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells release extracellular vesicles (EVs) that mediate intercellular communication and repair damaged membranes. Despite the pleiotropic functions of EVs in vitro, their in vivo function is debated, largely because it is unclear how to induce or inhibit their formation. In particular, the mechanisms of EV release by plasma membrane budding or ectocytosis are poorly understood. We previously showed that TAT-5 phospholipid flippase activity maintains the asymmetric localization of the lipid phosphatidylethanolamine (PE) in the plasma membrane and inhibits EV budding by ectocytosis in Caenorhabditis elegans However, no proteins that inhibit ectocytosis upstream of TAT-5 were known. Here, we identify TAT-5 regulators associated with retrograde endosomal recycling: PI3Kinase VPS-34, Beclin1 homolog BEC-1, DnaJ protein RME-8, and the uncharacterized Dopey homolog PAD-1. PI3Kinase, RME-8, and semiredundant sorting nexins are required for the plasma membrane localization of TAT-5, which is important to maintain PE asymmetry and inhibit EV release. PAD-1 does not directly regulate TAT-5 localization, but is required for the lipid flipping activity of TAT-5. PAD-1 also has roles in endosomal trafficking with the GEF-like protein MON-2, which regulates PE asymmetry and EV release redundantly with sorting nexins independent of the core retromer. Thus, in addition to uncovering redundant intracellular trafficking pathways, our study identifies additional proteins that regulate EV release. This work pinpoints TAT-5 and PE as key regulators of plasma membrane budding, further supporting the model that PE externalization drives ectocytosis.
Collapse
|
15
|
Abstract
ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like proteins (Arls) are highly conserved small GTPases that function as main regulators of vesicular trafficking and cytoskeletal reorganization. Arl1, the first identified member of the large Arl family, is an important regulator of Golgi complex structure and function in organisms ranging from yeast to mammals. Together with its effectors, Arl1 has been shown to be involved in several cellular processes, including endosomal trans-Golgi network and secretory trafficking, lipid droplet and salivary granule formation, innate immunity and neuronal development, stress tolerance, as well as the response of the unfolded protein. In this Commentary, we provide a comprehensive summary of the Arl1-dependent cellular functions and a detailed characterization of several Arl1 effectors. We propose that involvement of Arl1 in these diverse cellular functions reflects the fact that Arl1 is activated at several late-Golgi sites, corresponding to specific molecular complexes that respond to and integrate multiple signals. We also provide insight into how the GTP-GDP cycle of Arl1 is regulated, and highlight a newly discovered mechanism that controls the sophisticated regulation of Arl1 activity at the Golgi complex.
Collapse
Affiliation(s)
- Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Linkou, Tao-Yuan 33302, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 33305, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan .,Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
16
|
Saeed M. Novel linkage disequilibrium clustering algorithm identifies new lupus genes on meta-analysis of GWAS datasets. Immunogenetics 2017; 69:295-302. [PMID: 28246883 PMCID: PMC5400794 DOI: 10.1007/s00251-017-0976-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex disorder. Genetic association studies of complex disorders suffer from the following three major issues: phenotypic heterogeneity, false positive (type I error), and false negative (type II error) results. Hence, genes with low to moderate effects are missed in standard analyses, especially after statistical corrections. OASIS is a novel linkage disequilibrium clustering algorithm that can potentially address false positives and negatives in genome-wide association studies (GWAS) of complex disorders such as SLE. OASIS was applied to two SLE dbGAP GWAS datasets (6077 subjects; ∼0.75 million single-nucleotide polymorphisms). OASIS identified three known SLE genes viz. IFIH1, TNIP1, and CD44, not previously reported using these GWAS datasets. In addition, 22 novel loci for SLE were identified and the 5 SLE genes previously reported using these datasets were verified. OASIS methodology was validated using single-variant replication and gene-based analysis with GATES. This led to the verification of 60% of OASIS loci. New SLE genes that OASIS identified and were further verified include TNFAIP6, DNAJB3, TTF1, GRIN2B, MON2, LATS2, SNX6, RBFOX1, NCOA3, and CHAF1B. This study presents the OASIS algorithm, software, and the meta-analyses of two publicly available SLE GWAS datasets along with the novel SLE genes. Hence, OASIS is a novel linkage disequilibrium clustering method that can be universally applied to existing GWAS datasets for the identification of new genes.
Collapse
Affiliation(s)
- Mohammad Saeed
- Department of Genomics, Arkana Laboratories, 10810 Executive Center Drive, Suite 100, Little Rock, AR, 72211, USA.
| |
Collapse
|
17
|
Wang Y, Zhang H, Shi M, Liou YC, Lu L, Yu F. Sec71 functions as a GEF for the small GTPase Arf1 to govern dendrite pruning of Drosophila sensory neurons. Development 2017; 144:1851-1862. [DOI: 10.1242/dev.146175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/29/2017] [Indexed: 01/20/2023]
Abstract
Pruning, whereby neurons eliminate their exuberant neurites, is central for the maturation of the nervous system. In Drosophila, sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning. Here, we show that the small GTPase Arf1, an important regulator of secretory pathway, is specifically required for dendrite pruning of ddaC/D/E sensory neurons but dispensable for apoptosis of ddaF neurons. Analyses of the GTP and GDP-locked forms of Arf1 indicate that the cycling of Arf1 between GDP-bound and GTP-bound forms is essential for dendrite pruning. We further identified Sec71 as a guanine nucleotide exchange factor for Arf1 that preferentially interacts with its GDP-bound form. Like Arf1, Sec71 is also important for dendrite pruning, but not apoptosis, of sensory neurons. Arf1 and Sec71 are interdependent for their localizations on Golgi. Finally, we show that Sec71/Arf1-mediated trafficking process is a prerequisite for Rab5-dependent endocytosis to facilitate endocytosis and degradation of the cell adhesion molecule Neuroglian (Nrg).
Collapse
Affiliation(s)
- Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
| | - Heng Zhang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
| | - Meng Shi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Yih-Cherng Liou
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857
| |
Collapse
|
18
|
Madugula V, Lu L. A ternary complex comprising transportin1, Rab8 and the ciliary targeting signal directs proteins to ciliary membranes. J Cell Sci 2016; 129:3922-3934. [PMID: 27633000 PMCID: PMC5087665 DOI: 10.1242/jcs.194019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
The sensory functions of cilia are dependent on the enrichment of cilium-resident proteins. Although it is known that ciliary targeting signals (CTSs) specifically target ciliary proteins to cilia, it is still unclear how CTSs facilitate the entry and retention of cilium-resident proteins at the molecular level. We found that non-ciliary membrane reporters can passively diffuse into cilia through the lateral transport pathway, and the translocation of membrane reporters through the ciliary diffusion barrier is facilitated by importin binding motifs and domains. Screening known CTSs of ciliary membrane residents uncovered that fibrocystin, photoreceptor retinol dehydrogenase, rhodopsin and retinitis pigmentosa 2 interact with transportin1 (TNPO1) through previously identified CTSs. We further discovered that a new ternary complex, comprising TNPO1, Rab8 and a CTS, can assemble or disassemble under the guanine nucleotide exchange activity of Rab8. Our study suggests a new mechanism in which the TNPO1-Rab8-CTS complex mediates selective entry into and retention of cargos within cilia.
Collapse
Affiliation(s)
- Viswanadh Madugula
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
19
|
Tie HC, Mahajan D, Chen B, Cheng L, VanDongen AMJ, Lu L. A novel imaging method for quantitative Golgi localization reveals differential intra-Golgi trafficking of secretory cargoes. Mol Biol Cell 2016; 27:848-61. [PMID: 26764092 PMCID: PMC4803310 DOI: 10.1091/mbc.e15-09-0664] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/07/2016] [Indexed: 12/02/2022] Open
Abstract
A novel imaging-based method is introduced to quantitatively localize Golgi proteins at nanometer resolution. The method reveals different intra-Golgi trafficking of secretory cargoes. Cellular functions of the Golgi are determined by the unique distribution of its resident proteins. Currently, electron microscopy is required for the localization of a Golgi protein at the sub-Golgi level. We developed a quantitative sub-Golgi localization method based on centers of fluorescence masses of nocodazole-induced Golgi ministacks under conventional optical microscopy. Our method is rapid, convenient, and quantitative, and it yields a practical localization resolution of ∼30 nm. The method was validated by the previous electron microscopy data. We quantitatively studied the intra-Golgi trafficking of synchronized secretory membrane cargoes and directly demonstrated the cisternal progression of cargoes from the cis- to the trans-Golgi. Our data suggest that the constitutive efflux of secretory cargoes could be restricted at the Golgi stack, and the entry of the trans-Golgi network in secretory pathway could be signal dependent.
Collapse
Affiliation(s)
- Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Li Cheng
- Bioinformatics Institute, Singapore 138671 School of Computing, National University of Singapore, Singapore 117417
| | - Antonius M J VanDongen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 169857
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
20
|
Gladue DP, O'Donnell V, Fernandez-Sainz IJ, Fletcher P, Baker-Branstetter R, Holinka LG, Sanford B, Carlson J, Lu Z, Borca MV. Interaction of structural core protein of classical swine fever virus with endoplasmic reticulum-associated degradation pathway protein OS9. Virology 2014; 460-461:173-9. [PMID: 25010283 DOI: 10.1016/j.virol.2014.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/09/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Classical swine fever virus (CSFV) Core protein is involved in virus RNA protection, transcription regulation and virus virulence. To discover additional Core protein functions a yeast two-hybrid system was used to identify host proteins that interact with Core. Among the identified host proteins, the osteosarcoma amplified 9 protein (OS9) was further studied. Using alanine scanning mutagenesis, the OS9 binding site in the CSFV Core protein was identified, between Core residues (90)IAIM(93), near a putative cleavage site. Truncated versions of Core were used to show that OS9 binds a polypeptide representing the 12 C-terminal Core residues. Cells transfected with a double-fluorescent labeled Core construct demonstrated that co-localization of OS9 and Core occurred only on unprocessed forms of Core protein. A recombinant CSFV containing Core protein where residues (90)IAIM(93) were substituted by alanines showed no altered virulence in swine, but a significant decreased ability to replicate in cell cultures.
Collapse
Affiliation(s)
- D P Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - V O'Donnell
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | | | - P Fletcher
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - R Baker-Branstetter
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; Plum Island Animal Disease Center, DHS, Greenport, NY 11944, USA.
| | - L G Holinka
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - B Sanford
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - J Carlson
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - Z Lu
- Plum Island Animal Disease Center, DHS, Greenport, NY 11944, USA.
| | - M V Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| |
Collapse
|
21
|
D'Souza RS, Semus R, Billings EA, Meyer CB, Conger K, Casanova JE. Rab4 orchestrates a small GTPase cascade for recruitment of adaptor proteins to early endosomes. Curr Biol 2014; 24:1187-98. [PMID: 24835460 PMCID: PMC4059052 DOI: 10.1016/j.cub.2014.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Early, sorting endosomes are a major crossroad of membrane traffic, at the intersection of the endocytic and exocytic pathways. The sorting of endosomal cargo for delivery to different subcellular destinations is mediated by a number of distinct coat protein complexes, including adaptor protein 1 (AP-1), AP-3, and Golgi-localized, gamma adaptin ear-containing, Arf-binding (GGAs) protein. Ultrastructural studies suggest that these coats assemble onto tubular subdomains of the endosomal membrane, but the mechanisms of coat recruitment and assembly at this site remain poorly understood. RESULTS Here we report that the endosomal Rab protein Rab4 orchestrates a GTPase cascade that results in the sequential recruitment of the ADP-ribosylation factor (Arf)-like protein Arl1; the Arf-specific guanine nucleotide exchange factors BIG1 and BIG2; and the class I Arfs, Arf1 and Arf3. Knockdown of Arf1, or inhibition of BIG1 and BIG2 activity with brefeldin A results in the loss of AP-1, AP-3, and GGA-3, but not Arl1, from endosomal membranes and the formation of elongated tubules. In contrast, depletion of Arl1 randomizes the distribution of Rab4 on endosomal membranes, inhibits the formation of tubular subdomains, and blocks recruitment of BIG1 and BIG2, Arfs, and adaptor protein complexes to the endosome. CONCLUSIONS Together these findings indicate that Arl1 links Rab4-dependent formation of endosomal sorting domains with downstream assembly of adaptor protein complexes that constitute the endosomal sorting machinery.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Rachel Semus
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Emily A Billings
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Corey B Meyer
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Kathryn Conger
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA.
| |
Collapse
|