1
|
Xia S, Song W. Controls on microbially-induced carbonate precipitation in geologic porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177647. [PMID: 39566618 DOI: 10.1016/j.scitotenv.2024.177647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Microbially-induced carbonate precipitation (MICP) provides a natural biomineralization approach to secure the geologic storage of gases (e.g., carbon dioxide, hydrogen and methane). Cracks in embrittled wellbore cement, for example, provide a pathway for atmospheric gas leakage, while permeability heterogeneities in the storage reservoir leads to fingering effects that diminish the storage capacity. The design of MICP processes, however, remains a challenge due to limited understanding of the coupled nonlinear reaction kinetics and multiphase transport involved. Specifically, previous attempts at MICP through porous media have been encumbered by carbonate precipitation localized to the first ∼ cm of the bulk injection surface. In this study, we investigate the reactive transport controls on MICP necessary to enable deep MICP penetration into the formation. We use a micromodel with pore geometry and geochemistry representative of real geologic media to image direct pore- and pore-ensemble-level mineral, fluid, and microbial distributions. An approach to adsorb microbes uniformly across the micromodel, rather than local accumulation near the inlet, is developed that enables deep MICP penetration into the porous medium. A sensitivity analysis was performed to investigate the impact of injection conditions (e.g., rates, concentrations) required to maximize CaCO3 precipitation away from the injection site. With multiple cycles of MICP, a ∼ 78 % reduction in permeability was achieved with ∼8 % carbonate pore volume occupation. Overall, this study establishes the possibility of MICP as an effective and controllable method to enhance the security of gas storage in geologic media.
Collapse
Affiliation(s)
- Shunxiang Xia
- Center for Subsurface Energy and the Environment, University of Texas at Austin, 200 East Dean Keeton Street, Austin, TX 78712, United States of America
| | - Wen Song
- Center for Subsurface Energy and the Environment, University of Texas at Austin, 200 East Dean Keeton Street, Austin, TX 78712, United States of America.
| |
Collapse
|
2
|
Stabili L, Quarta E, Giotta L. The seaweed Chaetomorpha linum cultivated in an integrated multitrophic aquaculture system: A new tool for microplastic bioremediation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176262. [PMID: 39278482 DOI: 10.1016/j.scitotenv.2024.176262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/07/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Microplastics (MPs) are emerging pollutants with detrimental impacts on ecosystems and human health. Due to their adverse effects, new strategies to mitigate MP pollution in the marine environment need to be developed urgently. In this context, the capability of the seaweed Chaetomorpha linum (Chlorophyta, Cladophorales) to trap MPs, as well as the effectiveness of a simple washing procedure to clean up the harvested seaweed biomass, were investigated. This algal species was grown in an integrated multitrophic aquaculture system (IMTA), where bioremediator organisms such as macroalgae, polychaetes, sponges and mussels were farmed in the vicinity of the fish cages. MPs trapped in C. linum were classified based on shape and size, and representative samples of each shape were analysed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to evaluate their chemical composition. Fibre MPs were the most abundant (97.3 %), while the size ranged from 0.025 to 2.00 mm, with most samples being in the size range 0.80-1.00 mm. MPs were composed mainly of polypropylene, polystyrene, and polyethylene. They were efficiently removed from the cultured seaweeds by a simple density separation procedure, consisting of three extractions with hypersaline solutions of sodium chloride. These results suggest that C. linum cultivated in an IMTA system can be proposed as a bioremediator to capture MPs from the surrounding environment. At the same time, harvested and cleaned green seaweeds may be considered a co-product of the bioremediation process and can find application in several biotechnological fields, including the use as a food source for human consumption.
Collapse
Affiliation(s)
- Loredana Stabili
- Institute of Water Research (IRSA) C.N.R, 74123 Taranto, Italy; Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy; National Biodiversity Future Center (NBFC), 90133 Palermo, Italy.
| | - Elisa Quarta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
3
|
Williams JM, Zhang N, Moment AJ. Assessment of Ammoniacal Leaching Agents for Metal Cation Extraction from Construction Wastes in Mineral Carbonation. ACS OMEGA 2024; 9:29776-29788. [PMID: 39005759 PMCID: PMC11238205 DOI: 10.1021/acsomega.4c03393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
The use of carbon mineralization to produce carbonates from alkaline industrial wastes is gaining traction as a method to decarbonize the built environment. One of the environmental concerns during this process is the use of acids, which are required to extract Ca2+ or Mg2+ from the alkaline waste to produce carbonates. Conventionally, acids such as hydrochloric, nitric, or sulfuric are used which allow for the highest material recovery but are corrosive and difficult to regenerate as they are utilized in a linear fashion and generate additional process waste. An alternative is to use regenerable protonatable salts of ammonia, such as ammonium chloride (AC) or ammonium sulfate, the former of which is used globally during the Solvay process as a reversible proton shuttle. In this study, we show that regenerable ammonium salts, such as AC (NH4Cl) and ammonium bisulfate (NH4HSO4), can be effectively used for material recovery and the production of calcium carbonate during the leaching of waste cement paste as an alternative to conventional acids such as HCl. Leaching kinetics, postreaction residue, and carbonate characterization were performed to assess the productivity of this system and potential uses of these materials downstream. The stabilization of vaterite was observed in the case of AC leaching, suggesting its importance in the kinetic stability of vaterite and suppression of calcite nucleation. Overall, this study motivates the use of alternative leaching agents, such as salts of ammonia, to facilitate material recovery and carbon capture from alkaline industrial wastes.
Collapse
Affiliation(s)
- Jonah M Williams
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
- Lenfest Center for Sustainable Energy, Columbia University, New York, New York 10027, United States
| | - Ning Zhang
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
- Lenfest Center for Sustainable Energy, Columbia University, New York, New York 10027, United States
| | - Aaron J Moment
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Nguyen TTM, Hazoor S, Vuong T, Kydd L, Shortt I, Foss FW, La Plante E. Synthesis of Metastable Calcium Carbonate Using Long-Chain Bisphosphonate Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30567-30579. [PMID: 38830119 DOI: 10.1021/acsami.4c04218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Cementation in construction materials primarily relies on the aqueous precipitation of minerals such as carbonates and silicates. The kinetics of nucleation and growth play a critical role in the development of strength and durability, yet our understanding of the kinetic controls governing phase formation and porosity reduction in cements remains limited. In this study, we synthesized bisphosphonate molecules with varying alkyl chain lengths and functional groups to investigate their impact on calcium carbonate precipitation. Through conductivity measurements, infrared spectroscopy, and thermogravimetric analysis, we uncovered the selective formation of polymorphs and the specific incorporation of these molecules within the carbonate matrix. Further, in situ atomic force microscopy revealed that these molecules influenced the morphology of the precipitates, indicating a possible effect on the ionic organization through sorption mechanisms. Interestingly, amorphous calcium carbonate (ACC), when formed in the presence of bisphosphonates, showed metastability for at least seven months without inhibiting further calcium carbonate precipitation. Our research sheds light on the diverse mechanisms by which organic additives can modify mineral nucleation and growth, offering valuable insights for the control and enhancement of carbonate-based cementation processes.
Collapse
Affiliation(s)
- Trinh Thao My Nguyen
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
| | - Shan Hazoor
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Thanh Vuong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - LeMaur Kydd
- Department of Mathematics, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ian Shortt
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Frank W Foss
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Erika La Plante
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
Shen Y, Zhou B, Puig-Bargués J, Xiao Y, Liu W, Si B, Li Y. A comprehensive and molecular level evaluation of treated wastewater reusing via drip systems: Interactions of dissolved ions and hydraulic shear stresses on calcium carbonate scaling. CHEMOSPHERE 2024; 357:142071. [PMID: 38641290 DOI: 10.1016/j.chemosphere.2024.142071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
To overcome the global water shortage, the treated wastewater is increasingly utilized in agricultural irrigation, and thus reducing freshwater consumption and increasing the water sustainability. Drip irrigation technology is the most appropriate irrigation method to utilize these water sources. However, its operating performance is negatively affected by calcium carbonate (CaCO3) scaling, which is one of the most dominant precipitations and also closely related to dissolved ions and the hydraulic characteristics inside irrigation systems. Thus, the effects of eight common dissolved ions (K+, Mg2+, Mn2+, Zn2+, Fe3+, NO3-, SO42-, and PO43-) in these water sources and four hydraulic shear stresses (0, 0.2, 0.4, and 0.6 Pa) on CaCO3 scaling formation were assessed in this study. Results showed that CaCO3 scaling was primarily formed of calcite and aragonite. Fe3+ would significantly accelerate the CaCO3 scaling accumulation, as it reduced the unit cell volume and chemical bonds of calcite, enhancing calcite adhesion and stability. On the other hand, Mg2+, Mn2+, NO3-, SO42-, and PO43- significantly inhibited CaCO3 scaling. Among them, Mg2+, Mn2+, and PO43- followed the typical water chemical precipitation rule, while NO3- increased water molecule diffusion rate and thus decreased the possibility that Ca2+ and CO32- to precipitate. SO42- grabbed the binding point belonging to CO32- and was adsorbed on the calcite crystal, which inhibited crystal growth. However, those treatments under K+ and Zn2+ did not reach a significant level due to their solubleness. During the precipitation of CaCO3, there were significant (p < 0.01) interactions between dissolved ions and hydraulic shear stresses. When hydraulic shear stresses varied, the effects of Fe3+ and SO42- on the CaCO3 scaling were relatively weakened, while that of Mg2+ was relatively strengthened. In return, dissolved ions affected the effect of hydraulic shear stresses on CaCO3 scaling. Overall, the results obtained could provide theoretical reference for high-efficiency utilization of treated wastewater for agricultural irrigation through the management of CaCO3 scaling.
Collapse
Affiliation(s)
- Yan Shen
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing, 100083, China.
| | - Jaume Puig-Bargués
- Department of Chemical and Agricultural Engineering and Technology, University of Girona, Girona, 17003, Spain
| | - Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing, 100083, China
| | - Wenchao Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Buchun Si
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing, 100083, China
| |
Collapse
|
6
|
Haystead J, Gilmour K, Sherry A, Dade-Robertson M, Zhang M. Effect of (in)organic additives on microbially induced calcium carbonate precipitation. J Appl Microbiol 2024; 135:lxad309. [PMID: 38111211 DOI: 10.1093/jambio/lxad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
AIM This study aimed to understand the morphological effects of (in)organic additives on microbially induced calcium carbonate precipitation (MICP). METHODS AND RESULTS MICP was monitored in real time in the presence of (in)organic additives: bovine serum albumin (BSA), biofilm surface layer protein A (BslA), magnesium chloride (MgCl2), and poly-l-lysine. This monitoring was carried out using confocal microscopy to observe the formation of CaCO3 from the point of nucleation, in comparison to conditions without additives. Complementary methodologies, namely scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction, were employed to assess the visual morphology, elemental composition, and crystalline structures of CaCO3, respectively, following the crystals' formation. The results demonstrated that in the presence of additives, more CaCO3 crystals were produced at 100 min compared to the reaction without additives. The inclusion of BslA resulted in larger crystals than reactions containing other additives, including MgCl2. BSA induced a significant number of crystals from the early stages of the reaction (20 min) but did not have a substantial impact on crystal size compared to conditions without additives. All additives led to a higher content of calcite compared to vaterite after a 24-h reaction, with the exception of MgCl2, which produced a substantial quantity of magnesium calcite. CONCLUSIONS The work demonstrates the effect of several (in)organic additives on MICP and sets the stage for further research to understand additive effects on MICP to achieve controlled CaCO3 precipitation.
Collapse
Affiliation(s)
- Jamie Haystead
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Katie Gilmour
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Angela Sherry
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Martyn Dade-Robertson
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, The Quadrangle, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- Hub for Biotechnology in the Built Environment, Department of Architecture and Built Environment, Northumbria University, NE1 8ST, United Kingdom
| | - Meng Zhang
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
7
|
Bastos FR, Soares da Costa D, Reis RL, Alves NM, Pashkuleva I, Costa RR. Layer-by-layer coated calcium carbonate nanoparticles for targeting breast cancer cells. BIOMATERIALS ADVANCES 2023; 153:213563. [PMID: 37487456 DOI: 10.1016/j.bioadv.2023.213563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Breast cancer is resistant to conventional treatments due to the specific tumour microenvironment, the associated acidic pH and the overexpression of receptors that enhance cells tumorigenicity. Herein, we optimized the synthesis of acidic resorbable calcium carbonate (CaCO3) nanoparticles and the encapsulation of a low molecular weight model molecule (Rhodamine). The addition of ethylene glycol during the synthetic process resulted in a particle size decrease: we obtained homogeneous CaCO3 particles with an average size of 564 nm. Their negative charge enabled the assembly of layer-by-layer (LbL) coatings with surface-exposed hyaluronic acid (HA), a ligand of tumour-associated receptor CD44. The coating decreased Rhodamine release by two-fold compared to uncoated nanoparticles. We demonstrated the effect of nanoparticles on two breast cancer cell lines with different aggressiveness - SK-BR-3 and the more aggressive MDA-MB-231 - and compared them with the normal breast cell line MCF10A. CaCO3 nanoparticles (coated and uncoated) significantly decreased the metabolic activity of the breast cancer cells. The interactions between LbL-coated nanoparticles and cells depended on HA expression on the cell surface: more particles were observed on the surface of MDA-MB-231 cells, which had the thickest endogenous HA coating. We concluded that CaCO3 nanoparticles are potential candidates to carry low molecular weight chemotherapeutics and deliver them to aggressive breast cancer sites with an HA-abundant pericellular matrix.
Collapse
Affiliation(s)
- Filipa R Bastos
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui R Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
8
|
Vimalanathan K, Zhang Z, Zou J, Raston CL. Vortex fluidic high shear induced crystallisation of fullerene C 70 into nanotubules. Chem Commun (Camb) 2023. [PMID: 37469308 DOI: 10.1039/d3cc02464d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Hollow C70 nanotubules are formed under high shear within the thin film of a vortex fluidic device (VFD) without the need for using auxiliary reagents, high temperatures and pressures, and/or requiring downstream processing. This novel bottom-up crystallisation process involves intense micro mixing of two liquids (toluene solution of C70 and anti-solvent, isopropyl alcohol) within a thin film in the VFD to precisely control the hierarchical assembly of C70 molecules into hollow nanotubules. The mechanism of self-assembly was consistent with them being a mould of the high shear double helical topological flow from Faraday waves coupled with Coriolis forces generated within the thin film.
Collapse
Affiliation(s)
- Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.
| | - Zhi Zhang
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
- Materials Engineering, The University of Queensland, St Lucia, QLD, Australia
| | - Jin Zou
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
- Materials Engineering, The University of Queensland, St Lucia, QLD, Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.
| |
Collapse
|
9
|
Choi KW, Ahn Y, Kang CU, Chon CM, Prabhu SM, Kim DH, Ha YH, Jeon BH. Morphology and stability of mineralized carbon influenced by magnesium ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48157-48167. [PMID: 36750517 DOI: 10.1007/s11356-023-25647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Ex situ mineralization of CO2 is a promising technology that employs Ca- and Mg-rich industrial wastes but it simultaneously produces end products. Although Mg is a major mineralization source, it can adversely impact carbonate precipitation and crystal stability during co-precipitation in combination with Ca2+. In this study, the effects of Mg2+ ions on the mineralization process and its products were investigated using precipitates formed at different aqueous concentrations of Mg2+. The final phases of the precipitates were quantitatively evaluated at the end of each process. The alterations undergone by the calcite crystals, which constituted the dominant carbonate phase in each experiment, were analyzed using a sophisticated crystallographic approach. Aragonite was detected at high Mg2+ concentrations (Mg2+/Ca2+ ratio of 2.00), although brucite was the sole phase of the Mg crystal. The increase in Mg2+ ion concentration induced the formation of an amorphous solid. The results revealed that a drastic transformation of the calcite lattice occurred when the ratio of Mg2+/Ca2+ exceeded 1.00, agreeing with the shifts observed in the calcite structure upon comparing the precipitates formed at the Mg2+/Ca2+ ratios of 1.00 and 2.00, wherein microstrain and crystallite sizes changed from 0.040 and 55.33 nm to 0.1533 and 12.35 nm, respectively. At a Mg2+/Ca2+ ratio of 2.00, 6.51% of the Ca2+ ions in the calcite structure were substituted by Mg2+, increasing the surface energy of the crystal and the solubility of the carbonate. Therefore, Mg2+ is a potential hindrance that can impede the precipitation of carbonates and increase instability at certain concentrations.
Collapse
Affiliation(s)
- Kung-Won Choi
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yongtae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chan-Ung Kang
- Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
| | - Chul-Min Chon
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
| | - Subbaiah Muthu Prabhu
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemistry, VIT-AP University, Vijayawada, 522237, Andhra Pradesh, India
| | - Do-Hyeon Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoon-Hee Ha
- Graduate School of Energy and Environment, Korea University, Seoul, 02841, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
Sahadat Hossain M, Akter Jahan S, Ahmed S. Crystallographic characterization of bio-waste material originated CaCO3, green-synthesized CaO and Ca(OH)2. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
11
|
Experimental and Computational Approaches for the Structural Study of Novel Ca-Rich Zeolites from Incense Stick Ash and Their Application for Wastewater Treatment. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/6066906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At present, chemical Si/Al sources are mainly used as precursor materials for the manufacturing of zeolites. Such precursor materials are quite expensive for commercial synthesis. Here, we have reported the synthesis of Ca-based zeolite from incense stick ash waste by the alkali-treatment method for the first time. Incense stick ash (ISA) was used as a precursor material for the synthesis of low Si zeolites by the alkali-treatment method. The as-synthesized zeolites were characterized by various instruments like particle size analyzer (PSA), Fourier transform infrared (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), electron diffraction spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray fluorescence (XRF). FTIR and XRD helped in the identification of the microstructure and crystalline nature of the zeolites and also confirmed the synthesis of Ca-based zeolite with two thetas at 25.7°. The microscopic analysis by FESEM and TEM exhibited that the size of synthesized Ca-rich zeolites varies from 200 to 700 nm and they are aggregated and cuboidal in shape. Additionally, structural, electronic, and density of states’ characteristics of gismondine (Ca2Al4Si4O16·9H2O) structures were evaluated by computational simulations (first principle, density functional theorem). The structural optimization of structures was carried out in the first stage under the lowest condition of total energy and forces acting on atoms for the lattice constant, as well as the available experimental and theoretical findings. The present research approach predicted the transformation of ISA waste into a value-added mineral, i.e., zeolite, which was further used for the removal of both heavy metals and alkali metals from fly ash-based wastewater using inductively coupled plasma-optical emission spectroscopy (ICP-OES).
Collapse
|
12
|
Wojas NA, Dobryden I, Wallqvist V, Swerin A, Järn M, Schoelkopf J, Gane PAC, Claesson PM. Nanoscale Wear and Mechanical Properties of Calcite: Effects of Stearic Acid Modification and Water Vapor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9826-9837. [PMID: 34355909 PMCID: PMC8397405 DOI: 10.1021/acs.langmuir.1c01390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Understanding the wear of mineral fillers is crucial for controlling industrial processes, and in the present work, we examine the wear resistance and nanomechanical properties of bare calcite and stearic acid-modified calcite surfaces under dry and humid conditions at the nanoscale. Measurements under different loads allow us to probe the situation in the absence and presence of abrasive wear. The sliding motion is in general characterized by irregular stick-slip events that at higher loads lead to abrasion of the brittle calcite surface. Bare calcite is hydrophilic, and under humid conditions, a thin water layer is present on the surface. This water layer does not affect the friction force. However, it slightly decreases the wear depth and strongly influences the distribution of wear particles. In contrast, stearic acid-modified surfaces are hydrophobic. Nevertheless, humidity affects the wear characteristics by decreasing the binding strength of stearic acid at higher humidity. A complete monolayer coverage of calcite by stearic acid results in a significant reduction in wear but only a moderate reduction in friction forces at low humidity and no reduction at 75% relative humidity (RH). Thus, our data suggest that the wear reduction does not result from a lowering of the friction force but rather from an increased ductility of the surface region as offered by the stearic acid layer. An incomplete monolayer of stearic acid on the calcite surface provides no reduction in wear regardless of the RH investigated. Clearly, the wear properties of modified calcite surfaces depend crucially on the packing density of the surface modifier and also on the air humidity.
Collapse
Affiliation(s)
- Natalia A. Wojas
- Bioeconomy
and Health Division, Department of Materials and Surface Design, RISE Research Institutes of Sweden, Box 5607, SE-114 86 Stockholm, Sweden
- Division
of Surface Chemistry and Corrosion Science, Department of Chemistry,
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Illia Dobryden
- Division
of Surface Chemistry and Corrosion Science, Department of Chemistry,
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Division
of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE−971 87 Luleå, Sweden
| | - Viveca Wallqvist
- Bioeconomy
and Health Division, Department of Materials and Surface Design, RISE Research Institutes of Sweden, Box 5607, SE-114 86 Stockholm, Sweden
| | - Agne Swerin
- Department
of Engineering and Chemical Sciences: Chemical Engineering, Faculty
of Health, Science and Technology, Karlstad
University, SE-651 88 Karlstad, Sweden
| | - Mikael Järn
- Bioeconomy
and Health Division, Department of Materials and Surface Design, RISE Research Institutes of Sweden, Box 5607, SE-114 86 Stockholm, Sweden
| | | | - Patrick A. C. Gane
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, FI-00076 Aalto, Finland
| | - Per M. Claesson
- Bioeconomy
and Health Division, Department of Materials and Surface Design, RISE Research Institutes of Sweden, Box 5607, SE-114 86 Stockholm, Sweden
- Division
of Surface Chemistry and Corrosion Science, Department of Chemistry,
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| |
Collapse
|
13
|
Athanasiadou D, Carneiro KMM. DNA nanostructures as templates for biomineralization. Nat Rev Chem 2021; 5:93-108. [PMID: 37117611 DOI: 10.1038/s41570-020-00242-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
Nature uses extracellular matrix scaffolds to organize biominerals into hierarchical structures over various length scales. This has inspired the design of biomimetic mineralization scaffolds, with DNA nanostructures being among the most promising. DNA nanotechnology makes use of molecular recognition to controllably give 1D, 2D and 3D nanostructures. The control we have over these structures makes them attractive templates for the synthesis of mineralized tissues, such as bones and teeth. In this Review, we first summarize recent work on the crystallization processes and structural features of biominerals on the nanoscale. We then describe self-assembled DNA nanostructures and come to the intersection of these two themes: recent applications of DNA templates in nanoscale biomineralization, a crucial process to regenerate mineralized tissues.
Collapse
|
14
|
Hamann DM, Bauers SR, Miller AM, Ditto J, Moore DB, Johnson DC. Synthesis and Characterization of [(PbSe) 1+δ] 4[TiSe 2] 4 Isomers. Inorg Chem 2020; 59:10928-10937. [PMID: 32648754 DOI: 10.1021/acs.inorgchem.0c01416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work presents the preparation of a series of [(PbSe)1+δ]4[TiSe2]4 isomers via a low temperature synthesis approach that exploits precursor nanoarchitecture to direct formation of specific isomers. The targeted isomers formed even when the precursors did not have the correct amount of each element to make a unit cell from each repeating sequence of elemental layers deposited. This suggests that the exact composition of the precursors is less important than the nanoarchitecture in directing the formation of the compounds. The as-deposited diffraction data show that the isomers begin to form during the deposition, and Ti2Se, in addition to PbSe and TiSe2, are present in the specular diffraction patterns. HAADF-STEM images reveal impurity layers above and below an integer number of targeted isomer unit cells. The structural data suggest that Ti2Se forms as Se is deposited on the initial Ti layers and remains throughout isomer self-assembly. During growth, the isomers deplete the local supply of Ti and Pb, creating diffusion gradients that drive additional cations toward the growth front, which leaves surface impurity layers of TiSe2 and TiO2 after the supply of Pb is exhausted. The deposited stacking sequences direct formation of the targeted isomers, but fewer repeating units form than intended due to the lack of material per layer in the precursor and formation of impurity layers. All isomers have negative Hall and Seebeck coefficients, indicating that electrons are the majority carrier. The carrier concentration and conductivity of the isomers increase with the number of interfaces in the unit cell, resulting from charge donation between adjacent layers. The opposite variation of the carrier concentration and mobility with temperature result in minima in the resistivity between 50 and 100 K. The very weak temperature dependence of the carrier concentration likely results from changes in the amount of charge transfer between the layers with temperature.
Collapse
Affiliation(s)
- Danielle M Hamann
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Sage R Bauers
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Aaron M Miller
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Jeffrey Ditto
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Daniel B Moore
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - David C Johnson
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
15
|
Wojas NA, Swerin A, Wallqvist V, Järn M, Schoelkopf J, Gane PAC, Claesson PM. Iceland spar calcite: Humidity and time effects on surface properties and their reversibility. J Colloid Interface Sci 2019; 541:42-55. [PMID: 30682592 DOI: 10.1016/j.jcis.2019.01.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
Understanding the complex and dynamic nature of calcite surfaces under ambient conditions is important for optimizing industrial applications. It is essential to identify processes, their reversibility, and the relevant properties of CaCO3 solid-liquid and solid-gas interfaces under different environmental conditions, such as at increased relative humidity (RH). This work elucidates changes in surface properties on freshly cleaved calcite (topography, wettability and surface forces) as a function of time (≤28 h) at controlled humidity (≤3-95 %RH) and temperature (25.5 °C), evaluated with atomic force microscopy (AFM) and contact angle techniques. In the presence of humidity, the wettability decreased, liquid water capillary forces dominated over van der Waals forces, and surface domains, such as hillocks, height about 7.0 Å, and trenches, depth about -3.5 Å, appeared and grew primarily in lateral dimensions. Hillocks demonstrated lower adhesion and higher deformation in AFM experiments. We propose that the growing surface domains were formed by ion dissolution and diffusion followed by formation of hydrated salt of CaCO3. Upon drying, the height of the hillocks decreased by about 50% suggesting their alteration into dehydrated or less hydrated CaCO3. However, the process was not entirely reversible and crystallization of new domains continued at a reduced rate.
Collapse
Affiliation(s)
- Natalia A Wojas
- RISE Research Institutes of Sweden, Division of Bioscience and Materials - Surface, Process and Formulation, Box 5607, SE-114 86 Stockholm, Sweden; KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden.
| | - Agne Swerin
- RISE Research Institutes of Sweden, Division of Bioscience and Materials - Surface, Process and Formulation, Box 5607, SE-114 86 Stockholm, Sweden; KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Viveca Wallqvist
- RISE Research Institutes of Sweden, Division of Bioscience and Materials - Surface, Process and Formulation, Box 5607, SE-114 86 Stockholm, Sweden
| | - Mikael Järn
- RISE Research Institutes of Sweden, Division of Bioscience and Materials - Surface, Process and Formulation, Box 5607, SE-114 86 Stockholm, Sweden
| | | | - Patrick A C Gane
- Omya International AG, Baslerstrasse 42, CH-4665 Oftringen, Switzerland; Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Per M Claesson
- RISE Research Institutes of Sweden, Division of Bioscience and Materials - Surface, Process and Formulation, Box 5607, SE-114 86 Stockholm, Sweden; KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
16
|
Holmberg RJ, Wilcox-Freeburg E, Rhyne AL, Tlusty MF, Stebbins A, Nye Jr. SW, Honig A, Johnston AE, San Antonio CM, Bourque B, Hannigan RE. Ocean acidification alters morphology of all otolith types in Clark's anemonefish ( Amphiprion clarkii). PeerJ 2019; 7:e6152. [PMID: 30643693 PMCID: PMC6327886 DOI: 10.7717/peerj.6152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/23/2018] [Indexed: 11/20/2022] Open
Abstract
Ocean acidification, the ongoing decline of surface ocean pH and [CO3 2 - ] due to absorption of surplus atmospheric CO2, has far-reaching consequences for marine biota, especially calcifiers. Among these are teleost fishes, which internally calcify otoliths, critical elements of the inner ear and vestibular system. There is evidence in the literature that ocean acidification increases otolith size and alters shape, perhaps impacting otic mechanics and thus sensory perception. Here, larval Clark's anemonefish, Amphiprion clarkii (Bennett, 1830), were reared in various seawater pCO2/pH treatments analogous to future ocean scenarios. At the onset of metamorphosis, all otoliths were removed from each individual fish and analyzed for treatment effects on morphometrics including area, perimeter, and circularity; scanning electron microscopy was used to screen for evidence of treatment effects on lateral development, surface roughness, and vaterite replacement. The results corroborate those of other experiments with other taxa that observed otolith growth with elevated pCO2, and provide evidence that lateral development and surface roughness increased as well. Both sagittae exhibited increasing area, perimeter, lateral development, and roughness; left lapilli exhibited increasing area and perimeter while right lapilli exhibited increasing lateral development and roughness; and left asterisci exhibited increasing perimeter, roughness, and ellipticity with increasing pCO2. Right lapilli and left asterisci were only impacted by the most extreme pCO2 treatment, suggesting they are resilient to any conditions short of aragonite undersaturation, while all other impacted otoliths responded to lower concentrations. Finally, fish settlement competency at 10 dph was dramatically reduced, and fish standard length marginally reduced with increasing pCO2. Increasing abnormality and asymmetry of otoliths may impact inner ear function by altering otolith-maculae interactions.
Collapse
Affiliation(s)
- Robert J. Holmberg
- School for the Environment, University of Massachusetts Boston, Boston, MA, United States of America
| | - Eric Wilcox-Freeburg
- School for the Environment, University of Massachusetts Boston, Boston, MA, United States of America
| | - Andrew L. Rhyne
- Department of Biology, Marine Biology and Environmental Science, Roger Williams University, Bristol, RI, United States of America
- Center for Economic and Environmental Development, Roger Williams University, Bristol, RI, United States of America
| | - Michael F. Tlusty
- School for the Environment, University of Massachusetts Boston, Boston, MA, United States of America
| | - Alan Stebbins
- School for the Environment, University of Massachusetts Boston, Boston, MA, United States of America
| | - Steven W. Nye Jr.
- School for the Environment, University of Massachusetts Boston, Boston, MA, United States of America
| | - Aaron Honig
- School for the Environment, University of Massachusetts Boston, Boston, MA, United States of America
| | - Amy E. Johnston
- School for the Environment, University of Massachusetts Boston, Boston, MA, United States of America
| | - Christine M. San Antonio
- School for the Environment, University of Massachusetts Boston, Boston, MA, United States of America
| | - Bradford Bourque
- Center for Economic and Environmental Development, Roger Williams University, Bristol, RI, United States of America
| | - Robyn E. Hannigan
- School for the Environment, University of Massachusetts Boston, Boston, MA, United States of America
| |
Collapse
|
17
|
Omoregie AI, Ngu LH, Ong DEL, Nissom PM. Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Seifan M, Berenjian A. Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete. World J Microbiol Biotechnol 2018; 34:168. [PMID: 30387067 DOI: 10.1007/s11274-018-2552-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022]
Abstract
Concrete is one of the most broadly used construction materials in the world due to its number of performance characteristics. Despite the long life of concrete structure under ideal conditions, it tends to crack and this phenomenon results in a considerable reduction in service life and performance. Evidence of microbial involvement in the precipitation of minerals has led to a massive investigation on adapting this technology for addressing the concrete cracking issue. Calcium carbonate is one of most compatible materials with the concrete constituents and it can be induced via biological process. In this review paper, the effects of different factors, such as nucleation site, pH, nutrient and temperature, on the biosynthesis of calcium carbonate are elucidated. Moreover, the influences of effective factors on calcium carbonate polymorphism are extensively elaborated. Finally, the limitations for the future application of this innovative technology in construction industry are highlighted.
Collapse
Affiliation(s)
- Mostafa Seifan
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
19
|
Britton J, Stubbs KA, Weiss GA, Raston CL. Vortex Fluidic Chemical Transformations. Chemistry 2017; 23:13270-13278. [PMID: 28597512 DOI: 10.1002/chem.201700888] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Indexed: 01/25/2023]
Abstract
Driving chemical transformations in dynamic thin films represents a rapidly thriving and diversifying research area. Dynamic thin films provide a number of benefits including large surface areas, high shearing rates, rapid heat and mass transfer, micromixing and fluidic pressure waves. Combinations of these effects provide an avant-garde style of conducting chemical reactions with surprising and unusual outcomes. The vortex fluidic device (VFD) has proved its capabilities in accelerating and increasing the efficiencies of numerous organic, materials and biochemical reactions. This Minireview surveys transformations that have benefited from VFD-mediated processing, and identifies concepts driving the effectiveness of vortex-based dynamic thin films.
Collapse
Affiliation(s)
- Joshua Britton
- Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA.,Centre for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA
| | - Colin L Raston
- Centre for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| |
Collapse
|
20
|
D'Alonzo NJ, Eggers PK, Eroglu E, Raston CL. Shear Stress Induced Fabrication of Dandelion-Shaped Lanthanide Phosphate Nanoparticles. Aust J Chem 2017. [DOI: 10.1071/ch16692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lanthanide phosphate nanoparticles were co-precipitated under continuous flow in a vortex fluidic device in the presence of polyvinylpyrrolidone (PVP) of different molecular weights and at varying rotational speeds and tilt angles. Dandelion-shaped lanthanide phosphate particles were produced at rotation speeds of 5000 rpm and 7000 rpm. In contrast, individual rods formed at 9000 rpm. Transition electron microscope images reveal changes in morphology of the dandelion-shaped nanoparticles with changes in the chain length of PVP or tilt angle of the tube of the vortex fluidic device. These morphological changes are likely to arise from different wrapping and aggregation of the nanoparticles induced by the PVP polymer under shear.
Collapse
|
21
|
Atom probe tomography (APT) of carbonate minerals. Micron 2016; 80:83-9. [DOI: 10.1016/j.micron.2015.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022]
|
22
|
Gandy MN, Raston CL, Stubbs KA. Towards aryl C-N bond formation in dynamic thin films. Org Biomol Chem 2015; 12:4594-7. [PMID: 24887640 DOI: 10.1039/c4ob00926f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-N bond forming reactions are important in organic chemistry. A thin film microfluidic vortex fluidic device (VFD) operating under confined mode affords N-aryl compounds from 2-chloropyrazine and the corresponding amine, without the need for a transition metal catalyst.
Collapse
Affiliation(s)
- Michael N Gandy
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|
23
|
Peng W, Chen X, Zhu S, Guo C, Raston CL. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite. Chem Commun (Camb) 2015; 50:11764-7. [PMID: 25145979 DOI: 10.1039/c4cc05607h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.
Collapse
Affiliation(s)
- Wenhong Peng
- State Key laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 DongChuan Road, Shanghai 200240, China.
| | | | | | | | | |
Collapse
|
24
|
Yuan TZ, Ormonde CFG, Kudlacek ST, Kunche S, Smith JN, Brown WA, Pugliese KM, Olsen TJ, Iftikhar M, Raston CL, Weiss GA. Shear-stress-mediated refolding of proteins from aggregates and inclusion bodies. Chembiochem 2015; 16:393-6. [PMID: 25620679 DOI: 10.1002/cbic.201402427] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/01/2014] [Indexed: 11/12/2022]
Abstract
Recombinant protein overexpression of large proteins in bacteria often results in insoluble and misfolded proteins directed to inclusion bodies. We report the application of shear stress in micrometer-wide, thin fluid films to refold boiled hen egg white lysozyme, recombinant hen egg white lysozyme, and recombinant caveolin-1. Furthermore, the approach allowed refolding of a much larger protein, cAMP-dependent protein kinase A (PKA). The reported methods require only minutes, which is more than 100 times faster than conventional overnight dialysis. This rapid refolding technique could significantly shorten times, lower costs, and reduce waste streams associated with protein expression for a wide range of industrial and research applications.
Collapse
Affiliation(s)
- Tom Z Yuan
- University of California, Irvine, Department of Molecular Biology and Biochemistry, Irvine, CA, 92697-2025 (USA)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wahid MH, Eroglu E, LaVars SM, Newton K, Gibson CT, Stroeher UH, Chen X, Boulos RA, Raston CL, Harmer SL. Microencapsulation of bacterial strains in graphene oxide nano-sheets using vortex fluidics. RSC Adv 2015. [DOI: 10.1039/c5ra04415d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microencapsulation of bacterial cells with different shapes in graphene oxide (GO) layers is effective using a vortex fluidic device, with the bacterial cells showing restricted cellular growth with their biological activity sustained.
Collapse
Affiliation(s)
- M. Haniff Wahid
- Centre for NanoScale Science and Technology
- School of Chemical and Physical Sciences
- Flinders University
- Australia
- Department of Chemistry
| | - Ela Eroglu
- ARC Centre of Excellence in Plant Energy Biology
- The University of Western Australia
- Crawley
- Australia
| | - Sian M. LaVars
- Centre for NanoScale Science and Technology
- School of Chemical and Physical Sciences
- Flinders University
- Australia
| | - Kelly Newton
- Centre for NanoScale Science and Technology
- School of Chemical and Physical Sciences
- Flinders University
- Australia
| | - Christopher T. Gibson
- Centre for NanoScale Science and Technology
- School of Chemical and Physical Sciences
- Flinders University
- Australia
| | | | - Xianjue Chen
- Centre for NanoScale Science and Technology
- School of Chemical and Physical Sciences
- Flinders University
- Australia
| | - Ramiz A. Boulos
- Centre for NanoScale Science and Technology
- School of Chemical and Physical Sciences
- Flinders University
- Australia
| | - Colin L. Raston
- Centre for NanoScale Science and Technology
- School of Chemical and Physical Sciences
- Flinders University
- Australia
| | - Sarah-L. Harmer
- Centre for NanoScale Science and Technology
- School of Chemical and Physical Sciences
- Flinders University
- Australia
| |
Collapse
|
26
|
Gandy MN, Raston CL, Stubbs KA. Photoredox catalysis under shear using thin film vortex microfluidics. Chem Commun (Camb) 2015; 51:11041-4. [DOI: 10.1039/c5cc02153g] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microfluidic vortex fluidic device (VFD) operating in either confined or continuous mode is effective in high yielding photoredox reactions involving Rose Bengal, with short reaction times.
Collapse
Affiliation(s)
- Michael N. Gandy
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
- Australia
| | - Colin L. Raston
- Centre for NanoScale Science and Technology
- School of Chemical and Physical Sciences
- Flinders University
- Bedford Park
- Australia
| | - Keith A. Stubbs
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
- Australia
| |
Collapse
|