1
|
Caplan M, Bardeleben C, Dhawan K, Plawat R, Kufareva I, Trejo J. ARRDC3 tyrosine phosphorylation functions as a switch to control c-Src versus WWP2 interactions and distinct scaffolding functions. J Biol Chem 2025:110270. [PMID: 40409556 DOI: 10.1016/j.jbc.2025.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 05/04/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025] Open
Abstract
Mammalian α-arrestins are members of the same arrestin family as the ubiquitously expressed and extensively studied β-arrestins. Arrestins share common structural elements including the conserved N- and C-arrestin-fold domains, polar core, finger loop, and C-terminal tail, all of which mediate protein-protein interactions. In β-arrestins, these domains enable the control of G protein-coupled receptor (GPCR) signaling and scaffolding interactions with various signaling proteins including c-Src. By contrast, the repertoire of α-arrestin scaffolding partners and regulatory mechanisms that control their interactions are not well understood. α-arrestins differ considerably from β-arrestins in the C-terminal region; β-arrestins contain clathrin adaptor β-adaptin binding sites whereas α-arrestins harbor PPxY motifs, demonstrated to interact with WW domains of E3 ubiquitin ligases such as WWP2. Here we report the identification of a novel phosphorylation site, tyrosine (Y) 394, embedded in the C-terminal PPxY motif of α-arrestin ARRDC3. The Y394 site functions as a phospho-regulatory switch to enable distinct ARRDC3 binding partners and scaffolding functions. We found that ARRDC3 Y394 phosphorylation promotes interaction with c-Src via its SH2 domain, whereas the non-phosphorylated form binds to WWP2. Our results further show that ARRDC3 Y394 phosphorylation and c-Src SH2 domain-dependent interaction enables regulation of c-Src activity, whereas ARRDC3 Y394 phosphorylation disrupts WWP2 interaction and perturbs ARRDC3-dependent lysosomal trafficking of the GPCR, protease-activated receptor-1. Together these findings indicate that ARRDC3 Y394 functions as a phospho-regulatory switch to enable selective binding to different partners that impact distinct scaffolding functions.
Collapse
Affiliation(s)
- Mika Caplan
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Carolyne Bardeleben
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Kanika Dhawan
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Rhea Plawat
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093.
| |
Collapse
|
2
|
Jessop E, Young N, Garcia-Del-Valle B, Crusher JT, Obara B, Karakesisoglou I. SIRT2 Inhibition by AGK2 Promotes Perinuclear Cytoskeletal Organisation and Reduces Invasiveness of MDA-MB-231 Triple-Negative Breast Cancer Cells in Confined In Vitro Models. Cells 2024; 13:2023. [PMID: 39682770 PMCID: PMC11639776 DOI: 10.3390/cells13232023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterised by the absence of targetable hormone receptors and increased metastatic rates. As nuclear softening strongly contributes to TNBC's enhanced metastatic capacity, increasing the nuclear stiffness of TNBC cells may present a promising therapeutic avenue. Previous evidence has demonstrated the ability of Sirtuin 2 (SIRT2) inhibition to induce cytoskeletal reorganisation, a key factor in regulating nuclear mechanics. Thus, our study aimed to investigate the effect of SIRT2 inhibition on the nuclear mechanics and migratory behaviour of TNBC cells. To achieve this, SIRT2 was pharmacologically inhibited in MDA-MB-231 cells using AGK2, a SIRT2-specific inhibitor. Although SIRT2 inhibition had no effect on LINC complex composition, the AGK2-treated MDA-MB-231 cells displayed more prominent perinuclear organisations of acetylated α-tubulin, vimentin, and F-actin. Additionally, the nuclei of the AGK2-treated MDA-MB-231 cells exhibited greater resistance to collapse under osmotic shock. Scratch-wound assays also revealed that SIRT2 inhibition led to polarity defects in the MDA-MB-231 cells, while in vitro space-restrictive invasion assays highlighted their reduced migratory capacity upon AGK2 treatment. Taken together, our findings suggest that SIRT2 inhibition promotes a perinuclear cytoskeletal organisation in MDA-MB-231 cells, which enhances their nuclear rigidity and impedes their invasion through confined spaces in vitro.
Collapse
Affiliation(s)
- Emily Jessop
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Natalie Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Beatriz Garcia-Del-Valle
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Jack T. Crusher
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Iakowos Karakesisoglou
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| |
Collapse
|
3
|
Srivastava A, Ahmad R, Yadav K, Siddiqui S, Trivedi A, Misra A, Mehrotra S, Ahmad B, Ali Khan M. An update on existing therapeutic options and status of novel anti-metastatic agents in breast cancer: Elucidating the molecular mechanisms underlying the pleiotropic action of Withania somnifera (Indian ginseng) in breast cancer attenuation. Int Immunopharmacol 2024; 136:112232. [PMID: 38815352 DOI: 10.1016/j.intimp.2024.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Major significant advancements in pharmacology and drug technology have been made to heighten the impact of cancer therapies, improving the life expectancy of subjects diagnosed with malignancy. Statistically, 99% of breast cancers occur in women while 0.5-1% occur in men, the female gender being the strongest breast cancer risk factor. Despite several breakthroughs, breast cancer continues to have a worldwide impact and is one of the leading causes of mortality. Additionally, resistance to therapy is a crucial factor enabling cancer cell persistence and resurgence. As a result, the search and discovery of novel modulatory agents and effective therapies capable of controlling tumor progression and cancer cell proliferation is critical. Withania somnifera (L.) Dunal (WS), commonly known as Indian ginseng, has long been used traditionally for the treatment of several ailments in the Indian context. Recently, WS and its phytoconstituents have shown promising anti-breast cancer properties and, as such, can be employed as prophylactic as well as therapeutic adjuncts to the main line of breast cancer treatment. The present review is an attempt to explore and provide experimental evidences in support of the prophylactic and therapeutic potential of WS in breast cancer, along with a deeper insight into the multiple molecular mechanisms and novel targets through which it acts against breast and other hormonally-induced cancers viz. ovarian, uterine and cervical. This exploration might prove crucial in providing better understanding of breast cancer progression and metastasis and its use as an adjunct in improving disease prognosis and therapeutic outcome.
Collapse
Affiliation(s)
- Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow 226007, UP., India.
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Sudhir Mehrotra
- Dept. of Biochemistry, University of Lucknow, Lucknow 226007, UP., India.
| | - Bilal Ahmad
- Research Cell, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow 226003, UP., India.
| |
Collapse
|
4
|
Kaya SG, Eren G. Selective inhibition of SIRT2: A disputable therapeutic approach in cancer therapy. Bioorg Chem 2024; 143:107038. [PMID: 38113655 DOI: 10.1016/j.bioorg.2023.107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Sirtuin 2 (SIRT2) is involved in a wide range of processes, from transcription to metabolism to genome stability. Dysregulation of SIRT2 has been associated with the pathogenesis and progression of different diseases, such as cancer and neurodegenerative disorders. In this context, targeting SIRT2 activity by small molecule inhibitors is a promising therapeutic strategy for treating related conditions, particularly cancer. This review summarizes the regulatory roles and molecular mechanisms of SIRT2 in cancer and the attempts to evaluate potential antitumor activities of SIRT2-selective inhibitors by in vitro and in vivo testing, which are expected to deepen our understanding of the role of SIRT2 in tumorigenesis and progression and may offer important clues or inspiration ideas for developing SIRT2 inhibitors with excellent affinity and selectivity.
Collapse
Affiliation(s)
- Selen Gozde Kaya
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
5
|
Chen M, Yin B, Liu Y, Li M, Shen S, Wu J, Li W, Fan J. ARRDC3 regulates the targeted therapy sensitivity of clear cell renal cell carcinoma by promoting AXL degradation. Cell Cycle 2024; 23:56-69. [PMID: 38389126 PMCID: PMC11005801 DOI: 10.1080/15384101.2024.2308411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
AXL plays crucial roles in the tumorigenesis, progression, and drug resistance of neoplasms; however, the mechanisms associated with AXL overexpression in tumors remain largely unknown. In this study, to investigate these molecular mechanisms, wildtype and mutant proteins of arrestin domain-containing protein 3 (ARRDC3) and AXL were expressed, and co-immunoprecipitation analyses were performed. ARRDC3-deficient cells generated using the CRISPR-Cas9 system were treated with different concentrations of the tyrosine kinase inhibitor sunitinib and subjected to cell biological, molecular, and pharmacological experiments. Furthermore, immunohistochemistry was used to analyze the correlation between ARRDC3 and AXL protein expressions in renal cancer tissue specimens. The experimental results demonstrated that ARRDC3 interacts with AXL to promote AXL ubiquitination and degradation, followed by the negative regulation of downstream signaling mechanisms, including the phosphorylation of protein kinase B and extracellular signal-regulated kinase. Notably, ARRDC3 deficiency decreased the sunitinib sensitivity of clear cell renal cell carcinoma (ccRCC) cells in a manner dependent on the regulation of AXL stability. Overall, our results suggest that ARRDC3 is a negative regulator of AXL and can serve as a novel predictor of sunitinib therapeutic response in patients with ccRCC.
Collapse
Affiliation(s)
- Mulin Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Bingde Yin
- Department of Urology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Yao Liu
- School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Mingzi Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Suqin Shen
- School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Jiaxue Wu
- School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Weiguo Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
6
|
Fujita Y, Fukuda Y, Sanuki F, Irei I, Monobe Y, Uno M, Akisada T, Shimoya K, Hara H, Moriya T. Protease-Activated Receptor 1 (PAR1) Expression Contributes to HPV-Associated Oropharyngeal Cancer Prognosis. Head Neck Pathol 2023; 17:658-672. [PMID: 37486532 PMCID: PMC10514014 DOI: 10.1007/s12105-023-01567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Human papillomavirus (HPV)-associated oropharyngeal cancer occasionally has a poor prognosis, making prognostic risk stratification crucial. Protease-activated receptor-1 (PAR1) is involved in carcinogenesis, and its expression is regulated by alpha-arrestin domain-containing protein 3 (ARRDC3). It is also involved in the tumor microenvironment. We sought to evaluate the predictive ability of PAR1, ARRDC3, and tumor-infiltrating lymphocyte (TIL) scores in patients with oropharyngeal, hypopharyngeal, and uterine cervical cancers, serving as comparators for HPV-associated oropharyngeal cancer. METHODS Immunohistochemical analysis of p16, ARRDC3, and PAR1 expression was performed on 79 oropharyngeal, 44 hypopharyngeal, and 42 uterine cervical cancer samples. The TIL scores were assessed and classified into the following groups based on invasion: low: 0-10%, medium: 20-40%, and high: > 50%. For prognostic analysis, the three groups were evaluated by dividing them into low, medium, and high categories, or alternatively into two groups using the median value as the cutoff. RESULTS p16 was expressed in 44 (56%) oropharyngeal, 8 (18%) hypopharyngeal, and all uterine cervical cancer samples. ARRDC3 was detected in 39 (49%) oropharyngeal, 25 (57%) hypopharyngeal, and 23 (55%) uterine cervical cancer samples. PAR1 was expressed in 45 (57%) oropharyngeal, 22 (50%) hypopharyngeal, and 22 (50%) uterine cervical cancer samples. Patients diagnosed with p16-positive oropharyngeal cancer had a substantially improved prognosis compared to those diagnosed with p16-negative cancer. The PAR1-negative cases had a considerably improved prognosis compared to the positive cases (disease-specific survival [DSS] and -negative cases (disease-free survival [DFS]). Multivariate analysis revealed that ARRDC3-positive cases had an appreciably better DSS prognosis than patients with p16-negative oropharyngeal cancers. PAR1-positive patients among patients with p16-positive oropharyngeal cancer had a poor prognosis. With respect to DFS, patients with PAR1-positive and p16-negative oropharyngeal cancer had a 35-fold higher recurrence rate than those with PAR1-negative and p16-negative oropharyngeal cancer. CONCLUSION Our results suggest that PAR1 expression affects the prognosis and recurrence rate of HPV-associated oropharyngeal cancer.
Collapse
Affiliation(s)
- Yoshinori Fujita
- Department of Pathology, Kawasaki Medical University, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
- Department of Otolaryngology, Head and Neck Surgery, Kawasaki Medical University, Kurashiki, Okayama, Japan
| | - Yujiro Fukuda
- Department of Otolaryngology, Head and Neck Surgery, Kawasaki Medical University, Kurashiki, Okayama, Japan
| | - Fumiaki Sanuki
- Department of Pathology, Kawasaki Medical University, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Isao Irei
- Department of Pathology, Kawasaki Medical University, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yasumasa Monobe
- Department of Pathology, Kawasaki Medical University, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Masako Uno
- Department of Otolaryngology, Head and Neck Surgery, Kawasaki Medical University, Kurashiki, Okayama, Japan
| | - Takeshi Akisada
- Department of Otolaryngology, Head and Neck Surgery, Kawasaki Medical University, Kurashiki, Okayama, Japan
| | - Koichiro Shimoya
- Department of Obstetrics and Gynecology, Kawasaki Medical University, Kurashiki, Okayama, Japan
| | - Hirotaka Hara
- Department of Otolaryngology, Head and Neck Surgery, Kawasaki Medical University, Kurashiki, Okayama, Japan
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical University, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
7
|
Wedegaertner H, Bosompra O, Kufareva I, Trejo J. Divergent regulation of α-arrestin ARRDC3 function by ubiquitination. Mol Biol Cell 2023; 34:ar93. [PMID: 37223976 PMCID: PMC10398895 DOI: 10.1091/mbc.e23-02-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
The α-arrestin ARRDC3 is a recently discovered tumor suppressor in invasive breast cancer that functions as a multifaceted adaptor protein to control protein trafficking and cellular signaling. However, the molecular mechanisms that control ARRDC3 function are unknown. Other arrestins are known to be regulated by posttranslational modifications, suggesting that ARRDC3 may be subject to similar regulatory mechanisms. Here we report that ubiquitination is a key regulator of ARRDC3 function and is mediated primarily by two proline-rich PPXY motifs in the ARRDC3 C-tail domain. Ubiquitination and the PPXY motifs are essential for ARRDC3 function in regulating GPCR trafficking and signaling. Additionally, ubiquitination and the PPXY motifs mediate ARRDC3 protein degradation, dictate ARRDC3 subcellular localization, and are required for interaction with the NEDD4-family E3 ubiquitin ligase WWP2. These studies demonstrate a role for ubiquitination in regulating ARRDC3 function and reveal a mechanism by which ARRDC3 divergent functions are controlled.
Collapse
Affiliation(s)
- Helen Wedegaertner
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA92093
| | - Oye Bosompra
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA92093
| | - Irina Kufareva
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
8
|
Kang Y. Landscape of NcRNAs involved in drug resistance of breast cancer. Clin Transl Oncol 2023; 25:1869-1892. [PMID: 37067729 PMCID: PMC10250522 DOI: 10.1007/s12094-023-03189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/02/2022] [Indexed: 04/18/2023]
Abstract
Breast cancer (BC) leads to the most amounts of deaths among women. Chemo-, endocrine-, and targeted therapies are the mainstay drug treatments for BC in the clinic. However, drug resistance is a major obstacle for BC patients, and it leads to poor prognosis. Accumulating evidences suggested that noncoding RNAs (ncRNAs) are intricately linked to a wide range of pathological processes, including drug resistance. Till date, the correlation between drug resistance and ncRNAs is not completely understood in BC. Herein, we comprehensively summarized a dysregulated ncRNAs landscape that promotes or inhibits drug resistance in chemo-, endocrine-, and targeted BC therapies. Our review will pave way for the effective management of drug resistance by targeting oncogenic ncRNAs, which, in turn will promote drug sensitivity of BC in the future.
Collapse
Affiliation(s)
- Yujuan Kang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
9
|
Manaig YJY, Criado-Mesas L, Esteve-Codina A, Mármol-Sánchez E, Castelló A, Sánchez A, Folch JM. Identifying miRNA-mRNA regulatory networks on extreme n-6/n-3 polyunsaturated fatty acid ratio expression profiles in porcine skeletal muscle. PLoS One 2023; 18:e0283231. [PMID: 37141193 PMCID: PMC10159129 DOI: 10.1371/journal.pone.0283231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/06/2023] [Indexed: 05/05/2023] Open
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty acids with antagonistic inflammatory functions that play vital roles in metabolic health and immune response. Current commercial swine diets tend to over-supplement with n-6 PUFAs, which may increase the likelihood of developing inflammatory diseases and affect the overall well-being of the animals. However, it is still poorly understood how n-6/n-3 PUFA ratios affect the porcine transcriptome expression and how messenger RNAs (mRNAs) and microRNAs (miRNAs) might regulate biological processes related to PUFA metabolism. On account of this, we selected a total of 20 Iberian × Duroc crossbred pigs with extreme values for n-6/n-3 FA ratio (10 high vs 10 low), and longissimus dorsi muscle samples were used to identify differentially expressed mRNAs and miRNAs. The observed differentially expressed mRNAs were associated to biological pathways related to muscle growth and immunomodulation, while the differentially expressed microRNAs (ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-15b and ssc-miR-7142-3p) were correlated to adipogenesis and immunity. Relevant miRNA-to-mRNA regulatory networks were also predicted (i.e., mir15b to ARRDC3; mir-7142-3p to METTL21C), and linked to lipolysis, obesity, myogenesis, and protein degradation. The n-6/n-3 PUFA ratio differences in pig skeletal muscle revealed genes, miRNAs and enriched pathways involved in lipid metabolism, cell proliferation and inflammation.
Collapse
Affiliation(s)
- Yron Joseph Yabut Manaig
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Lourdes Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Emilio Mármol-Sánchez
- Department of Molecular Biosciences, Science for Life Laboratory, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Armand Sánchez
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Josep M Folch
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| |
Collapse
|
10
|
Nagaya M, Yamaoka R, Kanada F, Sawa T, Takashima M, Takamura Y, Inatani M, Oki M. Histone acetyltransferase inhibition reverses opacity in rat galactose-induced cataract. PLoS One 2022; 17:e0273868. [PMID: 36417410 PMCID: PMC9683626 DOI: 10.1371/journal.pone.0273868] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cataract, a disease that causes opacity of the lens, is the leading cause of blindness worldwide. Cataracts secondary to diabetes are common, even in young patients, so they are of significant clinical importance. Here, we used an ex vivo model of galactose-induced cataracts in the rat lens to investigate the therapeutic effects of histone acetyltransferase (HAT) inhibitors. Among the tested HAT inhibitors, TH1834 was the only one that could reverse most of the opacity once it had formed in the lens. Combination treatment with C646/CPTH2 and CBP30/CPTH2 also had therapeutic effects. In lens cross-sections, vacuoles were present in the tissue of the cortical equatorial region of untreated cataract samples. In treated cataract samples, lens tissue regenerated to fill the vacuoles. To identify the genes regulated by HAT inhibitors, qRT-PCR was performed on treated and untreated cataract samples to determine candidate genes. Expression of Acta1 and Stmn4, both of which are involved in the cytoskeleton, were altered significantly in C646+CPTH2 samples. Expression of Emd, a nuclear membrane protein, and Prtfdc1, which is involved in cancer cell proliferation, were altered significantly in CBP30+CPTH2 samples. Acta1, Acta2, Arrdc3, Hebp2, Hist2h2ab, Pmf1, Ppdpf, Rbm3, RGD1561694, Slc16a6, Slfn13, Tagln, Tgfb1i1, and Tuba1c in TH1834 samples were significantly altered. These genes were primarily related to regulation of cell proliferation, the cytoskeleton, and cell differentiation. Expression levels increased with the onset of cataracts and was suppressed in samples treated with HAT inhibitors.
Collapse
Affiliation(s)
- Masaya Nagaya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Risa Yamaoka
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Fumito Kanada
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Tamotsu Sawa
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- * E-mail:
| |
Collapse
|
11
|
Thakur C, Qiu Y, Fu Y, Bi Z, Zhang W, Ji H, Chen F. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies. Front Oncol 2022; 12:971288. [PMID: 36185256 PMCID: PMC9520778 DOI: 10.3389/fonc.2022.971288] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Delayed presentation of the disease, late stage at diagnosis, limited therapeutic options, metastasis, and relapse are the major factors contributing to breast cancer mortality. The development and progression of breast cancer is a complex and multi-step process that incorporates an accumulation of several genetic and epigenetic alterations. External environmental factors and internal cellular microenvironmental cues influence the occurrence of these alterations that drives tumorigenesis. Here, we discuss state-of-the-art information on the epigenetics of breast cancer and how environmental risk factors orchestrate major epigenetic events, emphasizing the necessity for a multidisciplinary approach toward a better understanding of the gene-environment interactions implicated in breast cancer. Since epigenetic modifications are reversible and are susceptible to extrinsic and intrinsic stimuli, they offer potential avenues that can be targeted for designing robust breast cancer therapies.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Yiran Qiu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yao Fu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Zhuoyue Bi
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Wenxuan Zhang
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Haoyan Ji
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Fei Chen
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
12
|
Abstract
Significance: Thioredoxin-interacting protein (Txnip) is an α-arrestin protein that acts as a cancer suppressor. Txnip is simultaneously a critical regulator of energy metabolism. Other alpha-arrestin proteins also play key roles in cell biology and cancer. Recent Advances: Txnip expression is regulated by multilayered mechanisms, including transcriptional regulation, microRNA, messenger RNA (mRNA) stabilization, and protein degradation. The Txnip-based connection between cancer and metabolism has been widely recognized. Meanwhile, new aspects are proposed for the mechanism of action of Txnip, including the regulation of RNA expression and autophagy. Arrestin domain containing 3 (ARRDC3), another α-arrestin protein, regulates endocytosis and signaling, whereas ARRDC1 and ARRDC4 regulate extracellular vesicle formation. Critical Issues: The mechanism of action of Txnip is yet to be elucidated. The regulation of intracellular protein trafficking by arrestin family proteins has opened an emerging field of biology and medical research, which needs to be examined further. Future Directions: A fundamental understanding of the mechanism of action of Txnip and other arrestin family members needs to be explored in the future to combat diseases such as cancer and diabetes. Antioxid. Redox Signal. 36, 1001-1022.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Department of Clinical Laboratory Sciences, Tenri Health Care University, Tenri, Japan.,Department of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Wedegaertner H, Pan WA, Gonzalez CC, Gonzalez DJ, Trejo J. The α-Arrestin ARRDC3 Is an Emerging Multifunctional Adaptor Protein in Cancer. Antioxid Redox Signal 2022; 36:1066-1079. [PMID: 34465145 PMCID: PMC9127825 DOI: 10.1089/ars.2021.0193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023]
Abstract
Significance: Adaptor proteins control the spatiotemporal dynamics of cellular signaling. Dysregulation of adaptor protein function can cause aberrant cell signaling and promote cancer. The arrestin family of adaptor proteins are known to regulate signaling by the superfamily of G protein-coupled receptors (GPCRs). The GPCRs are highly druggable and implicated in cancer progression. However, the molecular mechanisms responsible for arrestin dysregulation and the impact on GPCR function in cancer have yet to be fully elucidated. Recent Advances: A new family of mammalian arrestins, termed the α-arrestins, was recently discovered. The α-arrestin, arrestin domain-containing protein 3 (ARRDC3), in particular, has been identified as a tumor suppressor and is reported to control cellular signaling of GPCRs in cancer. Critical Issues: Compared with the extensively studied mammalian β-arrestins, there is limited information regarding the regulatory mechanisms that control α-arrestin activation and function. Here, we discuss the molecular mechanisms that regulate ARRDC3, which include post-translational modifications such as phosphorylation and ubiquitination. We also provide evidence that ARRDC3 can interact with a wide array of proteins that control diverse biological functions. Future Directions: ARRDC3 interacts with numerous proteins and is likely to display diverse functions in cancer, metabolic disease, and other syndromes. Thus, understanding the regulatory mechanisms of ARRDC3 activity in various cellular contexts is critically important. Recent studies suggest that α-arrestins may be regulated through post-translational modification, which is known to impact adaptor protein function. However, additional studies are needed to determine how these regulatory mechanisms affect ARRDC3 tumor suppressor function. Antioxid. Redox Signal. 36, 1066-1079.
Collapse
Affiliation(s)
- Helen Wedegaertner
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Carlos C. Gonzalez
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - David J. Gonzalez
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
Wawruszak A, Luszczki J, Czerwonka A, Okon E, Stepulak A. Assessment of Pharmacological Interactions between SIRT2 Inhibitor AGK2 and Paclitaxel in Different Molecular Subtypes of Breast Cancer Cells. Cells 2022; 11:1211. [PMID: 35406775 PMCID: PMC8998062 DOI: 10.3390/cells11071211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Breast carcinoma (BC) is the most commonly diagnosed type of cancer in women in the world. Although the advances in the treatment of BC patients are significant, numerous side effects, severe toxicity towards normal cells as well as the multidrug resistance (MDR) phenomenon restrict the effectiveness of the therapies used. Therefore, new active compounds which decrease the MDR, extend disease-free survival, thereby ameliorating the effectiveness of the current treatment regimens, are greatly needed. Histone deacetylase inhibitors (HDIs), including sirtuin inhibitors (SIRTi), are the epigenetic antitumor agents which induce a cytotoxic effect in different types of cancer cells, including BC cells. Currently, combined forms of therapy with two or even more chemotherapeutics are promising antineoplastic tools to obtain a better response to therapy and limit adverse effects. Thus, on the one hand, much more effective chemotherapeutics, e.g., sirtuin inhibitors (SIRTi), are in demand; on the other hand, combinations of accepted cytostatics are trialed. Thus, the aim of our research was to examine the combination effects of a renowned cytotoxic drug paclitaxel (PAX) and SIRT2 inhibitor AGK2 on the proliferation and viability of the T47D, MCF7, MDA-MB-231, MDA-MB-468, BT-549 and HCC1937 BC cells. Moreover, cell cycle arrest and apoptosis induction were explored. The type of pharmacological interactions between AGK2 and PAX in different molecular subtypes of BC cells was assessed using the advanced isobolographic method. Our findings demonstrated that the tested active agents singly inhibited viability and proliferation of BC cells as well as induced cell cycle arrest and apoptosis in the cell-dependent context. Additionally, AGK2 increased the antitumor effect of PAX in most BC cell lines. We observed that, depending on the BC cell lines, the combinations of tested drugs showed synergistic, additive or antagonistic pharmacological interaction. In conclusion, our studies demonstrated that the consolidated therapy with the use of AGK2 and PAX can be considered as a potential therapeutic regimen in the personalized cure of BC patients in the future.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (E.O.); (A.S.)
| | - Jarogniew Luszczki
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (E.O.); (A.S.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (E.O.); (A.S.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (E.O.); (A.S.)
| |
Collapse
|
15
|
Wang HL, Ma X, Guan XY, Song C, Li GB, Yu YM, Yang LL. Potential Synthetic Lethality for Breast Cancer: A Selective Sirtuin 2 Inhibitor Combined with a Multiple Kinase Inhibitor Sorafenib. Pharmacol Res 2021; 177:106050. [PMID: 34973468 DOI: 10.1016/j.phrs.2021.106050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023]
Abstract
Sorafenib is a clinically useful multiple kinase inhibitor for the treatment of kidney cancer, liver cancer and acute myelocytic leukemia, while it has shown weak efficacy in suppressing breast cancer. Since sirtuin2 (SIRT2) is an important epigenetic regulator and associated with several cancer types including breast cancer, development and evaluation of new SIRT2 inhibitors to probe their therapeutic potentials is currently desirable. A highly selective SIRT2 inhibitor named I was previously developed by us, which showed activity to inhibit non-small cell lung cancer cell lines in vitro. We herein report expanded screening of I and its structurally similar inactive compound II against other cancer cell lines, and found that I had a wide spectrum of anticancer activity while II had no such effects. The I-sorafenib combination treatment exerted obvious synergistic reduction on cell viability of MCF-7 cells. We observed that the combination treatment could suppress cell proliferation, survival and migration, arrest cell cycle at G0/G1 phase, and induce apoptosis in MCF-7 cells, when compared with the single treatment. In vivo studies revealed that the combination treatment showed stronger tumor growth inhibition (87%), comparing with I-(42.8%) or sorafenib-solely-treated groups (61.1%) in MCF-7 xenograft model. In conclusion, this work clearly revealed a potential synthetic lethality effect for I combined with sorafenib, and will probably offer a new strategy at least for breast cancer treatment.
Collapse
Affiliation(s)
- Hua-Li Wang
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, P. R. China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| | - Xue Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, P. R. China
| | - Chen Song
- College of Food and Bioengineering, Xihua University, Sichuan 610039, P.R. China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, P. R. China
| | - Ya-Mei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China.
| | - Ling-Ling Yang
- College of Food and Bioengineering, Xihua University, Sichuan 610039, P.R. China.
| |
Collapse
|
16
|
ARRDC4 and UBXN1: Novel Target Genes Correlated with Prostate Cancer Gleason Score. Cancers (Basel) 2021; 13:cancers13205209. [PMID: 34680357 PMCID: PMC8533922 DOI: 10.3390/cancers13205209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
To investigate potential markers of the prostate cancer (PCa) Gleason score (GS), genetic arrays in 841 PCa patients were conducted followed by functional validation in PCa cell lines. A total of 841 PCa patients who received radical prostatectomy (RP) from November 2003 to July 2019 were enrolled. HumanExome BeadChip 12v1-1 (Illumina, Inc.; San Diego, CA, USA) exomic arrays were performed on RP tissue samples. Unconditional logistic regression was used to calculate odds ratios to generate estimates of the relative risk of pathologic GS (≥8); SNPs with the highest association were selected and validated using PCa cell lines (PC3, LNCaP, 22Rv1 and DU145). Following transfection with target-gene siRNA, assays for cell viability, wound healing, and transwell invasion were performed. Mean age of enrolled subjects was 66.34 years and median PSA was 8.43 ng/mL. After RP, 122 patients (14.5%) had pathological Gleason scores ≥8. The results from genotyping with 242,186 SNPs by exomic array revealed that 4 SNPs (rs200944490, rs117555780, rs34625170, and rs61754877) were significantly associated with high pathological GS (≥8) within cut-off level to p < 10-5. The most highly associated rs200944490 in ARRDC4 (p = 1.39 × 10-6) and rs117555780 in UBXN1 (p = 2.92 × 10-5) were selected for further validation. The knockdown of UBXN1 and ARRDC4 led to significantly reduced cell proliferation and suppressed migration and invasiveness in PCa cell lines. Epithelial mesenchymal transition (EMT) markers were significantly down-regulated in si-ARRDC4 and si-UBXN1-transfected cells. The expression levels of PI3K-phosphorylation and Akt phosphorylation and NF-κB were also suppressed following knockdown of UBXN1 and ARRDC4. The rs200944490 (ARRDC4) and rs117555780 (UBXN1) were identified as candidate markers predictive of PCa Gleason score which is strongly associated with cancer aggressiveness. Additional validation in future studies is warranted.
Collapse
|
17
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
18
|
Comprehensive molecular profiling of UV-induced metastatic melanoma in Nme1/Nme2-deficient mice reveals novel markers of survival in human patients. Oncogene 2021; 40:6329-6342. [PMID: 34433909 PMCID: PMC8595820 DOI: 10.1038/s41388-021-01998-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Hepatocyte growth factor-overexpressing mice that harbor a deletion of the Ink4a/p16 locus (HP mice) form melanomas with low metastatic potential in response to UV irradiation. Here we report that these tumors become highly metastatic following hemizygous deletion of the Nme1 and Nme2 metastasis suppressor genes (HPN mice). Whole genome sequencing of melanomas from HPN mice revealed a striking increase in lung metastatic activity that is associated with missense mutations in eight signature genes (Arhgap35, Atp8b4, Brca1, Ift172, Kif21b, Nckap5, Pcdha2 and Zfp869). RNA-seq analysis of transcriptomes from HP and HPN primary melanomas identified a 32-gene signature (HPN lung metastasis signature) for which decreased expression is strongly associated with lung metastatic potential. Analysis of transcriptome data from The Cancer Genome Atlas revealed expression profiles of these genes that predict improved survival of patients with cutaneous or uveal melanoma. Silencing of three representative HPN lung metastasis signature genes (ARRDC3, NYNRIN, RND3) in human melanoma cells resulted in increased invasive activity, consistent with roles for these genes as mediators of the metastasis suppressor function of NME1 and NME2. In conclusion, our studies have identified a family of genes that mediate suppression of melanoma lung metastasis, and which may serve as prognostic markers and/or therapeutic targets for clinical management of metastatic melanoma.
Collapse
|
19
|
Monticolo F, Chiusano ML. Computational Approaches for Cancer-Fighting: From Gene Expression to Functional Foods. Cancers (Basel) 2021; 13:4207. [PMID: 34439361 PMCID: PMC8393935 DOI: 10.3390/cancers13164207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023] Open
Abstract
It is today widely accepted that a healthy diet is very useful to prevent the risk for cancer or its deleterious effects. Nutrigenomics studies are therefore taking place with the aim to test the effects of nutrients at molecular level and contribute to the search for anti-cancer treatments. These efforts are expanding the precious source of information necessary for the selection of natural compounds useful for the design of novel drugs or functional foods. Here we present a computational study to select new candidate compounds that could play a role in cancer prevention and care. Starting from a dataset of genes that are co-expressed in programmed cell death experiments, we investigated on nutrigenomics treatments inducing apoptosis, and searched for compounds that determine the same expression pattern. Subsequently, we selected cancer types where the genes showed an opposite expression pattern and we confirmed that the apoptotic/nutrigenomics expression trend had a significant positive survival in cancer-affected patients. Furthermore, we considered the functional interactors of the genes as defined by public protein-protein interaction data, and inferred on their involvement in cancers and/or in programmed cell death. We identified 7 genes and, from available nutrigenomics experiments, 6 compounds effective on their expression. These 6 compounds were exploited to identify, by ligand-based virtual screening, additional molecules with similar structure. We checked for ADME criteria and selected 23 natural compounds representing suitable candidates for further testing their efficacy in apoptosis induction. Due to their presence in natural resources, novel drugs and/or the design of functional foods are conceivable from the presented results.
Collapse
Affiliation(s)
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy;
| |
Collapse
|
20
|
Arakaki AKS, Pan WA, Wedegaertner H, Roca-Mercado I, Chinn L, Gujral TS, Trejo J. α-Arrestin ARRDC3 tumor suppressor function is linked to GPCR-induced TAZ activation and breast cancer metastasis. J Cell Sci 2021; 134:237789. [PMID: 33722977 DOI: 10.1242/jcs.254888] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The α-arrestin domain containing protein 3 (ARRDC3) is a tumor suppressor in triple-negative breast carcinoma (TNBC), a highly metastatic subtype of breast cancer that lacks targeted therapies. Thus, understanding the mechanisms and targets of ARRDC3 in TNBC is important. ARRDC3 regulates trafficking of protease-activated receptor 1 (PAR1, also known as F2R), a G-protein-coupled receptor (GPCR) implicated in breast cancer metastasis. Loss of ARRDC3 causes overexpression of PAR1 and aberrant signaling. Moreover, dysregulation of GPCR-induced Hippo signaling is associated with breast cancer progression. However, the mechanisms responsible for Hippo dysregulation remain unknown. Here, we report that the Hippo pathway transcriptional co-activator TAZ (also known as WWTR1) is the major effector of GPCR signaling and is required for TNBC migration and invasion. Additionally, ARRDC3 suppresses PAR1-induced Hippo signaling via sequestration of TAZ, which occurs independently of ARRDC3-regulated PAR1 trafficking. The ARRDC3 C-terminal PPXY motifs and TAZ WW domain are crucial for this interaction and are required for suppression of TNBC migration and lung metastasis in vivo. These studies are the first to demonstrate a role for ARRDC3 in regulating GPCR-induced TAZ activity in TNBC and reveal multi-faceted tumor suppressor functions of ARRDC3. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen Wedegaertner
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ivette Roca-Mercado
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Logan Chinn
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Yeh SJ, Hsu BJ, Chen BS. Systems Medicine Design for Triple-Negative Breast Cancer and Non-Triple-Negative Breast Cancer Based on Systems Identification and Carcinogenic Mechanisms. Int J Mol Sci 2021; 22:ijms22063083. [PMID: 33802957 PMCID: PMC8002730 DOI: 10.3390/ijms22063083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancers with poor prognosis. The etiology of triple-negative breast cancer (TNBC) is involved in various biological signal cascades and multifactorial aberrations of genetic, epigenetic and microenvironment. New therapeutic for TNBC is urgently needed because surgery and chemotherapy are the only available modalities nowadays. A better understanding of the molecular mechanisms would be a great challenge because they are triggered by cascade signaling pathways, genetic and epigenetic regulations, and drug–target interactions. This would allow the design of multi-molecule drugs for the TNBC and non-TNBC. In this study, in terms of systems biology approaches, we proposed a systematic procedure for systems medicine design toward TNBC and non-TNBC. For systems biology approaches, we constructed a candidate genome-wide genetic and epigenetic network (GWGEN) by big databases mining and identified real GWGENs of TNBC and non-TNBC assisting with corresponding microarray data by system identification and model order selection methods. After that, we applied the principal network projection (PNP) approach to obtain the core signaling pathways denoted by KEGG pathway of TNBC and non-TNBC. Comparing core signaling pathways of TNBC and non-TNBC, essential carcinogenic biomarkers resulting in multiple cellular dysfunctions including cell proliferation, autophagy, immune response, apoptosis, metastasis, angiogenesis, epithelial-mesenchymal transition (EMT), and cell differentiation could be found. In order to propose potential candidate drugs for the selected biomarkers, we designed filters considering toxicity and regulation ability. With the proposed systematic procedure, we not only shed a light on the differences between carcinogenetic molecular mechanisms of TNBC and non-TNBC but also efficiently proposed candidate multi-molecule drugs including resveratrol, sirolimus, and prednisolone for TNBC and resveratrol, sirolimus, carbamazepine, and verapamil for non-TNBC.
Collapse
|
22
|
Kahlhofer J, Leon S, Teis D, Schmidt O. The α-arrestin family of ubiquitin ligase adaptors links metabolism with selective endocytosis. Biol Cell 2021; 113:183-219. [PMID: 33314196 DOI: 10.1111/boc.202000137] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
The regulation of nutrient uptake into cells is important, as it allows to either increase biomass for cell growth or to preserve homoeostasis. A key strategy to adjust cellular nutrient uptake is the reconfiguration of the nutrient transporter repertoire at the plasma membrane by the addition of nutrient transporters through the secretory pathway and by their endocytic removal. In this review, we focus on the mechanisms that regulate selective nutrient transporter endocytosis, which is mediated by the α-arrestin protein family. In the budding yeast Saccharomyces cerevisiae, 14 different α-arrestins (also named arrestin-related trafficking adaptors, ARTs) function as adaptors for the ubiquitin ligase Rsp5. They instruct Rsp5 to ubiquitinate subsets of nutrient transporters to orchestrate their endocytosis. The ART proteins are under multilevel control of the major nutrient sensing systems, including amino acid sensing by the general amino acid control and target of rapamycin pathways, and energy sensing by 5'-adenosine-monophosphate-dependent kinase. The function of the six human α-arrestins is comparably under-characterised. Here, we summarise the current knowledge about the function, regulation and substrates of yeast ARTs and human α-arrestins, and highlight emerging communalities and general principles.
Collapse
Affiliation(s)
- Jennifer Kahlhofer
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastien Leon
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Oliver Schmidt
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Yamane T, Imai M, Handa S, Harada N, Yamaji R, Sakamoto T, Ishida T, Inui H, Nakagaki T, Nakano Y. Aronia juice supplementation inhibits lipid accumulation in both normal and obesity model mice. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Zhang L, Kim S, Ren X. The Clinical Significance of SIRT2 in Malignancies: A Tumor Suppressor or an Oncogene? Front Oncol 2020; 10:1721. [PMID: 33014852 PMCID: PMC7506103 DOI: 10.3389/fonc.2020.01721] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a member of the sirtuin protein family. It is a Class III histone deacetylase (HDACs) and predominantly localized to the cytosol. SIRT2 deacetylates histones and a number of non-histone proteins and plays a pivotal role in various physiologic processes. Previously, SIRT2 has been considered indispensable during carcinogenesis; however, there is now a significant controversy regarding whether SIRT2 is an oncogene or a tumor suppressor. The purpose of this review is to summarize the physiological functions of SIRT2 and its mechanisms in cancer. We will focus on five malignancies (breast cancer, non-small cell lung cancer, hepatocellular carcinoma, colorectal cancer, and glioma) to describe the current status of SIRT2 research and discuss the clinical evaluation of SIRT2 expression and the use of SIRT2 inhibitors.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Sungjune Kim
- Department of Radiation Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Xiubao Ren
- National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
25
|
Soung YH, Chung H, Yan C, Fesler A, Kim H, Oh ES, Ju J, Chung J. Therapeutic Potential of Chemically Modified miR-489 in Triple-Negative Breast Cancers. Cancers (Basel) 2020; 12:E2209. [PMID: 32784600 PMCID: PMC7463492 DOI: 10.3390/cancers12082209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) lack ER, PR and her2 receptors that are targets of common breast cancer therapies with poor prognosis due to their high rates of metastasis and chemoresistance. Based on our previous studies that epigenetic silencing of a potential metastasis suppressor, arrestin domain-containing 3 (ARRDC3), is linked to the aggressive nature of TNBCs, we identified a sub-group of tumor suppressing miRNAs whose expressions were significantly up-regulated by ARRDC3 over-expression in TNBC cells. Among these tumor suppressing miRs, we found that miR-489 is most anti-proliferative in TNBC cells. miR-489 also blocked DNA damaging responses (DDRs) in TNBC cells. To define the mechanism by which miR-489 inhibits TNBC cell functions, we screened the potential target genes of miR-489 and identified MDC-1 and SUZ-12 as novel target genes of miR-489 in TNBC cells. To further exploit the therapeutic potentials of miR-489 in TNBC models, we chemically modified the guide strand of miR-489 (CMM489) by replacing Uracil with 5-fluorouracil (5-FU) so that tumor suppressor (miR-489) and DNA damaging (5-FU) components are combined into a single agent as a novel drug candidate for TNBCs. Our studies demonstrated that CMM489 shows superior effects over miR-489 or 5-FU in inhibition of TNBC cell proliferation and tumor progression, suggesting its therapeutic efficacy in TNBC models.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA; (Y.H.S.); (H.C.); (C.Y.); (A.F.); (J.J.)
| | - Heesung Chung
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA; (Y.H.S.); (H.C.); (C.Y.); (A.F.); (J.J.)
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Cecilia Yan
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA; (Y.H.S.); (H.C.); (C.Y.); (A.F.); (J.J.)
| | - Andrew Fesler
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA; (Y.H.S.); (H.C.); (C.Y.); (A.F.); (J.J.)
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook Medicine, Stony Brook, NY 11794, USA;
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Jingfang Ju
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA; (Y.H.S.); (H.C.); (C.Y.); (A.F.); (J.J.)
| | - Jun Chung
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA; (Y.H.S.); (H.C.); (C.Y.); (A.F.); (J.J.)
| |
Collapse
|
26
|
Guo L, Zhang A, Xiong J. Identification of specific microRNA-messenger RNA regulation pairs in four subtypes of breast cancer. IET Syst Biol 2020; 14:120-126. [PMID: 32406376 PMCID: PMC8687302 DOI: 10.1049/iet-syb.2019.0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/04/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023] Open
Abstract
Four subtypes of breast cancer, luminal A, luminal B, basal-like, human epidermal growth factor receptor-enriched, have been identified based on gene expression profiles of human tumours. The goal of this study is to find whether the same groups' genes would exhibit different networks among the four subtypes. Differential expressed genes between each of the four subtypes and the normal samples were identified. The overlaps between the four groups of differentially expressed genes were used to construct regulations networks for each of the four subtypes. Univariate and multivariate Cox regressions were employed to test the genes in the four regulation networks. This study demonstrated that the common genes in four subtypes showed different regulation. Also, the hsa-miR-182 and decorin pair performs different functions among the four subtypes of breast cancer. The result indicated that heterogeneity of breast cancer is not only reflected in the different expression patterns among different genes, but also in the different regulatory networks of the same group of genes.
Collapse
Affiliation(s)
- Ling Guo
- College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, 730030, People's Republic of China
| | - Aihua Zhang
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China.
| | - Jie Xiong
- Department of applied mathematics, Changsha University, Changsha, 410022, People's Republic of China
| |
Collapse
|
27
|
Shukla AK, Dwivedi-Agnihotri H. Structure and function of β-arrestins, their emerging role in breast cancer, and potential opportunities for therapeutic manipulation. Adv Cancer Res 2020; 145:139-156. [PMID: 32089163 DOI: 10.1016/bs.acr.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
β-Arrestins (βarrs) are multifunctional intracellular proteins with an ability to directly interact with a large number of cellular partners including the G protein-coupled receptors (GPCRs). βarrs contribute to multiple aspects of GPCR signaling, trafficking and downregulation. Considering the central involvement of GPCR signaling in the onset and progression of diverse types of cancers, βarrs have also emerged as key players in the context of investigating cancer phenotypes, and as potential therapeutic targets. In this chapter, we first provide a brief account of structure and function of βarrs and then highlight recent discoveries unfolding novel functional attributes of βarrs in breast cancer. We also underscore the recent paradigms of modulating βarr functions in cellular context and potential therapeutic opportunities going forward.
Collapse
Affiliation(s)
- Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| | | |
Collapse
|
28
|
Sharma M, Molehin D, Castro-Piedras I, Martinez EG, Pruitt K. Acetylation of conserved DVL-1 lysines regulates its nuclear translocation and binding to gene promoters in triple-negative breast cancer. Sci Rep 2019; 9:16257. [PMID: 31700102 PMCID: PMC6838061 DOI: 10.1038/s41598-019-52723-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Dishevelled (DVL) proteins are central mediators of the Wnt signalling pathway and are versatile regulators of several cellular processes, yet little is known about their post-translational regulation. Acetylation is a reversible post-translational modification (PTM) which regulates the function of several non-histone proteins involved in tumorigenesis. Since we previously demonstrated that lysine deacetylase, SIRT-1, regulates DVL protein levels and its function, we reasoned that DVL could potentially be a substrate for SIRT-1 mediated deacetylation. To further examine the potential role of multiple families of lysine deacetylases in the post-translational regulation of DVL, we screened for novel acetylation sites using liquid chromatography mass-spectrometry (LC-MS/MS) analysis. Herein, we report 12 DVL-1 lysine residues that show differential acetylation in response to changes in oxygen tension and deacetylase inhibition in triple-negative breast cancer (TNBC). PTMs are well documented to influence protein activity, and cellular localization. We also identify that acetylation of two key lysine residues, K69 and K285, present on the DIX and PDZ domains respectively, promote nuclear over cytoplasmic localization of DVL-1, and influences its promoter binding and regulation of genes implicated in cancer. Collectively, these findings for the first time, uncover acetylation as a novel layer of regulation of DVL-1 proteins.
Collapse
Affiliation(s)
- Monica Sharma
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edgar G Martinez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
29
|
Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev 2019; 55:100961. [PMID: 31505260 DOI: 10.1016/j.arr.2019.100961] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Sirtuin 2 (SIRT2) is an NAD+-dependent deacetylase that was under studied compared to other sirtuin family members. SIRT2 is the only sirtuin protein which is predominantly found in the cytoplasm but is also found in the mitochondria and in the nucleus. Recently, accumulating evidence has uncovered a growing number of substrates and additional detailed functions of SIRT2 in a wide range of biological processes, marking its crucial role. Here, we give a comprehensive profile of the crucial physiological functions of SIRT2 and its role in neurological diseases, cancers, and other diseases. This review summarizes the functions of SIRT2 in the nervous system, mitosis regulation, genome integrity, cell differentiation, cell homeostasis, aging, infection, inflammation, oxidative stress, and autophagy. SIRT2 inhibition rescues neurodegenerative disease symptoms and hence SIRT2 is a potential therapeutic target for neurodegenerative disease. SIRT2 is undoubtedly dysfunctional in cancers and plays a dual-faced role in different types of cancers, and although its mechanism is unresolved, SIRT2 remains a promising therapeutic target for certain cancers. In future, the continued rapid growth in SIRT2 research will help clarify its role in human health and disease, and promote the progress of this target in clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingqi Yang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
30
|
Gao CX, Chen B, Xie HK, Han CN, Luo J. Immunohistochemistry and clinical value of sirtuin 2 in non-metastasized non-small cell lung cancer. J Thorac Dis 2019; 11:3973-3979. [PMID: 31656671 DOI: 10.21037/jtd.2019.08.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background This study aimed to define whether sirtuin 2 (SIRT2) expression levels are related to the prognosis of non-small cell lung cancer (NSCLC) patients. Methods A survival analysis was carried out using the Kaplan-Meier (KM) plotter database. Immunohistochemical staining was performed and KM's method was used to estimate the survival rates for SIRT2 expression in 72 clinical samples. Results A survival analysis of 1,926 NSCLC patients showed that patients with low SIRT2 expression levels had significantly longer overall survival (OS) than those with high SIRT2 expression levels (P=0.0077; HR =1.19). In 72 non-metastasized NSCLC tissues, the positive rate of SIRT2 expression was 90.3% (65/72), among which, the positive expression rates of squamous cell carcinoma (SCC) and adenocarcinoma (ADC) were 96.4% (27/28) and 85.4% (35/41), respectively. Survival analysis showed that patients with low SIRT2 expression levels had significantly longer median survival time (MST) than those with high SIRT2 expression levels (15.0 versus 14.0 months, P=0.029). Furthermore, the results of subgroup analysis demonstrated patients with low SIRT2 expression levels had significantly longer survival time in ADC group (15.0 versus 12.0 months, P=0.022), but there wasn't significant difference in SCC group (15.0 versus 14.0 months, P=0.932). A multivariate Cox proportional hazards model, which included gender, age, TNM stage, differentiation and SIRT2 expression, showed that SIRT2 expression was an independent factor related to prognosis [HR =1.903, 95% confidence interval (95% CI): 1.085-3.339, P=0.025]. Conclusions SIRT2 expression levels were significantly related to the survival time of patients with lung ADC but not SCC. Our study indicated SIRT2 was perhaps a specific prognostic biomarker for non-metastasized lung ADC.
Collapse
Affiliation(s)
- Cai-Xia Gao
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Bin Chen
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hui-Kang Xie
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chao-Nan Han
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jie Luo
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
31
|
Lei D, Deng N, Wang S, Huang J, Fan C. Upregulated ARRDC3 limits trophoblast cell invasion and tube formation and is associated with preeclampsia. Placenta 2019; 89:10-19. [PMID: 31665660 DOI: 10.1016/j.placenta.2019.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Bioinformatics analysis indicated that the arrestin ARRDC3 was upregulated in placental tissue from patients with preeclampsia (PE). The study aimed to confirm the finding by examining placenta samples from women with and without early-onset PE and to investigate ARRDC3 roles in trophoblast function. METHODS ARRDC3 expression level and localization in placental tissue were determined by Western blot, real-time quantitative PCR and immunohistochemistry. An in vitro hypoxia and an in vitro ischemia (hypoxia/reoxygenation) cell models were used to determine the hypoxic and ischemic effects on ARRDC3 expression in extravillous trophoblast-derived HTR/8SVneo cells and trophoblast cell activity. The role of ARRDC3 in HTR8/SVneo cell proliferation, invasion and tube formation in vitro was investigated by testing the effects of ARRDC3 gene overexpression or siRNA-based gene silencing. RESULTS ARRDC3 expression was significantly elevated in placental tissue from women with early-onset PE compared to preterm birth pregnancies. ARRDC3 protein was localized in human placental trophoblasts. Hypoxia and ischemia both enhanced ARRDC3 protein expression in HTR8/SVneo cells. Hypoxia altered trophoblast cell activities. Overexpression of ARRDC3 in HTR8/SVneo cells suppressed cell invasion and tube formation. ARRDC3 gene silencing, by contrast, promoted invasion and tube formation under hypoxic conditions. CONCLUSION ARRDC3 was highly expressed in placental tissues of PE patients and directly affected biological activities of trophoblasts under hypoxic conditions. In regulation of ARRDC3- protein expression, ischemia (hypoxia/reoxygenation) are also important. These findings suggest that ARRDC3 may play a clinically significant role in the pathogenesis of PE.
Collapse
Affiliation(s)
- Di Lei
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Hubei, PR China
| | - Na Deng
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Hubei, PR China
| | - Suqing Wang
- Department of Preventive Medicine, School of Health Science, Wuhan University, Wuhan, Hubei, PR China
| | - Jinfa Huang
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Hubei, PR China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Hubei, PR China.
| |
Collapse
|
32
|
Wang T, Xu Z, Lu Y, Shi J, Liu W, Zhang C, Jiang Z, Qi B, Bai L. Recent Progress on the Discovery of Sirt2 Inhibitors for the Treatment of Various Cancers. Curr Top Med Chem 2019; 19:1051-1058. [PMID: 31074370 DOI: 10.2174/1568026619666190510103416] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/27/2019] [Accepted: 04/06/2019] [Indexed: 01/14/2023]
Abstract
Sirtuins family is a class of NDA+ dependent protein deacetylases that play a key role in the
regulation of several aspects of biological processes, such as cell cycle regulation, autophagy, immune
and inflammatory response. Many studies have shown that sirtuins2 as a key player in the cancer pathway
is of great significance in tumorigenesis. This review summarizes the newly discovered, in recent
years, some SIRT2 inhibitors for cancer target structure, action mechanism, biological activity, substrate
specificity, and signaling pathways.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhuyu Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongping Lu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenbo Liu
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, China
| | - Chengchen Zhang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Baowen Qi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
33
|
Soung YH, Chung H, Yan C, Ju J, Chung J. Arrestin Domain Containing 3 Reverses Epithelial to Mesenchymal Transition and Chemo-Resistance of TNBC Cells by Up-Regulating Expression of miR-200b. Cells 2019; 8:cells8070692. [PMID: 31295851 PMCID: PMC6679179 DOI: 10.3390/cells8070692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous studies demonstrated the importance of arrestin domain containing 3 (ARRDC3), a metastasis suppressor, in inhibiting invasive and metastatic potential of triple negative breast cancer (TNBC) in vitro and in vivo. However, little is known about ARRDC3 mediated transcriptional control and its target genes that are implicated in its metastatic suppressing activity. In this study, we used miRNA array and subsequent functional analyses to identify miRNAs whose expression are significantly regulated by ARRDC3 in TNBC cells. We identified miR-200b as a major target gene of ARRDC3. miR-200b played an essential role in mediating ARRDC3 dependent reversal of EMT phenotypes and chemo-resistance to DNA damaging agents in TNBC cells. Expression of miR-200b also increased the expression of ARRDC3 as well in TNBC cells, suggesting a positive feedback loop between these two molecules. In addition, we combined the therapeutic powers of miR-200b and 5-fluorourancil (5-FU) into a single compound (5-FU-miR-200b) to maximize the synergistic effects of these compounds. Chemically modified miR-200b (5-FU-miR-200b mimic) was more effective in inhibiting metastatic potentials of TNBC cells than unmodified miR-200b and does not require transfection reagents, implying its therapeutic potential in TNBC. Our studies showed the importance of therapeutic targeting ARRDC3/miR-200b pathway in TNBC.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Pathology, Stony Brook Medicine, Stony Brook, New York, NY 11794, USA
| | - Heesung Chung
- Department of Pathology, Stony Brook Medicine, Stony Brook, New York, NY 11794, USA
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Cecilia Yan
- Department of Pathology, Stony Brook Medicine, Stony Brook, New York, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Stony Brook Medicine, Stony Brook, New York, NY 11794, USA
| | - Jun Chung
- Department of Pathology, Stony Brook Medicine, Stony Brook, New York, NY 11794, USA.
| |
Collapse
|
34
|
Takeuchi F, Kukimoto I, Li Z, Li S, Li N, Hu Z, Takahashi A, Inoue S, Yokoi S, Chen J, Hang D, Kuroda M, Matsuda F, Mizuno M, Mori S, Wu P, Tanaka N, Matsuo K, Kamatani Y, Kubo M, Ma D, Shi Y. Genome-wide association study of cervical cancer suggests a role for ARRDC3 gene in human papillomavirus infection. Hum Mol Genet 2019; 28:341-348. [PMID: 30412241 DOI: 10.1093/hmg/ddy390] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022] Open
Abstract
The development of cervical cancer is initiated by human papillomavirus (HPV) infection and involves both viral and host genetic factors. Genome-wide association studies (GWAS) of cervical cancer have identified associations in the HLA locus and two loci outside HLA, but the principal genes that control infection and pathogenesis have not been identified. In the present study, we performed GWAS of cervical cancer in East Asian populations, involving 2609 cases and 4712 controls in the discovery stage and 1461 cases and 3295 controls in the follow-up stage. We identified novel-significant associations at 5q14 with the lead single nucleotide polymorphism (SNP) rs59661306 (P = 2.4 × 10-11) and at 7p11 with the lead SNP rs7457728 (P = 1.2 × 10-8). In 5q14, the chromatin region of the GWAS-significant SNPs was found to be in contact with the promoter of the ARRDC3 (arrestin domain-containing 3) gene. In our functional studies, ARRDC3 knockdown in HeLa cells caused significant reductions in both cell growth and susceptibility to HPV16 pseudovirion infection, suggesting that ARRDC3 is involved in the infectious entry of HPV into the cell. Our study advances the understanding of host genes that are responsible for cervical cancer susceptibility and guides future research on HPV infection and cancer development.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Research Institute,National Center for Global Health and Medicine, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases,Musashimurayama-shi, Tokyo, Japan
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P.R. China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P.R. China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shuang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ni Li
- Program Office for Cancer Screening in Urban China, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P.R. China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P.R. China
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shusaku Inoue
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Sana Yokoi
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan.,Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Dong Hang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mika Mizuno
- Department of Gynecological Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases,Musashimurayama-shi, Tokyo, Japan
| | - Peng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Naotake Tanaka
- Division of Gynecology, Chiba Cancer Center, Chiba, Japan
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Aichi, Japan.,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P.R. China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P.R. China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
35
|
Xu S, Feng Y, Zhao S. Proteins with Evolutionarily Hypervariable Domains are Associated with Immune Response and Better Survival of Basal-like Breast Cancer Patients. Comput Struct Biotechnol J 2019; 17:430-440. [PMID: 30996822 PMCID: PMC6451114 DOI: 10.1016/j.csbj.2019.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/21/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022] Open
Abstract
Maltase-glucoamylase (MGAM) and MGAM2 both belong to the glycoside hydrolase family 31. MGAM, a therapeutic target for type 2 diabetes, is α-1,4-glucosidase and expressed in the intestine to catalyze starch digestion. MGAM2, however, is largely uncharacterized. By investigating The Cancer Genome Atlas data, we found that among breast cancer subtypes, MGAM2 expression is nearly exclusive to basal-like breast cancers (BLBCs), whereas MGAM tends to express in luminal A breast cancers. Moreover, MGAM2 expression is associated with better patient survival and correlated with immune genes/signatures, unlike MGAM. Both genes have emerged in mammals, but diverged after the placental-marsupial split. In placentals, MGAM2 has likely lost its α-1,4-glucosidase activity due to mutations in key catalytic sites, and has acquired a large domain that is extracellular, threonine-rich and evolutionarily hypervariable (EHV). Guided by MGAM2 findings, our genome-wide search identified >1000 human proteins with EHV regions. These proteins are enriched in immune functions and molecules, including major histocompatibility complex proteins. Their genes are expressed higher in BLBCs and are associated with better patient survival, like MGAM2. Their EHV-coding sequences are rich in simple repeats and harbor more cancer passenger mutations. In conclusion, MGAM2 diverges from MGAM structurally and likely functionally in placentals. MGAM2 is among >1000 human proteins with EHV regions and associated with immune response. We propose that these EHV molecules may have significant implication in cancer immunotherapy and BLBC treatment.
Collapse
Affiliation(s)
- Shutan Xu
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602-7229, USA
| | - Yuan Feng
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602-7229, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602-7229, USA
| |
Collapse
|
36
|
The Role of Arrestin Domain-Containing 3 in Regulating Endocytic Recycling and Extracellular Vesicle Sorting of Integrin β4 in Breast Cancer. Cancers (Basel) 2018; 10:cancers10120507. [PMID: 30545011 PMCID: PMC6315883 DOI: 10.3390/cancers10120507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 11/24/2022] Open
Abstract
Despite the established role of integrin β4 (ITG β4) in breast cancer progression, the importance of endocytic recycling of ITG β4 and its regulatory mechanism are poorly understood. Here, we found that a sub-population of ITG β4 is sorted into early endosomes, recycled back to the plasma membrane, and secreted in the form of extracellular vesicles (EVs) upon EGF treatment in triple negative breast cancer (TNBC) cells. A metastasis suppressor, ARRDC3 (arrestin domain-containing 3) prevents EGF-driven endocytic recycling of ITG β4 by inducing NEDD4-dependent ubiquitination of ITG β4 and targeting endosomal ITG β4 into lysosomes. Endocytic recycling of ITG β4 is linked to sorting of ITG β4 into EVs (ITG β4+ EVs). ITG β4+ EVs are mainly detectable from supernatants of TNBC cells and their production is inhibited by ARRDC3 expression. ARRDC3 reduces the metastatic potentials of breast cancer cell-derived EVs by reducing ITG β4 levels in EVs. Overall, current studies provide novel mechanistic insights on the regulatory mechanism of ITG β4 recycling, and its importance in invasive potentials of TNBC EVs, thus providing the basis for therapeutic targeting of the ARRDC3/ITG β4 pathway in TNBC.
Collapse
|
37
|
Arakaki AKS, Pan WA, Trejo J. GPCRs in Cancer: Protease-Activated Receptors, Endocytic Adaptors and Signaling. Int J Mol Sci 2018; 19:ijms19071886. [PMID: 29954076 PMCID: PMC6073120 DOI: 10.3390/ijms19071886] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large diverse family of cell surface signaling receptors implicated in various types of cancers. Several studies indicate that GPCRs control many aspects of cancer progression including tumor growth, invasion, migration, survival and metastasis. While it is known that GPCR activity can be altered in cancer through aberrant overexpression, gain-of-function activating mutations, and increased production and secretion of agonists, the precise mechanisms of how GPCRs contribute to cancer progression remains elusive. Protease-activated receptors (PARs) are a unique class of GPCRs implicated in cancer. PARs are a subfamily of GPCRs comprised of four members that are irreversibly activated by proteolytic cleavage induced by various proteases generated in the tumor microenvironment. Given the unusual proteolytic irreversible activation of PARs, expression of receptors at the cell surface is a key feature that influences signaling responses and is exquisitely controlled by endocytic adaptor proteins. Here, we discuss new survey data from the Cancer Genome Atlas and the Genotype-Tissue Expression projects analysis of expression of all PAR family member expression in human tumor samples as well as the role and function of the endocytic sorting machinery that controls PAR expression and signaling of PARs in normal cells and in cancer.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Biomedical Sciences Graduate Program, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
38
|
He P, Li K, Li SB, Hu TT, Guan M, Sun FY, Liu WW. Upregulation of AKAP12 with HDAC3 depletion suppresses the progression and migration of colorectal cancer. Int J Oncol 2018; 52:1305-1316. [PMID: 29484387 DOI: 10.3892/ijo.2018.4284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/16/2018] [Indexed: 11/05/2022] Open
Abstract
A-kinase anchor protein 12 (AKAP12; also known as Gravin) functions as a tumor suppressor in several human primary cancers. However, the potential correlation between histone deacetylase 3 (HDAC3) and AKAP12 and the underlying mechanisms remain unclear. Thus, in this study, in an aim to shed light into this matter, the expression levels of HDAC3 and AKAP12 in 96 colorectal cancer (CRC) and adjacent non-cancerous tissues, as well as in SW480 cells were examined by immunohistochemical, RT-qPCR and western blot analyses. The effects of HDAC3 and AKAP12 on the proliferation, apoptosis and metastasis of CRC cells were examined by cell counting kit-8 (CCK-8) assay, colony formation assays, flow cytometry, cell cycle analysis and Transwell assays. The results revealed that the reduction or loss of AKAP12 expression was detected in 69 (71.8%) of the 96 tissue specimens, whereas HDAC3 was upregulated in 50 (52.1%) of the 96 tumor tissue specimens. AKAP12 expression was markedly increased upon treatment with the HDAC3 inhibitors, trichostatin A (TSA) and RGFP966, at both the mRNA and protein level. Mechanistically, the direct binding of HDAC3 within the intron-1 region of AKAP12 was identified to be indispensable for the inhibition of AKAP12 expression. Moreover, the proliferation, colony-forming ability, cell cycle progression and the migration of the CRC cells were found to be promoted in response to AKAP12 silencing or AKAP12/HDAC3 co-silencing, whereas transfection with si-HDAC3 yielded opposite effects. Apart from the elevated expression of the anti-apoptotic protein, Bcl-2, after AKAP12 knockdown, the increased activity of PI3K/AKT signaling was found to be indispensable for AKAP12-mediated colony formation and migration. On the whole, these findings indicate that AKAP12 may be a potential prognostic predictor and therapeutic target for the treatment of CRC in combination with HDAC3.
Collapse
Affiliation(s)
- Ping He
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Ke Li
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Shi-Bao Li
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221100, P.R. China
| | - Ting-Ting Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Fen-Yong Sun
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Wei-Wei Liu
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| |
Collapse
|
39
|
Arakaki AKS, Pan WA, Lin H, Trejo J. The α-arrestin ARRDC3 suppresses breast carcinoma invasion by regulating G protein-coupled receptor lysosomal sorting and signaling. J Biol Chem 2018; 293:3350-3362. [PMID: 29348172 DOI: 10.1074/jbc.ra117.001516] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/16/2018] [Indexed: 12/17/2022] Open
Abstract
Aberrant G protein-coupled receptor (GPCR) expression and activation has been linked to tumor initiation, progression, invasion, and metastasis. However, compared with other cancer drivers, the exploitation of GPCRs as potential therapeutic targets has been largely ignored, despite the fact that GPCRs are highly druggable. Therefore, to advance the potential status of GPCRs as therapeutic targets, it is important to understand how GPCRs function together with other cancer drivers during tumor progression. We now report that the α-arrestin domain-containing protein-3 (ARRDC3) acts as a tumor suppressor in part by controlling signaling and trafficking of the GPCR, protease-activated receptor-1 (PAR1). In a series of highly invasive basal-like breast carcinomas, we found that expression of ARRDC3 is suppressed whereas PAR1 is aberrantly overexpressed because of defective lysosomal sorting that results in persistent signaling. Using a lentiviral doxycycline-inducible system, we demonstrate that re-expression of ARRDC3 in invasive breast carcinoma is sufficient to restore normal PAR1 trafficking through the ALG-interacting protein X (ALIX)-dependent lysosomal degradative pathway. We also show that ARRDC3 re-expression attenuates PAR1-stimulated persistent signaling of c-Jun N-terminal kinase (JNK) in invasive breast cancer. Remarkably, restoration of ARRDC3 expression significantly reduced activated PAR1-induced breast carcinoma invasion, which was also dependent on JNK signaling. These findings are the first to identify a critical link between the tumor suppressor ARRDC3 and regulation of GPCR trafficking and signaling in breast cancer.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- From the Biomedical Sciences Graduate Program and.,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Huilan Lin
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
40
|
xiao J, Shi Q, Li W, Mu X, Peng J, Li M, Chen M, Huang H, Wang C, Gao K, Fan J. ARRDC1 and ARRDC3 act as tumor suppressors in renal cell carcinoma by facilitating YAP1 degradation. Am J Cancer Res 2018; 8:132-143. [PMID: 29416926 PMCID: PMC5794727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023] Open
Abstract
The α-arrestins domain-containing 1 and 3 (ARRDC1 and ARRDC3) are two members of the α-arrestins family. Yes-associated protein 1 (YAP1) is a key downstream transcription co-activator of the Hippo pathway essential for cancer initiation, progression, or metastasis in clear cell renal cell carcinoma (ccRCC). The aim of this work was to elucidate the role of the α-arrestins in ccRCC tumorigenesis by identifying molecular interacting factors and exploring potential mechanisms. In this study, we identified YAP1 as a novel ARRDC3 interacting protein in RCC cells through tandem affinity purification and mass spectrometry. We confirmed that ARRDC1 and ARRDC3, but not other α-arrestin family proteins, interact with YAP1. Binding of ARRDC1/3 to YAP1 is mediated through the WW domains of YAP1 and the PPXY motifs of ARRDC1/3. Functional analysis of ARRDC1/3 by lentiviral shRNA revealed a role for ARRDC1/3 in suppression of cell growth, migration, invasion and epithelial-mesenchymal transition in ccRCC cells, and these effects were mediated, at least in part, through YAP1. Mechanically, ARRDC1/3 negatively regulates YAP1 protein stability by facilitating E3 ubiquitin ligase Itch-mediated ubiquitination and degradation of YAP1. Moreover, ARRDC1/3 mRNA levels were significantly downregulated in ccRCC specimens. A negative correlation was identified between ARRDC3 and YAP1 expression in ccRCC specimens by immunohistochemistry. This study revealed a novel mechanism for ARRDC1/3 in the regulation of YAP1 stability and provided insight in understanding the relationship between ARRDC1/3 downregulation and aberrant Hippo-YAP1 pathway activation in ccRCC.
Collapse
Affiliation(s)
- Jiantao xiao
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Qing Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan UniversityShanghai, China
| | - Weiguo Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Jintao Peng
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Mingzi Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Mulin Chen
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Huabing Huang
- Department of Urology, Yiwu Tianxiang East HospitalYiwu, Province of Zhejiang, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan UniversityShanghai, China
| | - Kun Gao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai, China
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| |
Collapse
|
41
|
Soung YH, Kashyap T, Nguyen T, Yadav G, Chang H, Landesman Y, Chung J. Selective Inhibitors of Nuclear Export (SINE) compounds block proliferation and migration of triple negative breast cancer cells by restoring expression of ARRDC3. Oncotarget 2017; 8:52935-52947. [PMID: 28881784 PMCID: PMC5581083 DOI: 10.18632/oncotarget.17987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/06/2017] [Indexed: 11/25/2022] Open
Abstract
Arrestin-related domain-containing protein-3 (ARRDC3) is one of 6 mammalian arrestins, which suppresses metastasis by inducing degradation of phosphorylated β2-adrenergic receptor (β2 AR) and integrin β4 (ITG β4). Our previous studies demonstrated that expression of ARRDC3 is epigentically silenced in Triple Negative Breast Cancer (TNBC) cells, and the forced expression of ARRDC3 significantly reduced the invasive potential of TNBC cells. In the current study, we found that Selective Inhibitors of Nuclear Export (SINE) compounds (KPT-185 and selinexor (KPT-330)) restore ARRDC3 expression in TNBC cell lines (MDA-MB-231 and MDA-MB-468) at both the mRNA and protein level in a dose and time course dependent manner. SINE compounds inhibit the proliferation, pro-invasive migration and anchorage independent growth of the TNBC cells by restoring ARRDC3 expression. We found that ARRDC3 expression is lower in TNBC cell lines than those of luminal breast cancer cell lines, and inversely correlated with IC50s of selinexor. Analysis of tissue microarray confirmed that ARRDC3 expression in patient samples is significantly lower in the majority of TNBC tumors relative to normal tissue. In vivo, selinexor inhibited the tumor growth of MDA-MB-231 xenografts by nearly 100% compared with vehicle treated animals. Furthermore, immunohistochemical analysis of TNBC tumors from selinexor treated mice revealed increased ARRDC3 expression versus vehicle treated animals. Our results suggest that restoration of ARRDC3 expression is an important antineoplastic mechanism of SINE compounds in TNBC, and therefore selinexor could be an effective treatment option for breast tumors with down-regulated ARRDC3.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA
| | | | - Thalia Nguyen
- University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Garima Yadav
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA
| | - Hua Chang
- Karyopharm Therapeutics, Inc. Newton, MA 02459, USA
| | | | - Jun Chung
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
42
|
Sundriyal S, Moniot S, Mahmud Z, Yao S, Di Fruscia P, Reynolds CR, Dexter DT, Sternberg MJE, Lam EWF, Steegborn C, Fuchter MJ. Thienopyrimidinone Based Sirtuin-2 (SIRT2)-Selective Inhibitors Bind in the Ligand Induced Selectivity Pocket. J Med Chem 2017; 60:1928-1945. [PMID: 28135086 PMCID: PMC6014686 DOI: 10.1021/acs.jmedchem.6b01690] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/06/2023]
Abstract
Sirtuins (SIRTs) are NAD-dependent deacylases, known to be involved in a variety of pathophysiological processes and thus remain promising therapeutic targets for further validation. Previously, we reported a novel thienopyrimidinone SIRT2 inhibitor with good potency and excellent selectivity for SIRT2. Herein, we report an extensive SAR study of this chemical series and identify the key pharmacophoric elements and physiochemical properties that underpin the excellent activity observed. New analogues have been identified with submicromolar SIRT2 inhibtory activity and good to excellent SIRT2 subtype-selectivity. Importantly, we report a cocrystal structure of one of our compounds (29c) bound to SIRT2. This reveals our series to induce the formation of a previously reported selectivity pocket but to bind in an inverted fashion to what might be intuitively expected. We believe these findings will contribute significantly to an understanding of the mechanism of action of SIRT2 inhibitors and to the identification of refined, second generation inhibitors.
Collapse
Affiliation(s)
- Sandeep Sundriyal
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K.
| | - Sébastien Moniot
- Department of Biochemistry, University
of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Zimam Mahmud
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Shang Yao
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Paolo Di Fruscia
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K.
| | | | - David T. Dexter
- Centre for Neuroinflammation & Neurodegeneration,
Division of Brain Sciences, Imperial College
London, London W12 0NN, U.K.
| | | | - Eric W.-F. Lam
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Clemens Steegborn
- Department of Biochemistry, University
of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | | |
Collapse
|
43
|
Luo J, Bao YC, Ji XX, Chen B, Deng QF, Zhou SW. SPOP promotes SIRT2 degradation and suppresses non-small cell lung cancer cell growth. Biochem Biophys Res Commun 2017; 483:880-884. [PMID: 28073696 DOI: 10.1016/j.bbrc.2017.01.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 11/17/2022]
Abstract
SIRT2 is a NAD-dependent deacetylase and inhibition of SIRT2 has a broad anticancer activity. Here we report that SPOP binds to SIRT2 and mediates its degradation by the 26S proteasome, which can be blocked by MG132 treatment. We also found that the levels of SPOP significantly decreased, while the levels of SIRT2 significantly increased in non-small cell lung cancer (NSCLC) cell lines, compared to normal bronchial epithelial cell line and NSCLC specimens, compared to the paired non-tumor lung tissue. Furthermore, SPOP can suppress NSCLC cell growth. Notably, mutations in NSCLC inhibit the abilities of SPOP to degrade SIRT2 and suppress NSCLC cell growth. These results reveal a novel regulation of SIRT2 by SPOP mediated degradation, which is important for the growth of lung tumor cells.
Collapse
Affiliation(s)
- Jie Luo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, China
| | - Yu-Chen Bao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, China
| | - Xian-Xiu Ji
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, China
| | - Qin-Fang Deng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, China
| | - Song-Wen Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, China.
| |
Collapse
|
44
|
Jing H, Hu J, He B, Negrón Abril YL, Stupinski J, Weiser K, Carbonaro M, Chiang YL, Southard T, Giannakakou P, Weiss RS, Lin H. A SIRT2-Selective Inhibitor Promotes c-Myc Oncoprotein Degradation and Exhibits Broad Anticancer Activity. Cancer Cell 2016; 29:297-310. [PMID: 26977881 PMCID: PMC4811675 DOI: 10.1016/j.ccell.2016.02.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/03/2015] [Accepted: 02/08/2016] [Indexed: 12/23/2022]
Abstract
Targeting sirtuins for cancer treatment has been a topic of debate due to conflicting reports and lack of potent and specific inhibitors. We have developed a thiomyristoyl lysine compound, TM, as a potent SIRT2-specific inhibitor with a broad anticancer effect in various human cancer cells and mouse models of breast cancer. Mechanistically, SIRT2 inhibition promotes c-Myc ubiquitination and degradation. The anticancer effect of TM correlates with its ability to decrease c-Myc level. TM had limited effects on non-cancerous cells and tumor-free mice, suggesting that cancer cells have an increased dependency on SIRT2 that can be exploited for therapeutic benefit. Our studies demonstrate that SIRT2-selective inhibitors are promising anticancer agents and may represent a general strategy to target certain c-Myc-driven cancers.
Collapse
Affiliation(s)
- Hui Jing
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jing Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bin He
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jack Stupinski
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Keren Weiser
- Division of Hematology & Medical Oncology, Weill Medical College of Cornell University, 1300 York Avenue, C610C, New York, NY 10065-4896, USA
| | - Marisa Carbonaro
- Division of Hematology & Medical Oncology, Weill Medical College of Cornell University, 1300 York Avenue, C610C, New York, NY 10065-4896, USA
| | - Ying-Ling Chiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Teresa Southard
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Paraskevi Giannakakou
- Division of Hematology & Medical Oncology, Weill Medical College of Cornell University, 1300 York Avenue, C610C, New York, NY 10065-4896, USA
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
46
|
Abstract
Sirtuins are a class of enzymes with nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacylase function. By deacylating various substrate proteins, including histones, transcription factors, and metabolic enzymes, sirtuins regulate various biological processes, such as transcription, cell survival, DNA damage and repair, and longevity. Small molecules that can inhibit sirtuins have been developed and many of them have shown anticancer activity. Here, we summarize the major biological findings that connect sirtuins to cancer and the different types of sirtuin inhibitors developed. Interestingly, biological data suggest that sirtuins have both tumor-suppressing and tumor-promoting roles. However, most pharmacological studies with small-molecule inhibitors suggest that inhibiting sirtuins has anticancer effects. We discuss possible explanations for this discrepancy and suggest possible future directions to further establish sirtuin inhibitors as anticancer agents.
Collapse
|
47
|
Wang D, Yang PN, Chen J, Zhou XY, Liu QJ, Li HJ, Li CL. Promoter hypermethylation may be an important mechanism of the transcriptional inactivation of ARRDC3, GATA5, and ELP3 in invasive ductal breast carcinoma. Mol Cell Biochem 2014; 396:67-77. [PMID: 25148870 DOI: 10.1007/s11010-014-2143-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/11/2014] [Indexed: 12/24/2022]
Abstract
Hypermethylation of promoter CpG islands represents an alternative mechanism to inactivate tumor suppressor genes. This study was to detect promoter methylation status and mRNA expression levels of ARRDC3, ELP3, GATA5, and PAX6, and to explore the association between methylation and expression in invasive ductal carcinomas (IDCs) and matched normal tissues (MNTs) from breast cancer patients. Aberrant gene methylation was observed as follows: ARRDC3 in 38.5 %, ELP3 in 73.1 %, GATA5 in 48.1 %, and PAX6 in 50.0 % of IDCs. mRNA expression of ARRDC3, ELP3, and GATA5 in IDCs showed a lower level than that in MNTs (P < 0.001, P = 0.001 and P < 0.001, respectively). For ARRDC3, both methylated and unmethylated IDCs showed significantly lower expression values compared to MNTs (P = 0.001 and P = 0.007, respectively). For ELP3 and GATA5, methylated tumors only showed significantly lower expression values compared to MNTs (P = 0.001 and P < 0.001, respectively). For ARRDC3 and GATA5, methylation was associated with their less fold change in IDCs (P = 0.049 and P = 0.020, respectively). Methylation of ARRDC3 was significantly associated with grades and lymph node status of IDCs (P = 0.036 and P = 0.002, respectively). Methylation frequency of ELP3 was higher in lymph node positive versus lymph node negative tumors (P = 0.020); whereas methylation frequency of PAX6 was lower in tumors with the ER negative samples (P = 0.025). Our data suggested that promoter hypermethylation may be an important mechanism of the transcriptional inactivation of ARRDC3, GATA5, and ELP3 in IDCs.
Collapse
Affiliation(s)
- Da Wang
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Noh H, Park C, Park S, Lee YS, Cho SY, Seo H. Prediction of miRNA-mRNA associations in Alzheimer's disease mice using network topology. BMC Genomics 2014; 15:644. [PMID: 25086961 PMCID: PMC4132902 DOI: 10.1186/1471-2164-15-644] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/08/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Little is known about the relationship between miRNA and mRNA expression in Alzheimer's disease (AD) at early- or late-symptomatic stages. Sequence-based target prediction algorithms and anti-correlation profiles have been applied to predict miRNA targets using omics data, but this approach often leads to false positive predictions. Here, we applied the joint profiling analysis of mRNA and miRNA expression levels to Tg6799 AD model mice at 4 and 8 months of age using a network topology-based method. We constructed gene regulatory networks and used the PageRank algorithm to predict significant interactions between miRNA and mRNA. RESULTS In total, 8 cluster modules were predicted by the transcriptome data for co-expression networks of AD pathology. In total, 54 miRNAs were identified as being differentially expressed in AD. Among these, 50 significant miRNA-mRNA interactions were predicted by integrating sequence target prediction, expression analysis, and the PageRank algorithm. We identified a set of miRNA-mRNA interactions that were changed in the hippocampus of Tg6799 AD model mice. We determined the expression levels of several candidate genes and miRNA. For functional validation in primary cultured neurons from Tg6799 mice (MT) and littermate (LM) controls, the overexpression of ARRDC3 enhanced PPP1R3C expression. ARRDC3 overexpression showed the tendency to decrease the expression of miR139-5p and miR3470a in both LM and MT primary cells. Pathological environment created by Aβ treatment increased the gene expression of PPP1R3C and Sfpq but did not significantly alter the expression of miR139-5p or miR3470a. Aβ treatment increased the promoter activity of ARRDC3 gene in LM primary cells but not in MT primary cells. CONCLUSIONS Our results demonstrate AD-specific changes in the miRNA regulatory system as well as the relationship between the expression levels of miRNAs and their targets in the hippocampus of Tg6799 mice. These data help further our understanding of the function and mechanism of various miRNAs and their target genes in the molecular pathology of AD.
Collapse
Affiliation(s)
| | | | | | | | - Soo Young Cho
- Department of Molecular & Life Sciences, Hanyang University, 1271 Sa-dong, Sangrok-gu, Ansan, Gyeonggi-do, South Korea.
| | | |
Collapse
|