1
|
Kaewpaeng N, Wongwan S, Pansooksan K, Chailom C, Chaisupasakul P, Pekthong D, Nuengchamnong N, Jiang ZH, Bai LP, Srisawang P, Parhira S. HPLC-MS standardization and validation methods for determination of calactin content in dichloromethane fraction of Calotropis gigantea (L.) Dryand. ( Niu jiao gua) stem bark and its application in prediction of anticancer activities. Heliyon 2025; 11:e41963. [PMID: 39916826 PMCID: PMC11795781 DOI: 10.1016/j.heliyon.2025.e41963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
Calactin, a doubly-linked cardenolide, is commonly found in Apocynaceae family including Calotropis gigantea (L.) Dryand. (Niu jiao gua, C. gigantea). This phytochemical has gained recognition for its potential as an anticancer agent and a marker for anticancer properties. Our previous reports demonstrated the remarkable anti-liver and anti-colon cancer activities both in vitro and in vivo of the dichloromethane fraction from the stem barks of C. gigantea (CGD). However, quantitative analysis of calactin content in CGD by using a high-performance liquid chromatography (HPLC) - ultraviolet (UV) method was limited. Therefore, this study aimed to develop more sensitive and reliable method for measurement of calactin in CGD by using a HPLC- electrospray ionization mass spectrometry (ESI-MS) for its application on quality control and prediction of anticancer activity of CGD. The study utilized a HPLC-ESI-MS system, negative mode, for standardization and validation. An octadecylsilane column and a mixture of acetonitrile and water containing 0.1 % formic acid in gradient system were used as a stationary phase and a mobile phase, respectively. The method was validated in terms of linearity, accuracy, precision, recovery, limit of detection (LOD), and limit of quantitation (LOQ). The linearity of the developed technique was verified within the calactin concentrations range from 1 to 50 μg/mL, exhibiting a linear coefficient of determination (R2) greater than 0.998. The LOD and LOQ were 0.1 and 1 μg/mL, respectively. The proposed methodology met the acceptance criteria according to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guideline Q2(R1). Therefore, the method was suitable for the quality control of CGD. Additionally, we suggest applying the established protocol to quantify the calactin contents in CGDs collected over a period of one year (12 months) to investigate the correlation to their cytotoxicities against human cell lines derived from colon cancer (HCT116), human hepatoblastoma (HepG2) and human cell line derived from stomach cancer metastasized to liver (MKN74). This will help in predicting its cytotoxicity against HCT116, HepG2 and MKN74. In summary, the established HPLC-ESI-MS method is suitable for both quality control and predicting of CGD anticancer activities for further utilization.
Collapse
Affiliation(s)
- Naphat Kaewpaeng
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, 65000, Phitsanulok, Thailand
| | - Sudaporn Wongwan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Phitsanulok, Thailand
| | - Khemmachat Pansooksan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, 65000, Phitsanulok, Thailand
| | - Chanakan Chailom
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, 65000, Phitsanulok, Thailand
| | - Pattaraporn Chaisupasakul
- Center of Excellence for Innovation in Chemistry, Naresuan University, 65000, Phitsanulok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, 65000, Phitsanulok, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, 65000, Phitsanulok, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Phitsanulok, Thailand
| | | | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Piyarat Srisawang
- Center of Excellence for Innovation in Chemistry, Naresuan University, 65000, Phitsanulok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, 65000, Phitsanulok, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, 65000, Phitsanulok, Thailand
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, 65000, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Phitsanulok, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, 65000, Phitsanulok, Thailand
| |
Collapse
|
2
|
He YL, Yang HY, Zhang L, Gong Z, Li GL, Gao K. Research Progress on Plant-Derived Cardenolides (2010-2023). Chem Biodivers 2024; 21:e202401460. [PMID: 39152549 DOI: 10.1002/cbdv.202401460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
Cardenolides are a class of steroidal glycoside compounds that are mainly distributed in plants, have significant physiological activity in the heart, and have been used clinically for over 200 years. To provide a reference for further research and development of these compounds, the phytochemical and biological properties of natural cardenolides (295 compounds in total) isolated between 2010 and 2023 from 17 families and hundreds of species belonging to 70-80 genera were reviewed. In vitro and in vivo studies have indicated that antitumor, antibacterial, and antiviral activities are the most commonly reported pharmacological properties of cardenolides. Antitumor activities have been thoroughly studied to understand their structure-activity relationships, revealing numerous potential anticancer molecules that lay the theoretical foundation for further development of traditional Chinese medicinal herbs and the creation of new drugs.
Collapse
Affiliation(s)
- Yi-Lin He
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hong-Ying Yang
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lei Zhang
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Zheng Gong
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Guo-Li Li
- Research Institute, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
3
|
Djerdjouri A, Abbad M, Boumrah Y, Malik S, Makhzoum A, Lakhdar K. Tapping the potential of Calotropis procera hairy roots for cardiac glycosides production and their identification using UHPLC/QTOF-MS. 3 Biotech 2024; 14:199. [PMID: 39144068 PMCID: PMC11319682 DOI: 10.1007/s13205-024-04035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/14/2024] [Indexed: 08/16/2024] Open
Abstract
The present work deals with the establishment of hairy root cultures from different explants of C. procera using Agrobacterium rhizogenes strain A4. A high transformation frequency (95%) was obtained from leaves followed by cotyledons (81.6%) and hypocotyls (38.3%). Genetic transformation of hairy roots was confirmed through PCR by amplifying a 400 bp fragment of the rolB gene. Hairy roots were highly branched, possessed plagiotropic and rapid growth on hormone-free ½ B5 medium. Ten cardiac glycosides, including calotropagenin, calotoxin, frugoside, coroglaucigenin, calotropin, calactin, uzarigenin, asclepin, uscharidin, and uscharin, based on their specific masses and fragmentation properties were identified in ethanolic extracts of hairy roots by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry UHPLC/QTOF-MS. This protocol could be used as a powerful tool for large-scale in vitro production of highly valued cardiac glycosides and for further transcriptomics or metabolomics studies.
Collapse
Affiliation(s)
- Amina Djerdjouri
- École Nationale Supérieure Agronomique (ES1603), Laboratoire des Ressources Génétiques et Biotechnologie, 16200 Alger, Algérie
| | - Mohamed Abbad
- Université de Blida1, Faculté des Sciences de la Nature et de la Vie, Département des Biotechnologies, Laboratoire de biotechnologie des productions végétales, Blida, BP 270, Route de Soumaâ, 09000 Algérie
| | - Yacine Boumrah
- Institut National de Criminalistique et de Criminologie, (INCC/GN), Bouchaoui, Alger, Algérie
| | - Sonia Malik
- Department of Biotechnology, Baba Farid College, Bathinda, India
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Khelifi Lakhdar
- École Nationale Supérieure Agronomique (ES1603), Laboratoire des Ressources Génétiques et Biotechnologie, 16200 Alger, Algérie
| |
Collapse
|
4
|
Li R, Han Q, Li X, Liu X, Jiao W. Natural Product-Derived Phytochemicals for Influenza A Virus (H1N1) Prevention and Treatment. Molecules 2024; 29:2371. [PMID: 38792236 PMCID: PMC11124286 DOI: 10.3390/molecules29102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza A (H1N1) viruses are prone to antigenic mutations and are more variable than other influenza viruses. Therefore, they have caused continuous harm to human public health since the pandemic in 2009 and in recent times. Influenza A (H1N1) can be prevented and treated in various ways, such as direct inhibition of the virus and regulation of human immunity. Among antiviral drugs, the use of natural products in treating influenza has a long history, and natural medicine has been widely considered the focus of development programs for new, safe anti-influenza drugs. In this paper, we focus on influenza A (H1N1) and summarize the natural product-derived phytochemicals for influenza A virus (H1N1) prevention and treatment, including marine natural products, flavonoids, alkaloids, terpenoids and their derivatives, phenols and their derivatives, polysaccharides, and derivatives of natural products for prevention and treatment of influenza A (H1N1) virus. We further discuss the toxicity and antiviral mechanism against influenza A (H1N1) as well as the druggability of natural products. We hope that this review will facilitate the study of the role of natural products against influenza A (H1N1) activity and provide a promising alternative for further anti-influenza A drug development.
Collapse
Affiliation(s)
- Ruichen Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Qianru Han
- Foreign Language Education Department, Zhengzhou Shuqing Medical College, Zhengzhou 450064, China;
| | - Xiaokun Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Xinguang Liu
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450003, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Weijie Jiao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
5
|
Chaisupasakul P, Pekthong D, Wangteeraprasert A, Kaewkong W, Somran J, Kaewpaeng N, Parhira S, Srisawang P. Combination of ethyl acetate fraction from Calotropis gigantea stem bark and sorafenib induces apoptosis in HepG2 cells. PLoS One 2024; 19:e0300051. [PMID: 38527038 PMCID: PMC10962855 DOI: 10.1371/journal.pone.0300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
The cytotoxicity of the ethyl acetate fraction of the Calotropis gigantea (L.) Dryand. (C. gigantea) stem bark extract (CGEtOAc) has been demonstrated in many types of cancers. This study examined the improved cancer therapeutic activity of sorafenib when combined with CGEtOAc in HepG2 cells. The cell viability and cell migration assays were applied in HepG2 cells treated with varying concentrations of CGEtOAc, sorafenib, and their combination. Flow cytometry was used to determine apoptosis, which corresponded with a decline in mitochondrial membrane potential and activation of DNA fragmentation. Reactive oxygen species (ROS) levels were assessed in combination with the expression of the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) pathway, which was suggested for association with ROS-induced apoptosis. Combining CGEtOAc at 400 μg/mL with sorafenib at 4 μM, which were their respective half-IC50 concentrations, significantly inhibited HepG2 viability upon 24 h of exposure in comparison with the vehicle and each single treatment. Consequently, CGEtOAc when combined with sorafenib significantly diminished HepG2 migration and induced apoptosis through a mitochondrial-correlation mechanism. ROS production was speculated to be the primary mechanism of stimulating apoptosis in HepG2 cells after exposure to a combination of CGEtOAc and sorafenib, in association with PI3K/Akt/mTOR pathway suppression. Our results present valuable knowledge to support the development of anticancer regimens derived from the CGEtOAc with the chemotherapeutic agent sorafenib, both of which were administered at half-IC50, which may minimize the toxic implications of cancer treatments while improving the therapeutic effectiveness toward future medical applications.
Collapse
Affiliation(s)
- Pattaraporn Chaisupasakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | | | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Naphat Kaewpaeng
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
6
|
Zheng Z, Xu T, Liu Z, Tian W, Jiang ZH, Zhu GY, Li T, Gao J, Bai LP. Cryptolepine suppresses breast adenocarcinoma via inhibition of HIF-1 mediated glycolysis. Biomed Pharmacother 2022; 153:113319. [PMID: 35753261 DOI: 10.1016/j.biopha.2022.113319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
As a characteristic transcription factor in solid tumors, hypoxia inducible factor-1 (HIF-1) acts as a master regulator in breast cancer progression. Cryptolepine, as a natural alkaloid, noticeably inhibited HIF-1 transcriptional activity and decreased the protein expression of hypoxia-induced HIF-1α in breast cancer cells. Further study showed that cryptolepine blocked HIF-1-mediated glycolysis and suppressed the expression of multiple glycolysis enzymes, resulting in a decrease in ATP production in hypoxic T47D and 4T1 cells. Meanwhile, cryptolepine displayed potent suppressive effect on tumor growth in a dose-dependent manner. In 4T1 tumor xenografts, cryptolepine reduced HIF-1α protein expression, and thus decreased the levels of both lactate acid and ATP productions. The mechanistic study revealed that cryptolepine could effectively suppress the process of HIF-1α mRNA translation rather than transcription, which was attributed to the inhibition on the phosphorylation of eIF4E regulated by both MAPK and mTOR signaling pathways. Collectively, current findings suggested that cryptolepine possesses the potential to treat breast cancers by modulating HIF-1 both in vitro and in vivo.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China
| | - Ting Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China
| | - Zhiyan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China
| | - Wenyue Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), 999078, Macau, People's Republic of China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), 999078, Macau, People's Republic of China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China
| | - Jin Gao
- IncreasePharm (Hengqin) Institute Co., Ltd, Zhu Hai, Guangdong 519031, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), 999078, Macau, People's Republic of China.
| |
Collapse
|
7
|
Winitchaikul T, Sawong S, Surangkul D, Srikummool M, Somran J, Pekthong D, Kamonlakorn K, Nangngam P, Parhira S, Srisawang P. Calotropis gigantea stem bark extract induced apoptosis related to ROS and ATP production in colon cancer cells. PLoS One 2021; 16:e0254392. [PMID: 34343190 PMCID: PMC8330925 DOI: 10.1371/journal.pone.0254392] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Conventional chemotherapeutic agents for colorectal cancer (CRC) cause systemic side effects and eventually become less efficacious owing to the development of drug resistance in cancer cells. Therefore, new therapeutic regimens have focused on the use of natural products. The anticancer activity of several parts of Calotropis gigantea has been reported; however, the effects of its stem bark extract on inhibition of cancer cell proliferation have not yet been examined. In this study, the anticancer activity of C. gigantea stem bark extract, both alone and in combination with 5-fluorouracil (5-FU), was evaluated. A crude ethanolic extract was prepared from dry, powdered C. gigantea barks using 95% ethanol. This was then partitioned to obtain dichloromethane (CGDCM), ethyl acetate, and water fractions. Quantitative analysis of the constituent secondary metabolites and calotropin was performed. These fractions exhibited cytotoxicity in HCT116 and HT-29 cells, with CGDCM showing the highest potency in both the cell lines. A combination of CGDCM and 5-FU significantly enhanced the cytotoxic effect. Moreover, the resistance of normal fibroblast, HFF-1, cells to this combination demonstrated its safety in normal cells. The combination significantly enhanced apoptosis through the mitochondria-dependent pathway. Additionally, the combination reduced adenosine triphosphate production and increased the production of reactive oxygen species, demonstrating the mechanisms involved in the induction of apoptosis. Our results suggest that CGDCM is a promising anti-cancer agent and may enhance apoptosis induction by 5-FU in the treatment of CRC, while minimizing toxicity toward healthy cells.
Collapse
Affiliation(s)
- Thanwarat Winitchaikul
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
| | - Suphunwadee Sawong
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
| | - Damratsamon Surangkul
- Faculty of Medical Science, Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | - Metawee Srikummool
- Faculty of Medical Science, Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | - Julintorn Somran
- Faculty of Medicine, Department of Pathology, Naresuan University, Phitsanulok, Thailand
| | - Dumrongsak Pekthong
- Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Naresuan University, Phitsanulok, Thailand
| | - Kittiya Kamonlakorn
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry and Pharmacognosy, Naresuan University, Phitsanulok, Thailand
| | - Pranee Nangngam
- Faculty of Science, Department of Biology, Naresuan University, Phitsanulok, Thailand
| | - Supawadee Parhira
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, Thailand
- * E-mail: (SP); (PS)
| | - Piyarat Srisawang
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
- * E-mail: (SP); (PS)
| |
Collapse
|
8
|
Zheng Z, Zhou Z, Zhang Q, Zhou X, Yang J, Yang MR, Zhu GY, Jiang ZH, Li T, Lin Q, Bai LP. Non-classical cardenolides from Calotropis gigantea exhibit anticancer effect as HIF-1 inhibitors. Bioorg Chem 2021; 109:104740. [PMID: 33626453 DOI: 10.1016/j.bioorg.2021.104740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Six new non-classical cardenolides (1-6), and seventeen known ones (7-23) were isolated from Calotropis gigantea. All cardenolides showed inhibitory effect on hypoxia inducible factor-1 (HIF-1) transcriptional activity with IC50 of 8.85 nM-16.69 µM except 5 and 7. The novel 19-dihydrocalotoxin (1) exhibited a comparable HIF-1 inhibitory activity (IC50 of 139.57 nM) to digoxin (IC50 of 145.77 nM), a well-studied HIF-1 inhibitor, and 11, 12, 14, 16 and 19 presented 1.4-15.4 folds stronger HIF-1 inhibition than digoxin. 1 and 11 showed a dose-dependent inhibition on HIF-1α protein, which led to their HIF-1 suppressing effects. Compared with LO2 and H9c2 normal cell lines, both 1 and 11 showed selective cytotoxicity against various cancer cell lines including HCT116, HeLa, HepG2, A549, MCF-7, A2780 and MDA-MB-231. Moreover, a comprehensive structure-activity relationship was concluded for these non-classical cardenolides as HIF-1 inhibitors, which may shed some light on the rational design and development of cardenolide-based anticancer drugs.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Zhongbo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China; School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| | - Qiulong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Xiaobo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Ji Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Ming-Rong Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Macau 999078, People's Republic of China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Macau 999078, People's Republic of China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Macau 999078, People's Republic of China
| | - Qianyu Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), Macau 999078, People's Republic of China.
| |
Collapse
|
9
|
Zhou X, Xiao R, Chen M, Bai L. Synthesis of Uscharin Oxime Analogues and Their Biological Evaluation as HIF‐1 Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202003586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiaobo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Riping Xiao
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Ming Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Li‐Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology)
| |
Collapse
|
10
|
Pathania S, Bansal P, Gupta P, Rawal RK. Genus Calotropis: A Hub of Medicinally Active Phytoconstituents. CURRENT TRADITIONAL MEDICINE 2020. [DOI: 10.2174/2215083805666190619095933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditional medicines derived from plant and other natural sources have several
advantages over synthetic drugs when used for the management of pathological conditions.
Natural product based therapies are safer than synthetic drugs-based chemotherapies. One of
such sources of bioactive molecules includes C. procera and C. gigantea, flowering herbal
plants, belonging to the genus Calotropis, family Apocynaceae, which, due to their diverse
pharmacological profile, have been widely employed in Ayurveda, Unani, Siddha and other
traditional systems for the treatment of various diseases. The various parts of this plant are
rich in phytoconstituents such as cardiac glycosides, flavonoids, terpenoids, steroids, phenolic
compounds, proteins etc. Due to the presence of multiple constituents, this plant possess
diverse biological activities such as analgesic, antitumor, antihelmintic, antioxidant, hepatoprotective,
antidiarrhoeal, anticonvulsant, antimicrobial, oestrogenic, antinociceptive, antimalarial
activity etc. The present review provides comprehensive information about various
phytochemical constituents of the plant along with their medicinal importance.
Collapse
Affiliation(s)
- Shelly Pathania
- Research Scholar, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab) 151001, India
| | - Parveen Bansal
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Prasoon Gupta
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Ravindra K. Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Ambala, Haryana, India
| |
Collapse
|
11
|
Biomedical Applications of Biogenic Zinc Oxide Nanoparticles Manufactured from Leaf Extracts of Calotropis gigantea (L.) Dryand. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00746-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Liu X, Zhang X, Peng Z, Li C, Wang Z, Wang C, Deng Z, Wu B, Cui Y, Wang Z, Cui C, Zheng M, Zhang L. Deubiquitylase OTUD6B Governs pVHL Stability in an Enzyme-Independent Manner and Suppresses Hepatocellular Carcinoma Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902040. [PMID: 32328410 PMCID: PMC7175249 DOI: 10.1002/advs.201902040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/29/2020] [Accepted: 02/13/2020] [Indexed: 06/04/2023]
Abstract
Hypoxia inducible factors (HIFs) are the key transcription factors that allow cancer cells to survive hypoxia. HIF's stability is mainly controlled by von Hippel-Lindau (pVHL)-mediated ubiquitylation. Unlike sporadic clear-cell renal carcinomas, VHL mutation is rarely observed in hepatocellular carcinoma (HCC) and the regulatory mechanisms of pVHL-HIF signaling remain elusive. Here, it is shown that deubiquitylase ovarian tumor domain-containing 6B (OTUD6B) suppresses HCC metastasis through inhibiting the HIF activity. OTUD6B directly interacts with pVHL, decreases its ubiquitylation and proteasomal degradation to reduce HIF-1α accumulation in HCC cells under hypoxia. Surprisingly, OTUD6B limits the ubiquitylation of pVHL independent of its deubiquitylase activity. OTUD6B couples pVHL and elongin B/C to form more CBCVHL ligase complex, which protects pVHL from proteasomal degradation. Depletion of OTUD6B results in the dissociation of CBCVHL complex and the degradation of pVHL by Trp Asp repeat and suppressors of cytokine signaling box-containing protein 1 (WSB1). In human HCC tissues, the protein level of OTUD6B is positively correlated with pVHL, but negatively with HIF-1α and vascular endothelial growth factor. Low expression of OTUD6B predicts poor patient survival. Furthermore, OTUD6B gene is a direct transcriptional target of HIF-1α and upregulated upon hypoxia. These results indicate a previously unrecognized feedback loop consisting of OTUD6B, pVHL, and HIF-1α, and provide insights into the targeted hypoxic microenvironment for HCC therapy.
Collapse
Affiliation(s)
- Xinxin Liu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Xiaoli Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Zhiqiang Peng
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Chunnan Li
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Ze Wang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Chanjuan Wang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Zhikang Deng
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Bo Wu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Yu Cui
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of EducationCollege of Life SciencesBeijing Normal UniversityBeijing100875China
| | - Chun‐Ping Cui
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310000China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhou310000China
| | - Lingqiang Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850China
| |
Collapse
|
13
|
Zhou X, Chen L, Jiang Z, Chen X, Luo P, Bai L. Synthesis of 21‐Alkylidenes and 21‐Alkylol Analogues of Uscharin and Their Effects on Intracellular Calcium in Cardiac Cells. ChemistrySelect 2019. [DOI: 10.1002/slct.201900108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaobo Zhou
- State Key Laboratory of Quality Research in Chinese Medicineand Macau Institute for Applied Research in Medicine and HealthMacau University of Science and Technology Taipa Macau
| | - Li Chen
- State Key Laboratory of Quality Research in Chinese Medicineand Macau Institute for Applied Research in Medicine and HealthMacau University of Science and Technology Taipa Macau
- Department of cardiac encephalopathyTraditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou Sichuan 646000 China
| | - Zhi‐Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicineand Macau Institute for Applied Research in Medicine and HealthMacau University of Science and Technology Taipa Macau
| | - Xiaoyi Chen
- State Key Laboratory of Quality Research in Chinese Medicineand Macau Institute for Applied Research in Medicine and HealthMacau University of Science and Technology Taipa Macau
| | - Pei Luo
- State Key Laboratory of Quality Research in Chinese Medicineand Macau Institute for Applied Research in Medicine and HealthMacau University of Science and Technology Taipa Macau
| | - Li‐Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicineand Macau Institute for Applied Research in Medicine and HealthMacau University of Science and Technology Taipa Macau
| |
Collapse
|
14
|
Liu J, Bai LP, Yang F, Yao X, Lei K, Kei Lam CW, Wu Q, Zhuang Y, Xiao R, Liao K, Kuok H, Li T, Liu L. Potent Antagonists of RORγt, Cardenolides from Calotropis gigantea, Exhibit Discrepant Effects on the Differentiation of T Lymphocyte Subsets. Mol Pharm 2018; 16:798-807. [PMID: 30592425 DOI: 10.1021/acs.molpharmaceut.8b01063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Fen Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Kawai Lei
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Yuxin Zhuang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Riping Xiao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Kangsheng Liao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Hioha Kuok
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, People’s Republic of China
| |
Collapse
|
15
|
Cui CP, Wong CCL, Kai AKL, Ho DWH, Lau EYT, Tsui YM, Chan LK, Cheung TT, Chok KSH, Chan ACY, Lo RCL, Lee JMF, Lee TKW, Ng IOL. SENP1 promotes hypoxia-induced cancer stemness by HIF-1α deSUMOylation and SENP1/HIF-1α positive feedback loop. Gut 2017; 66:2149-2159. [PMID: 28258134 PMCID: PMC5749365 DOI: 10.1136/gutjnl-2016-313264] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE We investigated the effect and mechanism of hypoxic microenvironment and hypoxia-inducible factors (HIFs) on hepatocellular carcinoma (HCC) cancer stemness. DESIGN HCC cancer stemness was analysed by self-renewal ability, chemoresistance, expression of stemness-related genes and cancer stem cell (CSC) marker-positive cell population. Specific small ubiquitin-like modifier (SUMO) proteases 1 (SENP1) mRNA level was examined with quantitative PCR in human paired HCCs. Immunoprecipitation was used to examine the binding of proteins and chromatin immunoprecipitation assay to detect the binding of HIFs with hypoxia response element sequence. In vivo characterisation was performed in immunocompromised mice and stem cell frequency was analysed. RESULTS We showed that hypoxia enhanced the stemness of HCC cells and hepatocarcinogenesis through enhancing HIF-1α deSUMOylation by SENP1 and increasing stabilisation and transcriptional activity of HIF-1α. Furthermore, we demonstrated that SENP1 is a direct target of HIF-1/2α and a previously unrecognised positive feedback loop exists between SENP1 and HIF-1α. CONCLUSIONS Taken together, our findings suggest the significance of this positive feedback loop between HIF-1α and SENP1 in contributing to the increased cancer stemness in HCC and hepatocarcinogenesis under hypoxia. Drugs that specifically target SENP1 may offer a potential novel therapeutic approach for HCC.
Collapse
Affiliation(s)
- Chun-Ping Cui
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Alan Ka-Lun Kai
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Eunice Yuen-Ting Lau
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Tan-To Cheung
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kenneth Siu-Ho Chok
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Albert C Y Chan
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Regina Cheuk-Lam Lo
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Terence Kin-Wah Lee
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Irene Oi Lin Ng
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
16
|
Parhira S, Zhu GY, Chen M, Bai LP, Jiang ZH. Cardenolides from Calotropis gigantea as potent inhibitors of hypoxia-inducible factor-1 transcriptional activity. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:930-936. [PMID: 27793783 DOI: 10.1016/j.jep.2016.10.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calotropis gigantea (L.) Dryand (Apocynaceae) is a medicinal plant native to southern China, India and Southeast Asia. It has been traditionally used for the treatment of several diseases including cancers in these countries. AIM OF THE STUDY This study aimed to isolate bioactive cardenolides from C. gigantea, to screen their hypoxia-inducible factor (HIF-) 1 inhibitory activity, and to analyze the structure-activity relationship (SAR). MATERIALS AND METHODS Isolation and purification of cardenolides from the latex and the fruits of C. gigantea were performed by using a series of separation techniques. Their structures were fully characterized by elucidating their NMR and HRMS data. The HIF-1 inhibitory activities of cardenolides were evaluated by using a T47D cell-based dual-luciferase reporter assay. The potent cardenolides were selected to further evaluate their dose-response manner. Cytotoxic effects of selected cardenolides were also examined against breast cancer cell line (MCF-7) and normal mammary epithelial cell line (MCF-10A) by MTT assay. RESULTS Among twenty isolated cardenolides, compounds 1, 3, 4, 6-8, 14 and 17 exhibited stronger HIF-1 inhibitory activities than that of digoxin, a well-known HIF-1 inhibitor (P<0.001). These eight cardenolides inhibited HIF-1 transcriptional activity in a dose-dependent manner with IC50 values in nanomolar potency (21.8-64.9nM). An analysis of SAR revealed the great contributions of a β-configuration of the substituents at positions of C-2' and C-3', an aldehydic moiety on C-19, and the dioxane moiety between the aglycone and sugar parts of cardenolides to the HIF-1 inhibitory activity. In contrast, a hydroxyl group at any positions of C-15, C-16 and C-4' of cardenolides showed negative effects on suppressing HIF-1 transcriptional activity. In addition, these eight cardenolides also exhibited potent cytotoxic effects against human breast cancer cell MCF-7 (IC50 values ranged from 30.5 to 68.8nM), but less toxic effects to human normal mammary epithelial cell MCF-10A (IC50 values >20µM). CONCLUSIONS This is the first report of a comprehensive study of SAR on cardenolides from C. gigantea as HIF-1 inhibitors. Eight cardenolides (1, 3, 4, 6-8, 14 and 17) showed both potent HIF-1 inhibitory activity and strong cytotoxic effect against MCF-7 cancer cells in nanomolar level. The findings of these cardenolides provided important insights into the development of these potent HIF-1 inhibitors as anticancer drug.
Collapse
Affiliation(s)
- Supawadee Parhira
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China; Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Muang, Phitsanulok 65000, Thailand
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Ming Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China.
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China.
| |
Collapse
|
17
|
Wong VKW, Law BYK, Yao XJ, Chen X, Xu SW, Liu L, Leung ELH. Advanced research technology for discovery of new effective compounds from Chinese herbal medicine and their molecular targets. Pharmacol Res 2016; 111:546-555. [DOI: 10.1016/j.phrs.2016.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
|
18
|
Parhira S, Zhu GY, Li T, Liu L, Bai LP, Jiang ZH. Inhibition of IKK-β by epidioxysterols from the flowers of Calotropis gigantea (Niu jiao gua). Chin Med 2016; 11:9. [PMID: 26937251 PMCID: PMC4774138 DOI: 10.1186/s13020-016-0081-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background Calotropis gigantea (Asclepiadaceae) (Niu jiao gua) has been used as a poultice in Chinese medicine for treating inflammatory skin diseases, e.g., neurodermatitis. This study aims to isolate the epidioxysterols from the flowers of C. gigantea, elucidate their structures and evaluate their possible inhibitory effects on the NF-κB pathway. Methods The two epidioxysterols 9,11-dehydroergosterol peroxide (1) and ergosterol peroxide (2) were isolated from the powdered flowers of C. gigantea by ultrasonic-assisted extraction, followed by the purification of the crude extract by column chromatography (i.e., silica gel and MCI-gel CHP 20P open columns). The chemical structures of these compounds were identified through a comparison of their HRMS, 1H and 13C NMR data with those in the literature. The in vitro IKK-β inhibitory activities of compounds 1 and 2 (1–100 µM) were evaluated using an IKK α and β Assay/Inhibitor Screening Kit, which is a single-site, semi-quantitative immunoassay. Berberine was used as a positive control. The IKK-β inhibitory activities between compounds 1 and 2 were compared by a two-tailed Student’s t test to summarize the structure activity relationship. Results Compounds 1 and 2 exhibited a dose-dependent inhibitory activity towards IKK-β in a similar manner to that of berberine. The IKK-β inhibitory activities of these two epidioxysterols were significantly stronger (P = 0.001 for compound 1 and P = 0.028 for compound 2) than that of berberine at the concentration of 100 µM. Furthermore, at the same concentration the suppressive effect of compound 1 towards IKK-β was greater than that of compound 2 (P = 0.041), while their activities at 10 and 50 µM were comparable. The difference in the results at 100 µM therefore suggested that the double bond between C-9 and C-11 in compound 1 could be responsible for its higher inhibitory activity towards IKK-β at this concentration. Conclusions 9,11-dehydroergosterol peroxide (1) and ergosterol peroxide (2) were isolated from the flowers of C. gigantea and exhibited in vitro inhibitory activities towards IKK-β. Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0081-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Supawadee Parhira
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
19
|
Mahar R, Dixit S, Joshi T, Kanojiya S, Mishra DK, Konwar R, Shukla SK. Bioactivity guided isolation of oxypregnane-oligoglycosides (calotroposides) from the root bark of Calotropis gigantea as potent anticancer agents. RSC Adv 2016. [DOI: 10.1039/c6ra23600f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioactivity guided isolation of oxypregnane-oligoglycosides (calotroposides) from the ethanolic extract of root bark of Calotropis gigantea (L.) Dryand. with purple flowers has been performed and isolated pure compounds has been evaluated for anticancer activity.
Collapse
Affiliation(s)
- Rohit Mahar
- SAIF Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Shivani Dixit
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Trapti Joshi
- SAIF Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Sanjeev Kanojiya
- SAIF Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Dipak K. Mishra
- Botany Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Rituraj Konwar
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Sanjeev K. Shukla
- SAIF Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| |
Collapse
|
20
|
Chen CY, Zhu GY, Wang JR, Jiang ZH. Phenanthroindolizidine alkaloids from Tylophora atrofolliculata with hypoxia-inducible factor-1 (HIF-1) inhibitory activity. RSC Adv 2016. [DOI: 10.1039/c6ra16455b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phenanthroindolizidine alkaloids from T. atrofolliculata with potent HIF-1 inhibitory effects.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| |
Collapse
|
21
|
Parhira S, Yang ZF, Zhu GY, Chen QL, Zhou BX, Wang YT, Liu L, Bai LP, Jiang ZH. In vitro anti-influenza virus activities of a new lignan glycoside from the latex of Calotropis gigantea. PLoS One 2014; 9:e104544. [PMID: 25102000 PMCID: PMC4125211 DOI: 10.1371/journal.pone.0104544] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/10/2014] [Indexed: 12/03/2022] Open
Abstract
A new lignan glycoside, (+)-pinoresinol 4-O-[6″-O-vanilloyl]-β-d-glucopyranoside (1) and two known phenolic compounds, 6′-O-vanilloyltachioside (2) and 6′-O-vanilloylisotachioside (3) were isolated from the latex of Calotropis gigantea (Asclepiadaceae). The structure of the new compound was elucidated by using spectroscopic and chemical methods. Three isolates (1–3) and one authentic compound, (+)-pinoresinol 4-O-β-d-glucopyranoside, were screened for A/PR/8/34 (H1N1) inhibitory activity by cytopathic effect (CPE) inhibition assay on MDCK cells. Compound 1 showed inhibitory activity against A/PR/8/34 (H1N1). In sharp contrast, the other three compounds (2, 3 and (+)-pinoresinol 4-O-β-d-glucopyranoside) did not show such activity. An analysis of structure-activity relationship between 1 and (+)-pinoresinol 4-O-β-d-glucopyranoside revealed that the presence of a vanilloyl group in the sugar moiety of 1 is crucial for its anti-influenza virus activity. Compound 1 was further evaluated for in vitro inhibitory activities against a panel of human and avian influenza viruses by CPE inhibition assay. It showed inhibitory effect against human influenza viruses in both subtypes A and B (IC50 values around 13.4–39.8 µM with SI values of 3.7–11.4), while had no effect on avian influenza viruses. Its antiviral activity against human influenza viruses subtype A was further confirmed by plaque reduction assay. The time course assay indicated that 1 exerts its antiviral activity at the early stage of viral replication. A mechanistic study showed that 1 efficiently inhibited influenza virus-induced activation of NF-κB pathway in a dose-dependent manner, but had no effect on virus-induced activation of Raf/MEK/ERK pathway. Further studies demonstrated that nuclear translocation of transcription factor NF-κB induced by influenza virus was significantly blocked by 1, meanwhile, nuclear export of viral ribonucleoproteins was also effectively inhibited. These findings suggest that this new lignan glycoside from Calotropis gigantea, may have therapeutic potential in influenza virus infection through inhibition of NF-κB pathway and viral ribonucleoproteins nuclear export.
Collapse
Affiliation(s)
- Supawadee Parhira
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Qiao-Lian Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Bei-Xian Zhou
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yu-Tao Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
- * E-mail: (LPB); (ZHJ)
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
- * E-mail: (LPB); (ZHJ)
| |
Collapse
|