1
|
Peltek O, Kopoleva E, Zyuzin M. Redox-Sensitive Fluorescent Nanoparticles for Biovisualization of Malignant Tumors. Sovrem Tekhnologii Med 2025; 17:50-56. [PMID: 40071077 PMCID: PMC11892567 DOI: 10.17691/stm2025.17.1.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
Application of fluorescent redox-sensitive nanoparticles in current biomedicine ensures high sensitivity and accuracy of biovisualization. Nanoparticles are potent as they can long circulate in the blood, where the level of glutathione is relatively low, and are destroyed in tumor cells, releasing loaded dyes or drugs. The aim of the study was to develop new nanoparticles based on trithiocyanuric acid for biovisualization of malignant tumors and study capabilities of the developed nanoparticles. Materials and Methods Nanoparticles were obtained by polycondensation of trithiocyanuric acid using iodine. Scanning and transmission electron microscopy was used for their characterization, the loading of fluorescent dyes was assessed by means of spectrophotometry. Confocal laser scanning microscopy was applied to study the impact of nanoparticles on the viability of the 4T1 and A549 cell lines as well as their interaction with cells. The distribution of nanoparticles in tissues and organs of BALB/c model mice with grafted tumors was performed using fluorescence visualization. Results According to scanning microscopy, the size of the synthesized particles reached 100±20 nm. The adsorption isotherm demonstrated that adsorption of 0.27 mg of the RhB fluorescent dye per 1 mg of nanoparticles could be achieved. Enhanced release of the packed fluorescent dye was seen in the presence of glutathione and acetylcysteine. The particles did not significantly affect the viability of 4T1 and A549 cells. After intratumoral administration, they ensured a more intense fluorescent signal in the tumor area compared to a regular fluorescent dye solution. Conclusion The developed system of trithiocyanuric-acid-based nanoparticles demonstrated high efficiency in biovisualization of malignant tumors and has a potential for targeted delivery of treatment agents.
Collapse
Affiliation(s)
- O. Peltek
- Junior Researcher, Physics Department; ITMO University, 49, Bldg. A, Kronverksky Pr., Saint Petersburg, 197101, Russia
| | - E.A. Kopoleva
- Engineer, Physics Department; ITMO University, 49, Bldg. A, Kronverksky Pr., Saint Petersburg, 197101, Russia
| | - M.V. Zyuzin
- DSc, Leading Researcher; ITMO University, 49, Bldg. A, Kronverksky Pr., Saint Petersburg, 197101, Russia
| |
Collapse
|
2
|
Huang H, Li Z, Qi Z, Ma L, Hu G, Zou C, Chen T. Engineered S. cerevisiae-pYD1-ScFv-AFB1 mitigates aflatoxin B1 toxicity via bio-binding and intestinal microenvironment repair. Food Chem Toxicol 2025; 196:115232. [PMID: 39746599 DOI: 10.1016/j.fct.2024.115232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The highly toxic aflatoxin B1 (AFB1) is considered one of the primary risk factors for hepatocellular carcinoma, while effective measures after AFB1 exposure remain to be optimized. This study utilized cell-surface-display technique to construct an engineered S. cerevisiae-pYD1-ScFv-AFB1 (S.C-AF) that specifically binds AFB1, and verified the potential mechanism of S.C-AF in vivo through AFB1-induced (gastric perfused with 0.3 mg/kg/d AFB1 per day) liver injury mouse model. In this experiment, the C57BL/6 mouse model of AFB1-induced liver injury was treated with S.C (gastric perfused with 1 × 109 CFU/mL S.C per day) and S.C-AF (gastric perfused with 1 × 109 CFU/mL S.C-AF per day) for 4 weeks, respectively. With probiotic properties optimized, S.C.-AF achieved an in vitro AFB1 binding capacity 1.7 times higher than S. cerevisiae. Furthermore, S.C-AF could alleviate AFB1-induced liver injury by reducing proinflammatory cytokine secretion and apoptotic protein expression, enhancing antioxidative capacity via Nrf2 activation, and simultaneously reversing intestinal tight junction protein deficiency, increasing intestinal barrier permeability, and improving intestinal dysbiosis caused by AFB1 exposure. S.C-AF alleviates AFB1-induced liver lesions, which might be a novel intervention to mitigate aflatoxin toxicity.
Collapse
Affiliation(s)
- Hong Huang
- School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Ziyan Li
- School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Zhanghua Qi
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Linxi Ma
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Gang Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Changwei Zou
- School of Resource and Environment, Nanchang University, Nanchang, 330031, China.
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
3
|
Dong R, Wang J, Guan R, Sun J, Jin P, Shen J. Role of Oxidative Stress in the Occurrence, Development, and Treatment of Breast Cancer. Antioxidants (Basel) 2025; 14:104. [PMID: 39857438 PMCID: PMC11760893 DOI: 10.3390/antiox14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Breast cancer is one of the most prevalent cancers worldwide. Recent studies have increasingly emphasized the role of oxidative stress in the initiation and progression of breast cancer. This article reviews how oxidative stress imbalance influences the occurrence and advancement of breast cancer, elucidating the intricate mechanisms through which reactive oxygen species (ROS) operate in this context and their potential therapeutic applications. By highlighting these critical insights, this review aims to enhance our understanding of oxidative stress as a potential target for innovative therapeutic strategies in the management of breast cancer.
Collapse
Affiliation(s)
- Rui Dong
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Jing Wang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Ruiqi Guan
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Jianwei Sun
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Ping Jin
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Junling Shen
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| |
Collapse
|
4
|
Li J, Gao M, Wang Y, Wang W, Meng S, Zhang X, Zhang C, Liu P, Zhang X, Zheng Z, Zhang R. NIR-II Absorption/Emission Dual Function Based 2D Targeted Nanotheranostics for Tunable Hydrogenothermal Therapy. Adv Healthc Mater 2024; 13:e2401060. [PMID: 38815213 DOI: 10.1002/adhm.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Indexed: 06/01/2024]
Abstract
Photothermal therapy (PTT) is a promising approach for treating tumors that offers multiple advantages. Nevertheless, its practical use in clinical settings faces several limitations, such as suboptimal delivery efficiency, uneven heat distribution, and challenges in predicting optimal treatment duration. In addition, the localized hyperthermia generated by the PTT method to induce cell apoptosis can result in the production of excessive reactive oxygen species (ROS) and the release of inflammatory cytokines, which can pose a threat to the healthy tissues surrounding the tumor. To address the above challenges, this work designs an integrated H2 delivery nanoplatform for multimodal imaging H2 thermal therapy. The combination of the second near-infrared window (NIR-II) fluorescence imaging (FL) agent (CQ4T) and the photothermal and photoacoustic (PA) properties of Ti3C2 (TC) enables real-time monitoring of the tumor area and guides photothermal treatment. Simultaneously, due to the acid-responsive H2 release characteristics of the nanoplatform, H2 can be utilized for synergistic photothermal therapy to eradicate tumor cells effectively. Significantly, acting as an antioxidant and anti-inflammatory agent, Ti3C2-BSA-CQ4T-H2 (TCBCH) protects peritumoral normal cells from damage. The proposed technique utilizing H2 gas for combination therapies and multimodal imaging integration exhibits prospects for effective and secure treatment of tumors in future clinical applications.
Collapse
Affiliation(s)
- Jinxuan Li
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Mengting Gao
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuhang Wang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wenxuan Wang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shichao Meng
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xin Zhang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Chongqing Zhang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| | - Pengmin Liu
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaodong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ziliang Zheng
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030032, China
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030032, China
| |
Collapse
|
5
|
Vasvani S, Vasukutty A, Bardhan R, Park IK, Uthaman S. Reactive oxygen species driven prodrug-based nanoscale carriers for transformative therapies. Biomater Sci 2024; 12:4335-4353. [PMID: 39041781 DOI: 10.1039/d4bm00647j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Reactive oxygen species (ROS) drive processes in various pathological conditions serving as an attractive target for therapeutic strategies. This review highlights the development and use of ROS-dependent prodrug-based nanoscale carriers that has transformed many biomedical applications. Incorporating prodrugs into nanoscale carriers not only improves their stability and solubility but also enables site-specific drug delivery ultimately enhancing the therapeutic effectiveness of the nanoscale carriers. We critically examine recent advances in ROS-responsive nanoparticulate platforms, encompassing liposomes, polymeric nanoparticles, and inorganic nanocarriers. These platforms facilitate precise control over drug release upon encountering elevated ROS levels at disease sites, thereby minimizing off-target effects and maximizing therapeutic efficiency. Furthermore, we investigate the potential of combination therapies in which ROS-activated prodrugs are combined with other therapeutic agents and underscore their synergistic potential for treating multifaceted diseases. This comprehensive review highlights the immense potential of ROS-dependent prodrug-based nanoparticulate systems in revolutionizing biomedical applications; such nanoparticulate systems can facilitate selective and controlled drug delivery, reduce toxicity, and improve therapeutic outcomes for ROS-associated diseases.
Collapse
Affiliation(s)
- Shyam Vasvani
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
- Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Saji Uthaman
- Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
6
|
Aceto GM, Pagotto S, Del Pizzo FD, Saoca C, Selvaggi F, Visone R, Cotellese R, Aguennouz M, Lattanzio R, Catalano T. Differential Regulation of Wingless-Wnt/c-Jun N-Terminal Kinase Crosstalk via Oxidative Eustress in Primary and Metastatic Colorectal Cancer Cells. Biomedicines 2024; 12:1816. [PMID: 39200280 PMCID: PMC11351841 DOI: 10.3390/biomedicines12081816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
In the tumor microenvironment (TME), ROS production affects survival, progression, and therapy resistance in colorectal cancer (CRC). H2O2-mediated oxidative stress can modulate Wnt/β-catenin signaling and metabolic reprogramming of the TME. Currently, it is unclear how mild/moderate oxidative stress (eustress) modulates Wnt/β-catenin/APC and JNK signaling relationships in primary and metastatic CRC cells. In this study, we determined the effects of the H2O2 concentration inducing eustress on isogenic SW480 and SW620 cells, also in combination with JNK inhibition. We assessed cell viability, mitochondrial respiration, glycolysis, and Wnt/β-catenin/APC/JNK gene and protein expression. Primary CRC cells were more sensitive to H2O2 eustress combined with JNK inhibition, showing a reduction in viability compared to metastatic cells. JNK inhibition under eustress reduced both glycolytic and respiratory capacity in SW620 cells, indicating a greater capacity to adapt to TME. In primary CRC cells, H2O2 alone significantly increased APC, LEF1, LRP6, cMYC and IL8 gene expression, whereas in metastatic CRC cells, this effect occurred after JNK inhibition. In metastatic but not in primary tumor cells, eustress and inhibition of JNK reduced APC, β-catenin, and pJNK protein. The results showed differential cross-regulation of Wnt/JNK in primary and metastatic tumor cells under environmental eustress conditions. Further studies would be useful to validate these findings and explore their therapeutic potential.
Collapse
Affiliation(s)
- Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
| | - Sara Pagotto
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
| | - Francesco Domenico Del Pizzo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Concetta Saoca
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (M.A.); (T.C.)
| | - Federico Selvaggi
- Unit of General Surgery, Ospedale Clinicizzato SS Annunziata of Chieti, 66100 Chieti, Italy;
| | - Rosa Visone
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.P.); (R.V.); (R.C.)
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy
| | - M’hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (M.A.); (T.C.)
| | - Rossano Lattanzio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.D.P.); (R.L.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (M.A.); (T.C.)
| |
Collapse
|
7
|
Zheng Y, Song J, Huang L, Chen G, Ning N, Huang Q, Liu S, Wu Y, Du Q, Cai J, Li Y. WeiNaiAn capsule attenuates intestinal mucosal injury and regulates gut microbiome in indomethacin-induced rat. Int J Biochem Cell Biol 2024; 173:106609. [PMID: 38880193 DOI: 10.1016/j.biocel.2024.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Indomethacin, as a non-steroidal anti-inflammatory drugs, is widely used in the clinic. However, it can cause severe injury to the gastrointestinal tract and the incidence is increasing. It has become an essential clinical problem in preventing intestinal damage. Teprenone has been reported to have a significant positive effect on intestinal mucosal lesions, but long-term use of teprenone can elicit adverse reactions. WeiNaiAn capsule is a traditional Chinese medicine formulation used widely in the treatment of gastric and duodenal mucosal injury. However, how WeiNaiAn protects against intestinal mucosal injury and its mechanism of action are not known. In this study, WeiNaiAn capsule or Teprenone treatment improved the intestinal mucosal pathological score and antioxidant level in indomethacin-induced rats. 16 S rRNA sequence data showed WeiNaiAn capsule reverted the structure community and replenished the beneficial bacteria. Furthermore, fingerprint analysis revealed multiple components of WeiNaiAn capsule, including calycosin glucoside, ginsenoside Rg1, ginsenoside Rb1, taurocholic acid sodium, formonetin, and calycosin glucoside. The components of WeiNaiAn capsule promoted the wound healing of the epithelial cell in vitro. Moreover, the components of WeiNaiAn capsule inhibited the protein expressions of phosphoinositide 3-kinase /protein kinase B /mammalian target of rapamycin in hydrogen peroxide or lipopolysaccharides-induced cell model. In conclusion, WeiNaiAn capsule improves intestinal mucosal injury by regulating cell migration, enhancing antioxidant activity, and promoting the structure of the bacterial community homeostasis, the multiple targets provide the parameters for the treatment in the clinic.
Collapse
Affiliation(s)
- Yanqiu Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinbin Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guirong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou, China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou, China
| | - Shanshan Liu
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou, China
| | - Yanli Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhong Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; School of Chinese Materia Medica, Guangdong Yunfu Vocational College of Chinese Medicine, Yunfu, China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
8
|
Zoughaib M, Pashirova TN, Nikolaeva V, Kamalov M, Nakhmetova F, Salakhieva DV, Abdullin TI. Anticancer and Chemosensitizing Effects of Menadione-Containing Peptide-Targeted Solid Lipid Nanoparticles. J Pharm Sci 2024; 113:2258-2267. [PMID: 38508340 DOI: 10.1016/j.xphs.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Vitamin K derivatives such as menadione (MD) have been recognized as promising redox-modulating and chemosensitizing agents for anticancer therapy, however, their cellular activities in peptide-targeted nanocarriers have not been elucidated to date. This study provides the guidelines for developing MD-loaded solid lipid nanoparticles (SLN) modified with extracellular matrix (ECM)-derived peptides. Relationships between RGD peptide concentration and changes in DLS characteristics as well as accumulation of SLN in cancer cells were revealed to adjust the peptide-lipid ratio. SLN system maintained adequate nanoparticle concentration and low dispersity after introduction of MD and MD/RGD, whereas formulated MD was protected from immediate conjugation with reduced glutathione (GSH). RGD-modified MD-containing SLN showed enhanced prooxidant, GSH-depleting and cytotoxic activities toward PC-3 prostate cancer cells attributed to improved cellular pharmacokinetics of the targeted formulation. Furthermore, this formulation effectively sensitized PC-3 cells and OVCAR-4 ovarian cancer cells to free doxorubicin and cisplatin so that cell growth was inhibited by MD-drug composition at nontoxic concentrations of the ingredients. These results provide an important background for further improving chemotherapeutic methods based on combination of conventional cytostatics with peptide-targeted SLN formulations of MD.
Collapse
Affiliation(s)
- Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
| | - Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov St., 420088 Kazan, Russia
| | - Viktoriia Nikolaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Marat Kamalov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Fidan Nakhmetova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; Scientific and Educational Center of Pharmaceutics, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
| |
Collapse
|
9
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
10
|
Arnér ESJ, Schmidt EE. Unresolved questions regarding cellular cysteine sources and their possible relationships to ferroptosis. Adv Cancer Res 2024; 162:1-44. [PMID: 39069366 PMCID: PMC11785257 DOI: 10.1016/bs.acr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cysteine is required for synthesis of glutathione (GSH), coenzyme A, other sulfur-containing metabolites, and most proteins. In most cells, cysteine comes from extracellular disulfide sources including cystine, glutathione-disulfide, and peptides. The thioredoxin reductase-1 (TrxR1)- or glutathione-disulfide reductase (GSR)-driven enzymatic systems can fuel cystine reduction via thioredoxins, glutaredoxins, or other thioredoxin-fold proteins. Free cystine enters cells thorough the cystine-glutamate antiporter, xCT, but systemically, plasma glutathione-disulfide might predominate as a cystine source. Erastin, inhibiting both xCT and voltage-dependent anion channels, induces ferroptotic cell death, so named because this type of cell death is antagonized by iron-chelators. Many cancer cells seem to be predisposed to ferroptosis, which has been proposed as a targetable cancer liability. Ferroptosis is associated with lipid peroxidation and loss of either glutathione peroxidase-4 (GPX4) or ferroptosis suppressor protein-1 (FSP1), which each prevent accumulation of lipid peroxides. It has been suggested that an xCT inhibition-induced cellular cysteine-deficiency lowers GSH levels, starving GPX4 for reducing power and allowing membrane lipid peroxides to accumulate, thereby causing ferroptosis. Aspects of ferroptosis are however not fully understood and need to be further scrutinized, for example that neither disruption of GSH synthesis, loss of GSH, nor disruption of glutathione disulfide reductase (GSR), triggers ferroptosis in animal models. Here we reevaluate the relationships between Erastin, xCT, GPX4, cellular cysteine and GSH, RSL3 or ML162, and ferroptosis. We conclude that, whereas both Cys and ferroptosis are potential liabilities in cancer, their relationship to each other remains insufficiently understood.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institutes of Oncology, Budapest, Hungary
| | - Edward E Schmidt
- Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary; Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
11
|
Fan C, Yang X, Yan L, Shi Z. Oxidative stress is two-sided in the treatment of acute myeloid leukemia. Cancer Med 2024; 13:e6806. [PMID: 38715546 PMCID: PMC11077289 DOI: 10.1002/cam4.6806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Oxidative stress caused by elevated ROS, as a novel therapeutic mechanism, has been implicated in various tumors including AML. AML cells are chronically under oxidative stress, yet overreliance on ROS production makes tumor cells increasingly vulnerable to further damage. Reducing the cytotoxic effect of ROS on normal cells while killing leukemia stem cell (LSC) with high levels of reactive oxygen species is a new challenge for oxidative stress therapy in leukemia. METHODS By searching literature databases, we summarized recent relevant studies. The relationship of ROS on AML genes, signaling pathways, and transcription factors, and the correlation of ROS with AML bone marrow microenvironment and autophagy were summarized. In addition, we summarize the current status of research on ROS and AML therapeutics. Finally, we discuss the research progress on redox resistance in AML. RESULTS This review discusses the evidence showing the link between redox reactions and the progression of AML and compiles the latest research findings that will facilitate future biological studies of redox effects associated with AML treatment. CONCLUSION We believe that exploiting this unique oxidative stress property of AML cells may provide a new way to prevent relapse and drug resistance.
Collapse
Affiliation(s)
- Chenyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Lixiang Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Zhexin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
12
|
Jiang X, Lei Y, Yin Y, Ma F, Zheng M, Liu G. Fisetin Suppresses Atherosclerosis by Inhibiting Ferroptosis-Related Oxidative Stress in Apolipoprotein E Knockout Mice. Pharmacology 2024; 109:169-179. [PMID: 38583431 DOI: 10.1159/000538535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Fisetin has been demonstrated to inhibit the occurrence of atherosclerosis; however, the mechanism of fisetin suppressing atherosclerosis remains elusive. METHODS The function of fisetin in the inhibition of atherosclerosis was evaluated by hematoxylin and eosin and Oil Red O staining in ApoE-/- mice. Molecular biomarkers of atherosclerosis progression were detected by Western blot and qPCR. Moreover, the inhibition of atherosclerosis on oxidative stress and ferroptosis was evaluated by immunofluorescence staining, qPCR, and Western blot assays. RESULTS The obtained results showed that serum lipid was attenuated and consequentially the formation of atherosclerosis was also suppressed by fisetin in ApoE-/- mice. Exploration of the mechanism revealed that molecular biomarkers of atherosclerosis were decreased under fisetin treatment. The level of reactive oxygen species and malondialdehyde declined, while the activity of superoxide dismutases and glutathione peroxidase was increased under the fisetin treatment. Additionally, the suppressor of ferroptosis, glutathione peroxidase 4 proteins, was elevated. The ferritin was decreased in the aortic tissues treated with fisetin. CONCLUSIONS In summary, fisetin attenuated the formation of atherosclerosis through the inhibition of oxidative stress and ferroptosis in the aortic tissues of ApoE-/- mice.
Collapse
Affiliation(s)
- Xiufang Jiang
- Department of Medical Affairs, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, China
| | - Yanling Lei
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yajuan Yin
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, China
| | - Fangfang Ma
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingqi Zheng
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, China
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Engineering Research Center of Intelligent Medical Clinical Application, Shijiazhuang, China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| | - Gang Liu
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, China
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Engineering Research Center of Intelligent Medical Clinical Application, Shijiazhuang, China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, China
| |
Collapse
|
13
|
Kopoleva E, Lebedev MD, Postovalova A, Rogova A, Fatkhutdinova L, Epifanovskaya O, Goncharenko AA, Kremleva AV, Domracheva N, Bukatin AS, Muslimov AR, Koroleva A, Zhizhin EV, Lepik KV, Timin AS, Peltek O, Zyuzin MV. One-Pot Synthesis of Affordable Redox-Responsive Drug Delivery System Based on Trithiocyanuric Acid Nanoparticles. NANO LETTERS 2023; 23:10811-10820. [PMID: 37988557 DOI: 10.1021/acs.nanolett.3c02933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Redox-responsive drug delivery systems present a promising avenue for drug delivery due to their ability to leverage the unique redox environment within tumor cells. In this work, we describe a facile and cost-effective one-pot synthesis method for a redox-responsive delivery system based on novel trithiocyanuric acid (TTCA) nanoparticles (NPs). We conduct a thorough investigation of the impact of various synthesis parameters on the morphology, stability, and loading capacity of these NPs. The great drug delivery potential of the system is further demonstrated in vitro and in vivo by using doxorubicin as a model drug. The developed TTCA-PEG NPs show great drug delivery efficiency with minimal toxicity on their own both in vivo and in vitro. The simplicity of this synthesis, along with the promising characteristics of TTCA-PEG NPs, paves the way for new opportunities in the further development of redox-responsive drug delivery systems based on TTCA.
Collapse
Affiliation(s)
- Elena Kopoleva
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| | - Maksim D Lebedev
- Ivanovo State University of Chemical and Technology, Ivanovo 153000, Russian Federation
| | - Alisa Postovalova
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| | - Anna Rogova
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| | - Landysh Fatkhutdinova
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| | - Olga Epifanovskaya
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg 191144, Russian Federation
| | | | - Arina V Kremleva
- Institute of Advanced Data Transfer Systems, ITMO University, St. Petersburg 191002, Russian Federation
| | - Nadezhda Domracheva
- Saint-Petersburg Chemical-Pharmaceutical University, St. Petersburg 197376, Russian Federation
| | - Anton S Bukatin
- Alferov University, St. Petersburg 194021, Russian Federation
- Institute for Analytical Instrumentation of the Russian Academy of Sciences, St. Petersburg 198095, Russian Federation
| | - Albert R Muslimov
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg 191144, Russian Federation
- Alferov University, St. Petersburg 194021, Russian Federation
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg 197341, Russian Federation
| | - Aleksandra Koroleva
- Saint Petersburg State University, St. Petersburg 199034, Russian Federation
| | - Evgeniy V Zhizhin
- Saint Petersburg State University, St. Petersburg 199034, Russian Federation
| | - Kirill V Lepik
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg 191144, Russian Federation
| | - Alexander S Timin
- Laboratory of nano- and microencapsulation of biologically active substances, Peter The Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russian Federation
| | - Oleksii Peltek
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| |
Collapse
|
14
|
Rao Z, Xia Y, Jia Q, Zhu Y, Wang L, Liu G, Liu X, Yang P, Ning P, Zhang R, Zhang X, Qiao C, Wang Z. Iron-based metal-organic framework co-loaded with buthionine sulfoximine and oxaliplatin for enhanced cancer chemo-ferrotherapy via sustainable glutathione elimination. J Nanobiotechnology 2023; 21:265. [PMID: 37563614 PMCID: PMC10416514 DOI: 10.1186/s12951-023-01998-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Emerging ferroptosis-driven therapies based on nanotechnology function either by increasing intracellular iron level or suppressing glutathione peroxidase 4 (GPX4) activity. Nevertheless, the therapeutic strategy of simultaneous iron delivery and GPX4 inhibition remains challenging and has significant scope for improvement. Moreover, current nanomedicine studies mainly use disulfide-thiol exchange to deplete glutathione (GSH) for GPX4 inactivation, which is unsatisfactory because of the compensatory effect of continuous GSH synthesis. METHODS In this study, we design a two-in-one ferroptosis-inducing nanoplatform using iron-based metal-organic framework (MOF) that combines iron supply and GPX4 deactivation by loading the small molecule buthionine sulfoxide amine (BSO) to block de novo GSH biosynthesis, which can achieve sustainable GSH elimination and dual ferroptosis amplification. A coated lipid bilayer (L) can increase the stability of the nanoparticles and a modified tumor-homing peptide comprising arginine-glycine-aspartic acid (RGD/R) can achieve tumor-specific therapies. Moreover, as a decrease in GSH can alleviate resistance of cancer cells to chemotherapy drugs, oxaliplatin (OXA) was also loaded to obtain BSO&OXA@MOF-LR for enhanced cancer chemo-ferrotherapy in vivo. RESULTS BSO&OXA@MOF-LR shows a robust tumor suppression effect and significantly improved the survival rate in 4T1 tumor xenograft mice, indicating a combined effect of dual amplified ferroptosis and GSH elimination sensitized apoptosis. CONCLUSION BSO&OXA@MOF-LR is proven to be an efficient ferroptosis/apoptosis hybrid anti-cancer agent. This study is of great significance for the clinical development of novel drugs based on ferroptosis and apoptosis for enhanced cancer chemo-ferrotherapy.
Collapse
Grants
- Nos. 32101147, 82272159, 91959124, and 32071406 National Natural Science Foundation of China
- Nos. 32101147, 82272159, 91959124, and 32071406 National Natural Science Foundation of China
- Nos. 32101147, 82272159, 91959124, and 32071406 National Natural Science Foundation of China
- 2023-YBSF-362 Key Research and Development Projects of Shaanxi Province
- No. 2022TQ0249 China Postdoctoral Science Foundation
- Nos. QTZX22068, QTZX22070 Fundamental Research Funds for the Central Universities
- Nos. 2022YFB3203800, 2017YFC1309100 and 2017YFA0205200 National Key Research and Development Program of China
- Nos. 2022YFB3203800, 2017YFC1309100 and 2017YFA0205200 National Key Research and Development Program of China
- No. 2023A1515030207 Basic and Applied Basic Research Foundation of Guangdong Province
- 2022TD-52 Innovation Capability Support Program of Shaanxi
- No. CBSKL2022ZDKF14 the Open Project Program of the State Key Laboratory of Cancer Biology
Collapse
Affiliation(s)
- Zhiping Rao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Yutian Xia
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Yutong Zhu
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Lexuan Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Guohuan Liu
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Xuelan Liu
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Peng Yang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Pengbo Ning
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Ruili Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Xianghan Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Chaoqiang Qiao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China.
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China.
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, 710126, Shaanxi, China.
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
15
|
Kang WS, Kim E, Choi H, Lee KH, Kim KJ, Lim D, Choi SY, Kim Y, Son SA, Kim JS, Kim S. Therapeutic Potential of Peucedanum japonicum Thunb. and Its Active Components in a Delayed Corneal Wound Healing Model Following Blue Light Irradiation-Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:1171. [PMID: 37371901 DOI: 10.3390/antiox12061171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Blue light is reported to be harmful to eyes by inducing reactive oxygen species (ROS). Herein, the roles of Peucedanum japonicum Thunb. leaf extract (PJE) in corneal wound healing under blue light irradiation are investigated. Blue-light-irradiated human corneal epithelial cells (HCECs) show increased intracellular ROS levels and delayed wound healing without a change in survival, and these effects are reversed by PJE treatment. In acute toxicity tests, a single oral administration of PJE (5000 mg/kg) does not induce any signs of clinical toxicity or body weight changes for 15 days post-administration. Rats with OD (oculus dexter, right eye) corneal wounds are divided into seven treatment groups: NL (nonwounded OS (oculus sinister, left eye)), NR (wounded OD), BL (wounded OD + blue light (BL)), and PJE (BL + 25, 50, 100, 200 mg/kg). Blue-light-induced delayed wound healing is dose-dependently recovered by orally administering PJE once daily starting 5 days before wound generation. The reduced tear volume in both eyes in the BL group is also restored by PJE. Forty-eight hours after wound generation, the numbers of inflammatory and apoptotic cells and the expression levels of interleukin-6 (IL-6) largely increase in the BL group, but these values return to almost normal after PJE treatment. The key components of PJE, identified by high-performance liquid chromatography (HPLC) fractionation, are CA, neochlorogenic acid (NCA), and cryptochlorogenic acid (CCA). Each CA isomer effectively reverses the delayed wound healing and excessive ROS production, and their mixture synergistically enhances these effects. The expression of messenger RNAs (mRNAs) related to ROS, such as SOD1, CAT, GPX1, GSTM1, GSTP1, HO-1, and TRXR1, is significantly upregulated by PJE, its components, and the component mixture. Therefore, PJE protects against blue-light-induced delayed corneal wound healing via its antioxidative, anti-inflammatory, and antiapoptotic effects mechanistically related to ROS production.
Collapse
Affiliation(s)
- Wan Seok Kang
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Eun Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Hakjoon Choi
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Ki Hoon Lee
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Kyeong Jo Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Dosung Lim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Su-Young Choi
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Youngbae Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Seon Ah Son
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Jin Seok Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| | - Sunoh Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea
| |
Collapse
|
16
|
Potential Role of ROS in Butyrate- and Dietary Fiber-Mediated Growth Inhibition and Modulation of Cell Cycle-, Apoptosis- and Antioxidant-Relevant Proteins in LT97 Colon Adenoma and HT29 Colon Carcinoma Cells. Cancers (Basel) 2023; 15:cancers15020440. [PMID: 36672389 PMCID: PMC9857069 DOI: 10.3390/cancers15020440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to examine whether reactive oxygen species (ROS) contribute to chemopreventive effects of fermentation supernatants (FS) of different dietary fibers (Synergy1®, oat-, barley-, yeast β-glucan, Curdlan) and butyrate as a fermentation metabolite. LT97 and HT29 cells were treated with butyrate and FS alone or with N-acetyl-cysteine (NAC) and their impact on ROS formation, cell growth, and protein expression (Cyclin D2, p21, PARP, Bid, GPx2) was investigated. Butyrate and FS significantly decreased cell growth. ROS levels were significantly increased, particularly in LT97 cells, while co-treatment with NAC decreased ROS formation and growth inhibitory effects in both cell lines. After treatment with butyrate and FS, Cyclin D2 expression was reduced in LT97 cells and p21 expression was increased in both cell lines. Levels of full-length PARP and Bid were decreased, while levels of cleaved PARP were enhanced. GPx2 expression was significantly reduced by fiber FS in HT29 cells. A notable effect of NAC on butyrate- and FS-modulated protein expression was observed exclusively for PARP and Bid in HT29 cells. From the present results, a contribution of ROS to growth inhibitory and apoptotic effects of butyrate and FS on LT97 and HT29 cells cannot be excluded.
Collapse
|
17
|
Li Y, Wang H, Chen H, Liao Y, Gou S, Yan Q, Zhuang Z, Li H, Wang J, Suo Y, Lan T, Liu Y, Zhao Y, Zou Q, Nie T, Hui X, Lai L, Wu D, Fan N. Generation of a genetically modified pig model with CREBRF R457Q variant. FASEB J 2022; 36:e22611. [PMID: 36250915 DOI: 10.1096/fj.202201117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Obesity is among the strongest risk factors for type 2 diabetes (T2D). The CREBRF missense allele rs373863828 (p. Arg457Gln, p. R457Q) is associated with increased body mass index but reduced risk of T2D in people of Pacific ancestry. To investigate the functional consequences of the CREBRF variant, we introduced the corresponding human mutation R457Q into the porcine genome. The CREBRFR457Q pigs displayed dramatically increased fat deposition, which was mainly distributed in subcutaneous adipose tissue other than visceral adipose tissue. The CREBRFR457Q variant promoted preadipocyte differentiation. The increased differentiation capacity of precursor adipocytes conferred pigs the unique histological phenotype that adipocytes had a smaller size but a greater number in subcutaneous adipose tissue (SAT) of CREBRFR457Q variant pigs. In addition, in SAT of CREBRFR457Q pigs, the contents of the peroxidative metabolites 4-hydroxy-nonenal and malondialdehyde were significantly decreased, while the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase, and catalase, was increased, which was in accordance with the declined level of the reactive oxygen species (ROS) in CREBRFR457Q pigs. Together, these data supported a causal role of the CREBRFR457Q variant in the pathogenesis of obesity, partly via adipocyte hyperplasia, and further suggested that reduced oxidative stress in adipose tissue may mediate the relative metabolic protection afforded by this variant despite the related obesity.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hai Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Huangyao Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuan Liao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Quanmei Yan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenpeng Zhuang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hao Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Jiaowei Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yangyang Suo
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ting Lan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yang Liu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Tao Nie
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong SAR
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Donghai Wu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Nana Fan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
18
|
Gao M, Qi Z, Deng M, Huang H, Xu Z, Guo G, Jing J, Huang X, Xu M, Kloeber JA, Liu S, Huang J, Lou Z, Han J. The deubiquitinase USP7 regulates oxidative stress through stabilization of HO-1. Oncogene 2022; 41:4018-4027. [PMID: 35821281 DOI: 10.1038/s41388-022-02403-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Heme oxygenase-1 (HO-1) is an inducible heme degradation enzyme that plays a cytoprotective role against various oxidative and inflammatory stresses. However, it has also been shown to exert an important role in cancer progression through a variety of mechanisms. Although transcription factors such as Nrf2 are involved in HO-1 regulation, the posttranslational modifications of HO-1 after oxidative insults and the underlying mechanisms remain unexplored. Here, we screened and identified that the deubiquitinase USP7 plays a key role in the control of redox homeostasis through promoting HO-1 deubiquitination and stabilization in hepatocytes. We used low-dose arsenic as a stress model which does not affect the transcriptional level of HO-1, and found that the interaction between USP7 and HO-1 is increased after arsenic exposure, leading to enhanced HO-1 expression and attenuated oxidative damages. Furthermore, HO-1 protein is ubiquitinated at K243 and subjected to degradation under resting conditions; whereas when after arsenic exposure, USP7 itself can be ubiquitinated at K476, thereafter promoting the binding between USP7 and HO-1, finally leading to enhanced HO-1 deubiquitination and protein accumulation. Moreover, depletion of USP7 and HO-1 inhibit liver tumor growth in vivo, and USP7 positively correlates with HO-1 protein level in clinical human hepatocellular carcinoma (HCC) specimens. In summary, our findings reveal a critical role of USP7 as a HO-1 deubiquitinating enzyme in the regulation of oxidative stresses, and suggest that USP7 inhibitor might be a potential therapeutic agent for treating HO-1 overexpressed liver cancers.
Collapse
Affiliation(s)
- Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zijuan Qi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, 250014, Shandong, China
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, Chinese Academy of Medical Sciences, 100021, Beijing, China
| | - Hongyang Huang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiajun Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaofeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Jinxiang Han
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, 250014, Shandong, China.
| |
Collapse
|
19
|
Fang L, Feng Z, Mei J, Zhou J, Lin Z. [Hypoxia promotes differentiation of human induced pluripotent stem cells into embryoid bodies in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:929-936. [PMID: 35790445 DOI: 10.12122/j.issn.1673-4254.2022.06.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate effects of physiological hypoxic conditions on suspension and adherence of embryoid bodies (EBs) during differentiation of human induced pluripotent stem cells (hiPSCs) and explore the underlying mechanisms. METHODS EBs in suspension culture were divided into normoxic (21% O2) and hypoxic (5% O2) groups, and those in adherent culture were divided into normoxic, hypoxic and hypoxia + HIF-1α inhibitor (echinomycin) groups. After characterization of the pluripotency with immunofluorescence assay, the hiPSCs were digested and suspended under normoxic and hypoxic conditions for 5 days, and the formation and morphological changes of the EBs were observed microscopically; the expressions of the markers genes of the 3 germ layers in the EBs were detected. The EBs were then inoculated into petri dishes for further culture in normoxic and hypoxic conditions for another 2 days, after which the adhesion and peripheral expansion rate of the adherent EBs were observed; the changes in the expressions of HIF-1α, β-catenin and VEGFA were detected in response to hypoxic culture and echinomycin treatment. RESULTS The EBs cultured in normoxic and hypoxic conditions were all capable of differentiation into the 3 germ layers. The EBs cultured in hypoxic conditions showed reduced apoptotic debris around them with earlier appearance of cystic EBs and more uniform sizes as compared with those in normoxic culture. Hypoxic culture induced more adherent EBs than normoxic culture (P < 0.05) with also a greater outgrowth rate of the adherent EBs (P < 0.05). The EBs in hypoxic culture showed significantly up-regulated mRNA expressions of β-catenin and VEGFA (P < 0.05) and protein expressions of HIF-1 α, β-catenin and VEGFA (P < 0.05), and their protein expresisons levels were significantly lowered after treatment with echinomycin (P < 0.05). CONCLUSION Hypoxia can promote the formation and maturation of suspended EBs and enhance their adherence and post-adherent proliferation without affecting their pluripotency for differentiation into all the 3 germ layers. Our results provide preliminary evidence that activation of HIF-1α/β-catenin/VEGFA signaling pathway can enhance the differentiation potential of hiPSCs.
Collapse
Affiliation(s)
- L Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Z Feng
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan 528200, China
| | - J Mei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - J Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Z Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
20
|
Influence of PEG-coated Bismuth Oxide Nanoparticles on ROS Generation by Electron Beam Radiotherapy. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2022. [DOI: 10.2478/pjmpe-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Introduction: Nanoparticles (NPs) have been proven to enhance radiotherapy doses as radiosensitizers. The introduction of coating materials such as polyethylene glycol (PEG) to NPs could impact the NPs’ biocompatibility and their effectiveness as radiosensitizers. Optimization of surface coating is a crucial element to ensure the successful application of NPs as a radiosensitizer in radiotherapy. This study aims to investigate the influence of bismuth oxide NPs (BiONPs) coated with PEG on reactive oxygen species (ROS) generation on HeLa cervical cancer cell line.
Material and methods: Different PEG concentrations (0.05, 0.10, 0.15 and 0.20 mM) were used in the synthesis of the NPs. The treated cells were irradiated with 6 and 12 MeV electron beams with a delivered dose of 3 Gy. The reactive oxygen species (ROS) generation was measured immediately after and 3 hours after irradiation.
Results: The intracellular ROS generation was found to be slightly influenced by electron beam energy and independent of the PEG concentrations. Linear increments of ROS percentages over the 3 hours of incubation time were observed.
Conclusions: Finally, the PEG coating might not substantially affect the ROS generated and thus emphasizing the functionalized BiONPs application as the radiosensitizer for electron beam therapy.
Collapse
|
21
|
da Silva EL, Mesquita FP, de Sousa Portilho AJ, Bezerra ECA, Daniel JP, Aranha ESP, Farran S, de Vasconcellos MC, de Moraes MEA, Moreira-Nunes CA, Montenegro RC. Differences in glucose concentration shows new perspectives in gastric cancer metabolism. Toxicol In Vitro 2022; 82:105357. [PMID: 35427737 DOI: 10.1016/j.tiv.2022.105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/06/2022]
Abstract
Gastric cancer (GC) is among the deadliest cancers worldwide despite available therapies, highlighting the need for novel therapies and pharmacological agents. Metabolic deregulation is a potential study area for new anticancer targets, but the in vitro metabolic studies are controversial, as different ranges of glucose used in the culture medium can influence results. In this study, we evaluated cellular viability, glucose uptake, and LDH activity in gastric cell lines when exposed to different glucose concentrations: high (HG, 25 mM), low (LG, 5.5 mM), and free (FG, 0 mM) glucose mediums. Moreover, we evaluated how glucose variations may influence cellular phenotype and the expression of genes related to epithelial-mesenchymal transition (EMT), metabolism, and cancer development in metastatic GC cells (AGP-01). Results showed that in the FG metastatic cells evidenced higher viability when compared with other cell lines and that when exposed to either LG or HG mediums most of the phenotypic assays did not differ. However, cells exposed to LG increased colony formation and mRNA levels of metabolic-related genes when compared to HG medium. Our results recommend LG medium to metabolic studies once glucose concentration is closer to physiological levels. These findings are important to point out new relevant targets in metabolic reprogramming that can be alternatives to current chemotherapies in patients with metastatic GC.
Collapse
Affiliation(s)
- Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Adrhyann Jullyanne de Sousa Portilho
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Emanuel Cintra Austregésilo Bezerra
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Julio Paulino Daniel
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Elenn Suzany Pereira Aranha
- Biological Activity Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 1200 - Coroado, Manaus, Brazil
| | - Sarah Farran
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center - Riad El-Solh, Beirut, Lebanon
| | - Marne Carvalho de Vasconcellos
- Biological Activity Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 1200 - Coroado, Manaus, Brazil
| | - Maria Elisabete Amaral de Moraes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Caroline Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil.
| |
Collapse
|
22
|
Li D, Liu X, Pi W, Zhang Y, Yu L, Xu C, Sun Z, Jiang J. Fisetin Attenuates Doxorubicin-Induced Cardiomyopathy In Vivo and In Vitro by Inhibiting Ferroptosis Through SIRT1/Nrf2 Signaling Pathway Activation. Front Pharmacol 2022; 12:808480. [PMID: 35273493 PMCID: PMC8902236 DOI: 10.3389/fphar.2021.808480] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic that is used extensively for the management of carcinoma; however, its clinical application is limited due to its serious cardiotoxic side effects. Ferroptosis represents iron-dependent and reactive oxygen species (ROS)-related cell death and has been proven to contribute to the progression of DOX-induced cardiomyopathy. Fisetin is a natural flavonoid that is abundantly present in fruits and vegetables. It has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity in experimental rats. However, the underlying mechanisms remain unknown. The present study investigated the cardioprotective role of fisetin and the underlying molecular mechanism through experiments in the DOX-induced cardiomyopathy rat and H9c2 cell models. The results revealed that fisetin treatment could markedly abate DOX-induced cardiotoxicity by alleviating cardiac dysfunction, ameliorating myocardial fibrosis, mitigating cardiac hypertrophy in rats, and attenuating ferroptosis of cardiomyocytes by reversing the decline in the GPX4 level. Mechanistically, fisetin exerted its antioxidant effect by reducing the MDA and lipid ROS levels and increasing the glutathione (GSH) level. Moreover, fisetin exerted its protective effect by increasing the SIRT1 expression and the Nrf2 mRNA and protein levels and its nuclear translocation, which resulted in the activation of its downstream genes such as HO-1 and FTH1. Selective inhibition of SIRT1 attenuated the protective effects of fisetin in the H9c2 cells, which in turn decreased the GSH and GPX4 levels, as well as Nrf2, HO-1, and FTH1 expressions. In conclusion, fisetin exerts its therapeutic effects against DOX-induced cardiomyopathy by inhibiting ferroptosis via SIRT1/Nrf2 signaling pathway activation.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Department of Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Linhai, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lei Yu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Cheng Xu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
23
|
Guo S, Burcus NI, Scott M, Jing Y, Semenov I. The role of reactive oxygen species in the immunity induced by nano-pulse stimulation. Sci Rep 2021; 11:23745. [PMID: 34887493 PMCID: PMC8660900 DOI: 10.1038/s41598-021-03342-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
Reactive oxygen species (ROS) are byproducts of tumor cells treated with Nano-Pulse Stimulation (NPS). Recently, ROS have been suggested as a contributing factor in immunogenic cell death and T cell-mediated immunity. This research further investigated the role of NPS induced ROS in antitumor immunity. ROS production in 4T1-luc breast cancer cells was characterized using three detection reagents, namely, Amplex Red, MitoSox Red, and Dihydroethidium. The efficiency of ROS quenching was evaluated in the presence or absence of ROS scavengers and/or antioxidants. The immunogenicity of NPS treated tumor cells was assessed by ex vivo dendritic cell activation, in vivo vaccination assay and in situ vaccination with NPS tumor ablation. We found that NPS treatment enhanced the immunogenicity of 4T1-luc mouse mammary tumor, resulted in a potent in situ vaccination protection and induced long-term T cell immunity. ROS production derived from NPS treated breast cancer cells was an electric pulse dose-dependent phenomenon. Noticeably, the dynamic pattern of hydrogen peroxide production was different from that of superoxide production. Interestingly, regardless of NPS treatment, different ROS scavengers could either block or promote ROS production and stimulate or inhibit tumor cell growth. The activation of dendritic cells was not influenced by blocking ROS generation. The results from in vivo vaccination with NPS treated cancer cells suggests that ROS generation was not a prerequisite for immune protection.
Collapse
Affiliation(s)
- Siqi Guo
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.
| | - Niculina I. Burcus
- grid.261368.80000 0001 2164 3177Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| | - Megan Scott
- grid.261368.80000 0001 2164 3177Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| | - Yu Jing
- grid.261368.80000 0001 2164 3177Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| | - Iurii Semenov
- grid.261368.80000 0001 2164 3177Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| |
Collapse
|
24
|
Catalano T, D’Amico E, Moscatello C, Di Marcantonio MC, Ferrone A, Bologna G, Selvaggi F, Lanuti P, Cotellese R, Curia MC, Lattanzio R, Aceto GM. Oxidative Distress Induces Wnt/β-Catenin Pathway Modulation in Colorectal Cancer Cells: Perspectives on APC Retained Functions. Cancers (Basel) 2021; 13:6045. [PMID: 34885156 PMCID: PMC8656656 DOI: 10.3390/cancers13236045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is a multistep process that arises in the colic tissue microenvironment. Oxidative stress plays a role in mediating CRC cell survival and progression, as well as promoting resistance to therapies. CRC progression is associated with Wnt/β-Catenin signaling dysregulation and loss of proper APC functions. Cancer recurrence/relapse has been attributed to altered ROS levels, produced in a cancerous microenvironment. The effect of oxidative distress on Wnt/β-Catenin signaling in the light of APC functions is unclear. This study evaluated the effect of H2O2-induced short-term oxidative stress in HCT116, SW480 and SW620 cells with different phenotypes of APC and β-Catenin. The modulation and relationship of APC with characteristic molecules of Wnt/β-Catenin were assessed in gene and protein expression. Results indicated that CRC cells, even when deprived of growth factors, under acute oxidative distress conditions by H2O2 promote β-Catenin expression and modulate cytoplasmic APC protein. Furthermore, H2O2 induces differential gene expression depending on the cellular phenotype and leading to favor both Wnt/Catenin-dependent and -independent signaling. The exact mechanism by which oxidative distress can affect Wnt signaling functions will require further investigation to reveal new scenarios for the development of therapeutic approaches for CRC, in the light of the conserved functions of APC.
Collapse
Affiliation(s)
- Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| | - Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.C.D.M.); (R.L.)
| | - Alessio Ferrone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.F.); (G.B.); (P.L.)
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.F.); (G.B.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Federico Selvaggi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
- Unit of General Surgery, Ospedale Floraspe Renzetti, Lanciano, 66034 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.F.); (G.B.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
- Villa Serena Foundation for Research, Via Leonardo Petruzzi, 65013 Città Sant’Angelo, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.C.D.M.); (R.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| |
Collapse
|
25
|
Du L, Xie Y, Zheng K, Wang N, Gao M, Yu T, Cao L, Shao Q, Zou Y, Xia W, Fang Q, Zhao B, Guo D, Peng X, Pan JA. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication. Redox Biol 2021; 48:102199. [PMID: 34847508 PMCID: PMC8616692 DOI: 10.1016/j.redox.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
3CLpro is a key proteinase for SARS-CoV-2 replication and serves as an important target for antiviral drug development. However, how its activity is regulated intracellularly is still obscure. In this study, we developed a 3CLpro protease activity reporter system to examine the impact of various factors, including nutrient supplements, ions, pHs, or oxidative stress inducers, on 3CLpro protease activity. We found that oxidative stress could increase the overall activity of 3CLpro. Not altering the expression, oxidative stress decreased the solubility of 3CLpro in the lysis buffer containing 1% Triton-X-100. The Triton-X-100-insoluble 3CLpro was correlated with aggregates' formation and responsible for the increased enzymatic activity. The disulfide bonds formed between Cys85 sites of 3CLpro protomers account for the insolubility and the aggregation of 3CLpro. Besides being regulated by oxidative stress, 3CLpro impaired the cellular antioxidant capacity by regulating the cleavage of GPx1 at its N-terminus. This cleavage could further elevate the 3CLpro-proximate oxidative activity, favor aggregation and activation of 3CLpro, and thus lead to a positive feedback loop. In summary, we reported that oxidative stress transforms 3CLpro into a detergent-insoluble form that is more enzymatically active, leading to increased viral replication/transcription. Our study provided mechanistic evidence that suggests the therapeutic potential of antioxidants in the clinical treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Liubing Du
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yanchun Xie
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Kai Zheng
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Niu Wang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Mingcheng Gao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Ting Yu
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Liu Cao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - QianQian Shao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangming Science City, Shenzhen, 518107, China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangming Science City, Shenzhen, 518107, China
| | - Bo Zhao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Deyin Guo
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Xiaoxue Peng
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China.
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
26
|
Yuan G, Cen J, Liao J, Huang Y, Jie L. In situ hydrogen nanogenerator for bimodal imaging guided synergistic photothermal/hydrogen therapies. NANOSCALE 2021; 13:15576-15589. [PMID: 34524338 DOI: 10.1039/d1nr03260g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multifunctional nanoagents integrating multiple therapeutic and imaging functions hold promise in the field of non-invasive and precise tumor therapies. However, the complex preparation process and uncertain drug metabolism of nanoagents loaded with various therapeutic agents or imaging agents greatly hinder its clinical applications. Developing simple and effective nanoagents that integrate multiple therapeutic and imaging functions remain a huge challenge. Therefore, a novel strategy based on in situ hydrogen release is proposed in this work: aminoborane (AB) was loaded onto mesoporous polydopamine nanoparticles (MPDA NPs) as a prodrug for hydrogen production, and then, PEG was modified on the surface of nanoparticles (represented as AB@MPDA-PEG). MPDA NPs not only act as photothermal agents (PTA) with high photothermal conversion efficiency (808 nm, η = 38.72%) but also as the carriers of AB accumulated in the tumor through enhanced permeability and retention (EPR) effect. H2 gas generated by AB in the weak acid conditions of the tumor microenvironment (TME) not only was used to treat tumors via a combination of hydrogen and photothermal therapies but also serves as a US and CT contrast agent, providing accurate guidance for tumor treatment. Finally, in vivo and in vitro investigation suggest that the designed multifunctional nanosystem not only showed excellent properties such as high hydrogen-loading capacity, long-lasting sustained hydrogen release ability and excellent biocompatibility but also achieve selective PTT/hydrogen therapies and US/CT bimodal imaging functions, which can effectively guide antitumor therapies. The proposed hydrogen gas-based strategy for combination therapies and bimodal imaging integration holds promise as an efficient and safe tumor treatment for future clinical translation.
Collapse
Affiliation(s)
- Guanglong Yuan
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Jieqiong Cen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Jiamin Liao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Yuqin Huang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Liu Jie
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
27
|
Antiaging Effects of Vicatia thibetica de Boiss Root Extract on Caenorhabditis elegans and Doxorubicin-Induced Premature Aging in Adult Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9942090. [PMID: 34413931 PMCID: PMC8369193 DOI: 10.1155/2021/9942090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
The roots of Vicatia thibetica de Boiss are a kind of Chinese herb with homology of medicine and food. This is the first report showing the property of the extract of Vicatia thibetica de Boiss roots (HLB01) to extend the lifespan as well as promote the healthy parameters in Caenorhabditis elegans (C. elegans). For doxorubicin- (Doxo-) induced premature aging in adult mice, HLB01 counteracted the senescence-associated biomarkers, including P21 and γH2AX. Interestingly, HLB01 promoted the expression of collagen in C. elegans and mammalian cell systemically, which might be one of the essential factors to exert the antiaging effects. In addition, HLB01 was also found as a scavenger of free radicals, thereby performing the antioxidant ability. Lifespan extension by HLB01 was also dependent on DAF-16 and HSF-1 via oxidative stress resistance and heat stress resistance. Taken together, overall data suggested that HLB01 could extend the lifespan and healthspan of C. elegans and resist Doxo-induced senescence in mice via promoting the expression of collagen, antioxidant potential, and stress resistance.
Collapse
|
28
|
Olanlokun JO, Balogun AA, Olorunsogo OO. INFLUENCE OF ARTESUNATE COMBINATIVE THERAPY CO-ADMINISTRATION WITH RUTIN ON INFLAMMATORY CYTOKINES AND IMMUNOGLOBULINS IN PLASMODIUM BERGHEI-INFECTED MICE. J Parasitol 2021; 107:639-647. [PMID: 34358312 DOI: 10.1645/20-87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Some antimalarial drugs are immune-modulators that impact multiple pathways of innate immunity in malarial treatment. However, information on the immunomodulatory effects of artequine and rutin in the treatment of malaria remains elusive. Twenty-five Swiss mice (18 ± 2 g) were used for this study. Twenty were infected with Plasmodium berghei (NK65). Parasitemia was confirmed, and the animals were grouped (n = 5) as follows: Group A was not infected but treated orally with vehicle. Groups B to E were infected and treated (B) orally with vehicle (10 ml/kg), (C) with 10 mg/kg artequine, (D) with 10 mg/kg of artequine supplemented with 100 mg rutin/kg, and (D) with 10 mg/kg of artequine supplemented with 200 mg rutin/kg, for 7 days. Blood was collected for hematological, inflammatory cytokines, and immunoglobulins G and M assays. Post mitochondrial supernatant fraction was used for antioxidant assays. Rutin co-administration (200 mg/kg) significantly (P < 0.001) increased platelet and neutrophil counts (P < 0.01) but significantly (P < 0.01) decreased white blood cell count and lymphocyte relative to parasitized control. Also, it significantly (P < 0.05) decreased lipid peroxidation, xanthine oxidase, and superoxide dismutase activities but significantly (P < 0.05) increased reduced glutathione and glutathione S-transferase activity. Rutin co-administration also caused a significant (P < 0.001) increase in tumor necrosis factor-alpha, interleukin-6, and immunoglobulin M levels, while interleukin-1β and immunoglobulin G decreased significantly (P < 0.001) compared with parasitized control. These results showed that rutin co-administration with artequine improved host antioxidant status and modulated the immune and inflammatory responses.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria 200001
| | - Adisa Abayomi Balogun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria 200001
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria 200001
| |
Collapse
|
29
|
Wu H, Wang Y, Ying M, Jin C, Li J, Hu X. Lactate dehydrogenases amplify reactive oxygen species in cancer cells in response to oxidative stimuli. Signal Transduct Target Ther 2021; 6:242. [PMID: 34176927 PMCID: PMC8236487 DOI: 10.1038/s41392-021-00595-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Previous studies demonstrated that superoxide could initiate and amplify LDH-catalyzed hydrogen peroxide production in aqueous phase, but its physiological relevance is unknown. Here we showed that LDHA and LDHB both exhibited hydrogen peroxide-producing activity, which was significantly enhanced by the superoxide generated from the isolated mitochondria from HeLa cells and patients' cholangiocarcinoma specimen. After LDHA or LDHB were knocked out, hydrogen peroxide produced by Hela or 4T1 cancer cells were significantly reduced. Re-expression of LDHA in LDHA-knockout HeLa cells partially restored hydrogen peroxide production. In HeLa and 4T1 cells, LDHA or LDHB knockout or LDH inhibitor FX11 significantly decreased ROS induction by modulators of the mitochondrial electron transfer chain (antimycin, oligomycin, rotenone), hypoxia, and pharmacological ROS inducers piperlogumine (PL) and phenethyl isothiocyanate (PEITC). Moreover, the tumors formed by LDHA or LDHB knockout HeLa or 4T1 cells exhibited a significantly less oxidative state than those formed by control cells. Collectively, we provide a mechanistic understanding of a link between LDH and cellular hydrogen peroxide production or oxidative stress in cancer cells in vitro and in vivo.
Collapse
Grants
- This work has been supported in part by the China National 973 project (2013CB911303), China Natural Sciences Foundation projects (81470126), a key project (2018C03009) funded by Zhejiang Provincial Department of Sciences and Technologies, and the Fundamental Research Funds for the Central Universities (2017XZZX001-012019FZJD009), National Ministry of Education, China, to XH, and Zhejiang Provincial Natural Science Foundation of China (LY17H160036), the Fundamental Research Funds for the Central Universities (2017FZA7010) and China Natural Sciences Foundation project (81301707), to HW.
- Zhejiang Provincial Natural Science Foundation of China (LY17H160036), the Fundamental Research Funds for the Central Universities and China Natural Sciences Foundation project 2017FZA7010, to HW.
Collapse
Affiliation(s)
- Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqi Wang
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengmeng Jin
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangtao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
30
|
Wani TH, Chowdhury G, Chakrabarty A. Generation of reactive oxygen species is the primary mode of action and cause of survivin suppression by sepantronium bromide (YM155). RSC Med Chem 2021; 12:566-578. [PMID: 34046628 PMCID: PMC8128069 DOI: 10.1039/d0md00383b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Survivin is a lucrative broad-spectrum drug target for different cancer types, including triple negative breast cancer (TNBC). Sepantronium bromide (YM155) is the first of its class of survivin suppressants and was found to be quite effective in pre-clinical models of TNBC. However, in clinical trials when given in combination with docetaxel, YM55 failed to provide any added advantage. To understand if the clinical outcome is due to YM155 being ineffective or due to an inappropriate choice of combination, we need to elucidate its true mode of action. Hence, to explain the unexpected and unexplained observations pertaining to YM155 biology and its mode of action, we developed isogenic pairs of YM155-sensitive and -resistant TNBC cell lines and characterized them in detail by various biochemical assays. We found that YM155 generates reactive oxygen species (ROS) in the mitochondria in addition to the previously discovered redox cycling pathway. Both survivin suppression and DNA damage are secondary effects resulting from the ROS which contribute to the drug's cytotoxic effects on TNBC cells. Indeed, adaptation to both these pathways was important in conferring YM155 resistance. Finally, we uncovered a unique connection between the ROS and control of survivin expression involving a ROS/AKT/FoxO/survivin axis in TNBC cells. Together, by deciphering the true mode of action of YM155, we present a possible explanation for its poor clinical efficacy when used in combination with docetaxel. The results and conclusions presented here provide the information needed to effectively use YM155 in combination therapy.
Collapse
Affiliation(s)
- Tasaduq Hussain Wani
- Department of Life Sciences, Shiv Nadar University Greater Noida UP 201314 India
| | | | - Anindita Chakrabarty
- Department of Life Sciences, Shiv Nadar University Greater Noida UP 201314 India
| |
Collapse
|
31
|
Ochratoxin A Induces Oxidative Stress in HepG2 Cells by Impairing the Gene Expression of Antioxidant Enzymes. Toxins (Basel) 2021; 13:toxins13040271. [PMID: 33918675 PMCID: PMC8068875 DOI: 10.3390/toxins13040271] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin frequently found in raw and processed foods. While it is considered a possible human carcinogen, the mechanism of action remains unclear. OTA has been shown to be hepatotoxic in both in vitro and in vivo models and oxidative stress may be one of the factors contributing to its toxicity. Hence, the effect of OTA on human hepatocellular carcinoma, HepG2 cells, was investigated on oxidative stress parameters. The cytotoxicity of OTA on HepG2 was time- and dose-dependent within a range between 0.1 and 10 µM; while 100 μM of OTA increased the intracellular reactive oxygen species (ROS) in a time-dependent manner. Additionally, the levels of glutathione (GSH) were increased by 9.7% and 11.3% at 10 and 100 nM of OTA, respectively; while OTA at 100 μM depleted GSH by 40.5% after 24 h exposure compared with the control. Finally, the mRNA level of catalase (CAT) was downregulated by 2.33-, 1.92-, and 1.82-fold after cells were treated with 1, 10, and 10 μM OTA for 24 h, respectively; which was linked to a decrease in CAT enzymatic activity. These results suggest that oxidative stress is involved in OTA-mediated toxicity in HepG2 cells.
Collapse
|
32
|
13 R,20-Dihydroxydocosahexaenoic Acid, a Novel Dihydroxy- DHA Derivative, Inhibits Breast Cancer Stemness through Regulation of the Stat3/IL-6 Signaling Pathway by Inducing ROS Production. Antioxidants (Basel) 2021; 10:antiox10030457. [PMID: 33804152 PMCID: PMC7999786 DOI: 10.3390/antiox10030457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a major health problem worldwide. Cancer stem cells (CSCs) are known to mediate breast cancer metastasis and recurrence and are therefore a promising therapeutic target. In this study, we investigated the anti-inflammatory effect of 13R,20-dihydroxydocosahexaenoic acid (13R,20-diHDHA), a novel dihydroxy-DHA derivative, which was synthesized through an enzymatic reaction using cyanobacterial lipoxygenase. We found that 13R,20-diHDHA reduced the macrophage secretion of the inflammatory cytokines, IL-6 and TNF-α, and thus appeared to have anti-inflammatory effects. As the inflammatory tumor microenvironment is largely devoted to supporting the cancer stemness of breast cancer cells, we investigated the effect of 13R,20-diHDHA on breast cancer stemness. Indeed, 13R,20-diHDHA effectively inhibited breast cancer stemness, as evidenced by its ability to dose-dependently inhibit the mammospheres formation, colony formation, migration, and invasion of breast CSCs. 13R,20-diHDHA reduced the populations of CD44high/CD24low and aldehyde dehydrogenase (ALDH)-positive cells and the expression levels of the cancer stemness-related self-renewal genes, Nanog, Sox2, Oct4, c-Myc, and CD44. 13R,20-diHDHA increased reactive oxygen species (ROS) production, and the generated ROS reduced the phosphorylation of nuclear signal transducer and activator of transcription 3 (Stat3) and the secretion of IL-6 by mammospheres. These data collectively suggest that 13R,20-diHDHA inhibits breast cancer stemness through ROS production and downstream regulation of Stat3/IL-6 signaling, and thus might be developed as an anti-cancer agent acting against CSCs.
Collapse
|
33
|
Manoalide Shows Mutual Interaction between Cellular and Mitochondrial Reactive Species with Apoptosis in Oral Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6667355. [PMID: 33747349 PMCID: PMC7943270 DOI: 10.1155/2021/6667355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
We previously found that marine sponge-derived manoalide induced antiproliferation and apoptosis of oral cancer cells as well as reactive species generations probed by dichloro-dihydrofluorescein diacetate (DCFH-DA) and MitoSOX Red. However, the sources of cellular and mitochondrial redox stresses and the mutual interacting effects between these redox stresses and apoptosis remain unclear. To address this issue, we examined a panel of reactive species and used the inhibitors of cellular reactive species (N-acetylcysteine (NAC)), mitochondrial reactive species (MitoTEMPO), and apoptosis (Z-VAD-FMK; ZVAD) to explore their interactions in manoalide-treated oral cancer Ca9-22 and CAL 27 cells. Hydroxyl (˙OH), nitrogen dioxide (NO2˙), nitric oxide (˙NO), carbonate radical-anion (CO3 ˙-), peroxynitrite (ONOO-), and superoxide (O2 ˙-) were increased in oral cancer cells following manoalide treatments in terms of fluorescence staining and flow cytometry. Cellular reactive species (˙OH, NO2 ·, ˙NO, CO3 ˙-, and ONOO-) as well as cellular and mitochondrial reactive species (O2 ˙-) were induced in oral cancer cells following manoalide treatment for 6 h. NAC, MitoTEMPO, and ZVAD inhibit manoalide-induced apoptosis in terms of annexin V and pancaspase activity assays. Moreover, NAC inhibits mitochondrial reactive species and MitoTEMPO inhibits cellular reactive species, suggesting that cellular and mitochondrial reactive species can crosstalk to regulate each other. ZVAD shows suppressing effects on the generation of both cellular and mitochondrial reactive species. In conclusion, manoalide induces reciprocally activation between cellular and mitochondrial reactive species and apoptosis in oral cancer cells.
Collapse
|
34
|
De I, S R, Kour A, Wani H, Sharma P, Panda JJ, Singh M. Exposure of calcium carbide induces apoptosis in mammalian fibroblast L929 cells. Toxicol Mech Methods 2020; 31:159-168. [PMID: 33190584 DOI: 10.1080/15376516.2020.1849484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Inspite of various health warnings from Government and health organizations, Calcium carbide (CaC2) is still the most commonly and widely used artificial fruit ripener, probably due to its easy availability, low cost and convenience of usage. Assessment of the hazardous effects of the CaC2 applications for fruit ripening has been a matter of interest since long. Several in vivo studies have reported the toxicological outcomes such as histopathological changes in lungs and kidneys, haematological and immunological responses, upon exposure with CaC2. However, a well-controlled study investigating the effects of CaC2 under in-vitro setup was lacking. Hence, this study has been conducted to explore the toxicity associated cellular events in L929 cells exposed with varying concentrations of CaC2 (0.00312-0.2 μg/μl) for 24 h exposure time. A 23.14% reduction in cell viability was observed at the highest dose of CaC2. A similar trend in cellular stress levels at 0.2 μg/μl dose was observed in terms of rounded cellular morphology and decreased adherence as compared to the control. Furthermore, Annexin V FITC/PI staining and subsequent confocal imaging revealed a similar trend of CaC2 induced apoptosis in a dose dependent manner. A gradual elevation of intracellular ROS has also been observed up to 0.025 μg/μl dose. Thus, the study concludes that short term CaC2 exposure may increase the cellular oxidative stress and disturb the redox balance of the cell which then undergoes apoptosis. The study concludes that the exposure of CaC2 can be associated with severe diseases and suggests to stop the uses of CaC2 as fruit ripening agent.
Collapse
Affiliation(s)
- Indranil De
- Chemical Biology, Institute of Nano Science and Technology, Mohali, India
| | - Rajesh S
- Chemical Biology, Institute of Nano Science and Technology, Mohali, India
| | - Avneet Kour
- Chemical Biology, Institute of Nano Science and Technology, Mohali, India
| | - Henna Wani
- Chemical Biology, Institute of Nano Science and Technology, Mohali, India
| | - Prashant Sharma
- Chemical Biology, Institute of Nano Science and Technology, Mohali, India
| | - Jiban Jyoti Panda
- Chemical Biology, Institute of Nano Science and Technology, Mohali, India
| | - Manish Singh
- Chemical Biology, Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
35
|
Zhang K, Qin X, Wen P, Wu Y, Zhuang J. Systematic analysis of molecular mechanisms of heart failure through the pathway and network-based approach. Life Sci 2020; 265:118830. [PMID: 33259868 DOI: 10.1016/j.lfs.2020.118830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
AIMS The molecular networks and pathways involved in heart failure (HF) are still largely unknown. The present study aimed to systematically investigate the genes associated with HF, comprehensively explore their interactions and functions, and identify possible regulatory networks involved in HF. MAIN METHODS The weighted gene coexpression network analysis (WGCNA), crosstalk analysis, and Pivot analysis were used to identify gene connections, interaction networks, and molecular regulatory mechanisms. Functional analysis and protein-protein interaction (PPI) were performed using DAVID and STRING databases. Gene set variation analysis (GSVA) and receiver operating characteristic (ROC) curve analysis were also performed to evaluate the relationship of the hub genes with HF. KEY FINDINGS A total of 5968 HF-related genes were obtained to construct the co-expression networks, and 18 relatively independent and closely linked modules were identified. Pivot analysis suggested that four transcription factors and five noncoding RNAs were involved in regulating the process of HF. The genes in the module with the highest positive correlation to HF was mainly enriched in cardiac remodeling and response to stress. Five upregulated hub genes (ASPN, FMOD, NT5E, LUM, and OGN) were identified and validated. Furthermore, the GSVA scores of the five hub genes for HF had a relatively high areas under the curve (AUC). SIGNIFICANCE The results of this study revealed specific molecular networks and their potential regulatory mechanisms involved in HF. These may provide new insight into understanding the mechanisms underlying HF and help to identify more effective therapeutic targets for HF.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xianyu Qin
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Pengju Wen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
36
|
Liang P, Kolodieznyi D, Creeger Y, Ballou B, Bruchez MP. Subcellular Singlet Oxygen and Cell Death: Location Matters. Front Chem 2020; 8:592941. [PMID: 33282833 PMCID: PMC7705227 DOI: 10.3389/fchem.2020.592941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
We developed a tool for targeted generation of singlet oxygen using light activation of a genetically encoded fluorogen-activating protein complexed with a unique dye molecule that becomes a potent photosensitizer upon interaction with the protein. By targeting the protein receptor to activate this dye in distinct subcellular locations at consistent per-cell concentrations, we investigated the impact of localized production of singlet oxygen on induction of cell death. We analyzed light dose-dependent cytotoxic response and characterized the apoptotic vs. necrotic cell death as a function of subcellular location, including the nucleus, the cytosol, the endoplasmic reticulum, the mitochondria, and the membrane. We find that different subcellular origins of singlet oxygen have different potencies in cytotoxic response and the pathways of cell death, and we observed that CT26 and HEK293 cell lines are differentially sensitive to mitochondrially localized singlet oxygen stresses. This work provides new insight into the function of type II reactive oxygen generating photosensitizing processes in inducing targeted cell death and raises interesting mechanistic questions about tolerance and survival mechanisms in studies of oxidative stress in clonal cell populations.
Collapse
Affiliation(s)
- Pingping Liang
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States.,Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Dmytro Kolodieznyi
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Yehuda Creeger
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Byron Ballou
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Bartelmess J, Milcovich G, Maffeis V, d'Amora M, Bertozzi SM, Giordani S. Modulation of Efficient Diiodo-BODIPY in vitro Phototoxicity to Cancer Cells by Carbon Nano-Onions. Front Chem 2020; 8:573211. [PMID: 33134274 PMCID: PMC7574714 DOI: 10.3389/fchem.2020.573211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy is currently one of the most promising approaches for targeted cancer treatment. It is based on responses of vital physiological signals, namely, reactive oxygen species (ROS), which are associated with diseased condition development, such as tumors. This study presents the synthesis, incorporation, and application of a diiodo-BODIPY–based photosensitizer, based on a non-covalent functionalization of carbon nano-onions (CNOs). In vitro assays demonstrate that HeLa cells internalize the diiodo-BODIPY molecules and their CNO nanohybrids. Upon cell internalization and light exposure, the pyrene–diiodo-BODIPY molecules induce an increase of the ROS level of HeLa cells, resulting in remarkable photomediated cytotoxicity and apoptosis. Conversely, when HeLa cells internalize the diiodo-BODIPY/CNO nanohybrids, no significant cytotoxicity or ROS basal level increase can be detected. These results define a first step toward the understanding of carbon nanomaterials that function as molecular shuttles for photodynamic therapeutics, boosting the modulation of the photosensitizer.
Collapse
Affiliation(s)
- Juergen Bartelmess
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Gesmi Milcovich
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,School of Chemical Sciences, Dublin City University (DCU), Dublin, Ireland
| | - Viviana Maffeis
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Marta d'Amora
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | | | - Silvia Giordani
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,School of Chemical Sciences, Dublin City University (DCU), Dublin, Ireland
| |
Collapse
|
38
|
Xie Y, Jiang J, Tang Q, Zou H, Zhao X, Liu H, Ma D, Cai C, Zhou Y, Chen X, Pu J, Liu P. Iron Oxide Nanoparticles as Autophagy Intervention Agents Suppress Hepatoma Growth by Enhancing Tumoricidal Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903323. [PMID: 32832347 PMCID: PMC7435245 DOI: 10.1002/advs.201903323] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/06/2020] [Indexed: 05/10/2023]
Abstract
The combined treatment with nanoparticles and autophagy inhibitors, such as chloroquine (CQ) and hydroxychloroquine (HCQ), is extensively explored for cancer therapy. However, the toxicity of autophagy inhibitors and their unselective for tumoricidal autophagy have seriously hindered the application of the combined treatment. In this study, a carboxy-functional iron oxide nanoparticle (Fe2O3@DMSA) is designed and identified to significantly exert an antitumor effect without adding CQ or HCQ. Further investigation indicates that the effective inhibition effect of Fe2O3@DMSA alone on hepatoma growth is triggered by inhibiting the fusion of autophagosomes and lysosomes to enhance tumoricidal autophagy, which is induced by intracellular iron-retention-induced sustained reactive oxygen species (ROS) production. Furthermore, in two hepatoma-bearing mouse models, Fe2O3@DMSA alone effectively suppresses the growth of tumors without obvious toxic side effects. These studies offer a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Yuexia Xie
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Micro–Nano Research and Diagnosis CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jiana Jiang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Micro–Nano Research and Diagnosis CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qianyun Tang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Micro–Nano Research and Diagnosis CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hanbing Zou
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Micro–Nano Research and Diagnosis CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xue Zhao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Micro–Nano Research and Diagnosis CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hongmei Liu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Micro–Nano Research and Diagnosis CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Ding Ma
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Micro–Nano Research and Diagnosis CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Chenlei Cai
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Micro–Nano Research and Diagnosis CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yan Zhou
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Micro–Nano Research and Diagnosis CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xiaojing Chen
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Micro–Nano Research and Diagnosis CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jun Pu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Micro–Nano Research and Diagnosis CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
39
|
Rodrigues DF, Pires das Neves R, Carvalho ATP, Lourdes Bastos M, Costa VM, Carvalho F. In vitro mechanistic studies on α-amanitin and its putative antidotes. Arch Toxicol 2020; 94:2061-2078. [PMID: 32193566 DOI: 10.1007/s00204-020-02718-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/12/2020] [Indexed: 11/29/2022]
Abstract
α-Amanitin plays a key role in Amanita phalloides intoxications. The liver is a major target of α-amanitin toxicity, and while RNA polymerase II (RNA Pol II) transcription inhibition is a well-acknowledged mechanism of α-amanitin toxicity, other possible toxicological pathways remain to be elucidated. This study aimed to assess the mechanisms of α-amanitin hepatotoxicity in HepG2 cells. The putative protective effects of postulated antidotes were also tested in this cell model and in permeabilized HeLa cells. α-Amanitin (0.1-20 µM) displayed time- and concentration-dependent cytotoxicity, when evaluated through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and neutral red uptake assays. Additionally, α-amanitin decreased nascent RNA synthesis in a concentration- and time-dependent manner. While α-amanitin did not induce changes in mitochondrial membrane potential, it caused a significant increase in intracellular ATP levels, which was not prevented by incubation with oligomycin, an ATP synthetase inhibitor. Concerning the cell redox status, α-amanitin did not increase reactive species production, but caused a significant increase in total and reduced glutathione, which was abolished by pre-incubation with the inhibitor of gamma-glutamylcysteine synthase, buthionine sulfoximine. None of the tested antidotes [N-acetyl cysteine, silibinin, benzylpenicillin, and polymyxin B (PolB)] conferred any protection against α-amanitin-induced cytotoxicity in HepG2 cells or reversed the inhibition of nascent RNA caused by the toxin in permeabilized HeLa cells. Still, PolB interfered with RNA Pol II activity at high concentrations, though not impacting on α-amanitin observed cytotoxicity. New hepatotoxic mechanisms of α-amanitin were described herein, but the lack of protection observed in clinically used antidotes may reflect the lack of knowledge on their true protection mechanisms and may explain their relatively low clinical efficacy.
Collapse
Affiliation(s)
- Daniela Ferreira Rodrigues
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ricardo Pires das Neves
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Alexandra T P Carvalho
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Maria Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Vera M Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
40
|
Li Y, Guo F, Guan Y, Chen T, Ma K, Zhang L, Wang Z, Su Q, Feng L, Liu Y, Zhou Y. Novel Anthraquinone Compounds Inhibit Colon Cancer Cell Proliferation via the Reactive Oxygen Species/JNK Pathway. Molecules 2020; 25:molecules25071672. [PMID: 32260423 PMCID: PMC7180728 DOI: 10.3390/molecules25071672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
A series of amide anthraquinone derivatives, an important component of some traditional Chinese medicines, were structurally modified and the resulting antitumor activities were evaluated. The compounds showed potent anti-proliferative activities against eight human cancer cell lines, with no noticeable cytotoxicity towards normal cells. Among the candidate compounds, 1-nitro-2-acyl anthraquinone-leucine (8a) showed the greatest inhibition of HCT116 cell activity with an IC50 of 17.80 μg/mL. In addition, a correlation model was established in a three-dimensional quantitative structure-activity relationship (3D-QSAR) study using Comparative Molecular Field Analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). Moreover, compound 8a effectively killed tumor cells by reactive oxygen species (ROS)-JNK activation, causing an increase in ROS levels, JNK phosphorylation, and mitochondrial stress. Cytochrome c was then released into cytoplasm, which, in turn activated the cysteine protease pathway and ultimately induced tumor cell apoptosis, suggesting a potential use of this compound for colon cancer treatment.
Collapse
|
41
|
Garanina AS, Naumenko VA, Nikitin AA, Myrovali E, Petukhova AY, Klimyuk SV, Nalench YA, Ilyasov AR, Vodopyanov SS, Erofeev AS, Gorelkin PV, Angelakeris M, Savchenko AG, Wiedwald U, Majouga Dr AG, Abakumov MA. Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 25:102171. [PMID: 32084594 DOI: 10.1016/j.nano.2020.102171] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/30/2019] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy.
Collapse
Affiliation(s)
- Anastasiia S Garanina
- National University of Science and Technology «MISiS», Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia.
| | - Victor A Naumenko
- National University of Science and Technology «MISiS», Moscow, Russia; National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Aleksey A Nikitin
- National University of Science and Technology «MISiS», Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Y Petukhova
- National University of Science and Technology «MISiS», Moscow, Russia
| | | | - Yulia A Nalench
- National University of Science and Technology «MISiS», Moscow, Russia
| | - Artem R Ilyasov
- National University of Science and Technology «MISiS», Moscow, Russia
| | | | - Alexander S Erofeev
- National University of Science and Technology «MISiS», Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Peter V Gorelkin
- Medical Nanotechnology LLC, Skolkovo Innovation Center, Moscow, Russia
| | - Makis Angelakeris
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Ulf Wiedwald
- National University of Science and Technology «MISiS», Moscow, Russia; Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Alexander G Majouga Dr
- National University of Science and Technology «MISiS», Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia; D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Maxim A Abakumov
- National University of Science and Technology «MISiS», Moscow, Russia; Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
42
|
Khorraminejad-Shirazi M, Sani M, Talaei-Khozani T, Dorvash M, Mirzaei M, Faghihi MA, Monabati A, Attar A. AICAR and nicotinamide treatment synergistically augment the proliferation and attenuate senescence-associated changes in mesenchymal stromal cells. Stem Cell Res Ther 2020; 11:45. [PMID: 32014016 PMCID: PMC6998366 DOI: 10.1186/s13287-020-1565-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/05/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stromal cell (MSC) stemness capacity diminishes over prolonged in vitro culture, which negatively affects their application in regenerative medicine. To slow down the senescence of MSCs, here, we have evaluated the in vitro effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, and nicotinamide (NAM), an activator of sirtuin1 (SIRT1). Methods Human adipose-derived MSCs were cultured to passage (P) 5. Subsequently, the cells were grown in either normal medium alone (control group), the medium supplemented with AICAR (1 mM) and NAM (5 mM), or in the presence of both for 5 weeks to P10. Cell proliferation, differentiation capacity, level of apoptosis and autophagy, morphological changes, total cellular reactive oxygen species (ROS), and activity of mTORC1 and AMPK were compared among different treatment groups. Results MSCs treated with AICAR, NAM, or both displayed an increase in proliferation and osteogenic differentiation, which was augmented in the group receiving both. Treatment with AICAR or NAM led to decreased expression of β-galactosidase, reduced accumulation of dysfunctional lysosomes, and characteristic morphologic features of young MSCs. Furthermore, while NAM administration could significantly reduce the total cellular ROS in aged MSCs, AICAR treatment did not. Moreover, AICAR-treated cells possess a high proliferation capacity; however, they also show the highest level of cellular apoptosis. The observed effects of AICAR and NAM were in light of the attenuated mTORC1 activity and increased AMPK activity and autophagy. Conclusions Selective inhibition of mTORC1 by AICAR and NAM boosts autophagy, retains MSCs’ self-renewal and multi-lineage differentiation capacity, and postpones senescence-associated changes after prolonged in vitro culture. Additionally, co-administration of AICAR and NAM shows an additive or probably a synergistic effect on cellular senescence.
Collapse
Affiliation(s)
- Mohammadhossein Khorraminejad-Shirazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Tissue Engineering Department, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran.,Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Dorvash
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Malihe Mirzaei
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ahmad Monabati
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Attar
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, PO Box 71344-1864, Shiraz, Iran.
| |
Collapse
|
43
|
Toxic activity of Prunus spinosa L. flower extract in hepatocarcinoma cells. Arh Hig Rada Toksikol 2019; 70:303-309. [PMID: 32623857 DOI: 10.2478/aiht-2019-70-3322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/01/2019] [Indexed: 11/21/2022] Open
Abstract
Prunus spinosa L. (blackthorn) is used in traditional medicine as a remedy for various diseases. To establish its anticancer properties, we exposed human liver cancer cells (Hep G2) to a range of blackthorn flower extract concentrations (10-200 µg/mL) and determined cytotoxic activity with the neutral red and kenacid blue methods after 24, 48, and 72 h of incubation. Statistically significant inhibitory effects on Hep G2 cellular proliferation were observed at concentrations above 50 µg/mL (p<0.001-0.05). Cell viability was lower when determined with neutral red than kenacid blue method. In addition, we evaluated antioxidant/prooxidant effects of the blackthorn flower extract by measuring reactive oxygen species (ROS), and the results confirmed its prooxidant behaviour within the applied concentration range. Flow cytometry determined primarily necrotic and apoptotic cell death, which provides additional evidence of its cytotoxic effect on liver carcinoma.
Collapse
|
44
|
Biby TE, Prajitha N, Ashtami J, Sakthikumar D, Maekawa T, Mohanan PV. Toxicity of dextran stabilized fullerene C 60 against C6 Glial cells. Brain Res Bull 2019; 155:191-201. [PMID: 31786269 DOI: 10.1016/j.brainresbull.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022]
Abstract
Elevated application potential of fullerene C60 paved the way to think on its adverse effect when it reaches to biological system and environment. Though fullerenes are insoluble in water, various strategies are employed to make it soluble. Method of solubilization with organic solvents, yield cytotoxic responses both in vitro and in vivo. In this study, dextran was used to stabilize C60 particle. Fourier transformed-infrared spectroscopy (FT-IR) and transition electron microscopy (TEM) were used for characterization and it confirms effective surface stabilization and morphological characteristics. This was followed by various cytotoxicity studies to evaluate its bio-nano interactions. The results of the study suggest that the dextran stabilized C60 nanoparticles (Dex-C60) forms uniform suspension in water and was stable up to 72 h. The C6 glial cell-Dex-C60 interactions indicated that the Dex-C60 nanoparticles penetrate deeper into the cells and cause dose dependent toxic response. The result of the study recommended that Dex-C60 nanoparticles should undergo intensive risk assessment before biomedical applications and should take proper safety measure to avoid its entry to the environment.
Collapse
Affiliation(s)
- T E Biby
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India
| | - N Prajitha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India
| | - J Ashtami
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India
| | - D Sakthikumar
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, 350 - 8585, Japan
| | - T Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, 350 - 8585, Japan
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
45
|
Khorraminejad-Shirazi M, Dorvash M, Estedlal A, Hoveidaei AH, Mazloomrezaei M, Mosaddeghi P. Aging: A cell source limiting factor in tissue engineering. World J Stem Cells 2019; 11:787-802. [PMID: 31692986 PMCID: PMC6828594 DOI: 10.4252/wjsc.v11.i10.787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/03/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering has yet to reach its ideal goal, i.e. creating profitable off-the-shelf tissues and organs, designing scaffolds and three-dimensional tissue architectures that can maintain the blood supply, proper biomaterial selection, and identifying the most efficient cell source for use in cell therapy and tissue engineering. These are still the major challenges in this field. Regarding the identification of the most appropriate cell source, aging as a factor that affects both somatic and stem cells and limits their function and applications is a preventable and, at least to some extents, a reversible phenomenon. Here, we reviewed different stem cell types, namely embryonic stem cells, adult stem cells, induced pluripotent stem cells, and genetically modified stem cells, as well as their sources, i.e. autologous, allogeneic, and xenogeneic sources. Afterward, we approached aging by discussing the functional decline of aged stem cells and different intrinsic and extrinsic factors that are involved in stem cell aging including replicative senescence and Hayflick limit, autophagy, epigenetic changes, miRNAs, mTOR and AMPK pathways, and the role of mitochondria in stem cell senescence. Finally, various interventions for rejuvenation and geroprotection of stem cells are discussed. These interventions can be applied in cell therapy and tissue engineering methods to conquer aging as a limiting factor, both in original cell source and in the in vitro proliferated cells.
Collapse
Affiliation(s)
- Mohammadhossein Khorraminejad-Shirazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mohammadreza Dorvash
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Alireza Estedlal
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Amir Human Hoveidaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mohsen Mazloomrezaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Pouria Mosaddeghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| |
Collapse
|
46
|
Wang C, Shao L, Pan C, Ye J, Ding Z, Wu J, Du Q, Ren Y, Zhu C. Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition. Stem Cell Res Ther 2019; 10:175. [PMID: 31196164 PMCID: PMC6567550 DOI: 10.1186/s13287-019-1265-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
Background Cancer stem cells (CSCs) play a critical role in tumor development and progression and are involved in cancer metastasis. The role of reactive oxygen species (ROS) in CSCs and cancer metastasis remains controversial. The aim of the present study was to investigate the correlation between ROS level of CSCs and cancer metastasis and to explore the possible underlying molecular mechanisms. Methods Four different cell lines were used to isolate tumor spheres and to analyze intrinsic properties of tumor sphere cells including proliferation, self-renewal potential, differentiation, drug-resistance and cancer metastasis in vitro and in vivo. ROS assays were used to detect the intracellular ROS level of tumor spheres cells. Gene expression analysis and western blot were used to investigate the underlying mechanisms of ROS in regulating cancer metastasis. Results Tumor spheres possessed the characteristic features of CSCs, and ROS-high tumor spheres (RH-TS) displayed elevated mitochondrial ROS level exclusively drove metastasis formation. The gene expression analysis showed elevated fatty acid β-oxidation, downregulation of epithelial marker upregulation of mesenchymal markers, and the activation of MAP kinase cascades. Furthermore, 14 up-regulated genes in RH-TS cells were associated with reduced overall survival of different cancer patients. Conclusions Our findings demonstrate that CSCs characterized by elevated mitochondrial ROS level potentiate cancer metastasis. Mechanistically, elevated mitochondrial ROS via fatty acid β-oxidation, activates the MAPK cascades, resulting in the epithelial-mesenchymal transition (EMT) process of RH-TS cells, thereby potentiating caner invasion and metastasis. Therefore, targeting mitochondrial ROS might provide a promising approach to prevent and alleviate cancer metastasis induced by RH-TS cells. Electronic supplementary material The online version of this article (10.1186/s13287-019-1265-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caihua Wang
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Liming Shao
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Chi Pan
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Zonghui Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Arizona, AZ, 85259, USA
| | - Jia Wu
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Qin Du
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Yuezhong Ren
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Chunpeng Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
47
|
Cytoskeletal synchronization of CHO cells with polymer functionalized fullerene C 60. Biointerphases 2019; 14:021002. [PMID: 30884950 DOI: 10.1116/1.5084002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent developments in the field of fullerene C60 and its derivatives suggest its suitability in a wide range of applications ranging from photovoltaic instruments, development of solar based cells, cosmetics to enzyme inhibition treatment, and so on. These innovative applications raised possibilities of intentional or oblivious human-particle contact leading to possible deleterious effects on human health. The current study deals with the interaction of dextran functionalized fullerene C60 (Dex-C60) on Chinese Hamster Ovary cells. The results showed that the cell viability was not affected by Dex-C60 treatment even at higher concentrations. Treatment of Dex-C60 did not affect mitochondrial membrane potential and the integrity of lysosomal and cytoskeletal membrane. DNA ladder assay and nuclear staining showed that the DNA remains intact, and no fragmentation or nuclear condensation was visible. From flow cytometry analysis, the viable population of treated cells was seemed to be remaining similar to that of untreated cells. Hence, from the current result, it is concluded that Dex-C60 can be a potential candidate for various biomedical applications.
Collapse
|
48
|
Chen X, Hu Y, Zhang W, Chen K, Hu J, Li X, Liang L, Cai X, Hu J, Wang K, Huang A, Tang N. Cisplatin induces autophagy to enhance hepatitis B virus replication via activation of ROS/JNK and inhibition of the Akt/mTOR pathway. Free Radic Biol Med 2019; 131:225-236. [PMID: 30550853 DOI: 10.1016/j.freeradbiomed.2018.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains a serious global health concern. Cisplatin is a chemotherapeutic agent commonly used to treat various cancers. However, HBV-infected patients receiving chemotherapy are at risk of HBV reactivation via unknown mechanisms, which we aimed to elucidate in this study. We found that autophagy plays a central role in cisplatin-induced HBV replication. Cisplatin treatment induced autophagy in both HBV-replicating cells and an HBV-transgenic mouse model as evident from marked upregulation of microtubule-associated protein 1 light chain 3 (LC3)-II and the accumulation of red fluorescent protein (RFP)-LC3 puncta. Cisplatin induced complete autophagic flux, which was detected via monitoring of p62 degradation and RFP-GFP-LC3 expression. Inhibition of autophagy by chloroquine, 3-methyladenine, or Atg5 knockdown significantly attenuated cisplatin-induced HBV replication. Additionally, cisplatin-induced autophagy could be significantly attenuated by using the ROS scavenger N-acetyl-l-cysteine. Mechanically, cisplatin promoted HBV replication and autophagy through ROS/JNK and AKT/mTOR signaling. Inhibition of JNK or activation of Akt/mTOR signaling reversed cisplatin-mediated autophagy and HBV replication promotion. In contrast, suppression of Akt/mTOR signaling further promoted cisplatin-induced HBV replication. Finally, pharmacotherapeutic inhibition of autophagy or ROS production impaired HBV production induced by cisplatin in vivo. Together, our results indicate that ROS/JNK and mTOR/AKT-mediated autophagy plays an important role in cisplatin-induced HBV reactivation.
Collapse
Affiliation(s)
- Xuemei Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jieli Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
49
|
Adigbli DK, Pye H, Seebaluck J, Loizidou M, MacRobert AJ. The intracellular redox environment modulates the cytotoxic efficacy of single and combination chemotherapy in breast cancer cells using photochemical internalisation. RSC Adv 2019; 9:25861-25874. [PMID: 35530074 PMCID: PMC9070005 DOI: 10.1039/c9ra04430b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022] Open
Abstract
The redox environment modulates photochemical internalization of an entrapped cytotoxic agent. Administration of light depicted by jagged arrow.
Collapse
Affiliation(s)
- Derick K. Adigbli
- Division of Surgery and Interventional Science
- University College London
- London
- UK
| | - Hayley Pye
- Division of Surgery and Interventional Science
- University College London
- London
- UK
| | - Jason Seebaluck
- Division of Surgery and Interventional Science
- University College London
- London
- UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science
- University College London
- London
- UK
| | | |
Collapse
|
50
|
Hirata T, Cho YM, Suzuki I, Toyoda T, Akagi JI, Nakamura Y, Numazawa S, Ogawa K. 4-Methylthio-3-butenyl isothiocyanate (MTBITC) induced apoptotic cell death and G2/M cell cycle arrest via ROS production in human esophageal epithelial cancer cells. J Toxicol Sci 2019; 44:73-81. [DOI: 10.2131/jts.44.73] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tadashi Hirata
- Division of Pathology, National Institute of Health Sciences
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences
| | - Isamu Suzuki
- Division of Pathology, National Institute of Health Sciences
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences
| | - Jun-ichi Akagi
- Division of Pathology, National Institute of Health Sciences
| | - Yasushi Nakamura
- Kyoto Institute of Japanese Diet Culture, Kyoto Prefectural University
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences
| |
Collapse
|