1
|
Mietzsch M, Bennett A, McKenna R. Structural Capsidomics of Single-Stranded DNA Viruses. Viruses 2025; 17:333. [PMID: 40143263 PMCID: PMC11945456 DOI: 10.3390/v17030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Single-stranded DNA (ssDNA) viruses are a diverse group of pathogens with broad host range, including bacteria, archaea, protists, fungi, plants, invertebrates, and vertebrates. Their small compact genomes have evolved to encode multiple proteins. This review focuses on the structure and functional diversity of the icosahedral capsids across the ssDNA viruses. To date, X-ray crystallography and cryo-electron microscopy structural studies have provided detailed capsid architectures for 8 of the 35 ssDNA virus families, illustrating variations in assembly mechanisms, symmetry, and structural adaptations of the capsid. However, common features include the conserved jelly-roll motif of the capsid protein and strategies for genome packaging, also showing evolutionary convergence. The ever-increasing availability of genomic sequences of ssDNA viruses and predictive protein modeling programs, such as using AlphaFold, allows for the extension of structural insights to the less-characterized families. Therefore, this review is a comparative analysis of the icosahedral ssDNA virus families and how the capsid proteins are arranged with different tessellations to form icosahedral spheres. It summarizes the current knowledge, emphasizing gaps in the structural characterization of the ssDNA capsidome, and it underscores the importance of continued exploration to understand the molecular underpinnings of capsid function and evolution. These insights have implications for virology, molecular biology, and therapeutic applications.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;
| | | |
Collapse
|
2
|
Aybakan E, Kocagoz T, Can O. Nicking Activity of M13 Bacteriophage Protein 2. Int J Mol Sci 2025; 26:789. [PMID: 39859503 PMCID: PMC11765958 DOI: 10.3390/ijms26020789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Gene II Protein (Gp2/P2) is a nicking enzyme of the M13 bacteriophage that plays a role in the DNA replication of the viral genome. P2 recognizes a specific sequence at the f1 replication origin and nicks one of the strands and starts replication. This study was conducted to address the limitations of previous experiments, improve methodologies, and precisely determine the biochemical activity conditions of the P2 enzyme in vitro. For these purposes, the gene encoding P2 was cloned in Escherichia coli and expressed as a hybrid protein together with a green fluorescent protein (P2-GFP). P2-GFP was purified via metal affinity chromatography, and its nicking activity was determined by conversion of supercoiled DNA to open circular or linear forms. We discovered that, among the two loops of the f1 origin defined previously, P2 can recognize just the A1 loop. When a supercoiled plasmid containing the f1 origin was treated with P2-GFP, the plasmid was present in an open circular form, indicating that a nick was created on only one of the strands. However, when the A1 loop sequence was inserted into the 3' ends of both strands by cloning a PCR product obtained by primers with the A1 loop sequence, the plasmid was linearized by treatment with P2-GFP, indicating that nicks were created on both strands. Certain infectious diseases are caused by single-stranded DNA viruses, and some of them have specific nicking enzymes that enable strand displacement and free 3' end of a single strand that works as a primer for their replication mechanisms like M13 bacteriophages, such as parvovirus B19. Despite there being different host viruses such as bacteria and humans, their DNA replication mechanisms are very similar in this concept. Investigating the features of the P2-nicking enzyme may deepen the understanding of human pathogenic single-stranded viruses and facilitate the development of drugs that inhibit viral replication.
Collapse
Affiliation(s)
- Esma Aybakan
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
| | - Tanil Kocagoz
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
| | - Ozge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
| |
Collapse
|
3
|
Yu Q, Yan J, Chen Y, Zhang J, Tang Q, Zhu F, Sun L, Ma S, Liu X, Chen K, Yao Q. Conserved Nuclear Localization Signal in NS2 Protein of Bombyx Mori Bidensovirus: A Potential Invertebrate ssDNA Virus Trait. Viruses 2025; 17:71. [PMID: 39861860 PMCID: PMC11768917 DOI: 10.3390/v17010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis. To investigate its structure and function, we employed phylogenetic analysis, subcellular localization, mutational analysis, and a dual-luciferase reporter system to characterize the nuclear localization signal (NLS) within NS2 and its effect on viral promoter activity. Additionally, co-immunoprecipitation and mass spectrometry were utilized to identify host proteins interacting with NS2. We identified a functional bipartite NLS in NS2, validated the combination pattern of key amino acids, and demonstrated its role in regulating viral promoter activity. Furthermore, we identified potential NLSs in NS2 homologs in other invertebrate ssDNA viruses based on sequence analysis. We also revealed interactions between NS2 and host nuclear transport proteins, suggesting that it plays a role in nuclear transport and viral replication. This research underscores the importance of NS2's NLS in BmBDV's life cycle and its potential conservation across invertebrate ssDNA viruses, providing insights into virus-host interactions and avenues for antiviral strategy development.
Collapse
Affiliation(s)
- Qian Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (Y.C.); (J.Z.); (Q.T.); (F.Z.); (L.S.); (S.M.); (X.L.); (K.C.); (Q.Y.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Koonin EV, Fischer MG, Kuhn JH, Krupovic M. The polinton-like supergroup of viruses: evolution, molecular biology, and taxonomy. Microbiol Mol Biol Rev 2024; 88:e0008623. [PMID: 39023254 PMCID: PMC11426020 DOI: 10.1128/mmbr.00086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
SUMMARYPolintons are 15-20 kb-long self-synthesizing transposons that are widespread in eukaryotic, and in particular protist, genomes. Apart from a transposase and a protein-primed DNA polymerase, polintons encode homologs of major and minor jelly-roll capsid proteins, DNA-packaging ATPases, and proteases involved in capsid maturation of diverse eukaryotic viruses of kingdom Bamfordvirae. Given the conservation of these structural and morphogenetic proteins among polintons, these elements are predicted to alternate between transposon and viral lifestyles and, although virions have thus far not been detected, are classified as viruses (class Polintoviricetes) in the phylum Preplasmiviricota. Related to polintoviricetes are vertebrate adenovirids; unclassified polinton-like viruses (PLVs) identified in various environments or integrated into diverse protist genomes; virophages (Maveriviricetes), which are part of tripartite hyperparasitic systems including protist hosts and giant viruses; and capsid-less derivatives, such as cytoplasmic linear DNA plasmids of fungi and transpovirons. Phylogenomic analysis indicates that the polinton-like supergroup of viruses bridges bacterial tectivirids (preplasmiviricot class Tectiliviricetes) to the phylum Nucleocytoviricota that includes large and giant eukaryotic DNA viruses. Comparative structural analysis of proteins encoded by polinton-like viruses led to the discovery of previously undetected functional domains, such as terminal proteins and distinct proteases implicated in DNA polymerase processing, and clarified the evolutionary relationships within Polintoviricetes. Here, we leverage these insights into the evolution of the polinton-like supergroup to develop an amended megataxonomy that groups Polintoviricetes, PLVs (new class 'Aquintoviricetes'), and virophages (renamed class 'Virophaviricetes') together with Adenoviridae (new class 'Pharingeaviricetes') in a preplasmiviricot subphylum 'Polisuviricotina' sister to a subphylum including Tectiliviricetes ('Prepoliviricotina').
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| |
Collapse
|
5
|
Krupovic M, Kuhn JH, Fischer MG, Koonin EV. Natural history of eukaryotic DNA viruses with double jelly-roll major capsid proteins. Proc Natl Acad Sci U S A 2024; 121:e2405771121. [PMID: 38805295 PMCID: PMC11161782 DOI: 10.1073/pnas.2405771121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin, and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We used protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU, and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a superfamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.
Collapse
Affiliation(s)
- Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, Paris75015, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, Fort Detrick, Frederick, MD21702
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| |
Collapse
|
6
|
Krupovic M, Kuhn JH, Fischer MG, Koonin EV. Natural history of eukaryotic DNA viruses with double jelly-roll major capsid proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585575. [PMID: 38712159 PMCID: PMC11071308 DOI: 10.1101/2024.03.18.585575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We employed protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a supefamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains, and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Matthias G. Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Jeong DE, Sundrani S, Hall RN, Krupovic M, Koonin EV, Fire AZ. DNA Polymerase Diversity Reveals Multiple Incursions of Polintons During Nematode Evolution. Mol Biol Evol 2023; 40:msad274. [PMID: 38069639 DOI: 10.1093/molbev/msad274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Polintons are double-stranded DNA, virus-like self-synthesizing transposons widely found in eukaryotic genomes. Recent metagenomic discoveries of Polinton-like viruses are consistent with the hypothesis that Polintons invade eukaryotic host genomes through infectious viral particles. Nematode genomes contain multiple copies of Polintons and provide an opportunity to explore the natural distribution and evolution of Polintons during this process. We performed an extensive search of Polintons across nematode genomes, identifying multiple full-length Polinton copies in several species. We provide evidence of both ancient Polinton integrations and recent mobility in strains of the same nematode species. In addition to the major nematode Polinton family, we identified a group of Polintons that are overall closely related to the major family but encode a distinct protein-primed DNA polymerase B (pPolB) that is related to homologs from a different group of Polintons present outside of the Nematoda. Phylogenetic analyses on the pPolBs support the evolutionary scenarios in which these extrinsic pPolBs that seem to derive from Polinton families present in oomycetes and molluscs replaced the canonical pPolB in subsets of Polintons found in terrestrial and marine nematodes, respectively, suggesting interphylum horizontal gene transfers. The pPolBs of the terrestrial nematode and oomycete Polintons share a unique feature, an insertion of an HNH nuclease domain, whereas the pPolBs in the marine nematode Polintons share an insertion of a VSR nuclease domain with marine mollusc pPolBs. We hypothesize that horizontal gene transfer occurs among Polintons from widely different but cohabiting hosts.
Collapse
Affiliation(s)
- Dae-Eun Jeong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sameer Sundrani
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Present address: Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Eugene V Koonin
- National National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Jeong DE, Sundrani S, Hall RN, Krupovic M, Koonin EV, Fire AZ. DNA polymerase diversity reveals multiple incursions of Polintons during nematode evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554363. [PMID: 37662302 PMCID: PMC10473752 DOI: 10.1101/2023.08.22.554363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Polintons are dsDNA, virus-like self-synthesizing transposons widely found in eukaryotic genomes. Recent metagenomic discoveries of Polinton-like viruses are consistent with the hypothesis that Polintons invade eukaryotic host genomes through infectious viral particles. Nematode genomes contain multiple copies of Polintons and provide an opportunity to explore the natural distribution and evolution of Polintons during this process. We performed an extensive search of Polintons across nematode genomes, identifying multiple full-length Polinton copies in several species. We provide evidence of both ancient Polinton integrations and recent mobility in strains of the same nematode species. In addition to the major nematode Polinton family, we identified a group of Polintons that are overall closely related to the major family, but encode a distinct protein-primed B family DNA polymerase (pPolB) that is related to homologs from a different group of Polintons present outside of the Nematoda . Phylogenetic analyses on the pPolBs support the evolutionary scenarios in which these extrinsic pPolBs that seem to derive from Polinton families present in oomycetes and molluscs replaced the canonical pPolB in subsets of Polintons found in terrestrial and marine nematodes, respectively, suggesting inter-phylum horizontal gene transfers. The pPolBs of the terrestrial nematode and oomycete Polintons share a unique feature, an insertion of a HNH nuclease domain, whereas the pPolBs in the marine nematode Polintons share an insertion of a VSR nuclease domain with marine mollusc pPolBs. We hypothesize that horizontal gene transfer occurs among Polintons from widely different but cohabiting hosts.
Collapse
|
9
|
Pénzes JJ, Pham HT, Chipman P, Smith EW, McKenna R, Tijssen P. Bipartite genome and structural organization of the parvovirus Acheta domesticus segmented densovirus. Nat Commun 2023; 14:3515. [PMID: 37316488 DOI: 10.1038/s41467-023-38875-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Parvoviruses (family Parvoviridae) are currently defined by a linear monopartite ssDNA genome, T = 1 icosahedral capsids, and distinct structural (VP) and non-structural (NS) protein expression cassettes within their genome. We report the discovery of a parvovirus with a bipartite genome, Acheta domesticus segmented densovirus (AdSDV), isolated from house crickets (Acheta domesticus), in which it is pathogenic. We found that the AdSDV harbors its NS and VP cassettes on two separate genome segments. Its vp segment acquired a phospholipase A2-encoding gene, vpORF3, via inter-subfamily recombination, coding for a non-structural protein. We showed that the AdSDV evolved a highly complex transcription profile in response to its multipartite replication strategy compared to its monopartite ancestors. Our structural and molecular examinations revealed that the AdSDV packages one genome segment per particle. The cryo-EM structures of two empty- and one full-capsid population (3.3, 3.1 and 2.3 Å resolution) reveal a genome packaging mechanism, which involves an elongated C-terminal tail of the VP, "pinning" the ssDNA genome to the capsid interior at the twofold symmetry axis. This mechanism fundamentally differs from the capsid-DNA interactions previously seen in parvoviruses. This study provides new insights on the mechanism behind ssDNA genome segmentation and on the plasticity of parvovirus biology.
Collapse
Affiliation(s)
- Judit J Pénzes
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, H7V 1B7, Canada.
- The McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Institute for Quantitative Biomedicine, Rutgers, the Sate University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Hanh T Pham
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, H7V 1B7, Canada
- HTG Molecular Diagnostics, 3430 E Global Loop, Tucson, AZ, 85706, USA
| | - Paul Chipman
- The McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Emmanuel W Smith
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
- JEOL USA Inc., Peabody, MA, 01960, USA
| | - Robert McKenna
- The McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Peter Tijssen
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
10
|
Krupovic M, Dolja VV, Koonin EV. The virome of the last eukaryotic common ancestor and eukaryogenesis. Nat Microbiol 2023; 8:1008-1017. [PMID: 37127702 PMCID: PMC11130978 DOI: 10.1038/s41564-023-01378-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
All extant eukaryotes descend from the last eukaryotic common ancestor (LECA), which is thought to have featured complex cellular organization. To gain insight into LECA biology and eukaryogenesis-the origin of the eukaryotic cell, which remains poorly understood-we reconstructed the LECA virus repertoire. We compiled an inventory of eukaryotic hosts of all major virus taxa and reconstructed the LECA virome by inferring the origins of these groups of viruses. The origin of the LECA virome can be traced back to a small set of bacterial-not archaeal-viruses. This provenance of the LECA virome is probably due to the bacterial origin of eukaryotic membranes, which is most compatible with two endosymbiosis events in a syntrophic model of eukaryogenesis. In the first endosymbiosis, a bacterial host engulfed an Asgard archaeon, preventing archaeal viruses from entry owing to a lack of archaeal virus receptors on the external membranes.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.
| |
Collapse
|
11
|
Butkovic A, Kraberger S, Smeele Z, Martin DP, Schmidlin K, Fontenele RS, Shero MR, Beltran RS, Kirkham AL, Aleamotu’a M, Burns JM, Koonin EV, Varsani A, Krupovic M. Evolution of anelloviruses from a circovirus-like ancestor through gradual augmentation of the jelly-roll capsid protein. Virus Evol 2023; 9:vead035. [PMID: 37325085 PMCID: PMC10266747 DOI: 10.1093/ve/vead035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Anelloviruses are highly prevalent in diverse mammals, including humans, but so far have not been linked to any disease and are considered to be part of the 'healthy virome'. These viruses have small circular single-stranded DNA (ssDNA) genomes and encode several proteins with no detectable sequence similarity to proteins of other known viruses. Thus, anelloviruses are the only family of eukaryotic ssDNA viruses currently not included in the realm Monodnaviria. To gain insights into the provenance of these enigmatic viruses, we sequenced more than 250 complete genomes of anelloviruses from nasal and vaginal swab samples of Weddell seal (Leptonychotes weddellii) from Antarctica and a fecal sample of grizzly bear (Ursus arctos horribilis) from the USA and performed a comprehensive family-wide analysis of the signature anellovirus protein ORF1. Using state-of-the-art remote sequence similarity detection approaches and structural modeling with AlphaFold2, we show that ORF1 orthologs from all Anelloviridae genera adopt a jelly-roll fold typical of viral capsid proteins (CPs), establishing an evolutionary link to other eukaryotic ssDNA viruses, specifically, circoviruses. However, unlike CPs of other ssDNA viruses, ORF1 encoded by anelloviruses from different genera display remarkable variation in size, due to insertions into the jelly-roll domain. In particular, the insertion between β-strands H and I forms a projection domain predicted to face away from the capsid surface and function at the interface of virus-host interactions. Consistent with this prediction and supported by recent experimental evidence, the outermost region of the projection domain is a mutational hotspot, where rapid evolution was likely precipitated by the host immune system. Collectively, our findings further expand the known diversity of anelloviruses and explain how anellovirus ORF1 proteins likely diverged from canonical jelly-roll CPs through gradual augmentation of the projection domain. We suggest assigning Anelloviridae to a new phylum, 'Commensaviricota', and including it into the kingdom Shotokuvirae (realm Monodnaviria), alongside Cressdnaviricota and Cossaviricota.
Collapse
Affiliation(s)
- Anamarija Butkovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, Paris 75015, France
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Zoe Smeele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Darren P Martin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Michelle R Shero
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Amy L Kirkham
- U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 E, Tudor Road, Anchorage, AK 99503, USA
| | - Maketalena Aleamotu’a
- School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Jennifer M Burns
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 1 Anzio Road, Cape Town 7925, South Africa
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
12
|
Inoue Y, Takeda H. Teratorn and its relatives - a cross-point of distinct mobile elements, transposons and viruses. Front Vet Sci 2023; 10:1158023. [PMID: 37187934 PMCID: PMC10175614 DOI: 10.3389/fvets.2023.1158023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mobile genetic elements (e.g., transposable elements and plasmids) and viruses display significant diversity with various life cycles, but how this diversity emerges remains obscure. We previously reported a novel and giant (180 kb long) mobile element, Teratorn, originally identified in the genome of medaka, Oryzias latipes. Teratorn is a composite DNA transposon created by a fusion of a piggyBac-like DNA transposon (piggyBac) and a novel herpesvirus of the Alloherpesviridae family. Genomic survey revealed that Teratorn-like herpesviruses are widely distributed among teleost genomes, the majority of which are also fused with piggyBac, suggesting that fusion with piggyBac is a trigger for the life-cycle shift of authentic herpesviruses to an intragenomic parasite. Thus, Teratorn-like herpesvirus provides a clear example of how novel mobile elements emerge, that is to say, the creation of diversity. In this review, we discuss the unique sequence and life-cycle characteristics of Teratorn, followed by the evolutionary process of piggyBac-herpesvirus fusion based on the distribution of Teratorn-like herpesviruses (relatives) among teleosts. Finally, we provide other examples of evolutionary associations between different classes of elements and propose that recombination could be a driving force generating novel mobile elements.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Inoue Y, Takeda H. Teratorn and Its Related Elements – a Novel Group of Herpesviruses Widespread in Teleost Genomes. Zoolog Sci 2023; 40:83-90. [PMID: 37042688 DOI: 10.2108/zs220069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/12/2022] [Indexed: 03/08/2023]
Abstract
Herpesviruses are a large family of DNA viruses infecting vertebrates and invertebrates, and are important pathogens in the field of aquaculture. In general, herpesviruses do not have the ability to integrate into the host genomes since they do not have a chromosomal integration step in their life cycles. Recently, we identified a novel group of herpesviruses, "Teratorn" and its related elements, in the genomes of various teleost fish species. At least some of the Teratorn-like herpesviruses are fused with a piggyBac-like DNA transposon, suggesting that they have acquired the transposon-like intragenomic lifestyle by hijacking the transposon system. In this review, we describe the sequence characteristics of Teratorn-like herpesviruses and phylogenetic relationships with other herpesviruses. Then we discuss the process of transposon-herpesvirus fusion, their life cycle, and the generality of transposon-virus fusion. Teratorn-like herpesviruses provide a piece of concrete evidence that even non-retroviral elements can become intragenomic parasites retaining replication capacity, by acquiring transposition machinery from other sources.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Dai Z, Wang H, Wu H, Zhang Q, Ji L, Wang X, Shen Q, Yang S, Ma X, Shan T, Zhang W. Parvovirus dark matter in the cloaca of wild birds. Gigascience 2022; 12:giad001. [PMID: 36734170 PMCID: PMC9896142 DOI: 10.1093/gigascience/giad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
With the development of viral metagenomics and next-generation sequencing technology, more and more novel parvoviruses have been identified in recent years, including even entirely new lineages. The Parvoviridae family includes a different group of viruses that can infect a wide variety of animals. In this study, systematic analysis was performed to identify the "dark matter" (datasets that cannot be easily attributed to known viruses) of parvoviruses and to explore their genetic diversity from wild birds' cloacal swab samples. We have tentatively defined this parvovirus "dark matter" as a highly divergent lineage in the Parvoviridae family. All parvoviruses showed several characteristics, including 2 major protein-coding genes and similar genome lengths. Moreover, we observed that the novel parvo-like viruses share similar genome organizations to most viruses in Parvoviridae but could not clustered with the established subfamilies in phylogenetic analysis. We also found some new members associated with the Bidnaviridae family, which may be derived from parvovirus. This suggests that systematic analysis of domestic and wild animal samples is necessary to explore the genetic diversity of parvoviruses and to mine for more of this potential dark matter.
Collapse
Affiliation(s)
- Ziyuan Dai
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, China
| | - Haoning Wang
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang 150076, China
| | - Haisheng Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai 810099, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai 810099, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai 810099, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 810099, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
15
|
Gupta T, Raghavendar G, Terenius O, Ito K, Mishra RK, Ponnuvel KM. An investigation into the effects of infection and ORF expression patterns of the Indian bidensovirus isolate ( BmBDV) infecting the silkworm Bombyx mori. Virusdisease 2022; 33:76-83. [PMID: 35493748 PMCID: PMC9005581 DOI: 10.1007/s13337-021-00750-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
The Indian isolate of Bombyx mori bidensovirus (BmBDV) is a bipartite virus that comprises of a segmented, non-homologous, two linear single-strands of DNA molecules (VD1 and VD2). It is one of the causative agents of the fatal silkworm disease 'Flacherie' that causes severe crop loss for the sericulture farmers. Genome analyses of the Indian isolate of BmBDV revealed that it consists of 6 putative ORFs similar to the Japanese and Chinese isolates. VD1 consists of 4 ORFs while VD2 has 2 ORFs that code for 4 non- structural (NS) and 2 structural (VP) proteins, in total. In this study, we investigated, in detail, the impact of BmBDV pathogenesis on growth and development of the silkworm Bombyx mori, at different developmental stages. Mortality rate and weight uptake analyses were also performed on newly ecdysed 4th instar larvae. BmBDV infection was not found to be developmental stage specific and it occurred at all stages. Onset of mortality took place 8 days post infection (dpi) and 100% mortality occurred at 11 dpi. The infected larvae showed a significant difference in weight uptake wherein from 7 dpi the larvae stopped gaining weight and from 8th dpi started demonstrating the typical symptoms of flacherie. Further, the expression pattern of the 6 viral ORFs were also investigated in the newly ecdysed 4th instar BmBDV infected silkworms. Among all the six ORFs, VD2 ORF 1 and 2 revealed the highest transcript numbers, which was followed by VD1 ORF 4 that encodes for the viral DNA polymerase enzyme. This was the first ever attempt to understand the pathogenesis and the expression pattern of all the six ORF transcripts of the Indian isolate of BmBDV.
Collapse
Affiliation(s)
- Tania Gupta
- Genomics Division, Central Silk Board, Seri-Biotech Research Laboratory, Carmelaram Post, Kodathi, Bengaluru 560035 India
| | - G. Raghavendar
- Genomics Division, Central Silk Board, Seri-Biotech Research Laboratory, Carmelaram Post, Kodathi, Bengaluru 560035 India
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 21 Uppsala, Sweden
| | - Katsuhiko Ito
- Department of Science of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509 Japan
| | - Rakesh Kumar Mishra
- Genomics Division, Central Silk Board, Seri-Biotech Research Laboratory, Carmelaram Post, Kodathi, Bengaluru 560035 India
| | - Kangayam M. Ponnuvel
- Genomics Division, Central Silk Board, Seri-Biotech Research Laboratory, Carmelaram Post, Kodathi, Bengaluru 560035 India
| |
Collapse
|
16
|
Garneau JR, Legrand V, Marbouty M, Press MO, Vik DR, Fortier LC, Sullivan MB, Bikard D, Monot M. High-throughput identification of viral termini and packaging mechanisms in virome datasets using PhageTermVirome. Sci Rep 2021; 11:18319. [PMID: 34526611 PMCID: PMC8443750 DOI: 10.1038/s41598-021-97867-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Viruses that infect bacteria (phages) are increasingly recognized for their importance in diverse ecosystems but identifying and annotating them in large-scale sequence datasets is still challenging. Although efficient scalable virus identification tools are emerging, defining the exact ends (termini) of phage genomes is still particularly difficult. The proper identification of termini is crucial, as it helps in characterizing the packaging mechanism of bacteriophages and provides information on various aspects of phage biology. Here, we introduce PhageTermVirome (PTV) as a tool for the easy and rapid high-throughput determination of phage termini and packaging mechanisms using modern large-scale metagenomics datasets. We successfully tested the PTV algorithm on a mock virome dataset and then used it on two real virome datasets to achieve the rapid identification of more than 100 phage termini and packaging mechanisms, with just a few hours of computing time. Because PTV allows the identification of free fully formed viral particles (by recognition of termini present only in encapsidated DNA), it can also complement other virus identification softwares to predict the true viral origin of contigs in viral metagenomics datasets. PTV is a novel and unique tool for high-throughput characterization of phage genomes, including phage termini identification and characterization of genome packaging mechanisms. This software should help researchers better visualize, map and study the virosphere. PTV is freely available for downloading and installation at https://gitlab.pasteur.fr/vlegrand/ptv.
Collapse
Affiliation(s)
| | - Véronique Legrand
- Infrastructure et Ingénierie Scientifique, Institut Pasteur, 75015, Paris, France
| | - Martial Marbouty
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, 75015, Paris, France
| | | | - Dean R Vik
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Louis-Charles Fortier
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - David Bikard
- Département de Microbiologie, Institut Pasteur, Groupe Biologie de Synthèse, 75015, Paris, France
| | - Marc Monot
- Biomics Platform, C2RT, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
17
|
Abstract
Viruses are the most abundant biological entity on Earth, infect cellular organisms from all domains of life, and are central players in the global biosphere. Over the last century, the discovery and characterization of viruses have progressed steadily alongside much of modern biology. In terms of outright numbers of novel viruses discovered, however, the last few years have been by far the most transformative for the field. Advances in methods for identifying viral sequences in genomic and metagenomic datasets, coupled to the exponential growth of environmental sequencing, have greatly expanded the catalog of known viruses and fueled the tremendous growth of viral sequence databases. Development and implementation of new standards, along with careful study of the newly discovered viruses, have transformed and will continue to transform our understanding of microbial evolution, ecology, and biogeochemical cycles, leading to new biotechnological innovations across many diverse fields, including environmental, agricultural, and biomedical sciences.
Collapse
Affiliation(s)
- Lee Call
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| | - Stephen Nayfach
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| |
Collapse
|
18
|
The Baltimore Classification of Viruses 50 Years Later: How Does It Stand in the Light of Virus Evolution? Microbiol Mol Biol Rev 2021; 85:e0005321. [PMID: 34259570 DOI: 10.1128/mmbr.00053-21] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fifty years ago, David Baltimore published a brief conceptual paper delineating the classification of viruses by the routes of genome expression. The six "Baltimore classes" of viruses, with a subsequently added 7th class, became the conceptual framework for the development of virology during the next five decades. During this time, it became clear that the Baltimore classes, with relatively minor additions, indeed cover the diversity of virus genome expression schemes that also define the replication cycles. Here, we examine the status of the Baltimore classes 50 years after their advent and explore their links with the global ecology and biology of the respective viruses. We discuss an extension of the Baltimore scheme and why many logically admissible expression-replication schemes do not appear to be realized in nature. Recent phylogenomic analyses allow tracing the complex connections between the Baltimore classes and the monophyletic realms of viruses. The five classes of RNA viruses and reverse-transcribing viruses share an origin, whereas both the single-stranded DNA viruses and double-stranded DNA (dsDNA) viruses evolved on multiple independent occasions. Most of the Baltimore classes of viruses probably emerged during the earliest era of life evolution, at the stage of the primordial pool of diverse replicators, and before the advent of modern-like cells with large dsDNA genomes. The Baltimore classes remain an integral part of the conceptual foundation of biology, providing the essential structure for the logical space of information transfer processes, which is nontrivially connected with the routes of evolution of viruses and other replicators.
Collapse
|
19
|
Patterns in Genotype Composition of Indian Isolates of the Bombyx mori Nucleopolyhedrovirus and Bombyx mori Bidensovirus. Viruses 2021; 13:v13050901. [PMID: 34068017 PMCID: PMC8152266 DOI: 10.3390/v13050901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
The mulberry silkworm, Bombyx mori (L.), is a model organism of lepidopteran insects with high economic importance. The viral diseases of the silkworm caused by Bombyx mori nucleopolyhedrovirus (BmNPV) and Bombyx mori bidensovirus (BmBDV) inflict huge economic losses and significantly impact the sericulture industry of India and other countries. To understand the distribution of Indian isolates of the BmNPV and to investigate their genetic composition, an in-depth population structure analysis was conducted using comprehensive and newly developed genomic analysis methods. The seven new Indian BmNPV isolates from Anantapur, Dehradun, Ghumarwin, Jammu, Kashmir, Mysore and Salem grouped in the BmNPV clade, and are most closely related to Autographa californica multiple nucleopolyhedrovirus and Rachiplusia ou multiple nucleopolyhedrovirus on the basis of gene sequencing and phylogenetic analyses of the partial polh, lef-8 and lef-9 gene fragments. The whole genome sequencing of three Indian BmNPV isolates from Mysore (-My), Jammu (-Ja) and Dehradun (-De) was conducted, and intra-isolate genetic variability was analyzed on the basis of variable SNP positions and the frequencies of alternative nucleotides. The results revealed that the BmNPV-De and BmNPV-Ja isolates are highly similar in their genotypic composition, whereas the population structure of BmNPV-My appeared rather pure and homogenous, with almost no or few genetic variations. The BmNPV-De and BmNPV-Ja samples further contained a significant amount of BmBDV belonging to the Bidnaviridae family. We elucidated the genotype composition within Indian BmNPV and BmBDV isolates, and the results presented have broad implications for our understanding of the genetic diversity and evolution of BmNPV and co-occurring BmBDV isolates.
Collapse
|
20
|
Starrett GJ, Tisza MJ, Welch NL, Belford AK, Peretti A, Pastrana DV, Buck CB. Adintoviruses: a proposed animal-tropic family of midsize eukaryotic linear dsDNA (MELD) viruses. Virus Evol 2021; 7:veaa055. [PMID: 34646575 PMCID: PMC8502044 DOI: 10.1093/ve/veaa055] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polintons (also known as Mavericks) were initially identified as a widespread class of eukaryotic transposons named for their hallmark type B DNA polymerase and retrovirus-like integrase genes. It has since been recognized that many polintons encode possible capsid proteins and viral genome-packaging ATPases similar to those of a diverse range of double-stranded DNA viruses. This supports the inference that at least some polintons are actually viruses capable of cell-to-cell spread. At present, there are no polinton-associated capsid protein genes annotated in public sequence databases. To rectify this deficiency, we used a data-mining approach to investigate the distribution and gene content of polinton-like elements and related DNA viruses in animal genomic and metagenomic sequence datasets. The results define a discrete family-like clade of viruses with two genus-level divisions. We propose the family name Adintoviridae, connoting similarities to adenovirus virion proteins and the presence of a retrovirus-like integrase gene. Although adintovirus-class PolB sequences were detected in datasets for fungi and various unicellular eukaryotes, sequences resembling adintovirus virion proteins and accessory genes appear to be restricted to animals. Degraded adintovirus sequences are endogenized into the germlines of a wide range of animals, including humans.
Collapse
Affiliation(s)
| | - Michael J Tisza
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Nicole L Welch
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Anna K Belford
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Alberto Peretti
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Wallace MA, Coffman KA, Gilbert C, Ravindran S, Albery GF, Abbott J, Argyridou E, Bellosta P, Betancourt AJ, Colinet H, Eric K, Glaser-Schmitt A, Grath S, Jelic M, Kankare M, Kozeretska I, Loeschcke V, Montchamp-Moreau C, Ometto L, Onder BS, Orengo DJ, Parsch J, Pascual M, Patenkovic A, Puerma E, Ritchie MG, Rota-Stabelli O, Schou MF, Serga SV, Stamenkovic-Radak M, Tanaskovic M, Veselinovic MS, Vieira J, Vieira CP, Kapun M, Flatt T, González J, Staubach F, Obbard DJ. The discovery, distribution, and diversity of DNA viruses associated with Drosophila melanogaster in Europe. Virus Evol 2021; 7:veab031. [PMID: 34408913 PMCID: PMC8363768 DOI: 10.1093/ve/veab031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced Drosophila, sampled from forty-seven European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a double-stranded RNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to twelve segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2 per cent or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D.melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.
Collapse
Affiliation(s)
- Megan A Wallace
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Kelsey A Coffman
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Clément Gilbert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Sanjana Ravindran
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Paola Bellosta
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Cellular, Computational and Integrative Biology, CIBIO University of Trento, Via Sommarive 9, Trento 38123, Italy
- Department of Medicine & Endocrinology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Hervé Colinet
- The European Drosophila Population Genomics Consortium (DrosEU)
- UMR CNRS 6553 ECOBIO, Université de Rennes1, Rennes, France
| | - Katarina Eric
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Amanda Glaser-Schmitt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Mihailo Jelic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Aarhus C DK-8000, Denmark
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Lino Ometto
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Aleksandra Patenkovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, St Andrews University, St Andrews HY15 4SS, UK
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Center, Fondazione E. Mach, San Michele all’Adige (TN) 38010, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige (TN) 38010, Italy
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Svitlana V Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska str, Kyiv 01601, Ukraine
| | - Marina Stamenkovic-Radak
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Marija Tanaskovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Savic Veselinovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Division of Cell & Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution and Ecology, University of Freiburg, Freiburg 79104, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
22
|
Arhab Y, Bulakhov AG, Pestova TV, Hellen CU. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses 2020; 12:E612. [PMID: 32512856 PMCID: PMC7354566 DOI: 10.3390/v12060612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5'-untranslated region (5'UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5'-end-independent initiation of translation by a different mechanism. Picornavirus 5'UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.
Collapse
Affiliation(s)
| | | | | | - Christopher U.T. Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (Y.A.); (A.G.B.); (T.V.P.)
| |
Collapse
|
23
|
Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM, Kuhn JH. Global Organization and Proposed Megataxonomy of the Virus World. Microbiol Mol Biol Rev 2020; 84:e00061-19. [PMID: 32132243 PMCID: PMC7062200 DOI: 10.1128/mmbr.00061-19] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Mart Krupovic
- Institut Pasteur, Archaeal Virology Unit, Department of Microbiology, Paris, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - F Murilo Zerbini
- Departamento de Fitopatologia/Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
24
|
Mechanisms Mediating Nuclear Trafficking Involved in Viral Propagation by DNA Viruses. Viruses 2019; 11:v11111035. [PMID: 31703327 PMCID: PMC6893576 DOI: 10.3390/v11111035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Typical viral propagation involves sequential viral entry, uncoating, replication, gene transcription and protein synthesis, and virion assembly and release. Some viral proteins must be transported into host nucleus to facilitate viral propagation, which is essential for the production of mature virions. During the transport process, nuclear localization signals (NLSs) play an important role in guiding target proteins into nucleus through the nuclear pore. To date, some classical nuclear localization signals (cNLSs) and non-classical NLSs (ncNLSs) have been identified in a number of viral proteins. These proteins are involved in viral replication, expression regulation of viral genes and virion assembly. Moreover, other proteins are transported into nucleus with unknown mechanisms. This review highlights our current knowledge about the nuclear trafficking of cellular proteins associated with viral propagation.
Collapse
|
25
|
Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat Commun 2019; 10:3425. [PMID: 31366885 PMCID: PMC6668415 DOI: 10.1038/s41467-019-11433-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Single-stranded (ss) DNA viruses are a major component of the earth virome. In particular, the circular, Rep-encoding ssDNA (CRESS-DNA) viruses show high diversity and abundance in various habitats. By combining sequence similarity network and phylogenetic analyses of the replication proteins (Rep) belonging to the HUH endonuclease superfamily, we show that the replication machinery of the CRESS-DNA viruses evolved, on three independent occasions, from the Reps of bacterial rolling circle-replicating plasmids. The CRESS-DNA viruses emerged via recombination between such plasmids and cDNA copies of capsid genes of eukaryotic positive-sense RNA viruses. Similarly, the rep genes of prokaryotic DNA viruses appear to have evolved from HUH endonuclease genes of various bacterial and archaeal plasmids. Our findings also suggest that eukaryotic polyomaviruses and papillomaviruses with dsDNA genomes have evolved via parvoviruses from CRESS-DNA viruses. Collectively, our results shed light on the complex evolutionary history of a major class of viruses revealing its polyphyletic origins. Most single-stranded DNA viruses have small genomes replicated by rolling circle mechanism which is initiated by the Rep protein. Here, using sequence similarity network and phylogenetic analyses, Kazlauskas et al. show that viral Reps evolved from Reps of bacterial and archaeal plasmids on multiple independent occasions.
Collapse
|
26
|
Abstract
Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. High throughput genome sequencing and improved bioinformatics tools have yielded vast information on presence of ssDNA viruses in diverse habitats. The simple genome of ssDNA viruses have high propensity to undergo mutation and recombination often emerging as threat to human civilization. Interestingly their genome is found embedded in fossils dating back to million years. The unusual evolutionary history of ssDNA viruses reveal evidences of horizontal gene transfer, sometimes between different species and genera.
Collapse
|
27
|
Characterization of the RNA Transcription Profile of Bombyx mori Bidensovirus. Viruses 2019; 11:v11040325. [PMID: 30987230 PMCID: PMC6521256 DOI: 10.3390/v11040325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 01/15/2023] Open
Abstract
Bombyx mori bidensovirus (BmBDV) is a single-stranded DNA (ssDNA) virus from the genus Bidensovirus of the Bidnaviridae family, which, thus far, solely infects insects. It has a unique genome that contains bipartite DNA molecules (VD1 and VD2). In this study, we explored the detailed transcription mapping of the complete BmBDV genome (VD1 and VD2) by rapid amplification of cDNA ends (RACE), reverse transcription quantitative real-time PCR (RT-qPCR), and luciferase assays. For the first time, we report the transcription map of VD2. Our mapping of the transcriptional start sites reveals that the NS genes in VD1 have separate transcripts that are derived from overlapping promoters, P5 and P5.5. Thus, our study provides a strategy for alternative promoter usage in the expression of BmBDV genes.
Collapse
|
28
|
Diversity of Active Viral Infections within the Sphagnum Microbiome. Appl Environ Microbiol 2018; 84:AEM.01124-18. [PMID: 30217851 DOI: 10.1128/aem.01124-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Sphagnum-dominated peatlands play an important role in global carbon storage and represent significant sources of economic and ecological value. While recent efforts to describe microbial diversity and metabolic potential of the Sphagnum microbiome have demonstrated the importance of its microbial community, little is known about the viral constituents. We used metatranscriptomics to describe the diversity and activity of viruses infecting microbes within the Sphagnum peat bog. The vegetative portions of six Sphagnum plants were obtained from a peatland in northern Minnesota, and the total RNA was extracted and sequenced. Metatranscriptomes were assembled and contigs were screened for the presence of conserved virus marker genes. Using bacteriophage capsid protein gp23 as a marker for phage diversity, we identified 33 contigs representing undocumented phages that were active in the community at the time of sampling. Similarly, RNA-dependent RNA polymerase and the nucleocytoplasmic large DNA virus (NCLDV) major capsid protein were used as markers for single-stranded RNA (ssRNA) viruses and NCLDV, respectively. In total, 114 contigs were identified as originating from undescribed ssRNA viruses, 22 of which represent nearly complete genomes. An additional 64 contigs were identified as being from NCLDVs. Finally, 7 contigs were identified as putative virophage or polinton-like viruses. We developed co-occurrence networks with these markers in relation to the expression of potential-host housekeeping gene rpb1 to predict virus-host relationships, identifying 13 groups. Together, our approach offers new tools for the identification of virus diversity and interactions in understudied clades and suggests that viruses may play a considerable role in the ecology of the Sphagnum microbiome.IMPORTANCE Sphagnum-dominated peatlands play an important role in maintaining atmospheric carbon dioxide levels by modifying conditions in the surrounding soil to favor the growth of Sphagnum over that of other plant species. This lowers the rate of decomposition and facilitates the accumulation of fixed carbon in the form of partially decomposed biomass. The unique environment produced by Sphagnum enriches for the growth of a diverse microbial consortia that benefit from and support the moss's growth, while also maintaining the hostile soil conditions. While a growing body of research has begun to characterize the microbial groups that colonize Sphagnum, little is currently known about the ecological factors that constrain community structure and define ecosystem function. Top-down population control by viruses is almost completely undescribed. This study provides insight into the significant viral influence on the Sphagnum microbiome and identifies new potential model systems to study virus-host interactions in the peatland ecosystem.
Collapse
|
29
|
Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions. Viruses 2018; 10:v10090487. [PMID: 30208617 PMCID: PMC6165237 DOI: 10.3390/v10090487] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
The scope for ecological studies of eukaryotic algal viruses has greatly improved with the development of molecular and bioinformatic approaches that do not require algal cultures. Here, we review the history and perceived future opportunities for research on eukaryotic algal viruses. We begin with a summary of the 65 eukaryotic algal viruses that are presently in culture collections, with emphasis on shared evolutionary traits (e.g., conserved core genes) of each known viral type. We then describe how core genes have been used to enable molecular detection of viruses in the environment, ranging from PCR-based amplification to community scale "-omics" approaches. Special attention is given to recent studies that have employed network-analyses of -omics data to predict virus-host relationships, from which a general bioinformatics pipeline is described for this type of approach. Finally, we conclude with acknowledgement of how the field of aquatic virology is adapting to these advances, and highlight the need to properly characterize new virus-host systems that may be isolated using preliminary molecular surveys. Researchers can approach this work using lessons learned from the Chlorella virus system, which is not only the best characterized algal-virus system, but is also responsible for much of the foundation in the field of aquatic virology.
Collapse
|
30
|
Guo Z, He Q, Tang C, Zhang B, Yue H. Identification and genomic characterization of a novel CRESS DNA virus from a calf with severe hemorrhagic enteritis in China. Virus Res 2018; 255:141-146. [PMID: 30040978 PMCID: PMC7114660 DOI: 10.1016/j.virusres.2018.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/16/2023]
Abstract
In this study, a novel circular replication-associated protein (Rep)-encoding single stranded (CRESS) DNA virus was discovered in diarrheic sample of a calf with severe hemorrhagic enteritis. The virus, named Bo-Circo-like virus CH, has a circular genome with 3909 nucleotides (nt). Six putative open reading frames (ORFs) were identified, including Rep, capsid (Cap) and four proteins of unknown function. Both the genome size and the number as well as the organization of encoded ORFs, Bo-Circo-like virus CH is most closely related to Po-Circo-like virus 21 detected in pig faeces. A preliminary survey using specific primers for the Rep region showed that 5.3% (4/75) of diarrheic samples were positive for Bo-Circo-like virus, and all 42 healthy samples were negative. In conclusion, our results indicate that Bo-Circo-like virus CH may represent a new virus in bovine. Further investigation is needed to determine the relationship between the virus infection and diarrhea.
Collapse
Affiliation(s)
- Zijing Guo
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Qifu He
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Bin Zhang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China.
| |
Collapse
|
31
|
Willemsen A, Carrasco JL, Elena SF, Zwart MP. Going, going, gone: predicting the fate of genomic insertions in plant RNA viruses. Heredity (Edinb) 2018; 121:499-509. [PMID: 29743566 DOI: 10.1038/s41437-018-0086-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/09/2022] Open
Abstract
Horizontal gene transfer is common among viruses, while they also have highly compact genomes and tend to lose artificial genomic insertions rapidly. Understanding the stability of genomic insertions in viral genomes is therefore relevant for explaining and predicting their evolutionary patterns. Here, we revisit a large body of experimental research on a plant RNA virus, tobacco etch potyvirus (TEV), to identify the patterns underlying the stability of a range of homologous and heterologous insertions in the viral genome. We obtained a wide range of estimates for the recombination rate-the rate at which deletions removing the insertion occur-and these appeared to be independent of the type of insertion and its location. Of the factors we considered, recombination rate was the best predictor of insertion stability, although we could not identify the specific sequence characteristics that would help predict insertion instability. We also considered experimentally the possibility that functional insertions lead to higher mutational robustness through increased redundancy. However, our observations suggest that both functional and non-functional increases in genome size decreased the mutational robustness. Our results therefore demonstrate the importance of recombination rates for predicting the long-term stability and evolution of viral RNA genomes and suggest that there are unexpected drawbacks to increases in genome size for mutational robustness.
Collapse
Affiliation(s)
- Anouk Willemsen
- Laboratory MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), Montpellier, France
| | - José L Carrasco
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain.,Instituto de Biología Integrativa de Sistemas (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Spain.,The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Mark P Zwart
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands. .,Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
32
|
Laffy PW, Wood‐Charlson EM, Turaev D, Jutz S, Pascelli C, Botté ES, Bell SC, Peirce TE, Weynberg KD, van Oppen MJH, Rattei T, Webster NS. Reef invertebrate viromics: diversity, host specificity and functional capacity. Environ Microbiol 2018; 20:2125-2141. [DOI: 10.1111/1462-2920.14110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Patrick W. Laffy
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | | | - Dmitrij Turaev
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Sabrina Jutz
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Cecilia Pascelli
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- College of Science and EngineeringJames Cook UniversityTownsville QLD Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook UniversityTownsville QLD Australia
| | | | - Sara C. Bell
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Tyler E. Peirce
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Karen D. Weynberg
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- School of BiosciencesUniversity of Melbourne, ParkvilleMelbourneVIC 3010 Australia
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Nicole S. Webster
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- Austalian Centre for Ecogenomics, University of QueenslandBrisbaneQLD 4072 Australia
| |
Collapse
|
33
|
Kazlauskas D, Varsani A, Krupovic M. Pervasive Chimerism in the Replication-Associated Proteins of Uncultured Single-Stranded DNA Viruses. Viruses 2018; 10:v10040187. [PMID: 29642587 PMCID: PMC5923481 DOI: 10.3390/v10040187] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 12/16/2022] Open
Abstract
Numerous metagenomic studies have uncovered a remarkable diversity of circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses, the majority of which are uncultured and unclassified. Unlike capsid proteins, the Reps show significant similarity across different groups of CRESS DNA viruses and have conserved domain organization with the N-terminal nuclease and the C-terminal helicase domain. Consequently, Rep is widely used as a marker for identification, classification and assessment of the diversity of CRESS DNA viruses. However, it has been shown that in certain viruses the Rep nuclease and helicase domains display incongruent evolutionary histories. Here, we systematically evaluated the co-evolutionary patterns of the two Rep domains across classified and unclassified CRESS DNA viruses. Our analysis indicates that the Reps encoded by members of the families Bacilladnaviridae, Circoviridae, Geminiviridae, Genomoviridae, Nanoviridae and Smacoviridae display largely congruent evolutionary patterns in the two domains. By contrast, among the unclassified CRESS DNA viruses, 71% appear to have chimeric Reps. Such massive chimerism suggests that unclassified CRESS DNA viruses represent a dynamic population in which exchange of gene fragments encoding the nuclease and helicase domains is extremely common. Furthermore, purging of the chimeric sequences uncovered six monophyletic Rep groups that may represent new families of CRESS DNA viruses.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio Av. 7, Vilnius 10257, Lithuania.
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7700, South Africa.
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
| |
Collapse
|
34
|
Weynberg KD, Laffy PW, Wood-Charlson EM, Turaev D, Rattei T, Webster NS, van Oppen MJH. Coral-associated viral communities show high levels of diversity and host auxiliary functions. PeerJ 2017; 5:e4054. [PMID: 29158985 PMCID: PMC5695250 DOI: 10.7717/peerj.4054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/27/2017] [Indexed: 12/19/2022] Open
Abstract
Stony corals (Scleractinia) are marine invertebrates that form the foundation and framework upon which tropical reefs are built. The coral animal associates with a diverse microbiome comprised of dinoflagellate algae and other protists, bacteria, archaea, fungi and viruses. Using a metagenomics approach, we analysed the DNA and RNA viral assemblages of seven coral species from the central Great Barrier Reef (GBR), demonstrating that tailed bacteriophages of the Caudovirales dominate across all species examined, and ssDNA viruses, notably the Microviridae, are also prevalent. Most sequences with matches to eukaryotic viruses were assigned to six viral families, including four Nucleocytoplasmic Large DNA Viruses (NCLDVs) families: Iridoviridae, Phycodnaviridae, Mimiviridae, and Poxviridae, as well as Retroviridae and Polydnaviridae. Contrary to previous findings, Herpesvirales were rare in these GBR corals. Sequences of a ssRNA virus with similarities to the dinornavirus, Heterocapsa circularisquama ssRNA virus of the Alvernaviridae that infects free-living dinoflagellates, were observed in three coral species. We also detected viruses previously undescribed from the coral holobiont, including a virus that targets fungi associated with the coral species Acropora tenuis. Functional analysis of the assembled contigs indicated a high prevalence of latency-associated genes in the coral-associated viral assemblages, several host-derived auxiliary metabolic genes (AMGs) for photosynthesis (psbA, psbD genes encoding the photosystem II D1 and D2 proteins respectively), as well as potential nematocyst toxins and antioxidants (genes encoding green fluorescent-like chromoprotein). This study expands the currently limited knowledge on coral-associated viruses by characterising viral composition and function across seven GBR coral species.
Collapse
Affiliation(s)
- Karen D Weynberg
- Australian Institute of Marine Science, Townsville, Queensland, Australia.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | | - Dmitrij Turaev
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia.,School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Gupta T, Ito K, Kadono-Okuda K, Murthy GN, Gowri EV, Ponnuvel KM. Characterization and genome comparison of an Indian isolate of bidensovirus infecting the silkworm Bombyx mori. Arch Virol 2017; 163:125-134. [PMID: 29030707 DOI: 10.1007/s00705-017-3584-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
The bipartite genome of an Indian isolate of Bombyx mori bidensovirus (BmBDV), one of the causative agents of the fatal silkworm disease 'Flacherie', was cloned and completely sequenced. Nucleotide sequence analysis of this Indian isolate of BmBDV revealed two viral DNA segments, VD1 and VD2 as well as a DNA polymerase motif which supports its taxonomical status as the type species of a new family of Bidnaviridae. The Indian isolate of BmBDV was found to have a total of six putative ORFs four of which were located on the VD1 with the other two being on the VD2 DNA segment. The VD1 DNA segment was found to code for three non-structural proteins including a viral DNA polymerase as well as one structural protein, while the VD2 DNA segment was found to code for one structural and one non-structural protein, similar to that of the Japanese and Zhenjiang isolates of BmBDV. A BmBDV ORF expression study was done through real time qPCR wherein the VD2 ORF 1 and 2 showed the maximum transcript levels. This is the first report of the genome characterization of an Indian isolate of BmBDV, infecting silkworm B. mori.
Collapse
Affiliation(s)
- Tania Gupta
- Seribiotech Research Laboratory, Carmelaram-Post, Kodathi, Bangalore, 560035, India
| | - Katsuhiko Ito
- Laboratory of Sericultural Science, Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Keiko Kadono-Okuda
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, 305-8634, Japan
| | - Geetha N Murthy
- Seribiotech Research Laboratory, Carmelaram-Post, Kodathi, Bangalore, 560035, India
| | - E Vijaya Gowri
- Seribiotech Research Laboratory, Carmelaram-Post, Kodathi, Bangalore, 560035, India
| | - Kangayam M Ponnuvel
- Seribiotech Research Laboratory, Carmelaram-Post, Kodathi, Bangalore, 560035, India.
| |
Collapse
|
36
|
Complete fusion of a transposon and herpesvirus created the Teratorn mobile element in medaka fish. Nat Commun 2017; 8:551. [PMID: 28916771 PMCID: PMC5601938 DOI: 10.1038/s41467-017-00527-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/05/2017] [Indexed: 01/02/2023] Open
Abstract
Mobile genetic elements (e.g., transposable elements and viruses) display significant diversity with various life cycles, but how novel elements emerge remains obscure. Here, we report a giant (180-kb long) transposon, Teratorn, originally identified in the genome of medaka, Oryzias latipes. Teratorn belongs to the piggyBac superfamily and retains the transposition activity. Remarkably, Teratorn is largely derived from a herpesvirus of the Alloherpesviridae family that could infect fish and amphibians. Genomic survey of Teratorn-like elements reveals that some of them exist as a fused form between piggyBac transposon and herpesvirus genome in teleosts, implying the generality of transposon-herpesvirus fusion. We propose that Teratorn was created by a unique fusion of DNA transposon and herpesvirus, leading to life cycle shift. Our study supports the idea that recombination is the key event in generation of novel mobile genetic elements. Teratorn is a large mobile genetic element originally identified in the small teleost fish medaka. Here, the authors show that Teratorn is derived from the fusion of a piggyBac superfamily DNA transposon and an alloherpesvirus and that it is widely found across teleost fish.
Collapse
|
37
|
Evolutionary history of ssDNA bacilladnaviruses features horizontal acquisition of the capsid gene from ssRNA nodaviruses. Virology 2017; 504:114-121. [DOI: 10.1016/j.virol.2017.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 11/21/2022]
|
38
|
Maciel-Vergara G, Ros VID. Viruses of insects reared for food and feed. J Invertebr Pathol 2017; 147:60-75. [PMID: 28189501 DOI: 10.1016/j.jip.2017.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even in industrial settings, can be the key for a change in the way natural resources are utilized in order to produce meat, animal protein and a list of other valuable animal products. However, because insect mass rearing technology is relatively new, little is known about the different factors that determine the quality and yield of the production process. Obtaining such knowledge is crucial for the success of insect-based product development. One of the issues that is likely to compromise the success of insect rearing is the outbreak of insect diseases. In particular, viral diseases can be devastating for the productivity and the quality of mass rearing systems. Prevention and management of viral diseases imply the understanding of the different factors that interact in insect mass rearing. This publication provides an overview of the known viruses in insects most commonly reared for food and feed. Nowadays with large-scale sequencing techniques, new viruses are rapidly being discovered. We discuss factors affecting the emergence of viruses in mass rearing systems, along with virus transmission routes. Finally we provide an overview of the wide range of measures available to prevent and manage virus outbreaks in mass rearing systems, ranging from simple sanitation methods to highly sophisticated methods including RNAi and transgenics.
Collapse
Affiliation(s)
- Gabriela Maciel-Vergara
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
39
|
Kelly AG, Netzler NE, White PA. Ancient recombination events and the origins of hepatitis E virus. BMC Evol Biol 2016; 16:210. [PMID: 27733122 PMCID: PMC5062859 DOI: 10.1186/s12862-016-0785-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/30/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is an enteric, single-stranded, positive sense RNA virus and a significant etiological agent of hepatitis, causing sporadic infections and outbreaks globally. Tracing the evolutionary ancestry of HEV has proved difficult since its identification in 1992, it has been reclassified several times, and confusion remains surrounding its origins and ancestry. RESULTS To reveal close protein relatives of the Hepeviridae family, similarity searching of the GenBank database was carried out using a complete Orthohepevirus A, HEV genotype I (GI) ORF1 protein sequence and individual proteins. The closest non-Hepeviridae homologues to the HEV ORF1 encoded polyprotein were found to be those from the lepidopteran-infecting Alphatetraviridae family members. A consistent relationship to this was found using a phylogenetic approach; the Hepeviridae RdRp clustered with those of the Alphatetraviridae and Benyviridae families. This puts the Hepeviridae ORF1 region within the "Alpha-like" super-group of viruses. In marked contrast, the HEV GI capsid was found to be most closely related to the chicken astrovirus capsid, with phylogenetic trees clustering the Hepeviridae capsid together with those from the Astroviridae family, and surprisingly within the "Picorna-like" supergroup. These results indicate an ancient recombination event has occurred at the junction of the non-structural and structure encoding regions, which led to the emergence of the entire Hepeviridae family. The Astroviridae capsid is also closely related to the Tymoviridae family of monopartite, T = 3 icosahedral plant viruses, whilst its non-structural region is related to viruses of the Potyviridae; a large family of plant-infecting viruses with a flexible filamentous rod-shaped virion. Thus, we identified a separate inter-viral family recombination event, again at the non-structural/structural junction, which likely led to the creation of the Astroviridae. CONCLUSIONS In summary, we have shown that new viral families have been created though recombination at the junction of the genome that encodes non-structural and structural proteins, and such recombination events are implicated in the genesis of important human pathogens; HEV, astrovirus and rubella virus.
Collapse
Affiliation(s)
- Andrew G Kelly
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Natalie E Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
40
|
Serrano-Solís V, Cocho G, José MV. Genomic signatures in viral sequences by in-frame and out-frame mutual information. J Theor Biol 2016; 403:1-9. [PMID: 27178876 DOI: 10.1016/j.jtbi.2016.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Abstract
In order to understand the unique biology of viruses, we use the Mutual Information Function (MIF) to characterize 792 viral sequences comprising 458 viral whole genomes. A 3-base periodicity (3-bp) was observed only in DNA-viruses whereas RNA-viruses showed irregular patterns. The correlation of MIF values at frequencies of 3-bp (in-frame) with frequencies of 4 and 5bps (out-frame), turned out to be useful to distinguish viruses according to their respective taxonomic order, and whether they pertain to any of the three different kingdoms, Eubacteria, Archaea and Eukarya. The clustering of viruses was carried out by the use of a new statistics, namely, the pair of in- and out-frame values of the MIF. The clustering thus obtained turned out to be entirely consistent with the current viral taxonomy. As a result we were able to compare in a single plot both viral and cellular genomes unlike any given phylogenetic reconstruction.
Collapse
Affiliation(s)
| | - Germinal Cocho
- Instituto de Física, Universidad Nacional Autónoma de México (IFUNAM), Mexico.
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico.
| |
Collapse
|
41
|
Krupovic M, Yutin N, Koonin EV. Fusion of a superfamily 1 helicase and an inactivated DNA polymerase is a signature of common evolutionary history of Polintons, polinton-like viruses, Tlr1 transposons and transpovirons. Virus Evol 2016; 2:vew019. [PMID: 28694999 PMCID: PMC5499653 DOI: 10.1093/ve/vew019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polintons (polintoviruses), polinton-like viruses (PLVs) and virophages belong to a recently described major class of eukaryotic viruses that is characterized by a distinct virion morphogenetic protein module and, in many members, a protein-primed family B DNA polymerase (pDNAP). All Polintons, by definition, encode a pDNAP and a retrovirus-like integrase. Most of the PLV lack these genes and instead encode a large protein containing a superfamily 1 (SF1) helicase domain. We show here that the SF1 helicase domain-containing proteins of the PLV also contain an inactivated pDNAP domain. This unique helicase-pDNAP fusion is also encoded by transpovirons, enigmatic plasmid-like genetic elements that are associated with giant viruses of the family Mimiviridae. These findings indicate the directionality of evolution of different groups of viruses and mobile elements in the Polinton-centered class. We propose that the PLV evolved from a polinton via fusion of the pDNAP gene with a helicase gene that was accompanied by mutations in the pDNAP active site, likely resulting in inactivation of the polymerase activity. The transpovirons could have evolved from PLV via the loss of several genes including those encoding the morphogenetic module proteins. These findings reaffirm the central evolutionary position of the Polintons in the evolution of eukaryotic viruses and other mobile genetic elements.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Natalya Yutin
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
42
|
Krupovic M, Koonin EV. Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems. Curr Opin Microbiol 2016; 31:25-33. [PMID: 26836982 DOI: 10.1016/j.mib.2016.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
Self-synthesizing transposons are the largest known transposable elements that encode their own DNA polymerases (DNAP). The Polinton/Maverick family of self-synthesizing transposons is widespread in eukaryotes and abundant in the genomes of some protists. In addition to the DNAP and a retrovirus-like integrase, most of the polintons encode homologs of the major and minor jelly-roll capsid proteins, DNA-packaging ATPase and capsid maturation protease. Therefore, polintons are predicted to alternate between the transposon and viral lifestyles although virion formation remains to be demonstrated. Polintons are related to a group of eukaryotic viruses known as virophages that parasitize on giant viruses of the family Mimiviridae and another recently identified putative family of polinton-like viruses (PLV) predicted to lead a similar, dual life style. Comparative genomic analysis of polintons, virophages, PLV and the other viruses with double-stranded (ds)DNA genomes infecting eukaryotes and prokaryotes suggests that the polintons evolved from bacterial tectiviruses and could have been the ancestors of a broad range of eukaryotic viruses including adenoviruses and members of the proposed order 'Megavirales' as well as linear cytoplasmic plasmids. Recently, a group of predicted self-synthesizing transposons was discovered also in prokaryotes. These elements, denoted casposons, encode a DNAP and a homolog of the CRISPR-associated Cas1 endonuclease that has an integrase activity but no capsid proteins. Thus, unlike polintons, casposons appear to be limited to the transposon life style although they could have evolved from viruses. The casposons are thought to have played a pivotal role in the origin of the prokaryotic adaptive immunity, giving rise to the adaptation module of the CRISPR-Cas systems.
Collapse
Affiliation(s)
- Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
43
|
Li G, Li M, Xu W, Zhou Q, Hu Z, Tang Q, Chen K, Yao Q. Regulation of BmBDV NS1 by phosphorylation: Impact of mutagenesis at consensus phosphorylation sites on ATPase activity and cytopathic effects. J Invertebr Pathol 2015; 133:66-72. [PMID: 26686834 DOI: 10.1016/j.jip.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
Bombyx mori bidensovirus (BmBDV) is a single-stranded DNA virus belonging to the Bidensovirus genus, Bidnaviridae family. Previous studies showed that parvovirus nonstructural protein 1 (NS1) contains endonuclease, helicase, and ATPase activities and that these activities are regulated by serine/threonine phosphorylation. We have reported that residue Thr-184 site of BmBDV NS1 is phosphorylated, and that residues of Thr-181 and Thr-191 are potentially phosphorylated. However, whether phosphorylation affects BmBDV NS1 activities remains unclear. In this study, the substitution of threonine with Glycine at positions 181, 184 and 191 of BmBDV NS1 reduced its ATPase activity. After wild-type NS1 was treated with calf intestinal alkaline phosphatase (CIP), ATPase activity decreased significantly. Moreover, silkworms that were injected with recombinant viruses carrying these NS1 mutations exhibited significant increases in the median lethal time to death compared with silkworms that were injected with a virus that expressed wild-type NS1. In conclusion, these results showed that the ATPase activity and virulence of BmBDV NS1 are regulated via phosphorylation.
Collapse
Affiliation(s)
- Guohui Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China.
| | - Mangmang Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Wu Xu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Qian Zhou
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
44
|
Aswad A, Katzourakis A. Convergent capture of retroviral superantigens by mammalian herpesviruses. Nat Commun 2015; 6:8299. [PMID: 26400439 PMCID: PMC4667437 DOI: 10.1038/ncomms9299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/07/2015] [Indexed: 12/23/2022] Open
Abstract
Horizontal gene transfer from retroviruses to mammals is well documented and extensive, but is rare between unrelated viruses with distinct genome types. Three herpesviruses encode a gene with similarity to a retroviral superantigen gene (sag) of the unrelated mouse mammary tumour virus (MMTV). We uncover ancient retroviral sags in over 20 mammals to reconstruct their shared history with herpesviral sags, revealing that the acquisition is a convergent evolutionary event. A retrovirus circulating in South American primates over 10 million years ago was the source of sag in two monkey herpesviruses, and a different retrovirus was the source of sag in a Peruvian rodent herpesvirus. We further show through a timescaled phylogenetic analysis that a cross-species transmission of monkey herpesviruses occurred after the acquisition of sag. These results reveal that a diverse range of ancient sag-containing retroviruses independently donated sag twice from two separate lineages that are distinct from MMTV. Horizontal gene transfer from retroviruses to mammals is rare between unrelated viruses. Here the authors show the convergent acquisition by herpesviruses of a virulence gene of ancient retroviruses, which occurred at least twice from different donor lineages, to distinct herpesviruses that infect mammals.
Collapse
Affiliation(s)
- Amr Aswad
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | | |
Collapse
|
45
|
Abstract
Viruses are notorious for rapidly exchanging genetic information between close relatives and with the host cells they infect. This exchange has profound effects on the nature and rapidity of virus and host evolution. Recombination between dsDNA viruses is common, as is genetic exchange between dsDNA viruses or retroviruses and host genomes. Recombination between RNA virus genomes is also well known. In contrast, genetic exchange across viral kingdoms, for instance between nonretroviral RNA viruses or ssDNA viruses and host genomes or between RNA and DNA viruses, was previously thought to be practically nonexistent. However, there is now growing evidence for both RNA and ssDNA viruses recombining with host dsDNA genomes and, more surprisingly, RNA virus genes recombining with ssDNA virus genomes. Mechanisms are still unclear, but this deep recombination greatly expands the breadth of virus evolution and confounds virus taxonomy.
Collapse
Affiliation(s)
- Kenneth M Stedman
- Biology Department and Center for Life in Extreme Environments, Portland State University, Portland, Oregon 97207;
| |
Collapse
|
46
|
Characterization of a Novel Megabirnavirus from Sclerotinia sclerotiorum Reveals Horizontal Gene Transfer from Single-Stranded RNA Virus to Double-Stranded RNA Virus. J Virol 2015; 89:8567-79. [PMID: 26063429 DOI: 10.1128/jvi.00243-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/01/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Mycoviruses have been detected in all major groups of filamentous fungi, and their study represents an important branch of virology. Here, we characterized a novel double-stranded RNA (dsRNA) mycovirus, Sclerotinia sclerotiorum megabirnavirus 1 (SsMBV1), in an apparently hypovirulent strain (SX466) of Sclerotinia sclerotiorum. Two similarly sized dsRNA segments (L1- and L2-dsRNA), the genome of SsMBV1, are packaged in rigid spherical particles purified from strain SX466. The full-length cDNA sequence of L1-dsRNA/SsMBV1 comprises two large open reading frames (ORF1 and ORF2), which encode a putative coat protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the RdRp domain clearly indicates that SsMBV1 is related to Rosellinia necatrix megabirnavirus 1 (RnMBV1). L2-dsRNA/SsMBV1 comprises two nonoverlapping ORFs (ORFA and ORFB) encoding two hypothetical proteins with unknown functions. The 5'-terminal regions of L1- and L2-dsRNA/SsMBV1 share strictly conserved sequences and form stable stem-loop structures. Although L2-dsRNA/SsMBV1 is dispensable for replication, genome packaging, and pathogenicity of SsMBV1, it enhances transcript accumulation of L1-dsRNA/SsMBV1 and stability of virus-like particles (VLPs). Interestingly, a conserved papain-like protease domain similar to a multifunctional protein (p29) of Cryphonectria hypovirus 1 was detected in the ORFA-encoded protein of L2-dsRNA/SsMBV1. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer may have occurred from a single-stranded RNA (ssRNA) virus (hypovirus) to a dsRNA virus, SsMBV1. Our results reveal that SsMBV1 has a slight impact on the fundamental biological characteristics of its host regardless of the presence or absence of L2-dsRNA/SsMBV1. IMPORTANCE Mycoviruses are widespread in all major fungal groups, and they possess diverse genomes of mostly ssRNA and dsRNA and, recently, circular ssDNA. Here, we have characterized a novel dsRNA virus (Sclerotinia sclerotiorum megabirnavirus 1 [SsMBV1]) that was isolated from an apparently hypovirulent strain, SX466, of Sclerotinia sclerotiorum. Although SsMBV1 is phylogenetically related to RnMBV1, SsMBV1 is markedly distinct from other reported megabirnaviruses with two features of VLPs and conserved domains. Our results convincingly showed that SsMBV1 is viable in the absence of L2-dsRNA/SsMBV1 (a potential large satellite-like RNA or genuine genomic virus component). More interestingly, we detected a conserved papain-like protease domain that commonly exists in ssRNA viruses, including members of the families Potyviridae and Hypoviridae. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer might have occurred from an ssRNA virus to a dsRNA virus, which may provide new insights into the evolutionary history of dsRNA and ssRNA viruses.
Collapse
|
47
|
Hatcher EL, Wang C, Lefkowitz EJ. Genome variability and gene content in chordopoxviruses: dependence on microsatellites. Viruses 2015; 7:2126-46. [PMID: 25912716 PMCID: PMC4411693 DOI: 10.3390/v7042126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022] Open
Abstract
To investigate gene loss in poxviruses belonging to the Chordopoxvirinae subfamily, we assessed the gene content of representative members of the subfamily, and determined whether individual genes present in each genome were intact, truncated, or fragmented. When nonintact genes were identified, the early stop mutations (ESMs) leading to gene truncation or fragmentation were analyzed. Of all the ESMs present in these poxvirus genomes, over 65% co-localized with microsatellites—simple sequence nucleotide repeats. On average, microsatellites comprise 24% of the nucleotide sequence of these poxvirus genomes. These simple repeats have been shown to exhibit high rates of variation, and represent a target for poxvirus protein variation, gene truncation, and reductive evolution.
Collapse
Affiliation(s)
- Eneida L Hatcher
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA.
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford University, 855 California Ave, Palo Alto, CA 94304, USA.
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA.
| |
Collapse
|
48
|
Krupovic M, Zhi N, Li J, Hu G, Koonin EV, Wong S, Shevchenko S, Zhao K, Young NS. Multiple layers of chimerism in a single-stranded DNA virus discovered by deep sequencing. Genome Biol Evol 2015; 7:993-1001. [PMID: 25840414 PMCID: PMC4419787 DOI: 10.1093/gbe/evv034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viruses with single-stranded (ss) DNA genomes infect hosts in all three domains of life and include many medically, ecologically, and economically important pathogens. Recently, a new group of ssDNA viruses with chimeric genomes has been discovered through viral metagenomics. These chimeric viruses combine capsid protein genes and replicative protein genes that, respectively, appear to have been inherited from viruses with positive-strand RNA genomes, such as tombusviruses, and ssDNA genomes, such as circoviruses, nanoviruses or geminiviruses. Here, we describe the genome sequence of a new representative of this virus group and reveal an additional layer of chimerism among ssDNA viruses. We show that not only do these viruses encompass genes for capsid proteins and replicative proteins that have distinct evolutionary histories, but also the replicative genes themselves are chimeras of functional domains inherited from viruses of different families. Our results underscore the importance of horizontal gene transfer in the evolution of ssDNA viruses and the role of genetic recombination in the emergence of novel virus groups.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Ning Zhi
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jungang Li
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gangqing Hu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Susan Wong
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sofiya Shevchenko
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
49
|
Krupovic M, Dolja VV, Koonin EV. Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes. Biol Direct 2015; 10:12. [PMID: 25886840 PMCID: PMC4377212 DOI: 10.1186/s13062-015-0047-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
Plant viruses of the recently recognized family Amalgaviridae have monopartite double-stranded (ds) RNA genomes and encode two proteins: an RNA-dependent RNA polymerase (RdRp) and a putative capsid protein (CP). Whereas the RdRp of amalgaviruses has been found to be most closely related to the RdRps of dsRNA viruses of the family Partitiviridae, the provenance of their CP remained obscure. Here we show that the CP of amalgaviruses is homologous to the nucleocapsid proteins of negative-strand RNA viruses of the genera Phlebovirus (Bunyaviridae) and Tenuivirus. The chimeric genomes of amalgaviruses are a testament to the effectively limitless gene exchange between viruses that shaped the evolution of the virosphere.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, 75015, France.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
50
|
Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015; 479-480:2-25. [PMID: 25771806 PMCID: PMC5898234 DOI: 10.1016/j.virol.2015.02.039] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/04/2023]
Abstract
Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order "Megavirales" that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015, France.
| |
Collapse
|