1
|
Holmes TL, Chabronova A, Denning C, James V, Peffers MJ, Smith JGW. Footprints in the Sno: investigating the cellular and molecular mechanisms of SNORD116. Open Biol 2025; 15:240371. [PMID: 40101781 PMCID: PMC11919532 DOI: 10.1098/rsob.240371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
The small nucleolar RNA (snoRNA) SNORD116 is a small non-coding RNA of interest across multiple biomedical fields of research. Much of the investigation into SNORD116 has been undertaken in the context of the congenital disease Prader-Willi syndrome, wherein SNORD116 expression is lost. However, emerging evidence indicates wider roles in various disease and tissue contexts such as cellular growth, metabolism and signalling. Nevertheless, a conclusive mechanism of action for SNORD116 remains to be established. Here, we review the key findings from these investigations, with the aim of identifying common elements from which to elucidate potential targets and mechanisms of SNORD116. A key recurring element identified is disruption to the insulin/IGF-1 and PI3K/mTOR signalling pathways, contributing to many of the phenotypes associated with SNORD116 modulation explored in this review.
Collapse
Affiliation(s)
- Terri L. Holmes
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, NorfolkNR4 7UQ, UK
| | - Alzbeta Chabronova
- Department of Musculoskeletal Ageing Science, University of Liverpool, Liverpool, UK
| | - Chris Denning
- Department of Stem Cell Biology, University of Nottingham, Nottingham, UK
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Mandy J. Peffers
- Department of Musculoskeletal Ageing Science, University of Liverpool, Liverpool, UK
| | - James G. W. Smith
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, NorfolkNR4 7UQ, UK
| |
Collapse
|
2
|
Thej C, Kishore R. Epigenetic regulation of sex dimorphism in cardiovascular health. Can J Physiol Pharmacol 2024; 102:498-510. [PMID: 38427976 PMCID: PMC11789622 DOI: 10.1139/cjpp-2023-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality, affecting people of all races, ages, and sexes. Substantial sex dimorphism exists in the prevalence, manifestation, and outcomes of CVDs. Understanding the role of sex hormones as well as sex-hormone-independent epigenetic mechanisms could play a crucial role in developing effective and sex-specific cardiovascular therapeutics. Existing research highlights significant disparities in sex hormones, epigenetic regulators, and gene expression related to cardiac health, emphasizing the need for a nuanced understanding of these variations between men and women. Despite these differences, current treatment approaches for CVDs often lack sex-specific considerations. A pivotal shift toward personalized medicine, informed by comprehensive insights into sex-specific DNA methylation, histone modifications, and non-coding RNA dynamics, holds the potential to revolutionize CVD management. By understanding sex-specific epigenetic complexities, independent of sex hormone influence, future cardiovascular research can be tailored to achieve effective diagnostic and therapeutic interventions for both men and women. This review summarizes the current knowledge and gaps in epigenetic mechanisms and sex dimorphism implicated in CVDs.
Collapse
Affiliation(s)
- Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
3
|
Ariyanfar S, Good DJ. Analysis of SNHG14: A Long Non-Coding RNA Hosting SNORD116, Whose Loss Contributes to Prader-Willi Syndrome Etiology. Genes (Basel) 2022; 14:97. [PMID: 36672838 PMCID: PMC9858946 DOI: 10.3390/genes14010097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The Small Nucleolar Host Gene 14 (SNHG14) is a host gene for small non-coding RNAs, including the SNORD116 small nucleolar C/D box RNA encoding locus. Large deletions of the SNHG14 locus, as well as microdeletions of the SNORD116 locus, lead to the neurodevelopmental genetic disorder Prader-Willi syndrome. This review will focus on the SNHG14 gene, its expression patterns, its role in human cancer, and the possibility that single nucleotide variants within the locus contribute to human phenotypes in the general population. This review will also include new in silico data analyses of the SNHG14 locus and new in situ RNA expression patterns of the Snhg14 RNA in mouse midbrain and hindbrain regions.
Collapse
Affiliation(s)
| | - Deborah J. Good
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
4
|
Dong J, Wang H, Zhang Z, Yang L, Qian X, Qian W, Han Y, Huang H, Qian P. Small but strong: Pivotal roles and potential applications of snoRNAs in hematopoietic malignancies. Front Oncol 2022; 12:939465. [PMID: 36033520 PMCID: PMC9413531 DOI: 10.3389/fonc.2022.939465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) belong to a family of noncoding RNAs that are 60-300 nucleotides in length, and they are classified into two classes according to their structure and function: C/D box snoRNAs, playing an essential role in 2’-O-methylation modification on ribosomal RNA; H/ACA box snoRNAs, involved in the pseudouridylation of rRNA. SnoRNAs with unclear functions, no predictable targets, and unusual subcellular locations are called orphan snoRNAs. Recent studies have revealed abnormal expression and demonstrated the pivotal roles of snoRNAs and their host genes in various types of hematological malignancies. This review discusses recent discoveries concerning snoRNAs in a variety of hematological malignancies, including multiple myeloma, lymphoma and leukemia, and sheds light on the application of snoRNAs as diagnostic and prognostic markers as well as therapeutic targets of hematological malignancies in the future.
Collapse
Affiliation(s)
- Jian Dong
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Hui Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhaoru Zhang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lin Yang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xinyue Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wenchang Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Pengxu Qian, ; He Huang,
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
- *Correspondence: Pengxu Qian, ; He Huang,
| |
Collapse
|
5
|
Reference Genes across Nine Brain Areas of Wild Type and Prader-Willi Syndrome Mice: Assessing Differences in Igfbp7, Pcsk1, Nhlh2 and Nlgn3 Expression. Int J Mol Sci 2022; 23:ijms23158729. [PMID: 35955861 PMCID: PMC9369261 DOI: 10.3390/ijms23158729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Prader−Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by the deletion or inactivation of paternally expressed imprinted genes at the chromosomal region 15q11−q13. The PWS-critical region (PWScr) harbors tandemly repeated non-protein coding IPW-A exons hosting the intronic SNORD116 snoRNA gene array that is predominantly expressed in brain. Paternal deletion of PWScr is associated with key PWS symptoms in humans and growth retardation in mice (PWScr model). Dysregulation of the hypothalamic−pituitary axis (HPA) is thought to be causally involved in the PWS phenotype. Here we performed a comprehensive reverse transcription quantitative PCR (RT-qPCR) analysis across nine different brain regions of wild-type (WT) and PWScr mice to identify stably expressed reference genes. Four methods (Delta Ct, BestKeeper, Normfinder and Genorm) were applied to rank 11 selected reference gene candidates according to their expression stability. The resulting panel consists of the top three most stably expressed genes suitable for gene-expression profiling and comparative transcriptome analysis of WT and/or PWScr mouse brain regions. Using these reference genes, we revealed significant differences in the expression patterns of Igfbp7, Nlgn3 and three HPA associated genes: Pcsk1, Pcsk2 and Nhlh2 across investigated brain regions of wild-type and PWScr mice. Our results raise a reasonable doubt on the involvement of the Snord116 in posttranscriptional regulation of Nlgn3 and Nhlh2 genes. We provide a valuable tool for expression analysis of specific genes across different areas of the mouse brain and for comparative investigation of PWScr mouse models to discover and verify different regulatory pathways affecting this complex disorder.
Collapse
|
6
|
Zaletaev DV, Nemtsova MV, Strelnikov VV. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893321050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
James V, Nizamudeen ZA, Lea D, Dottorini T, Holmes TL, Johnson BB, Arkill KP, Denning C, Smith JGW. Transcriptomic Analysis of Cardiomyocyte Extracellular Vesicles in Hypertrophic Cardiomyopathy Reveals Differential snoRNA Cargo. Stem Cells Dev 2021; 30:1215-1227. [PMID: 34806414 PMCID: PMC8742282 DOI: 10.1089/scd.2021.0202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by increased left ventricular wall thickness that can lead to devastating conditions such as heart failure and sudden cardiac death. Despite extensive study, the mechanisms mediating many of the associated clinical manifestations remain unknown and human models are required. To address this, human-induced pluripotent stem cell (hiPSC) lines were generated from patients with a HCM-associated mutation (c.ACTC1G301A) and isogenic controls created by correcting the mutation using CRISPR/Cas9 gene editing technology. Cardiomyocytes (hiPSC-CMs) were differentiated from these hiPSCs and analyzed at baseline, and at increased contractile workload (2 Hz electrical stimulation). Released extracellular vesicles (EVs) were isolated and characterized after a 24-h culture period and transcriptomic analysis performed on both hiPSC-CMs and released EVs. Transcriptomic analysis of cellular mRNA showed the HCM mutation caused differential splicing within known HCM pathways, and disrupted metabolic pathways. Analysis at increasing contraction frequency showed further disruption of metabolic gene expression, with an additive effect in the HCM background. Intriguingly, we observed differences in snoRNA cargo within HCM released EVs that specifically altered when HCM hiPSC-CMs were subjected to increased workload. These snoRNAs were predicted to have roles in post-translational modifications and alternative splicing, processes differentially regulated in HCM. As such, the snoRNAs identified in this study may unveil mechanistic insight into unexplained HCM phenotypes and offer potential future use as HCM biomarkers or as targets in future RNA-targeting therapies.
Collapse
Affiliation(s)
- Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Zubair A Nizamudeen
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Daniel Lea
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Terri L Holmes
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Benjamin B Johnson
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Kenton P Arkill
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - James G W Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
8
|
Calvo Sánchez J, Köhn M. Small but Mighty-The Emerging Role of snoRNAs in Hematological Malignancies. Noncoding RNA 2021; 7:68. [PMID: 34842767 PMCID: PMC8629011 DOI: 10.3390/ncrna7040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Over recent years, the long known class of small nucleolar RNAs (snoRNAs) have gained interest among the scientific community, especially in the clinical context. The main molecular role of this interesting family of non-coding RNAs is to serve as scaffolding RNAs to mediate site-specific RNA modification of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). With the development of new sequencing techniques and sophisticated analysis pipelines, new members of the snoRNA family were identified and global expression patterns in disease backgrounds could be determined. We will herein shed light on the current research progress in snoRNA biology and their clinical role by influencing disease outcome in hematological diseases. Astonishingly, in recent studies snoRNAs emerged as potent biomarkers in a variety of these clinical setups, which is also highlighted by the frequent deregulation of snoRNA levels in the hema-oncological context. However, research is only starting to reveal how snoRNAs might influence cellular functions and the connected disease hallmarks in hematological malignancies.
Collapse
Affiliation(s)
| | - Marcel Köhn
- Junior Research Group ‘RBPs and ncRNAs in Human Diseases’, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Saale, Germany;
| |
Collapse
|
9
|
Markati T, Duis J, Servais L. Therapies in preclinical and clinical development for Angelman syndrome. Expert Opin Investig Drugs 2021; 30:709-720. [PMID: 34112038 DOI: 10.1080/13543784.2021.1939674] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Angelman syndrome is a rare genetic neurodevelopmental disorder, caused by deficiency or abnormal function of the maternal ubiquitin protein-ligase E3A, known as UBE3A, in the central nervous system. There is no disease-modifying treatment available, but the therapeutic pipeline of Angelman syndrome includes at least 15 different approaches at preclinical or clinical development. In the coming years, several clinical trials will be enrolling patients, which prompted this comprehensive review.Areas covered: We summarize and critically review the different therapeutic approaches. Some approaches attempt to restore the missing or nonfunctional UBE3A protein in the neurons via gene replacement or enzyme replacement therapies. Other therapies aim to induce expression of the normal paternal copy of the UBE3A gene by targeting a long non-coding RNA, the UBE3A-ATS, which interferes with its own expression. Another therapeutic category includes compounds that target molecular pathways and effector proteins known to be involved in Angelman syndrome pathophysiology.Expert opinion: We believe that by 2022-2023, more than five disease-modifying treatments will be simultaneously at clinical testing. However, the are several challenges with regards to safety and efficacy, which need to be addressed. Additionally, there is still a significant unmet need for clinical trial readiness.
Collapse
Affiliation(s)
- Theodora Markati
- MDUK Oxford Neuromuscular Center, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jessica Duis
- Section of Genetics & Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK.,Division of Child Neurology, Centre De Références Des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| |
Collapse
|
10
|
Xu M, Chen Y, Lu W, Kong L, Fang J, Li Z, Zhang L, Pian C. SPMLMI: predicting lncRNA-miRNA interactions in humans using a structural perturbation method. PeerJ 2021; 9:e11426. [PMID: 34055486 PMCID: PMC8140594 DOI: 10.7717/peerj.11426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/18/2021] [Indexed: 01/06/2023] Open
Abstract
Long non-coding RNA (lncRNA)-microRNA (miRNA) interactions are quickly emerging as important mechanisms underlying the functions of non-coding RNAs. Accordingly, predicting lncRNA-miRNA interactions provides an important basis for understanding the mechanisms of action of ncRNAs. However, the accuracy of the established prediction methods is still limited. In this study, we used structural consistency to measure the predictability of interactive links based on a bilayer network by integrating information for known lncRNA-miRNA interactions, an lncRNA similarity network, and an miRNA similarity network. In particular, by using the structural perturbation method, we proposed a framework called SPMLMI to predict potential lncRNA-miRNA interactions based on the bilayer network. We found that the structural consistency of the bilayer network was higher than that of any single network, supporting the utility of bilayer network construction for the prediction of lncRNA-miRNA interactions. Applying SPMLMI to three real datasets, we obtained areas under the curves of 0.9512 ± 0.0034, 0.8767 ± 0.0033, and 0.8653 ± 0.0021 based on 5-fold cross-validation, suggesting good model performance. In addition, the generalizability of SPMLMI was better than that of the previously established methods. Case studies of two lncRNAs (i.e., SNHG14 and MALAT1) further demonstrated the feasibility and effectiveness of the method. Therefore, SPMLMI is a feasible approach to identify novel lncRNA-miRNA interactions underlying complex biological processes.
Collapse
Affiliation(s)
- Mingmin Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanyuan Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lingpeng Kong
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jingya Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zutan Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liangyun Zhang
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Cong Pian
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Jacovetti C, Bayazit MB, Regazzi R. Emerging Classes of Small Non-Coding RNAs With Potential Implications in Diabetes and Associated Metabolic Disorders. Front Endocrinol (Lausanne) 2021; 12:670719. [PMID: 34040585 PMCID: PMC8142323 DOI: 10.3389/fendo.2021.670719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Most of the sequences in the human genome do not code for proteins but generate thousands of non-coding RNAs (ncRNAs) with regulatory functions. High-throughput sequencing technologies and bioinformatic tools significantly expanded our knowledge about ncRNAs, highlighting their key role in gene regulatory networks, through their capacity to interact with coding and non-coding RNAs, DNAs and proteins. NcRNAs comprise diverse RNA species, including amongst others PIWI-interacting RNAs (piRNAs), involved in transposon silencing, and small nucleolar RNAs (snoRNAs), which participate in the modification of other RNAs such as ribosomal RNAs and transfer RNAs. Recently, a novel class of small ncRNAs generated from the cleavage of tRNAs or pre-tRNAs, called tRNA-derived small RNAs (tRFs) has been identified. tRFs have been suggested to regulate protein translation, RNA silencing and cell survival. While for other ncRNAs an implication in several pathologies is now well established, the potential involvement of piRNAs, snoRNAs and tRFs in human diseases, including diabetes, is only beginning to emerge. In this review, we summarize fundamental aspects of piRNAs, snoRNAs and tRFs biology. We discuss their biogenesis while emphasizing on novel sequencing technologies that allow ncRNA discovery and annotation. Moreover, we give an overview of genomic approaches to decrypt their mechanisms of action and to study their functional relevance. The review will provide a comprehensive landscape of the regulatory roles of these three types of ncRNAs in metabolic disorders by reporting their differential expression in endocrine pancreatic tissue as well as their contribution to diabetes incidence and diabetes-underlying conditions such as inflammation. Based on these discoveries we discuss the potential use of piRNAs, snoRNAs and tRFs as promising therapeutic targets in metabolic disorders.
Collapse
Affiliation(s)
- Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Kummerfeld DM, Raabe CA, Brosius J, Mo D, Skryabin BV, Rozhdestvensky TS. A Comprehensive Review of Genetically Engineered Mouse Models for Prader-Willi Syndrome Research. Int J Mol Sci 2021; 22:3613. [PMID: 33807162 PMCID: PMC8037846 DOI: 10.3390/ijms22073613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a neurogenetic multifactorial disorder caused by the deletion or inactivation of paternally imprinted genes on human chromosome 15q11-q13. The affected homologous locus is on mouse chromosome 7C. The positional conservation and organization of genes including the imprinting pattern between mice and men implies similar physiological functions of this locus. Therefore, considerable efforts to recreate the pathogenesis of PWS have been accomplished in mouse models. We provide a summary of different mouse models that were generated for the analysis of PWS and discuss their impact on our current understanding of corresponding genes, their putative functions and the pathogenesis of PWS. Murine models of PWS unveiled the contribution of each affected gene to this multi-facetted disease, and also enabled the establishment of the minimal critical genomic region (PWScr) responsible for core symptoms, highlighting the importance of non-protein coding genes in the PWS locus. Although the underlying disease-causing mechanisms of PWS remain widely unresolved and existing mouse models do not fully capture the entire spectrum of the human PWS disorder, continuous improvements of genetically engineered mouse models have proven to be very powerful and valuable tools in PWS research.
Collapse
Affiliation(s)
- Delf-Magnus Kummerfeld
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Juergen Brosius
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingding Mo
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
| | - Boris V. Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Timofey S. Rozhdestvensky
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| |
Collapse
|
13
|
Influence of pentoxifylline on gene expression of PAG1/ miR-1206/ SNHG14 in ischemic heart disease. Biochem Biophys Rep 2021; 25:100911. [PMID: 33553684 PMCID: PMC7846894 DOI: 10.1016/j.bbrep.2021.100911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The regulation by immune checkpoint is able to prevent excessive tissue damage caused by ischemia reperfusion (I/R); therefore, the study aims to investigate the behavior of phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG1) mRNA, miR-1206 and small nucleolar RNA host gene 14 (SNHG14) during I/R and intake of pentoxifylline (PTX) as a protective drug. The relative expression level of PAG1/miR-1206/SNHG14 was determined by qRT-PCR. Cardiac tissue levels of cytotoxic T-lymphocyte associated antigen 4 (CTLA4) and PAG1 protein expression were determined by ELISA technique. The regulatory T cells achieved by the flow cytometry. The results found that the relative expression of SNHG14 was significantly upregulated in I/R, but suppressed in PTX treated groups with enhancement of the relative expression level of miR-1206. The gene and protein expression of PAG1 were downregulated with effective doses of PTX. The results showed that (30 and 40 mg/kg bwt) PTX dose suppressed the CTLA4 development significantly. The mean of the regulatory T cell in PTX protective groups is significantly reduced at (p < 0.001) in a comparison with I/R group. Spearman's correlation analysis revealed a significant negative correlation between SNHG14 and miR-1206, but a significant positive correlation between SNHG14 and PAG1 in I/R heart tissue. The results indicated that miR-1206 and SNHG14 can be used as biomarkers with perfect sensitivity and specificity. Using PTX reduced cardiac tissue damage. SNHG14 and miR-1206 can be used as a diagnostic tool in I/R. Positive correlation between SNHG14 and PAG1 relative expression in I/R heart tissues. SNHG14 and miR-1206 can be used as a diagnostic tool in ischemia reperfusion. Negative correlation between SNHG14 and miR-1206. Using pentoxifylline as a protective drug renders cardiac tissues more resistance to ischemia.
Collapse
|
14
|
Li J, Zhang C, Si H, Gu S, Liu X, Li D, Meng S, Yang X, Li S. Brain-specific monoallelic expression of bovine UBE3A is associated with genomic position. Anim Genet 2020; 52:47-54. [PMID: 33200847 DOI: 10.1111/age.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 11/30/2022]
Abstract
Genomic imprinting is a rare epigenetic process in mammalian cells that leads to monoallelic expression of a gene with a parent-specific pattern. The UBE3A (ubiquitin protein ligase E3A) gene is imprinted with maternal allelic expression in the brain but biallelically expressed in all other tissues in humans. The silencing of the paternal UBE3A allele is thought to be caused by the paternally expressed antisense RNA transcript of UBE3A-ATS. The aberrant imprinted expression of the UBE3A is associated with several neurodevelopmental syndromes and psychological disorders. Cattle are a valuable model species in determining the genetic etiology of sporadic human disorder, and maternal expression of UEB3A has been revealed by next-generation sequencing study in the bovine conceptus. In this study, we investigated the allelic expression of UBE3A and UBE3A-ATS in adult bovine somatic tissues. To confirm the splicing pattern of bovine UBE3A, five 5' alternative transcripts (MT210534-MT210538) were first obtained from bovine brain tissue by RT-PCR. Based on 10 SNP genotypes, we found that the brain-specific monoallelic expression of bovine UBE3A did not occur along the entire locus, and there was a shift from biallelic expression to monoallelic expression in exon 14 of the UBE3A gene. However, the brain-specific monoallelic expression of bovine UBE3A-ATS occurred in the entire gene. These observations demonstrated that the monoallelic expression did not occur along the bovine UBE3A entire locus and was associated with the genomic position.
Collapse
Affiliation(s)
- J Li
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - C Zhang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - H Si
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - S Gu
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - X Liu
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - D Li
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - S Meng
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - X Yang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - S Li
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| |
Collapse
|
15
|
Chowdhury D, Wang C, Lu A, Zhu H. Identifying Transcription Factor Combinations to Modulate Circadian Rhythms by Leveraging Virtual Knockouts on Transcription Networks. iScience 2020; 23:101490. [PMID: 32920484 PMCID: PMC7492989 DOI: 10.1016/j.isci.2020.101490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 02/02/2023] Open
Abstract
The mammalian circadian systems consist of indigenous, self-sustained 24-h rhythm generators. They comprise many genes, molecules, and regulators. To decode their systematic controls, a robust computational approach was employed. It integrates transcription-factor-occupancy and time-series gene-expression data as input. The model equations were constructed and solved to determine the transcriptional regulatory logics in the mouse transcriptome network. This hypothesizes to explore the underlying mechanisms of combinatorial transcriptional regulations for circadian rhythms in mouse. We reconstructed the quantitative transcriptional-regulatory networks for circadian gene regulation at a dynamic scale. Transcriptional-simulations with virtually knocked-out mutants were performed to estimate their influence on networks. The potential transcriptional-regulators-combinations modulating the circadian rhythms were identified. Of them, CLOCK/CRY1 double knockout preserves the highest modulating capacity. Our quantitative framework offers a quick, robust, and physiologically relevant way to characterize the druggable targets to modulate the circadian rhythms at a dynamic scale effectively.
Collapse
Affiliation(s)
- Debajyoti Chowdhury
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chao Wang
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Aiping Lu
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hailong Zhu
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
16
|
Chung MS, Langouët M, Chamberlain SJ, Carmichael GG. Prader-Willi syndrome: reflections on seminal studies and future therapies. Open Biol 2020; 10:200195. [PMID: 32961075 PMCID: PMC7536080 DOI: 10.1098/rsob.200195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Prader-Willi syndrome (PWS) is caused by the loss of function of the paternally inherited 15q11-q13 locus. This region is governed by genomic imprinting, a phenomenon in which genes are expressed exclusively from one parental allele. The genomic imprinting of the 15q11-q13 locus is established in the germline and is largely controlled by a bipartite imprinting centre. One part, termed the Prader-Willi syndrome imprinting center (PWS-IC), comprises a CpG island that is unmethylated on the paternal allele and methylated on the maternal allele. The second part, termed the Angelman syndrome imprinting centre, is required to silence the PWS_IC in the maternal germline. The loss of the paternal contribution of the imprinted 15q11-q13 locus most frequently occurs owing to a large deletion of the entire imprinted region but can also occur through maternal uniparental disomy or an imprinting defect. While PWS is considered a contiguous gene syndrome based on large-deletion and uniparental disomy patients, the lack of expression of only non-coding RNA transcripts from the SNURF-SNRPN/SNHG14 may be the primary cause of PWS. Patients with small atypical deletions of the paternal SNORD116 cluster alone appear to have most of the PWS related clinical phenotypes. The loss of the maternal contribution of the 15q11-q13 locus causes a separate and distinct condition called Angelman syndrome. Importantly, while much has been learned about the regulation and expression of genes and transcripts deriving from the 15q11-q13 locus, there remains much to be learned about how these genes and transcripts contribute at the molecular level to the clinical traits and developmental aspects of PWS that have been observed.
Collapse
Affiliation(s)
| | | | | | - Gordon G. Carmichael
- Department of Genetics and Genome Sciences, UCONN Health, 400 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
17
|
Rafi SK, Butler MG. The 15q11.2 BP1-BP2 Microdeletion ( Burnside-Butler) Syndrome: In Silico Analyses of the Four Coding Genes Reveal Functional Associations with Neurodevelopmental Phenotypes. Int J Mol Sci 2020; 21:ijms21093296. [PMID: 32384786 PMCID: PMC7246448 DOI: 10.3390/ijms21093296] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
The 15q11.2 BP1-BP2 microdeletion (Burnside–Butler) syndrome is emerging as the most frequent pathogenic copy number variation (CNV) in humans associated with neurodevelopmental disorders with changes in brain morphology, behavior, and cognition. In this study, we explored functions and interactions of the four protein-coding genes in this region, namely NIPA1, NIPA2, CYFIP1, and TUBGCP5, and elucidate their role, in solo and in concert, in the causation of neurodevelopmental disorders. First, we investigated the STRING protein-protein interactions encompassing all four genes and ascertained their predicted Gene Ontology (GO) functions, such as biological processes involved in their interactions, pathways and molecular functions. These include magnesium ion transport molecular function, regulation of axonogenesis and axon extension, regulation and production of bone morphogenetic protein and regulation of cellular growth and development. We gathered a list of significantly associated cardinal maladies for each gene from searchable genomic disease websites, namely MalaCards.org: HGMD, OMIM, ClinVar, GTR, Orphanet, DISEASES, Novoseek, and GeneCards.org. Through tabulations of such disease data, we ascertained the cardinal disease association of each gene, as well as their expanded putative disease associations. This enabled further tabulation of disease data to ascertain the role of each gene in the top ten overlapping significant neurodevelopmental disorders among the disease association data sets: (1) Prader–Willi Syndrome (PWS); (2) Angelman Syndrome (AS); (3) 15q11.2 Deletion Syndrome with Attention Deficit Hyperactive Disorder & Learning Disability; (4) Autism Spectrum Disorder (ASD); (5) Schizophrenia; (6) Epilepsy; (7) Down Syndrome; (8) Microcephaly; (9) Developmental Disorder, and (10) Peripheral Nervous System Disease. The cardinal disease associations for each of the four contiguous 15q11.2 BP1-BP2 genes are NIPA1- Spastic Paraplegia 6; NIPA2—Angelman Syndrome and Prader–Willi Syndrome; CYFIP1—Fragile X Syndrome and Autism; TUBGCP5—Prader–Willi Syndrome. The four genes are individually associated with PWS, ASD, schizophrenia, epilepsy, and Down syndrome. Except for TUBGCP5, the other three genes are associated with AS. Unlike the other genes, TUBGCP5 is also not associated with attention deficit hyperactivity disorder and learning disability, developmental disorder, or peripheral nervous system disease. CYFIP1 was the only gene not associated with microcephaly but was the only gene associated with developmental disorders. Collectively, all four genes were associated with up to three-fourths of the ten overlapping neurodevelopmental disorders and are deleted in this most prevalent known pathogenic copy number variation now recognized among humans with these clinical findings.
Collapse
Affiliation(s)
- Syed K. Rafi
- Correspondence: (S.K.R.); (M.G.B.); Tel.: +816-787-4366 (S.K.R.); +913-588-1800 (M.G.B.)
| | - Merlin G. Butler
- Correspondence: (S.K.R.); (M.G.B.); Tel.: +816-787-4366 (S.K.R.); +913-588-1800 (M.G.B.)
| |
Collapse
|
18
|
Kim Y, Wang SE, Jiang YH. Epigenetic therapy of Prader-Willi syndrome. Transl Res 2019; 208:105-118. [PMID: 30904443 PMCID: PMC6527448 DOI: 10.1016/j.trsl.2019.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/05/2023]
Abstract
Prader-Willi syndrome (PWS) is a complex and multisystem neurobehavioral disorder. The molecular mechanism of PWS is deficiency of paternally expressed gene gene or genes from the chromosome 15q11-q13. Due to imprinted gene regulation, the same genes in the maternal chromosome 15q11-q13 are structurally intact but transcriptionally repressed by an epigenetic mechanism. The unique molecular defect underlying PWS renders an exciting opportunity to explore epigenetic-based therapy to reactivate the expression of repressed PWS genes from the maternal chromosome. Inactivation of H3K9m3 methyltransferase SETDB1 and zinc finger protein ZNF274 results in reactivation of SNRPN and SNORD116 cluster from the maternal chromosomes in PWS patient iPSCs and iPSC-derived neurons, respectively. High content screening of small molecule libraries using cells derived from transgenic mice carrying the SNRPN-EGFP fusion protein has discovered that inhibitors of EHMT2/G9a, a histone 3 lysine 9 methyltransferase, are capable of reactivating expression of paternally expressed SNRPN and SNORD116 from the maternal chromosome, both in cultured PWS patient-derived fibroblasts and in a PWS mouse model. Treatment with an EMHT2/G9a inhibitor also rescues perinatal lethality and failure to thrive phenotypes in a PWS mouse model. These findings present the first evidence to support a proof-of-principle for epigenetic-based therapy for the PWS in humans.
Collapse
Affiliation(s)
- Yuna Kim
- Department of Pediatrics, Duke University of School of Medicine, Durham, North Carolina
| | - Sung Eun Wang
- Department of Pediatrics, Duke University of School of Medicine, Durham, North Carolina
| | - Yong-Hui Jiang
- Department of Pediatrics, Duke University of School of Medicine, Durham, North Carolina; Department of Neurobiology, Duke University of School of Medicine, Durham, North Carolina; Department of Program in Genetics and Genomics, Duke University of School of Medicine, Durham, North Carolina; Department of Program in Cellular and Molecular Biology, Duke University of School of Medicine, Durham, North Carolina.
| |
Collapse
|
19
|
Carias KV, Wevrick R. Preclinical Testing in Translational Animal Models of Prader-Willi Syndrome: Overview and Gap Analysis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:344-358. [PMID: 30989085 PMCID: PMC6447752 DOI: 10.1016/j.omtm.2019.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder causing endocrine, musculoskeletal, and neurological dysfunction. PWS is caused by the inactivation of contiguous genes, complicating the development of targeted therapeutics. Clinical trials are now underway in PWS, with more trials to be implemented in the next few years. PWS-like endophenotypes are recapitulated in gene-targeted mice in which the function of one or more PWS genes is disrupted. These animal models can guide priorities for clinical trials or provide information about efficacy of a compound within the context of the specific disease. We now review the current status of preclinical studies that measure the effect of therapeutics on PWS-like endophenotypes. Seven categories of therapeutics (oxytocin and related compounds, K+-ATP channel agonists, melanocortin 4 receptor agonists, incretin mimetics and/or GLP-1 receptor agonists, cannabinoids, ghrelin agents, and Caralluma fimbriata [cactus] extract) have been tested for their effect on endophenotypes in both PWS animal models and clinical trials. Many other therapeutics have been tested in clinical trials, but not preclinical models of PWS or vice versa. Fostering dialogs among investigators performing preclinical validation of animal models and those implementing clinical studies will accelerate the discovery and translation of therapies into clinical practice in PWS.
Collapse
Affiliation(s)
- K Vanessa Carias
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Ectopic expression of Snord115 in choroid plexus interferes with editing but not splicing of 5-Ht2c receptor pre-mRNA in mice. Sci Rep 2019; 9:4300. [PMID: 30862860 PMCID: PMC6414643 DOI: 10.1038/s41598-019-39940-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023] Open
Abstract
Serotonin 5-HT2C receptor is a G-protein coupled excitatory receptor that regulates several biochemical pathways and has been implicated in obesity, mental state, sleep cycles, autism, neuropsychiatric disorders and neurodegenerative diseases. The activity of 5-HT2CR is regulated via alternative splicing and A to I editing of exon Vb of its pre-mRNA. Snord115 is a small nucleolar RNA that is expressed in mouse neurons and displays an 18-nucleotide base complementary to exon Vb of 5-HT2CR pre-mRNA. For almost two decades this putative guide element of Snord115 has wandered like a ghost through the literature in attempts to elucidate the biological significance of this complementarity. In mice, Snord115 is expressed in neurons and absent in the choroid plexus where, in contrast, 5-Ht2cr mRNA is highly abundant. Here we report the analysis of 5-Ht2cr pre-mRNA posttranscriptional processing via RNA deep sequencing in a mouse model that ectopically expresses Snord115 in the choroid plexus. In contrast to previous reports, our analysis demonstrated that Snord115 does not control alternative splicing of 5-Ht2cr pre-mRNA in vivo. We identified a modest, yet statistically significant reduction of 5-Ht2cr pre-mRNA A to I editing at the major A, B, C and D sites. We suggest that Snord115 and exon Vb of 5Ht2cr pre-mRNA form a double-stranded structure that is subject to ADAR-mediated A to I editing. To the best of our knowledge, this is the first comprehensive Snord115 gain-of-function analysis based on in vivo mouse models.
Collapse
|
21
|
A bipartite boundary element restricts UBE3A imprinting to mature neurons. Proc Natl Acad Sci U S A 2019; 116:2181-2186. [PMID: 30674673 DOI: 10.1073/pnas.1815279116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of function from the maternal allele of UBE3A, a gene encoding an E3 ubiquitin ligase. UBE3A is only expressed from the maternally inherited allele in mature human neurons due to tissue-specific genomic imprinting. Imprinted expression of UBE3A is restricted to neurons by expression of UBE3A antisense transcript (UBE3A-ATS) from the paternally inherited allele, which silences the paternal allele of UBE3A in cis However, the mechanism restricting UBE3A-ATS expression and UBE3A imprinting to neurons is not understood. We used CRISPR/Cas9-mediated genome editing to functionally define a bipartite boundary element critical for neuron-specific expression of UBE3A-ATS in humans. Removal of this element led to up-regulation of UBE3A-ATS without repressing paternal UBE3A However, increasing expression of UBE3A-ATS in the absence of the boundary element resulted in full repression of paternal UBE3A, demonstrating that UBE3A imprinting requires both the loss of function from the boundary element as well as the up-regulation of UBE3A-ATS These results suggest that manipulation of the competition between UBE3A-ATS and UBE3A may provide a potential therapeutic approach for AS.
Collapse
|
22
|
Lopez SJ, Segal DJ, LaSalle JM. UBE3A: An E3 Ubiquitin Ligase With Genome-Wide Impact in Neurodevelopmental Disease. Front Mol Neurosci 2019; 11:476. [PMID: 30686997 PMCID: PMC6338038 DOI: 10.3389/fnmol.2018.00476] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
UBE3A is an E3 ubiquitin ligase encoded by an imprinted gene whose maternal deletion or duplication leads to distinct neurodevelopment disorders Angelman and Dup15q syndromes. Despite the known genetic basis of disease, how changes in copy number of a ubiquitin ligase gene can have widespread impact in early brain development is poorly understood. Previous studies have identified a wide array of UBE3A functions, interaction partners, and ubiquitin targets, but no central pathway fully explains its critical role in neurodevelopment. Here, we review recent UBE3A studies that have begun to investigate mechanistic, cellular pathways and the genome-wide impacts of alterations in UBE3A expression levels to gain broader insight into how UBE3A affects the developing brain. These studies have revealed that UBE3A is a multifunctional protein with important nuclear and cytoplasmic regulatory functions that impact proteasome function, Wnt signaling, circadian rhythms, imprinted gene networks, and chromatin. Synaptic functions of UBE3A interact with light exposures and mTOR signaling and are most critical in GABAergic neurons. Understanding the genome-wide influences of UBE3A will help uncover its role in early brain development and ultimately lead to identification of key therapeutic targets for UBE3A-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Simon Jesse Lopez
- Department of Medical Immunology and Microbiology, University of California, Davis, Davis, CA, United States.,Genome Center, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States.,Integrative Genetics and Genomics, University of California, Davis, Davis, CA, United States
| | - David J Segal
- Genome Center, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States.,Integrative Genetics and Genomics, University of California, Davis, Davis, CA, United States.,Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Janine M LaSalle
- Department of Medical Immunology and Microbiology, University of California, Davis, Davis, CA, United States.,Genome Center, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States.,Integrative Genetics and Genomics, University of California, Davis, Davis, CA, United States
| |
Collapse
|
23
|
Costa RA, Ferreira IR, Cintra HA, Gomes LHF, Guida LDC. Genotype-Phenotype Relationships and Endocrine Findings in Prader-Willi Syndrome. Front Endocrinol (Lausanne) 2019; 10:864. [PMID: 31920975 PMCID: PMC6923197 DOI: 10.3389/fendo.2019.00864] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a complex imprinting disorder related to genomic errors that inactivate paternally-inherited genes on chromosome 15q11-q13 with severe implications on endocrine, cognitive and neurologic systems, metabolism, and behavior. The absence of expression of one or more genes at the PWS critical region contributes to different phenotypes. There are three molecular mechanisms of occurrence: paternal deletion of the 15q11-q13 region; maternal uniparental disomy 15; or imprinting defects. Although there is a clinical diagnostic consensus criteria, DNA methylation status must be confirmed through genetic testing. The endocrine system can be the most affected in PWS, and growth hormone replacement therapy provides improvement in growth, body composition, and behavioral and physical attributes. A key feature of the syndrome is the hypothalamic dysfunction that may be the basis of several endocrine symptoms. Clinical and molecular complexity in PWS enhances the importance of genetic diagnosis in therapeutic definition and genetic counseling. So far, no single gene mutation has been described to contribute to this genetic disorder or related to any exclusive symptoms. Here we proposed to review individually disrupted genes within the PWS critical region and their reported clinical phenotypes related to the syndrome. While genes such as MKRN3, MAGEL2, NDN, or SNORD115 do not address the full spectrum of PWS symptoms and are less likely to have causal implications in PWS major clinical signs, SNORD116 has emerged as a critical, and possibly, a determinant candidate in PWS, in the recent years. Besides that, the understanding of the biology of the PWS SNORD genes is fairly low at the present. These non-coding RNAs exhibit all the hallmarks of RNA methylation guides and can be incorporated into ribonucleoprotein complexes with possible hypothalamic and endocrine functions. Also, DNA conservation between SNORD sequences across placental mammals strongly suggests that they have a functional role as RNA entities on an evolutionary basis. The broad clinical spectrum observed in PWS and the absence of a clear genotype-phenotype specific correlation imply that the numerous genes involved in the syndrome have an additive deleterious effect on different phenotypes when deficiently expressed.
Collapse
|
24
|
Abstract
Many processes in the human body - including brain function - are regulated over the 24-hour cycle, and there are strong associations between disrupted circadian rhythms (for example, sleep-wake cycles) and disorders of the CNS. Brain disorders such as autism, depression and Parkinson disease typically develop at certain stages of life, and circadian rhythms are important during each stage of life for the regulation of processes that may influence the development of these disorders. Here, we describe circadian disruptions observed in various brain disorders throughout the human lifespan and highlight emerging evidence suggesting these disruptions affect the brain. Currently, much of the evidence linking brain disorders and circadian dysfunction is correlational, and so whether and what kind of causal relationships might exist are unclear. We therefore identify remaining questions that may direct future research towards a better understanding of the links between circadian disruption and CNS disorders.
Collapse
Affiliation(s)
- Ryan W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Colleen A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
The Role of the Prader-Willi Syndrome Critical Interval for Epigenetic Regulation, Transcription and Phenotype. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2040018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prader-Willi Syndrome (PWS) is a neurodevelopmental disorder caused by loss of expression of the paternally inherited genes on chromosome 15q11.2-q13. However, the core features of PWS have been attributed to a critical interval (PWS-cr) within the 15q11.2-q13 imprinted gene cluster, containing the small nucleolar RNA (snoRNA) SNORD116 and non-coding RNA IPW (Imprinted in Prader-Willi) exons. SNORD116 affects the transcription profile of hundreds of genes, possibly via DNA methylation or post-transcriptional modification, although the exact mechanism is not completely clear. IPW on the other hand has been shown to specifically modulate histone methylation of a separate imprinted locus, the DLK1-DIO3 cluster, which itself is associated with several neurodevelopmental disorders with similarities to PWS. Here we review what is currently known of the molecular targets of SNORD116 and IPW and begin to disentangle their roles in contributing to the Prader-Willi Syndrome phenotype.
Collapse
|
26
|
Noncoding RNA Transcripts during Differentiation of Induced Pluripotent Stem Cells into Hepatocytes. Stem Cells Int 2018; 2018:5692840. [PMID: 30210551 PMCID: PMC6120260 DOI: 10.1155/2018/5692840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/20/2018] [Accepted: 06/12/2018] [Indexed: 02/01/2023] Open
Abstract
Recent advances in the stem cell field allow to obtain many human tissues in vitro. However, hepatic differentiation of induced pluripotent stem cells (iPSCs) still remains challenging. Hepatocyte-like cells (HLCs) obtained after differentiation resemble more fetal liver hepatocytes. MicroRNAs (miRNA) play an important role in the differentiation process. Here, we analysed noncoding RNA profiles from the last stages of differentiation and compare them to hepatocytes. Our results show that HLCs maintain an epithelial character and express miRNA which can block hepatocyte maturation by inhibiting the epithelial-mesenchymal transition (EMT). Additionally, we identified differentially expressed small nucleolar RNAs (snoRNAs) and discovered novel noncoding RNA (ncRNA) genes.
Collapse
|
27
|
Differential expression of microRNAs and other small RNAs in muscle tissue of patients with ALS and healthy age-matched controls. Sci Rep 2018; 8:5609. [PMID: 29618798 PMCID: PMC5884852 DOI: 10.1038/s41598-018-23139-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/05/2018] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis is a late-onset disorder primarily affecting motor neurons and leading to progressive and lethal skeletal muscle atrophy. Small RNAs, including microRNAs (miRNAs), can serve as important regulators of gene expression and can act both globally and in a tissue-/cell-type-specific manner. In muscle, miRNAs called myomiRs govern important processes and are deregulated in various disorders. Several myomiRs have shown promise for therapeutic use in cellular and animal models of ALS; however, the exact miRNA species differentially expressed in muscle tissue of ALS patients remain unknown. Following small RNA-Seq, we compared the expression of small RNAs in muscle tissue of ALS patients and healthy age-matched controls. The identified snoRNAs, mtRNAs and other small RNAs provide possible molecular links between insulin signaling and ALS. Furthermore, the identified miRNAs are predicted to target proteins that are involved in both normal processes and various muscle disorders and indicate muscle tissue is undergoing active reinnervation/compensatory attempts thus providing targets for further research and therapy development in ALS.
Collapse
|
28
|
Alternative mRNA Splicing in the Pathogenesis of Obesity. Int J Mol Sci 2018; 19:ijms19020632. [PMID: 29473878 PMCID: PMC5855854 DOI: 10.3390/ijms19020632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Alternative mRNA splicing is an important mechanism in expansion of proteome diversity by production of multiple protein isoforms. However, emerging evidence indicates that only a limited number of annotated protein isoforms by alternative splicing are detected, and the coding sequence of alternative splice variants usually is only slightly different from that of the canonical sequence. Nevertheless, mis-splicing is associated with a large array of human diseases. Previous reviews mainly focused on hereditary and somatic mutations in cis-acting RNA sequence elements and trans-acting splicing factors. The importance of environmental perturbations contributed to mis-splicing is not assessed. As significant changes in exon skipping and splicing factors expression levels are observed with diet-induced obesity, this review focuses on several well-known alternatively spliced metabolic factors and discusses recent advances in the regulation of the expressions of splice variants under the pathophysiological conditions of obesity. The potential of targeting the alternative mRNA mis-splicing for obesity-associated diseases therapies will also be discussed.
Collapse
|
29
|
Burnett LC, Hubner G, LeDuc CA, Morabito MV, Carli JFM, Leibel RL. Loss of the imprinted, non-coding Snord116 gene cluster in the interval deleted in the Prader Willi syndrome results in murine neuronal and endocrine pancreatic developmental phenotypes. Hum Mol Genet 2017; 26:4606-4616. [PMID: 28973544 PMCID: PMC5815655 DOI: 10.1093/hmg/ddx342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/21/2017] [Accepted: 08/18/2017] [Indexed: 01/06/2023] Open
Abstract
Global neurodevelopmental delay is a prominent characteristic of individuals with Prader-Willi syndrome (PWS). The neuromolecular bases for these delays are unknown. We identified neuroanatomical changes in the brains of mice deficient for a gene in the minimal critical deletion region for PWS (Snord116p-/m+). In Snord116p-/m+ mice, reduced primary forebrain neuron cell body size is apparent in embryonic day 15.5 fetuses, and persists until postnatal day 30 in cerebellar Purkinje neurons. Snord116 is a snoRNA gene cluster of unknown function that can localize to the nucleolus. In cerebellar Purkinje neurons from postnatal day 30 Snord116p-/m+ mice the reduction in neuronal cell body size was associated with decreased neuronal nucleolar size. We also identified developmental changes in the endocrine pancreas of Snord116p-/m+ animals that persist into adulthood. Mice lacking Snord116 have smaller pancreatic islets; within the islet the percentage of δ-cells is increased, while the percentage of α-cells is reduced. The α-cell markers, Sst and Hhex, are upregulated in Snord116p-/m+ isolated islets while Ins1, Ins2, Pdx1, Nkx6-1, and Pax6 are downregulated. There is a 3-fold increase in the percentage of polyhormonal cells in the neonatal pancreata of Snord116p-/m+ mice, due primarily to an increase in cells co-positive with somatostatin. Snord116 may play a role in islet cell lineage specification. The Snord116 gene cluster is important for developmental processes in the brain as well as the endocrine pancreas.
Collapse
Affiliation(s)
- Lisa Cole Burnett
- Institute of Human Nutrition
- Division of Molecular Genetics, Department of Pediatrics, Columbia
University, New York, NY 10027, USA
- Naomi Berrie Diabetes Center, Russ Berrie Medical Science Pavillion, New
York, NY 10032, USA
| | | | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Columbia
University, New York, NY 10027, USA
- Naomi Berrie Diabetes Center, Russ Berrie Medical Science Pavillion, New
York, NY 10032, USA
- New York Obesity Research Center, Russ Berrie Medical Science Pavillion, New
York, NY 10032, USA
| | - Michael V Morabito
- Division of Molecular Genetics, Department of Pediatrics, Columbia
University, New York, NY 10027, USA
- Naomi Berrie Diabetes Center, Russ Berrie Medical Science Pavillion, New
York, NY 10032, USA
| | - Jayne F Martin Carli
- Division of Molecular Genetics, Department of Pediatrics, Columbia
University, New York, NY 10027, USA
- Naomi Berrie Diabetes Center, Russ Berrie Medical Science Pavillion, New
York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University,
New York, NY 10027, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Columbia
University, New York, NY 10027, USA
- Naomi Berrie Diabetes Center, Russ Berrie Medical Science Pavillion, New
York, NY 10032, USA
- New York Obesity Research Center, Russ Berrie Medical Science Pavillion, New
York, NY 10032, USA
| |
Collapse
|
30
|
Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci Rep 2017; 7:8089. [PMID: 28808237 PMCID: PMC5556011 DOI: 10.1038/s41598-017-06145-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that results from a mutation in the TSC1 or TSC2 genes leading to constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1). TSC is associated with autism, intellectual disability and severe epilepsy. Cortical tubers are believed to represent the neuropathological substrates of these disabling manifestations in TSC. In the presented study we used high-throughput RNA sequencing in combination with systems-based computational approaches to investigate the complexity of the TSC molecular network. Overall we detected 438 differentially expressed genes and 991 differentially expressed small non-coding RNAs in cortical tubers compared to autopsy control brain tissue. We observed increased expression of genes associated with inflammatory, innate and adaptive immune responses. In contrast, we observed a down-regulation of genes associated with neurogenesis and glutamate receptor signaling. MicroRNAs represented the largest class of over-expressed small non-coding RNA species in tubers. In particular, our analysis revealed that the miR-34 family (including miR-34a, miR-34b and miR-34c) was significantly over-expressed. Functional studies demonstrated the ability of miR-34b to modulate neurite outgrowth in mouse primary hippocampal neuronal cultures. This study provides new insights into the TSC transcriptomic network along with the identification of potential new treatment targets.
Collapse
|
31
|
Hillman PR, Christian SGB, Doan R, Cohen ND, Konganti K, Douglas K, Wang X, Samollow PB, Dindot SV. Genomic imprinting does not reduce the dosage of UBE3A in neurons. Epigenetics Chromatin 2017; 10:27. [PMID: 28515788 PMCID: PMC5433054 DOI: 10.1186/s13072-017-0134-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ubiquitin protein E3A ligase gene (UBE3A) gene is imprinted with maternal-specific expression in neurons and biallelically expressed in all other cell types. Both loss-of-function and gain-of-function mutations affecting the dosage of UBE3A are associated with several neurodevelopmental syndromes and psychological conditions, suggesting that UBE3A is dosage-sensitive in the brain. The observation that loss of imprinting increases the dosage of UBE3A in brain further suggests that inactivation of the paternal UBE3A allele evolved as a dosage-regulating mechanism. To test this hypothesis, we examined UBE3A transcript and protein levels among cells, tissues, and species with different imprinting states of UBE3A. RESULTS Overall, we found no correlation between the imprinting status and dosage of UBE3A. Importantly, we found that maternal Ube3a protein levels increase in step with decreasing paternal Ube3a protein levels during neurogenesis in mouse, fully compensating for loss of expression of the paternal Ube3a allele in neurons. CONCLUSIONS Based on our findings, we propose that imprinting of UBE3A does not function to reduce the dosage of UBE3A in neurons but rather to regulate some other, as yet unknown, aspect of gene expression or protein function.
Collapse
Affiliation(s)
- Paul R. Hillman
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77845 USA
| | - Sarah G. B. Christian
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
| | - Ryan Doan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Interdisciplinary Genetics Program, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77845 USA
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX USA
| | - Kranti Konganti
- Institute for Genome Science and Society, Texas A&M University, College Station, TX 77845 USA
| | - Kory Douglas
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Paul B. Samollow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Scott V. Dindot
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77845 USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843 USA
| |
Collapse
|
32
|
Deletion of SNURF/SNRPN U1B and U1B* upstream exons in a child with developmental delay and excessive weight. J Genet 2017; 95:621-4. [PMID: 27659333 DOI: 10.1007/s12041-016-0666-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Prader-Willi syndrome is a rare syndrome characterized by hypotonia, developmental delay and excessive appetite. This syndrome is caused by the loss of function of paternally-expressed genes located in an imprinting centre in 15q11-q13. Here, we report the case of a patient who was referred to us with Prader-Willi syndrome-like symptoms including obesity and developmental delay. Examination of this patient revealed that he was a carrier of a paternally inherited deletion that affected the U1B and U1B* upstream exons of the SNURF-SNRNP gene within the 15q11-q13 imprinted region. Mutations localized within this genomic region have not been previously reported in Prader-Willi syndrome patients. It is possible that disruption of upstream exons of SNURF-SNRNP could contribute to Prader-Willi phenotype by disrupting brain-specific alternative transcripts, although, case reports from further patients with a comparable phenotype are required.
Collapse
|
33
|
Cavaillé J. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28296064 DOI: 10.1002/wrna.1417] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
The nucleolus of mammalian cells contains hundreds of box C/D small nucleolar RNAs (SNORDs). Through their ability to base pair with ribosomal RNA precursors, most play important roles in the synthesis and/or activity of ribosomes, either by guiding sequence-specific 2'-O-methylations or by facilitating RNA folding and cleavages. A growing number of SNORD genes with elusive functions have been discovered recently. Intriguingly, the vast majority of them are located in two large, imprinted gene clusters at human chromosome region 15q11q13 (the SNURF-SNRPN domain) and at 14q32 (the DLK1-DIO3 domain) where they are expressed, respectively, only from the paternally and maternally inherited alleles. These placental mammal-specific SNORD genes have many features of the canonical SNORDs that guide 2'-O-methylations, yet they lack obvious complementarity with ribosomal RNAs and, surprisingly, they are processed from large, tandemly repeated genes expressed preferentially in the brain. This review summarizes our understanding of the biology of these peculiar SNORD genes, focusing particularly on SNORD115 and SNORD116 in the SNURF-SNRPN domain. It examines the growing evidence that altered levels of these SNORDs and/or their host-gene transcripts may be a primary cause of Prader-Willi syndrome (PWS; a rare disorder characterized by overeating and obesity) as well as abnormalities in signaling through the 5-HT2C serotonin receptor. Finally, the hypothesis that PWS may be a ribosomopathy (ribosomal disease) is also discussed. WIREs RNA 2017, 8:e1417. doi: 10.1002/wrna.1417 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jérôme Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse; UPS and CNRS, LMBE, Toulouse, France
| |
Collapse
|
34
|
Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader-Willi syndrome. Nat Med 2016; 23:213-222. [PMID: 28024084 DOI: 10.1038/nm.4257] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
Abstract
Prader-Willi syndrome (PWS) is an imprinting disorder caused by a deficiency of paternally expressed gene(s) in the 15q11-q13 chromosomal region. The regulation of imprinted gene expression in this region is coordinated by an imprinting center (PWS-IC). In individuals with PWS, genes responsible for PWS on the maternal chromosome are present, but repressed epigenetically, which provides an opportunity for the use of epigenetic therapy to restore expression from the maternal copies of PWS-associated genes. Through a high-content screen (HCS) of >9,000 small molecules, we discovered that UNC0638 and UNC0642-two selective inhibitors of euchromatic histone lysine N-methyltransferase-2 (EHMT2, also known as G9a)-activated the maternal (m) copy of candidate genes underlying PWS, including the SnoRNA cluster SNORD116, in cells from humans with PWS and also from a mouse model of PWS carrying a paternal (p) deletion from small nuclear ribonucleoprotein N (Snrpn (S)) to ubiquitin protein ligase E3A (Ube3a (U)) (mouse model referred to hereafter as m+/pΔS-U). Both UNC0642 and UNC0638 caused a selective reduction of the dimethylation of histone H3 lysine 9 (H3K9me2) at PWS-IC, without changing DNA methylation, when analyzed by bisulfite genomic sequencing. This indicates that histone modification is essential for the imprinting of candidate genes underlying PWS. UNC0642 displayed therapeutic effects in the PWS mouse model by improving the survival and the growth of m+/pΔS-U newborn pups. This study provides the first proof of principle for an epigenetics-based therapy for PWS.
Collapse
|
35
|
Rozhdestvensky TS, Robeck T, Galiveti CR, Raabe CA, Seeger B, Wolters A, Gubar LV, Brosius J, Skryabin BV. Maternal transcription of non-protein coding RNAs from the PWS-critical region rescues growth retardation in mice. Sci Rep 2016; 6:20398. [PMID: 26848093 PMCID: PMC4742849 DOI: 10.1038/srep20398] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 12/19/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5'HPRT-LoxP-Neo(R) cassette (5'LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScr(p-/m5'LoxP)), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScr(p-/m5'LoxP) mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScr(p-/m5'LoxP) mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases.
Collapse
Affiliation(s)
- Timofey S Rozhdestvensky
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.,Department of Medicine (TRAM), University Hospital of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Thomas Robeck
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.,Department of Medicine (TRAM), University Hospital of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Chenna R Galiveti
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Carsten A Raabe
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.,Institute of Evolutionary and Medical Genomics, Brandenburg Medical School (MHB), D-16816 Neuruppin, Germany
| | - Birte Seeger
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.,Department of Medicine (TRAM), University Hospital of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Anna Wolters
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Leonid V Gubar
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.,Department of Medicine (TRAM), University Hospital of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.,Institute of Evolutionary and Medical Genomics, Brandenburg Medical School (MHB), D-16816 Neuruppin, Germany
| | - Boris V Skryabin
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.,Department of Medicine (TRAM), University Hospital of Muenster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| |
Collapse
|
36
|
Xu L, Ziegelbauer J, Wang R, Wu WW, Shen RF, Juhl H, Zhang Y, Rosenberg A. Distinct Profiles for Mitochondrial t-RNAs and Small Nucleolar RNAs in Locally Invasive and Metastatic Colorectal Cancer. Clin Cancer Res 2015; 22:773-84. [PMID: 26384739 DOI: 10.1158/1078-0432.ccr-15-0737] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/02/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE To gain insight into factors involved in tumor progression and metastasis, we examined the role of noncoding RNAs in the biologic characteristics of colorectal carcinoma, in paired samples of tumor together with normal mucosa from the same colorectal carcinoma patient. The tumor and healthy tissue samples were collected and stored under stringent conditions, thereby minimizing warm ischemic time. EXPERIMENTAL DESIGN We focused particularly on distinctions among high-stage tumors and tumors with known metastases, performing RNA-Seq analysis that quantifies transcript abundance and identifies novel transcripts. RESULTS In comparing 35 colorectal carcinomas, including 9 metastatic tumors (metastases to lymph nodes and lymphatic vessels), with their matched healthy control mucosa, we found a distinct signature of mitochondrial transfer RNAs (MT-tRNA) and small nucleolar RNAs (snoRNA) for metastatic and high-stage colorectal carcinoma. We also found the following: (i) MT-TF (phenylalanine) and snord12B expression correlated with a substantial number of miRNAs and mRNAs in 14 colorectal carcinomas examined; (ii) an miRNA signature of oxidative stress, hypoxia, and a shift to glycolytic metabolism in 14 colorectal carcinomas, regardless of grade and stage; and (iii) heterogeneous MT-tRNA/snoRNA fingerprints for 35 pairs. CONCLUSIONS These findings could potentially assist in more accurate and predictive staging of colorectal carcinoma, including identification of those colorectal carcinomas likely to metastasize.
Collapse
Affiliation(s)
- Lai Xu
- OBP/DBRR-III, CDER, FDA, Silver Spring, Maryland
| | | | - Rong Wang
- OBP/DBRR-III, CDER, FDA, Silver Spring, Maryland
| | - Wells W Wu
- Facility for Biotechnology Resources, CBER, FDA, Silver Spring, Maryland
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, CBER, FDA, Silver Spring, Maryland
| | | | - Yaqin Zhang
- OBP/DBRR-III, CDER, FDA, Silver Spring, Maryland
| | | |
Collapse
|