1
|
Chen Z, Zhang Z, Yu Y, Guo Y, Liu J, Zhu Z. Carbocation charge as an interpretable descriptor for the catalytic activity of hydrolytic nanozymes. J Colloid Interface Sci 2025; 683:858-868. [PMID: 39752934 DOI: 10.1016/j.jcis.2024.12.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
A universal theory for predicting the catalytic activity of hydrolytic nanozymes has yet to be developed. Herein, by investigating the polarization and hydrolysis mechanisms of nanomaterials towards amide bonds, carbocation charge was identified as a key electronic descriptor for predicting catalytic activity in amide hydrolysis. Through machine learning correlation analysis and the Sure Independence Screening and Sparsifying Operator (SISSO) algorithm, this descriptor was interpreted to associate with the d-band center and Lewis acidity on the nanomaterial surface. On this basis, copper nanoparticles (Cu NPs) were discovered to exhibit significant hydrolytic activity. Further, peptidomic analysis and molecular dynamics simulations showed that Cu NPs demonstrated substrate selectivity. In the presence of water molecules, hydrophobic amino acid residues were driven towards the nanomaterial surface by hydrophobic groups of proteins, leading to the preferential hydrolysis of peptide bonds linked to these residues. This study provided a theoretic framework for predicting highly efficient hydrolytic nanozymes with broad potential applications.
Collapse
Affiliation(s)
- Zhen Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Ziqi Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Yu Guo
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Jing Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| |
Collapse
|
2
|
Swinnen S, de Azambuja F, Parac-Vogt TN. From Nanozymes to Multi-Purpose Nanomaterials: The Potential of Metal-Organic Frameworks for Proteomics Applications. Adv Healthc Mater 2025; 14:e2401547. [PMID: 39246191 DOI: 10.1002/adhm.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Metal-organic frameworks (MOFs) have the potential to revolutionize the biotechnological and medical landscapes due to their easily tunable crystalline porous structure. Herein, the study presents MOFs' potential impact on proteomics, unveiling the diverse roles MOFs can play to boost it. Although MOFs are excellent catalysts in other scientific disciplines, their role as catalysts in proteomics applications remains largely underexplored, despite protein cleavage being of crucial importance in proteomics protocols. Additionally, the study discusses evolving MOF materials that are tailored for proteomics, showcasing their structural diversity and functional advantages compared to other types of materials used for similar applications. MOFs can be developed to seamlessly integrate into proteomics workflows due to their tunable features, contributing to protein separation, peptide enrichment, and ionization for mass spectrometry. This review is meant as a guide to help bridge the gap between material scientists, engineers, and MOF chemists and on the other side researchers in biology or bioinformatics working in proteomics.
Collapse
Affiliation(s)
- Siene Swinnen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | | | | |
Collapse
|
3
|
Han X, Chen J, Cheng Z, Zhou S. Design of an anti-PD-L1-mediated MOF nanodrug delivery system using terpyridine-metal coordination for tumor theranostics. Chem Commun (Camb) 2025; 61:1407-1410. [PMID: 39711326 DOI: 10.1039/d4cc05933f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An anti-PD-L1 mediated nanodrug delivery system is developed by modifying the MOF surface and using Tpy-Gd3+-Tpy coordination chemistry, enabling the simultaneous delivery of chemotherapy and immunotherapy drugs. The platform enables regulated drug release and integrates multiple imaging modalities, promoting targeted delivery and facilitating tumor diagnosis through FL and MR imaging.
Collapse
Affiliation(s)
- Xu Han
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Jia Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhihao Cheng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
4
|
Liu X, Gao M, Qin Y, Xiong Z, Zheng H, Willner I, Cai X, Li R. Exploring Nanozymes for Organic Substrates: Building Nano-organelles. Angew Chem Int Ed Engl 2024; 63:e202408277. [PMID: 38979699 DOI: 10.1002/anie.202408277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Since the discovery of the first peroxidase nanozyme (Fe3O4), numerous nanomaterials have been reported to exhibit intrinsic enzyme-like activity toward inorganic oxygen species, such as H2O2, oxygen, and O2 -. However, the exploration of nanozymes targeting organic compounds holds transformative potential in the realm of industrial synthesis. This review provides a comprehensive overview of the diverse types of nanozymes that catalyze reactions involving organic substrates and discusses their catalytic mechanisms, structure-activity relationships, and methodological paradigms for discovering new nanozymes. Additionally, we propose a forward-looking perspective on designing nanozyme formulations to mimic subcellular organelles, such as chloroplasts, termed "nano-organelles". Finally, we analyze the challenges encountered in nanozyme synthesis, characterization, nano-organelle construction and applications while suggesting directions to overcome these obstacles and enhance nanozyme research in the future. Through this review, our goal is to inspire further research efforts and catalyze advancements in the field of nanozymes, fostering new insights and opportunities in chemical synthesis.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yunlong Qin
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
5
|
Fatrekar AP, Morajkar RV, Vernekar AA. Expanding limits of artificial enzymes: unprecedented catalysis by an oxidase nanozyme in activating a structural protein for covalent crosslinking and conferring remarkable proteolytic resistance. Chem Sci 2024:d4sc03767g. [PMID: 39176248 PMCID: PMC11337028 DOI: 10.1039/d4sc03767g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Nature has endowed us with some complex enzymes capable of utilizing proteins as their substrates to generate functional proteins through post-translational modification. However, nanozymes' interplay with proteins as substrates is scarce, with their chemistry predominantly established using only small molecule substrates, featuring a significant gap in this area. Due to the huge prospects of nanozymes in biotechnological and therapeutic interventions, studies establishing the unexplored roles of nanozymes in the biological environments and their interplay beyond small molecule substrates warrant immediate attention. In this study, we unveil the unprecedented role of a Mn-based oxidase nanozyme (MnN) in activating a structural protein, collagen, and covalently crosslinking its tyrosine residues with only a trace amount of tannic acid (TA) without compromising its triple-helical structural integrity. While therapeutic applications demand materials prepared from collagen, the current chemical and physical crosslinking of collagen often presents significant challenges such as toxicity, denaturation, or high costs. MnN lucidly accomplishes crosslinking interplay at its 101 facets using oxygen as a co-substrate under mild conditions. This process takes advantage of MnN being active at mild acidic pH where collagen preferentially exists as a soluble triple helix (monomeric form), exposing functionalities and enhancing the crosslinking degree. Importantly, this reaction also confers 100% resistance to collagenase attack on the collagen tendon-derived biological material. The catalyzed TA-tyrosine linkage in the telopeptide region of collagen probably impedes the initial recognition step of collagenase, providing robust protection against its degradative action. Our study not only expands the repertoire of nanozymes' substrates beyond the existing library of small molecules but also establishes a significant step toward designing a gold standard for collagen crosslinking. With biomedical applications demanding biomaterials derived from protein scaffolds with preserved structural integrity, our investigation bridges the gap between nanozymes' chemistry and crosslinking proteins, opening exciting prospects for biomaterial development.
Collapse
Affiliation(s)
- Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Chennai-600020 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Chennai-600020 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Chennai-600020 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
6
|
Cheng Z, He G, Liao R, Tan Y, Deng W. A sensitive immunosensing platform based on the high cathodic photoelectrochemical activity of Zr-MOF and dual-signal amplification of peroxidase-mimetic Fe-MOF. Bioelectrochemistry 2024; 157:108677. [PMID: 38430576 DOI: 10.1016/j.bioelechem.2024.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/04/2024]
Abstract
Cathodic photoelectrochemical (PEC) analysis has received special concerns because of its outstanding anti-interference capability toward reductive substances in samples, so it is highly desirable to develop high-performance photocathodic materials for PEC analysis. Herein, a Zr-based metal-organic framework (Zr-MOF), MOF-525, is explored as a photoactive material in aqueous solution for the first time, which shows a narrow band-gap of 1.82 eV, excellent visible-light absorption, and high cathodic PEC activity. A sandwiched-type PEC immunosensor for detecting prostate-specific antigen (PSA) is fabricated by using MIL-101-NH2(Fe) label and MOF-525 photoactive material. MIL-101-NH2(Fe) as a typical Fe-MOF can serve as a peroxidase mimic to catalyze the production of precipitates on the photoelectrode. Both the produced precipitates and the MIL-101-NH2(Fe) labels can quench the photocathodic current, enabling "signal-off" immunosensing of PSA. The detection limit is 3 fg mL-1, and the linear range is between 10 fg mL-1 and 100 ng mL-1 for detecting PSA. The present study not only develops a high-performance Zr-MOF photoactive material for cathodic PEC analysis but also constructs a sensitive PEC immunosensing platform based on the dual-signal amplification of peroxidase-mimetic Fe-MOF.
Collapse
Affiliation(s)
- Zhong Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guihua He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Rong Liao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
7
|
Gao Z, Guan J, Wang M, Liu S, Chen K, Liu Q, Chen X. A novel laccase-like Cu-MOF for colorimetric differentiation and detection of phenolic compounds. Talanta 2024; 272:125840. [PMID: 38430865 DOI: 10.1016/j.talanta.2024.125840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The development of convenient, fast, and cost-effective methods for differentiating and detecting common organic pollutant phenols has become increasingly important for environmental and food safety. In this study, a copper metal-organic framework (Cu-MOF) with flower-like morphology was synthesized using 2-methylimidazole (2-MI) as ligands. The Cu-MOF was designed to mimic the natural laccase active site and proved demonstrated excellent mimicry of enzyme-like activity. Leveraging the superior properties of the constructed Cu-MOF, a colorimetric method was developed for analyzing phenolic compounds. This method exhibited a wide linear range from 0.1 to 100 μM with a low limit of detection (LOD) of 0.068 μM. Besides, by employing principal component analysis (PCA), nine kinds of phenols was successfully distinguished and identified. Moreover, the combination of smartphones with RGB profiling enabled real-time, quantitative, and high-throughput detection of phenols. Therefore, this work presents a paradigm and offers guidance for the differentiation and detection of phenolic pollutants in the environment.
Collapse
Affiliation(s)
- Ziyi Gao
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| | - Meng Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| | - Shenghong Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
8
|
Declerck K, Savić ND, Moussawi MA, Seno C, Pokratath R, De Roo J, Parac-Vogt TN. Molecular Insights into Sequence-Specific Protein Hydrolysis by a Soluble Zirconium-Oxo Cluster Catalyst. J Am Chem Soc 2024. [PMID: 38621177 DOI: 10.1021/jacs.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The development of catalysts for controlled fragmentation of proteins is a critical undertaking in modern proteomics and biotechnology. {Zr6O8}-based metal-organic frameworks (MOFs) have emerged as promising candidates for catalysis of peptide bond hydrolysis due to their high reactivity, stability, and recyclability. However, emerging evidence suggests that protein hydrolysis mainly occurs on the MOF surface, thereby questioning the need for their highly porous 3D nature. In this work, we show that the discrete and water-soluble [Zr6O4(OH)4(CH3CO2)8(H2O)2Cl3]+ (Zr6) metal-oxo cluster (MOC), which is based on the same hexamer motif found in various {Zr6O8}-based MOFs, shows excellent activity toward selective hydrolysis of equine skeletal muscle myoglobin. Compared to related Zr-MOFs, Zr6 exhibits superior reactivity, with near-complete protein hydrolysis after 24 h of incubation at 60 °C, producing seven selective fragments with a molecular weight in the range of 3-15 kDa, which are of ideal size for middle-down proteomics. The high solubility and molecular nature of Zr6 allow detailed solution-based mechanistic/interaction studies, which revealed that cluster-induced protein unfolding is a key step that facilitates hydrolysis. A combination of multinuclear nuclear magnetic resonance spectroscopy and pair distribution function analysis provided insight into the speciation of Zr6 and the ligand exchange processes occurring on the surface of the cluster, which results in the dimerization of two Zr6 clusters via bridging oxygen atoms. Considering the relevance of discrete Zr-oxo clusters as building blocks of MOFs, the molecular-level understanding reported in this work contributes to the further development of novel catalysts based on Zr-MOFs.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | | | - Carlotta Seno
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
| | - Rohan Pokratath
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
| | | |
Collapse
|
9
|
Chen T, Lu Y, Xiong X, Qiu M, Peng Y, Xu Z. Hydrolytic nanozymes: Preparation, properties, and applications. Adv Colloid Interface Sci 2024; 323:103072. [PMID: 38159448 DOI: 10.1016/j.cis.2023.103072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Hydrolytic nanozymes, as promising alternatives to hydrolytic enzymes, can efficiently catalyze the hydrolysis reactions and overcome the operating window limitations of natural enzymes. Moreover, they exhibit several merits such as relatively low cost, easier recovery and reuse, improved operating stability, and adjustable catalytic properties. Consequently, they have found relevance in practical applications such as organic synthesis, chemical weapon degradation, and biosensing. In this review, we highlight recent works addressing the broad topic of the development of hydrolytic nanozymes. We review the preparation, properties, and applications of six types of hydrolytic nanozymes, including AuNP-based nanozymes, polymeric nanozymes, surfactant assemblies, peptide assemblies, metal and metal oxide nanoparticles, and MOFs. Last, we discuss the remaining challenges and future directions. This review will stimulate the development and application of hydrolytic nanozymes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yizhuo Lu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaorong Xiong
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
10
|
Guo G, Xu SH, Du YT, Jiang TM, Song JL, Yang ZQ, Gao YJ. Potassium cobalt hexacyanoferrate as a peroxidase mimic for electrochemical immunosensing of Lactobacillus rhamnosus GG. Talanta 2023; 264:124746. [PMID: 37285699 DOI: 10.1016/j.talanta.2023.124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
In this paper, the potassium cobalt hexacyanoferrate (II), K2CoFe(CN)6, with peroxidase-like activity was used for the fabrication of a novel label-free Lactobacillus rhamnosus GG (LGG) electrochemical immunosensor. The K2CoFe(CN)6 nanocubes were made by a simple hydrothermal method and followed by low-temperature calcination. In addition to structural characterization, the peroxidase-mimicking catalytic property of the material was confirmed by a chromogenic reaction. It is known that H2O2 can oxidize electroactive thionine molecules under the catalysis of horseradish peroxidase (HRP). In this nanozyme-based electrochemical immunoassay, due to the steric hindrance, the formation of immune-complex of LGG and LGG antibody on the modified GCE inhibits the catalytic activity of the peroxidase mimics of K2CoFe(CN)6 and thus reduced the current signal. Therefore, the developed electrochemical immunosensor achieved quantitative detection of LGG. Under optimal conditions, the linear range of the sensor was obtained from 101 to 106 CFU mL-1 with a minimum detection limit (LOD) of 12 CFU mL-1. Furthermore, the immunosensor was successfully applied in the quantitative detection of LGG in dairy product samples with recoveries ranging from 93.2% to 106.8%. This protocol presents a novel immunoassay method, which provides an alternative implementation pathway for the quantitative detection of microorganisms.
Collapse
Affiliation(s)
- Ge Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Su-Hui Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi-Tian Du
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Tie-Min Jiang
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin 541004, China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, Guilin Medical University, Guilin, Guangxi, 541004, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
11
|
Wang Q, Luo Z, Wu YL, Li Z. Recent Advances in Enzyme‐Based Biomaterials Toward Diabetic Wound Healing. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 Singapore 138634 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 Singapore 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way Singapore 138634 Singapore
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| |
Collapse
|
12
|
Zheng L, Wang F, Jiang C, Ye S, Tong J, Dramou P, He H. Recent progress in the construction and applications of metal-organic frameworks and covalent-organic frameworks-based nanozymes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Padilla-Godínez FJ, Ruiz-Ortega LI, Guerra-Crespo M. Nanomedicine in the Face of Parkinson's Disease: From Drug Delivery Systems to Nanozymes. Cells 2022; 11:3445. [PMID: 36359841 PMCID: PMC9657131 DOI: 10.3390/cells11213445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 01/02/2024] Open
Abstract
The complexity and overall burden of Parkinson's disease (PD) require new pharmacological approaches to counteract the symptomatology while reducing the progressive neurodegeneration of affected dopaminergic neurons. Since the pathophysiological signature of PD is characterized by the loss of physiological levels of dopamine (DA) and the misfolding and aggregation of the alpha-synuclein (α-syn) protein, new proposals seek to restore the lost DA and inhibit the progressive damage derived from pathological α-syn and its impact in terms of oxidative stress. In this line, nanomedicine (the medical application of nanotechnology) has achieved significant advances in the development of nanocarriers capable of transporting and delivering basal state DA in a controlled manner in the tissues of interest, as well as highly selective catalytic nanostructures with enzyme-like properties for the elimination of reactive oxygen species (responsible for oxidative stress) and the proteolysis of misfolded proteins. Although some of these proposals remain in their early stages, the deepening of our knowledge concerning the pathological processes of PD and the advances in nanomedicine could endow for the development of potential treatments for this still incurable condition. Therefore, in this paper, we offer: (i) a brief summary of the most recent findings concerning the physiology of motor regulation and (ii) the molecular neuropathological processes associated with PD, together with (iii) a recapitulation of the current progress in controlled DA release by nanocarriers and (iv) the design of nanozymes, catalytic nanostructures with oxidoreductase-, chaperon, and protease-like properties. Finally, we conclude by describing the prospects and knowledge gaps to overcome and consider as research into nanotherapies for PD continues, especially when clinical translations take place.
Collapse
Affiliation(s)
- Francisco J. Padilla-Godínez
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
| | - Leonardo I. Ruiz-Ortega
- Institute for Physical Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Mexico
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Magdalena Guerra-Crespo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
| |
Collapse
|
14
|
Lopez-Cantu DO, González-González RB, Sharma A, Bilal M, Parra-Saldívar R, Iqbal HM. Bioactive material-based nanozymes with multifunctional attributes for biomedicine: Expanding antioxidant therapeutics for neuroprotection, cancer, and anti-inflammatory pathologies. Coord Chem Rev 2022; 469:214685. [DOI: 10.1016/j.ccr.2022.214685] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Cu-PyC MOF with oxidoreductase-like catalytic activity boosting colorimetric detection of Cr(VI) on paper. Anal Chim Acta 2022; 1227:340335. [DOI: 10.1016/j.aca.2022.340335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
|
16
|
Liu H, Xu Y, Geng H, Chen Y, Dai X. Contributions of MOF-808 to methane production from anaerobic digestion of waste activated sludge. WATER RESEARCH 2022; 220:118653. [PMID: 35635911 DOI: 10.1016/j.watres.2022.118653] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The bioconversion of waste activated sludge (WAS) into methane is usually limited by the poor hydrolysis of sludge and/or poor syntrophic methanogenesis during anaerobic digestion (AD). In this study, the underlying mechanism of MOF-808 enhancing hydrolysis and syntrophic methanogenesis during AD process of WAS was investigated. Experimentally, with the effects of MOF-808 (150 mg MOF-808/g Volatile Solid (VS)), the methane production and the proportion of methane in biogas increased by approximately 26.7% and 15.6%, respectively, and the lag phase of methanogenesis decreased by 50.8%, which indicate that MOF-808 enhanced the generation efficiency of methane. The changes in activities of main hydrolytic enzymes with and without MOF-808 (150 mg MOF-808/g VS) during AD process revealed that MOF-808 improved the enzymatic hydrolysis of sludge, and the abiotic hydrolysis of sludge extracellular organic substances by MOF-808 shows that the maximum proportion and the initial increasing rate of low-molecular weight fractions increased by 60% and 583.7%, respectively, indicating that MOF-808 can greatly enhance the hydrolysis degree and rate of sludge via abiotic effect. These demonstrate that MOF-808 enhanced both biological and abiotic hydrolysis of sludge during AD. In addition, changes in the concentrations of acetate kinase and volatile fatty acids (VFAs) with and without MOF-808 (150 mg MOF-808/g VS) during AD process showed that MOF-808 accelerated the bioconversion of VFAs to methane, suggesting MOF-808 has a positive effect on syntrophic metabolism for methanogenesis. Moreover, further analyses of the microbial community structure of sludge samples with and without MOF-808 (150 mg MOF-808/g VS) showed that MOF-808 enriched hydrogen-producing bacteria and mixotrophic methanogens (i.e. Methanosarcina), and changed the methanogenic pathway via accelerating proton transfer between syntrophic anaerobes, especially improving the reduction of CO2 to methane, and resulting in highly efficient syntrophic methanogenesis. These findings, however, may provide an important reference for enhancing AD efficiency of WAS based on MOF-like materials.
Collapse
Affiliation(s)
- Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongdong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
17
|
Cun JE, Fan X, Pan Q, Gao W, Luo K, He B, Pu Y. Copper-based metal-organic frameworks for biomedical applications. Adv Colloid Interface Sci 2022; 305:102686. [PMID: 35523098 DOI: 10.1016/j.cis.2022.102686] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of important porous, crystalline materials composed of metal ions (clusters) and organic ligands. Owing to the unique redox chemistry, photochemical and electrical property, and catalytic activity of Cu2+/+, copper-based MOFs (Cu-MOFs) have been recently and extensively explored in various biomedical fields. In this review, we first make a brief introduction to the synthesis of Cu-MOFs and their composites, and highlight the recent synthetic strategies of two most studied representatives, three-dimensional HKUST-1 and two-dimensional Cu-TCPP. The recent advances of Cu-MOFs in the applications of cancer treatment, bacterial inhibition, biosensing, biocatalysis, and wound healing are summarized and discussed. Furthermore, we propose a prospect of the future development of Cu-MOFs in biomedical fields and beyond.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
18
|
Wang C, Xia N, Zhu S, Chen L, Chen L, Wang Z. Green synthesis of Hesperitin dihydrochalcone glucoside by immobilized α-l-rhamnosidase biocatalysis based on Fe3O4/MIL-101(Cr) metal-organic framework. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Niu X, Liu B, Hu P, Zhu H, Wang M. Nanozymes with Multiple Activities: Prospects in Analytical Sensing. BIOSENSORS 2022; 12:bios12040251. [PMID: 35448311 PMCID: PMC9030423 DOI: 10.3390/bios12040251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 05/17/2023]
Abstract
Given the superiorities in catalytic stability, production cost and performance tunability over natural bio-enzymes, artificial nanomaterials featuring enzyme-like characteristics (nanozymes) have drawn extensive attention from the academic community in the past decade. With these merits, they are intensively tested for sensing, biomedicine and environmental engineering. Especially in the analytical sensing field, enzyme mimics have found wide use for biochemical detection, environmental monitoring and food analysis. More fascinatingly, rational design enables one fabrication of enzyme-like materials with versatile activities, which show great promise for further advancement of the nanozyme-involved biochemical sensing field. To understand the progress in such an exciting field, here we offer a review of nanozymes with multiple catalytic activities and their analytical application prospects. The main types of enzyme-mimetic activities are first introduced, followed by a summary of current strategies that can be employed to design multi-activity nanozymes. In particular, typical materials with at least two enzyme-like activities are reviewed. Finally, opportunities for multi-activity nanozymes applied in the sensing field are discussed, and potential challenges are also presented, to better guide the development of analytical methods and sensors using nanozymes with different catalytic features.
Collapse
Affiliation(s)
- Xiangheng Niu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence:
| | - Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Panwang Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| |
Collapse
|
20
|
Chen D, Jiang L, Lei T, Xiao G, Wang Y, Zuo X, Li B, Li L, Wang J. Magnetic CuFe 2O 4 with intrinsic protease-like activity inhibited cancer cell proliferation and migration through mediating intracellular proteins. BIOMATERIALS AND BIOSYSTEMS 2022; 5:100038. [PMID: 36825110 PMCID: PMC9934488 DOI: 10.1016/j.bbiosy.2021.100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Protease has been widely used in biological and industrial fields. Developing efficient artificial enzyme mimics remains a major technical challenge due to the high stability of peptide bonds. Nanoenzymes with high stability, high activity and low cost, provided new opportunities to break through natural enzyme inherent limitations. However, compared with many nanomaterials with inherent peroxidase activity, the intrinsic mimic proteases properties of magnetic nanomaterials were seldom explored, let alone the interaction between magnetic nanomaterials and cellular proteins. Herein, we reported for the first time that magnetic CuFe2O4 possesses inherent protease activity to hydrolyze bovine serum albumin (BSA) and casein under physiological conditions, and the CuFe2O4 is more resistant to high temperature than the natural trypsin. It also exhibited significantly higher catalytic efficiency than other copper nanomaterials and can be recycled for many times. Protease participated in pathophysiological processes and all stages of tumor progression. Interesting, CuFe2O4 exhibited anti-proliferative effect on A549, SKOV3, HT-29, BABL-3T3 and HUVEC cells, as well as it was particularly sensitive against SKOV3 cells. CuFe2O4 was about 30 times more effective than conventional chemotherapy drugs oxaliplatin and artesunate against SKOV3 cells. In addition, CuFe2O4 also mediated the expression of intracellular proteins, such as MMP-2, MMP-9, F-actin, and NF-kB, which may be associated with global protein hydrolysis by CuFe2O4, leading to inhibition of cell migration. The merits of the high magnetic properties, good protease-mimic and antitumor activities make CuFe2O4 nanoparticles very prospective candidates for many applications such as proteomics and biotechnology.
Collapse
Affiliation(s)
- Daomei Chen
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
| | - Liang Jiang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Tao Lei
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Guo Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Yuanfeng Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Xiaoqiong Zuo
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Bin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- Corresponding authors.
| | - Lingli Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Jiaqiang Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
- Corresponding authors.
| |
Collapse
|
21
|
Dang TV, Heo NS, Cho HJ, Lee SM, Song MY, Kim HJ, Kim MI. Colorimetric determination of phenolic compounds using peroxidase mimics based on biomolecule-free hybrid nanoflowers consisting of graphitic carbon nitride and copper. Mikrochim Acta 2021; 188:293. [PMID: 34363539 DOI: 10.1007/s00604-021-04937-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/09/2021] [Indexed: 11/26/2022]
Abstract
Hybrid nanoflowers consisting of graphitic carbon nitride (GCN) and copper were successfully constructed without the involvement of any biomolecule, by simply mixing them at room temperature to induce proper self-assembly to achieve a flower-like morphology. The resulting biomolecule-free GCN-copper hybrid nanoflowers (GCN-Cu NFs) exhibited an apparent peroxidase-mimicking activity, possibly owing to the synergistic effect from the coordination of GCN and copper, as well as their large surface area, which increased the number of catalytic reaction sites. The peroxidase-mimicking GCN-Cu NFs were then employed in the colorimetric determination of selected phenolic compounds hydroquinone (HQ), methylhydroquinone (MHQ), and catechol (CC). For samples without phenolic compounds, GCN-Cu NFs catalyzed the oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, producing an intense blue color signal. Conversely, in the presence of phenolic compounds, the oxidation of TMB was inhibited, resulting in a significant reduction of the color signal. Using this strategy, HQ, MHQ, and CC were selectively and sensitively determined in a linear range up to 100 μM with detection limits down to 0.82, 0.27, and 0.36 μM, respectively. The practical utility of this assay system was also validated by using it to detect phenolic compounds spiked in tap water, yielding a good recovery of 97.1-108.9% and coefficient of variation below 3.0%, demonstrating the excellent reliability and reproducibility of this strategy. Colorimetric determination of phenolic compounds using peroxidase mimics based on biomolecule-free hybrid nanoflowers consisting of graphitic carbon nitride and copper.
Collapse
Affiliation(s)
- Thinh Viet Dang
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Nam Su Heo
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Hye-Jin Cho
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-600, Republic of Korea
| | - Sang Moon Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Min Young Song
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-600, Republic of Korea
| | - Hae Jin Kim
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea.
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea.
| |
Collapse
|
22
|
Baruah JB. Naphthalenedicarboxylate based metal organic frameworks: Multifaceted material. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Wang L, Zhu B, Deng Y, Li T, Tian Q, Yuan Z, Ma L, Cheng C, Guo Q, Qiu L. Biocatalytic and Antioxidant Nanostructures for ROS Scavenging and Biotherapeutics. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202101804] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Liyun Wang
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Bihui Zhu
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Yuting Deng
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Tiantian Li
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Qinyu Tian
- Institute of Orthopedics The First Medical Center Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Zhiguo Yuan
- Institute of Orthopedics The First Medical Center Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Lang Ma
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| | - Chong Cheng
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610064 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| | - Quanyi Guo
- Institute of Orthopedics The First Medical Center Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Li Qiu
- Department of Ultrasound National Clinical Research Center for Geriatrics West China Hospital College of Polymer Science and Engineering Sichuan University Chengdu 610041 China
| |
Collapse
|
24
|
Azambuja FD, Moons J, Parac-Vogt TN. The Dawn of Metal-Oxo Clusters as Artificial Proteases: From Discovery to the Present and Beyond. Acc Chem Res 2021; 54:1673-1684. [PMID: 33600141 DOI: 10.1021/acs.accounts.0c00666] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The selective cleavage of peptide bonds in proteins is of paramount importance in many areas of the biological and medical sciences, playing a key role in protein structure/function/folding analysis, protein engineering, and targeted proteolytic drug design. Current applications that depend on selective protein hydrolysis largely rely on costly proteases such as trypsin, which are sensitive to the pH, ionic strength, and temperature conditions. Moreover, >95% of peptides deposited in databases are generated from trypsin digests, restricting the information within the analyzed proteomes. On the other hand, harsh and toxic chemical reagents such as BrCN are very active but cause permanent modifications of certain amino acid residues. Consequently, transition-metal complexes have emerged as smooth and selective artificial proteases owing to their ability to provide larger fragments and complementary structural information. In the past decade, our group has discovered the unique protease activity of diverse metal-oxo clusters (MOC) and pioneered a distinctive approach to the development of selective artificial proteases. In contrast to classical coordination complexes which often depend on amino acid side chains to control the regioselectivity, the selectivity profile of MOCs is determined by a complex combination of structural factors, such as the protein surface charge, metal coordination to specific side chains, and hydrogen bonding between the protein surface and the MOC scaffold.In this Account, we present a critical overview of our detailed kinetic, spectroscopic, and crystallographic studies in MOC-assisted peptide bond hydrolysis, from its origins to the current rational and detailed mechanistic understanding. To this end, reactivity trends related to the structure and properties of MOCs based on the hydrolysis of small model peptides and key structural aspects governing the selectivity of protein hydrolysis are presented. Finally, our endeavors in seeking the next generation of heterogeneous MOC-based proteases are briefly discussed by embedding MOCs in metal-organic frameworks or using them as discrete nanoclusters in the development of artificial protease-like materials (i.e., nanozymes). The deep and comprehensive understanding sought experimentally and theoretically over the years in aqueous systems with intrinsic polar and charged substrates provides a unique view of the reactivity between inorganic moieties and biomolecules, thereby broadly impacting several different fields (e.g., catalysis in biochemistry, inorganic chemistry, and organic chemistry).
Collapse
Affiliation(s)
| | - Jens Moons
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | |
Collapse
|
25
|
Chen D, Li B, Lei T, Na D, Nie M, Yang Y, Congjia, Xie, He Z, Wang J. Selective mediation of ovarian cancer SKOV3 cells death by pristine carbon quantum dots/Cu 2O composite through targeting matrix metalloproteinases, angiogenic cytokines and cytoskeleton. J Nanobiotechnology 2021; 19:68. [PMID: 33663548 PMCID: PMC7934478 DOI: 10.1186/s12951-021-00813-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/22/2021] [Indexed: 01/07/2023] Open
Abstract
It was shown that some nanomaterials may have anticancer properties, but lack of selectivity is one of challenges, let alone selective suppression of cancer growth by regulating the cellular microenvironment. Herein, we demonstrated for the first time that carbon quantum dots/Cu2O composite (CQDs/Cu2O) selectively inhibited ovarian cancer SKOV3 cells by targeting cellular microenvironment, such as matrix metalloproteinases, angiogenic cytokines and cytoskeleton. The result was showed CQDs/Cu2O possessed anticancer properties against SKOV3 cells with IC50 = 0.85 μg mL-1, which was approximately threefold lower than other tested cancer cells and approximately 12-fold lower than normal cells. Compared with popular anticancer drugs, the IC50 of CQDs/Cu2O was approximately 114-fold and 75-fold lower than the IC50 of commercial artesunate (ART) and oxaliplatin (OXA). Furthermore, CQDs/Cu2O possessed the ability to decrease the expression of MMP-2/9 and induced alterations in the cytoskeleton of SKOV3 cells by disruption of F-actin. It also exhibited stronger antiangiogenic effects than commercial antiangiogenic inhibitor (SU5416) through down-regulating the expression of VEGFR2. In addition, CQDs/Cu2O has a vital function on transcriptional regulation of multiple genes in SKOV3 cells, where 495 genes were up-regulated and 756 genes were down-regulated. It is worth noting that CQDs/Cu2O also regulated angiogenesis-related genes in SKOV3 cells, such as Maspin and TSP1 gene, to suppress angiogenesis. Therefore, CQDs/Cu2O selectively mediated of ovarian cancer SKOV3 cells death mainly through decreasing the expression of MMP-2, MMP-9, F-actin, and VEGFR2, meanwhile CQDs/Cu2O caused apoptosis of SKOV3 via S phase cell cycle arrest. These findings reveal a new application for the use of CQDs/Cu2O composite as potential therapeutic interventions in ovarian cancer SKOV3 cells.
Collapse
Affiliation(s)
- Daomei Chen
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Bin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Tao Lei
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Di Na
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Minfang Nie
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yepeng Yang
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | | | - Xie
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zijuan He
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jiaqiang Wang
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China.
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China.
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
26
|
Zhong H, Li Y, Huang Y, Zhao R. Metal-organic frameworks as advanced materials for sample preparation of bioactive peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:862-873. [PMID: 33543184 DOI: 10.1039/d0ay02193h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of novel affinity materials and separation techniques is crucial for the progress of modern proteomics and peptidomics. Detection of peptides and proteins from complex matrices still remains a challenging task due to the highly complicated biological composition, low abundance of target molecules, and large dynamic range of proteins. As an emerging area of analytical science, metal-organic framework (MOF)-based separation of proteins and peptides is attracting growing interest. This minireview summarizes the recent advances in MOF-based affinity materials for the sample preparation of proteins and peptides. Some newly emerging MOF nanoreactors for the degradation of peptides and proteins are introduced. An update of MOF-based affinity materials for the isolation of glycopeptides, phosphopeptides and low-abundance endogenous peptides in the last two years is focused on. The separation mechanism is discussed along with the chemical structures of MOFs. Finally, the remaining challenges and future development of MOFs in analyzing peptides and proteins in complicated biological samples are discussed.
Collapse
Affiliation(s)
- Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
27
|
Xue X, Wang J, Zhu Q, Xue Y, Liu H. A two-year water-stable 2D MOF with aqueous NIR photothermal conversion ability. Dalton Trans 2021; 50:1374-1383. [PMID: 33432939 DOI: 10.1039/d0dt03952g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural lability in humid air or water severely limits the practical use of MOFs. Developing new MOFs with exceptional water stability is interesting for both industrial applications and academic research. Herein we report a new method to improve the water stability of MOFs by using three-dimensional rigid shielding ligands. A very highly stable two-dimensional MOF (CuCP-MOF) is synthesized in this work, in which [2,2]paracyclophane dicarboxylate ligands are coordinated with Cu(ii) ions to form a paddle wheel structure. CuCP-MOF is a triclinic crystal with unit cell parameters a = 10.065 Å, b = 10.897 Å, c = 10.940 Å, α = 90.676°, β = 91.729°, and γ = 92.725° determined by single crystal X-ray diffraction and DFT simulation. It can easily form MOF nanosheets due to the large interlayer distance and weak interlayer interactions. It shows good aqueous stability, and remains intact after storage in water for two years, as evidenced by FTIR and XRD analyses. CuCP-MOF shows a strong absorption in the NIR range due to the d-d transition of Cu(ii). The aqueous dispersions of CuCP-MOF exhibit high NIR photothermal conversion efficiency, about 17.5% for a laser with an energy density of 5 W cm-2 (808 nm) and 22.0% for a laser of 2 W cm-2 on average.
Collapse
Affiliation(s)
- Xiang Xue
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jinghang Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Qinyi Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yu Xue
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hewen Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
28
|
Rezki M, Septiani NLW, Iqbal M, Harimurti S, Sambegoro P, Adhika DR, Yuliarto B. Amine-functionalized Cu-MOF nanospheres towards label-free hepatitis B surface antigen electrochemical immunosensors. J Mater Chem B 2021; 9:5711-5721. [PMID: 34223862 DOI: 10.1039/d1tb00222h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metal-organic framework (MOF) nanomaterials offer a wide range of promising applications due to their unique properties, including open micro- and mesopores and richness of functionalization. Herein, a facile synthesis via a solvothermal method was successfully employed to prepare amine-functionalized Cu-MOF nanospheres. Moreover, the growth and the morphology of the nanospheres were optimized by the addition of PVP and TEA. By functionalization with an amine group, the immobilization of a bioreceptor towards the detection of hepatitis B infection biomarker, i.e., hepatitis B surface antigen (HBsAg), could be realized. The immobilization of the bioreceptor/antibody to Cu-MOF nanospheres was achieved through a covalent interaction between the carboxyl group of the antibodies and the amino-functional ligand in Cu-MOF via EDC/NHS coupling. The amine-functionalized Cu-MOF nanospheres act not only as a nanocarrier for antibody immobilization, but also as an electroactive material to generate the electrochemical signal. The electrochemical sensing performance was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The results showed that the current response proportionally decreased with the increase of HBsAg concentration. More importantly, the sensing performance of the amine-functionalized Cu-MOF nanospheres towards HBsAg detection was found to be consistent in real human serum media. This strategy successfully resulted in wide linear range detection of HBsAg from 1 ng mL-1 to 500 ng mL-1 with a limit of detection (LOD) of 730 pg mL-1. Thus, our approach provides a facile and low-cost synthesis process of an electrochemical immunosensor and paves the way to potentially utilize MOF-based nanomaterials for clinical use.
Collapse
Affiliation(s)
- Muhammad Rezki
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Muhammad Iqbal
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Suksmandhira Harimurti
- Lab-On-a-Chip Research Group, Department of Biomedical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Poetro Sambegoro
- Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Damar Rastri Adhika
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia. and Research Center of Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Brian Yuliarto
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia. and Research Center of Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| |
Collapse
|
29
|
Mensinger ZL, Cook BL, Wilson EL. Adsorption of Amyloid Beta Peptide by Metal-Organic Frameworks. ACS OMEGA 2020; 5:32969-32974. [PMID: 33403258 PMCID: PMC7774084 DOI: 10.1021/acsomega.0c04019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 06/08/2023]
Abstract
Metal-organic frameworks (MOFs) are capable of adsorbing a wide range of molecules. In addition to the more commonly investigated small molecules, researchers have demonstrated that MOFs adsorb much larger molecules, such as proteins and peptides. We have investigated whether MOFs are capable of adsorbing amyloid beta peptide. Amyloid beta plays a pivotal role in the progression of Alzheimer's disease because individual copies of the peptides can aggregate, forming neurotoxic oligomers and the amyloid plaques found in brains of Alzheimer's patients. After synthesizing a number of commonly studied MOFs, their adsorption capabilities were tested. We found that the MOFs tested readily adsorbed small amounts of amyloid beta (as determined by gel electrophoresis). It was determined that in most cases, adsorption occurs rapidly, with complete adsorption within minutes of incubation. Overall adsorption capacity was found to vary between different MOFs as well. Once adsorbed, amyloid beta peptide can subsequently be eluted from some MOFs by treatment with acetonitrile/water solutions, though retention strength varied between different MOFs. In some cases, MOFs that showed complete adsorption also saw high levels of peptide elution, but others showed little to no elution of the peptide. Together these data can help us begin to understand the interactions between amyloid beta and MOFs.
Collapse
Affiliation(s)
- Zachary L. Mensinger
- Department
of Natural Sciences, College of Sciences, Metropolitan State University, St. Paul, Minnesota 55106, United States
| | - Brenna L. Cook
- Division
of Science and Math, University of Minnesota-Morris, Morris, Minnesota 56267, United States
| | - Elsie L. Wilson
- Division
of Science and Math, University of Minnesota-Morris, Morris, Minnesota 56267, United States
| |
Collapse
|
30
|
Huang Y, Jiao Y, Chen T, Gong Y, Wang S, Liu Y, Sholl DS, Walton KS. Tuning the Wettability of Metal-Organic Frameworks via Defect Engineering for Efficient Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34413-34422. [PMID: 32551472 DOI: 10.1021/acsami.0c08803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zirconium-based metal-organic frameworks (MOFs) have attracted interest due to their chemical and thermal stabilities and structural tunability. In this work, we demonstrate the tuning of the wettability of a UiO-66 structure via defect-engineering for efficient oil/water separation. UiO-66 crystals with controlled levels of missing-linker defects were synthesized using a modulation approach. As a result, the hydrophilicity of the defect-engineered UiO-66 (d-UiO-66) can be varied. In addition, a thin layer of hydrophilic d-UiO-66 was successfully fabricated on a series of stainless steel meshes (d-UiO-66@mesh), which exhibited excellent superhydrophilic and underwater superoleophobic properties and displayed interesting separation performance for various oil/water mixtures.
Collapse
Affiliation(s)
- Yi Huang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
- School of Engineering, Institute for Materials & Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Yang Jiao
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Ting Chen
- School of Engineering, Institute for Materials & Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Yutao Gong
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Songcheng Wang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Yang Liu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Krista S Walton
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
31
|
Chen D, Li B, Jiang L, Li Y, Yang Y, Luo Z, Wang J. Pristine Cu-MOF Induces Mitotic Catastrophe and Alterations of Gene Expression and Cytoskeleton in Ovarian Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:4081-4094. [PMID: 35025483 DOI: 10.1021/acsabm.0c00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metals-organic frameworks (MOFs) have been widely explored in biomedicine, mostly in drug delivery, biosensing, and bioimaging due to their large surface area, tunable porosity, readily chemical functionalization, and good biocompatibility. However, the underlining cellular mechanisms controlling the process for MOF cytotoxicity remains almost completely unknown. Here, we demonstrate that pristine Cu-MOF without any loaded drug selectively inhibited ovarian cancer mainly through promoting tubulin polymerization and destroying the cell actin cytoskeleton (F-actin) to trigger the mitotic catastrophe, accompanying by conventional programmed cell death. To our knowledge, this is the first report claiming that mitotic catastrophe may be an explaining mechanism of MOF cytotoxicity. Cu-MOF with an intrinsic protease-like activity also hydrolyzed cellular cytoskeleton proteins (F-actin). The RNA sequencing data indicated the differential expressional mRNA of cell proliferation and actin cytoskeleton (ACTA2, ACTN3, FSCN2, and SCIN) and mitotic spindles (PLK1 and TPX2) related genes. We found that Cu-MOF as a promising candidate in the disruption of cellular cytoskeleton and the change of the gene expression could be actin altering and antimitotic agents against cancer cells, allowing for fundamental biological and biophysical studies of MOFs.
Collapse
Affiliation(s)
- Daomei Chen
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P.R. China
| | - Bin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P.R. China
| | - Liang Jiang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yizhou Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yepeng Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Zhifang Luo
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Jiaqiang Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
32
|
Loosen A, de Azambuja F, Smolders S, Moons J, Simms C, De Vos D, Parac-Vogt TN. Interplay between structural parameters and reactivity of Zr 6-based MOFs as artificial proteases. Chem Sci 2020; 11:6662-6669. [PMID: 34094124 PMCID: PMC8159359 DOI: 10.1039/d0sc02136a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
Structural parameters influencing the reactivity of metal-organic frameworks (MOF) are challenging to establish. However, understanding their effect is crucial to further develop their catalytic potential. Here, we uncovered a correlation between reaction kinetics and the morphological structure of MOF-nanozymes using the hydrolysis of a dipeptide under physiological pH as model reaction. Comparison of the activation parameters in the presence of NU-1000 with those observed with MOF-808 revealed the reaction outcome is largely governed by the Zr6 cluster. Additionally, its structural environment completely changes the energy profile of the hydrolysis step, resulting in a higher energy barrier ΔG ‡ for NU-1000 due to a much larger ΔS ‡ term. The reactivity of NU-1000 towards a hen egg white lysozyme protein under physiological pH was also evaluated, and the results pointed to a selective cleavage at only 3 peptide bonds. This showcases the potential of Zr-MOFs to be developed into heterogeneous catalysts for non-enzymatic but selective transformation of biomolecules, which are crucial for many modern applications in biotechnology and proteomics.
Collapse
Affiliation(s)
- Alexandra Loosen
- Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven Belgium
| | | | - Simon Smolders
- Department Microbial and Molecular Systems, KU Leuven Celestijnenlaan 200F Leuven Belgium
| | - Jens Moons
- Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven Belgium
| | - Charlotte Simms
- Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven Belgium
| | - Dirk De Vos
- Department Microbial and Molecular Systems, KU Leuven Celestijnenlaan 200F Leuven Belgium
| | | |
Collapse
|
33
|
Wang P, Wang T, Hong J, Yan X, Liang M. Nanozymes: A New Disease Imaging Strategy. Front Bioeng Biotechnol 2020; 8:15. [PMID: 32117909 PMCID: PMC7015899 DOI: 10.3389/fbioe.2020.00015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
Nanozymes are nanomaterials with intrinsic enzyme-like properties. They can specifically catalyze substrates of natural enzymes under physiological condition with similar catalytic mechanism and kinetics. Compared to natural enzymes, nanozymes exhibit the unique advantages including high catalytic activity, low cost, high stability, easy mass production, and tunable activity. In addition, as a new type of artificial enzymes, nanozymes not only have the enzyme-like catalytic activity, but also exhibit the unique physicochemical properties of nanomaterials, such as photothermal properties, superparamagnetism, and fluorescence, etc. By combining the unique physicochemical properties and enzyme-like catalytic activities, nanozymes have been widely developed for in vitro detection and in vivo disease monitoring and treatment. Here we mainly summarized the applications of nanozymes for disease imaging and detection to explore their potential application in disease diagnosis and precision medicine.
Collapse
Affiliation(s)
- Peixia Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Experimental Center of Advanced Materials School of Materials Science & Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Juanji Hong
- Experimental Center of Advanced Materials School of Materials Science & Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Minmin Liang
- Experimental Center of Advanced Materials School of Materials Science & Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
34
|
Xu M, Meng SS, Liang H, Gu ZY. A metal–organic framework with tunable exposed facets as a high-affinity artificial receptor for enzyme inhibition. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00827c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper-based metal-organic framework HKUST-1 was utilized as artificial receptor to recognize positive-charged α-chymotrypsin with high affinity. The affinity between them could be tuned through comprehensive synthetic design of exposed facets.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
| | - Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
| | - Hong Liang
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
| |
Collapse
|
35
|
Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y. Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chem Commun (Camb) 2020; 56:11338-11353. [DOI: 10.1039/d0cc04890a] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal–organic frameworks with enzyme-like catalytic features (MOF nanozymes) exhibit great promise in detecting various analytes with amplified signal outputs.
Collapse
Affiliation(s)
- Xiangheng Niu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
- Institute of Green Chemistry and Chemical Technology
| | - Xin Li
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
- Institute of Green Chemistry and Chemical Technology
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Xiaofan Ruan
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Dan Du
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| |
Collapse
|
36
|
|
37
|
Bagheri N, Habibi B, Khataee A, Hassanzadeh J. Application of surface molecular imprinted magnetic graphene oxide and high performance mimetic behavior of bi-metal ZnCo MOF for determination of atropine in human serum. Talanta 2019; 201:286-294. [DOI: 10.1016/j.talanta.2019.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/12/2019] [Accepted: 04/07/2019] [Indexed: 12/12/2022]
|
38
|
Zhang X, Li G, Wu D, Li X, Hu N, Chen J, Chen G, Wu Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron 2019; 137:178-198. [DOI: 10.1016/j.bios.2019.04.061] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
39
|
Wang L, Zhao J, Zhang P, Yang S, Zhan W, Dai S. Mechanochemical Synthesis of Ruthenium Cluster@Ordered Mesoporous Carbon Catalysts by Synergetic Dual Templates. Chemistry 2019; 25:8494-8498. [DOI: 10.1002/chem.201901714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/28/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Li Wang
- Institute of Industrial CatalysisEast China University of, Science and Technology Shanghai 200237 P. R. China
| | - Jiahua Zhao
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Pengfei Zhang
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 P. R. China
- Department of ChemistryUniversity of Tennessee Knoxville 37996 USA
| | - Shize Yang
- Oak Ridge National Laboratory Oak Ridge 37831 TN USA
| | - Wangcheng Zhan
- Institute of Industrial CatalysisEast China University of, Science and Technology Shanghai 200237 P. R. China
| | - Sheng Dai
- Department of ChemistryUniversity of Tennessee Knoxville 37996 USA
- Oak Ridge National Laboratory Oak Ridge 37831 TN USA
| |
Collapse
|
40
|
Bagheri N, Dastborhan M, Khataee A, Hassanzadeh J, Kobya M. Synthesis of g-C 3N 4@CuMOFs nanocomposite with superior peroxidase mimetic activity for the fluorometric measurement of glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:28-36. [PMID: 30677736 DOI: 10.1016/j.saa.2019.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/06/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Herein, a novel metal-organic framework (MOF) based nanocomposite with efficient catalytic behavior is reported including flake-like copper (II) MOF (CuMOF) and graphitic C3N4 nanosheets (g-C3N4). The g-C3N4@MOF nanocomposite was simply prepared by solvothermal synthesis of CuMOF in the presence of g-C3N4. The characterization analyses using scanning electron microscopy (SEM), X-ray diffractometry (XRD) and some other techniques demonstrated a nano-porous flake-like structure for the synthesized CuMOF, which enveloped the g-C3N4 nanosheets. Furthermore, the investigation of catalytic behavior of synthesized nanomaterial was implemented on H2O2 based reactions. The fluorometric and colorimetric experimentations illustrated that the accompanying of g-C3N4 with CuMOF had a remarkable positive effect on the catalytic behavior of obtained g-C3N4@MOF. This effect was described based on the improved affinity of nanocomposite to adsorb H2O2 and also synergistic action of its components on the dissociation of H2O2 to hydroxyl radicals. Finally, the analytical application of high catalytic activity of new g-C3N4@MOF was designed for the rapid and simple measurement of glucose in blood. After the enzymatic oxidation of glucose, the fluorometric method was applied for the analysis of produced H2O2 using terephthalic acid as peroxidase substrate. The system led to the ultrasensitive glucose determination in the concentration range of 0.1-22 μM, with a detection limit (3S/m) of 59 nM.
Collapse
Affiliation(s)
- Nafiseh Bagheri
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Mahsa Dastborhan
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Health Promotion Research Center, Iran University of Medical Sciences, 1449614535 Tehran, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, North Cyprus Mersin 10, Turkey.
| | - Javad Hassanzadeh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Mehmet Kobya
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
41
|
|
42
|
Chen K, Wu CD. Designed fabrication of biomimetic metal–organic frameworks for catalytic applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.01.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
44
|
Liu X, Qi W, Wang Y, Su R, He Z. Exploration of Intrinsic Lipase-Like Activity of Zirconium-Based Metal-Organic Frameworks. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); 300072 Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; 300072 Tianjin China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; 300072 Tianjin China
| |
Collapse
|
45
|
Bagheri N, Khataee A, Hassanzadeh J, Habibi B. Visual detection of peroxide-based explosives using novel mimetic Ag nanoparticle/ZnMOF nanocomposite. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:233-242. [PMID: 30121353 DOI: 10.1016/j.jhazmat.2018.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
A simple and selective colorimetric method for the detection of perilous peroxide explosives was developed using the peroxidase mimetic activity of silver nanoparticles/flake-like zinc metal-organic framework nanocomposite (Ag@ZnMOF). The synthesis of Ag@ZnMOF contained the formation of silver nanoparticles (AgNPs) inside the fine pores of Zn metal-organic framework (ZnMOF). High reactive AgNPs as well as great surface area of MOFs provided a synergetic and high improved catalytic activity for the composite which was studied as a peroxidase mimic in hydrogen peroxide (H2O2)-based oxidations. The achieved system was used for detection of Triacetone triperoxide (TATP) as one of the most hazardous peroxide explosives. TATP was decomposed in an acidic condition to generate H2O2, which was then applied to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of the Ag@ZnMOF as a catalyst. This reaction led to the production of well-known blue colored charge transfer complex (oxTMB), which was recognized by the colorimetric technique. A linear relationship was obtained between the absorption intensity of the produced blue solution and the TATP concentration in the range of 0.4-15 mg L-1, with a detection limit of 0.1 mg L-1. A portable test kit was prepared using the same reagents for TATP measurement in real samples.
Collapse
Affiliation(s)
- Nafiseh Bagheri
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Institute of Environment, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Javad Hassanzadeh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran
| |
Collapse
|
46
|
Ly HGT, Fu G, Kondinski A, Bueken B, De Vos D, Parac-Vogt TN. Superactivity of MOF-808 toward Peptide Bond Hydrolysis. J Am Chem Soc 2018; 140:6325-6335. [PMID: 29684281 DOI: 10.1021/jacs.8b01902] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MOF-808, a Zr(IV)-based metal-organic framework, has been proven to be a very effective heterogeneous catalyst for the hydrolysis of the peptide bond in a wide range of peptides and in hen egg white lysozyme protein. The kinetic experiments with a series of Gly-X dipeptides with varying nature of amino acid side chain have shown that MOF-808 exhibits selectivity depending on the size and chemical nature of the X side chain. Dipeptides with smaller or hydrophilic residues were hydrolyzed faster than those with bulky and hydrophobic residues that lack electron rich functionalities which could engage in favorable intermolecular interactions with the btc linkers. Detailed kinetic studies performed by 1H NMR spectroscopy revealed that the rate of glycylglycine (Gly-Gly) hydrolysis at pD 7.4 and 60 °C was 2.69 × 10-4 s-1 ( t1/2 = 0.72 h), which is more than 4 orders of magnitude faster compared to the uncatalyzed reaction. Importantly, MOF-808 can be recycled several times without significantly compromising the catalytic activity. A detailed quantum-chemical study combined with experimental data allowed to unravel the role of the {Zr6O8} core of MOF-808 in accelerating Gly-Gly hydrolysis. A mechanism for the hydrolysis of Gly-Gly by MOF-808 is proposed in which Gly-Gly binds to two Zr(IV) centers of the {Zr6O8} core via the oxygen atom of the amide group and the N-terminus. The activity of MOF-808 was also demonstrated toward the hydrolysis of hen egg white lysozyme, a protein consisting of 129 amino acids. Selective fragmentation of the protein was observed with 55% yield after 25 h under physiological pH.
Collapse
Affiliation(s)
- Hong Giang T Ly
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Guangxia Fu
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Aleksandar Kondinski
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Bart Bueken
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Dirk De Vos
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| |
Collapse
|
47
|
Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine. Biosens Bioelectron 2018; 110:8-15. [PMID: 29574249 DOI: 10.1016/j.bios.2018.03.025] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 11/23/2022]
Abstract
Enzyme-mimicking catalytic nanoparticles, more commonly known as NanoZymes, have been at the forefront for the development of new sensing platforms for the detection of a range of molecules. Although solution-based NanoZymes have shown promise in glucose detection, the ability to immobilize NanoZymes on highly absorbent surfaces, particularly on free-standing substrates that can be feasibly exposed and removed from the reaction medium, can offer significant benefits for a range of biosensing and catalysis applications. This work, for the first time, shows the ability of Ag nanoparticles embedded within the 3D matrix of a cotton fabric to act as a free-standing peroxidase-mimic NanoZyme for the rapid detection of glucose in complex biological fluids such as urine. The use of cotton fabric as a template not only allows high number of catalytically active sites to participate in the enzyme-mimic catalytic reaction, the absorbent property of the cotton fibres also helps in rapid absorption of biological molecules such as glucose during the sensing event. This, in turn, brings the target molecule of interest in close proximity of the NanoZyme catalyst enabling accurate detection of glucose in urine. Additionally, the ability to extract the free-standing cotton fabric-supported NanoZyme following the reaction overcomes the issue of potential interference from colloidal nanoparticles during the assay. Based on these unique characteristics, nanostructured silver fabrics offer remarkable promise for the detection of glucose and other biomolecules in complex biological and environmental fluids.
Collapse
|
48
|
Gao F, Zhang L, Yu C, Yan X, Zhang S, Li X. Controlled Polymerization of Isoprene with Chromium-Based Metal-Organic Framework Catalysts: Switching from Cyclic to cis
-1,4-Selectivity Depending on Activator. Macromol Rapid Commun 2018; 39:e1800002. [DOI: 10.1002/marc.201800002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/01/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Fei Gao
- Key Laboratory of Cluster Science of Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Li Zhang
- Key Laboratory of Cluster Science of Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Chao Yu
- Key Laboratory of Cluster Science of Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Xinwen Yan
- Key Laboratory of Cluster Science of Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Xiaofang Li
- Key Laboratory of Cluster Science of Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| |
Collapse
|
49
|
Bagheri N, Khataee A, Habibi B, Hassanzadeh J. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 2018; 179:710-718. [DOI: 10.1016/j.talanta.2017.12.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
|
50
|
Liang C, Yu Y, Chen C, Lou Y, Wang L, Liu K, Chen XB, Li C, Shi Z. Rational design of CNTs with encapsulated Co nanospheres as superior acid- and base-resistant microwave absorbers. Dalton Trans 2018; 47:11554-11562. [DOI: 10.1039/c8dt02037j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co@CNT material with a specific coating structure displays good EM wave absorption, even after treatment with concentrated acid or base.
Collapse
Affiliation(s)
- Chen Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Ying Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Cailing Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering
- Ministry of Education
- Laboratory of Inorganic Synthesis and Applied Chemistry
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Kang Liu
- Key Laboratory of Eco-chemical Engineering
- Ministry of Education
- Laboratory of Inorganic Synthesis and Applied Chemistry
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Xiao-Bo Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
- School of Engineering
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
| |
Collapse
|