1
|
Tao DL, Chen JM, Wu JP, Zhao SS, Qi BF, Yang X, Fan YY, Song JK, Zhao GH. Neospora caninum hijacks host PFKFB3-driven glycolysis to facilitate intracellular propagation of parasites. Vet Res 2025; 56:94. [PMID: 40307939 PMCID: PMC12042381 DOI: 10.1186/s13567-025-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/13/2025] [Indexed: 05/02/2025] Open
Abstract
Infection with Neospora caninum leads to reproductive failure in ruminants, such as cattle and goats; however, no effective vaccines or treatments are currently available to control this infection. Carefully regulating the glycolysis of host cells is essential for the intracellular survival of pathogens. Nonetheless, the impact of N. caninum infection on host cell glycolysis and the effects and mechanisms of host cell glycolysis on the intracellular survival of this parasite remains unclear. In this study, the analysis of metabolomics and transcriptomics revealed that N. caninum infection increases the expression of glycolysis-related enzymes and lactate production in caprine endometrial epithelial cells (EECs). The study's findings demonstrate that the inhibition of host cell glycolysis using 2-DG or sodium oxamate (an LDH-A inhibitor) inhibits host cell glycolysis and the intracellular propagation of N. caninum tachyzoites. Moreover, the addition of lactate further promotes the replication of N. caninum tachyzoites both in vivo and in vitro. Further investigation found that N. caninum infection induces host cell glycolysis via up-regulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression, while knockdown of PFKFB3 with small-interfering RNA or 3-PO significantly inhibits host cell glycolysis and the propagation of N. caninum tachyzoites both in vivo and in vitro. Additionally, a mechanistic study showed that N. caninum infection activates the JNK signalling pathway and inhibits the ubiquitination degradation of HIF-1α. Chromatin immunoprecipitation and dual-luciferase reporter assays revealed that N. caninum infection induces the expression of HIF-1α, which binds to the promoter region of pfkfb3. Our findings indicate that cellular glycolysis may serve as a potential therapeutic target for neosporosis, offering a novel insight for further investigating the intracellular survival mechanisms of N. caninum.
Collapse
Affiliation(s)
- De-Liang Tao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Jin-Ming Chen
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Jiang-Ping Wu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Shan-Shan Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Bu-Fan Qi
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Xin Yang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Ying-Ying Fan
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China.
| |
Collapse
|
2
|
Abdelbaky HH, Mitsuhashi S, Watanabe K, Ushio N, Miyakawa M, Furuoka H, Nishikawa Y. Involvement of chemokine receptor CXCR3 in the defense mechanism against Neospora caninum infection in C57BL/6 mice. Front Microbiol 2023; 13:1045106. [PMID: 36704563 PMCID: PMC9873264 DOI: 10.3389/fmicb.2022.1045106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
C-X-C motif chemokine receptor 3 (CXCR3) is an important receptor controlling the migration of leukocytes, although there is no report regarding its role in Neospora caninum infection. Herein, we investigated the relevance of CXCR3 in the resistance mechanism to N. caninum infection in mice. Wild-type (WT) C57BL/6 mice and CXCR3-knockout (CXCR3KO) mice were used in all experiments. WT mice displayed a high survival rate (100%), while 80% of CXCR3KO mice succumbed to N. caninum infection within 50 days. Compared with WT mice, CXCR3KO mice exhibited significantly lower body weights and higher clinical scores at the subacute stage of infection. Flow cytometric analysis revealed CXCR3KO mice as having significantly increased proportions and numbers of CD11c-positive cells compared with WT mice at 5 days post infection (dpi). However, levels of interleukin-6 and interferon-γ in serum and ascites were similar in all groups at 5 dpi. Furthermore, no differences in parasite load were detected in brain, spleen, lungs or liver tissue of CXCR3KO and WT mice at 5 and 21 dpi. mRNA analysis of brain tissue collected from infected mice at 30 dpi revealed no changes in expression levels of inflammatory response genes. Nevertheless, the brain tissue of infected CXCR3KO mice displayed significant necrosis and microglial activation compared with that of WT mice at 21 dpi. Interestingly, the brain tissue of CXCR3KO mice displayed significantly lower numbers of FoxP3+ cells compared with the brain tissue of WT mice at 30 dpi. Accordingly, our study suggests that the lack of active regulatory T cells in brain tissue of infected CXCR3KO mice is the main cause of these mice having severe necrosis and lower survival compared with WT mice. Thus, CXCR3+ regulatory T cells may play a crucial role in control of neosporosis.
Collapse
Affiliation(s)
- Hanan H. Abdelbaky
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Shuichiro Mitsuhashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kenichi Watanabe
- Division of Pathobiological Science, Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Nanako Ushio
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Miku Miyakawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hidefumi Furuoka
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan,*Correspondence: Yoshifumi Nishikawa, ✉
| |
Collapse
|
3
|
Zhao SS, Tao DL, Chen JM, Wu JP, Yang X, Song JK, Zhu XQ, Zhao GH. RNA sequencing reveals dynamic expression of lncRNAs and mRNAs in caprine endometrial epithelial cells induced by Neospora caninum infection. Parasit Vectors 2022; 15:297. [PMID: 35999576 PMCID: PMC9398501 DOI: 10.1186/s13071-022-05405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background The effective transmission mode of Neospora caninum, with infection leading to reproductive failure in ruminants, is vertical transmission. The uterus is an important reproductive organ that forms the maternal–fetal interface. Neospora caninum can successfully invade and proliferate in the uterus, but the molecular mechanisms underlying epithelial-pathogen interactions remain unclear. Accumulating evidence suggests that host long noncoding RNAs (lncRNAs) play important roles in cellular molecular regulatory networks, with reports that these RNA molecules are closely related to the pathogenesis of apicomplexan parasites. However, the expression profiles of host lncRNAs during N. caninum infection has not been reported. Methods RNA sequencing (RNA-seq) analysis was used to investigate the expression profiles of messenger RNAs (mRNAs) and lncRNAs in caprine endometrial epithelial cells (EECs) infected with N. caninum for 24 h (TZ_24h) and 48 h (TZ_48 h), and the potential functions of differentially expressed (DE) lncRNAs were predicted by using Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of their mRNA targets. Results RNA-seq analysis identified 1280.15 M clean reads in 12 RNA samples, including six samples infected with N. caninum for 24 h (TZ1_24h-TZ3_24h) and 48 h (TZ1_48h-TZ3_48h), and six corresponding control samples (C1_24h-C3_24h and C1_48h-C3_48h). Within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, there were 934 (665 upregulated and 269 downregulated), 1238 (785 upregulated and 453 downregulated) and 489 (252 upregulated and 237 downregulated) DEmRNAs, respectively. GO enrichment and KEGG analysis revealed that these DEmRNAs were mainly involved in the regulation of host immune response (e.g. TNF signaling pathway, MAPK signaling pathway, transforming growth factor beta signaling pathway, AMPK signaling pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway), signaling molecules and interaction (e.g. cytokine-cytokine receptor interaction, cell adhesion molecules and ECM-receptor interaction). A total of 88 (59 upregulated and 29 downregulated), 129 (80 upregulated and 49 downregulated) and 32 (20 upregulated and 12 downregulated) DElncRNAs were found within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, respectively. Functional prediction indicated that these DElncRNAs would be involved in signal transduction (e.g. MAPK signaling pathway, PPAR signaling pathway, ErbB signaling pathway, calcium signaling pathway), neural transmission (e.g. GABAergic synapse, serotonergic synapse, cholinergic synapse), metabolism processes (e.g. glycosphingolipid biosynthesis-lacto and neolacto series, glycosaminoglycan biosynthesis-heparan sulfate/heparin) and signaling molecules and interaction (e.g. cytokine-cytokine receptor interaction, cell adhesion molecules and ECM-receptor interaction). Conclusions This is the first investigation of global gene expression profiles of lncRNAs during N. caninum infection. The results provide valuable information for further studies of the roles of lncRNAs during N. caninum infection. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05405-5.
Collapse
Affiliation(s)
- Shan-Shan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - De-Liang Tao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Ming Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiang-Ping Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun-Ke Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China. .,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Role of dense granule antigen 7 in vertical transmission of Neospora caninum in C57BL/6 mice infected during early pregnancy. Parasitol Int 2022; 89:102576. [PMID: 35301119 DOI: 10.1016/j.parint.2022.102576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022]
Abstract
Neosporosis is a parasitic disease affecting the health of dogs and cattle worldwide. It is caused by Neospora caninum, an obligate intracellular apicomplexan parasite. Dogs are its definitive host, it mostly infects livestock animals, especially cattle that acts as intermediate host. It is necessary to have well-established models of abortion and vertical transmission in experimental animals, in order to determine basic control measures for the N. caninum infection. We evaluated the role of N. caninum dense granule antigen 7 (NcGRA7) in the vertical transmission of N. caninum using the C57BL/6 pregnant mouse model. We inoculated mice on day 3.5 of pregnancy with parental Nc-1 or NcGRA7-deficient parasites (NcGRA7KO). Post-mortem analyses were performed on day 30 after birth and the surviving pups were kept until day 30 postpartum. The number of parasites in the brain tissues of offspring from NcGRA7KO-infected dams was significantly lower than that of the Nc-1-infected dams under two infection doses (1 × 106 and 1 × 105 tachyzoites/mouse). The vertical transmission rates in the NcGRA7KO-infected group were significantly lower than those of the Nc1-infected group. To understand the mechanism by which the lack of NcGRA7 decreases the vertical transmission, pregnant mice were sacrificed on day 13.5 of pregnancy (10 days after infection), although parasite DNA was detected in the placentas, no significant difference was found between the two parasite lines. Histopathological analysis revealed a greater inflammatory response in the placentas from NcGRA7KO-infected dams than in those from the parental strain. This finding correlates with upregulated chemokine mRNA expression for CCL2, CCL8, and CXCL9 in the placentas from the NcGRA7KO-infected mice. In conclusion, these results suggest that loss of NcGRA7 triggers an inflammatory response in the placenta, resulting in decreased vertical transmission of N. caninum.
Collapse
|
5
|
Waindok P, Janecek-Erfurth E, Lindenwald DL, Wilk E, Schughart K, Geffers R, Strube C. Toxocara canis- and Toxocara cati-Induced Neurotoxocarosis Is Associated with Comprehensive Brain Transcriptomic Alterations. Microorganisms 2022; 10:microorganisms10010177. [PMID: 35056627 PMCID: PMC8779660 DOI: 10.3390/microorganisms10010177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Toxocara canis and Toxocara cati are globally occurring zoonotic roundworms of dogs and cats. Migration and persistence of Toxocara larvae in the central nervous system of paratenic hosts including humans may cause clinical signs of neurotoxocarosis (NT). As pathomechanisms of NT and host responses against Toxocara larvae are mostly unknown, whole-genome microarray transcription analysis was performed in cerebra and cerebella of experimentally infected C57Bl/6J mice as paratenic host model at days 14, 28, 70, 98, and 120 post-infection. Neuroinvasion of T. cati evoked 220 cerebral and 215 cerebellar differentially transcribed genes (DTGs), but no particular PANTHER (Protein ANalysis THrough Evolutionary Relationships) pathway was affected. In T. canis-infected mice, 1039 cerebral and 2073 cerebellar DTGs were identified. Statistically significant dysregulations occurred in various pathways, including cholesterol biosynthesis, apoptosis signaling, and the Slit/Robo mediated axon guidance as well as different pathways associated with the immune and defense response. Observed dysregulations of the cholesterol biosynthesis, as well as the Alzheimer disease-amyloid secretase pathway in conjunction with previous histopathological neurodegenerative findings, may promote the discussion of T. canis as a causative agent for dementia and/or Alzheimer’s disease. Furthermore, results contribute to a deeper understanding of the largely unknown pathogenesis and host-parasite interactions during NT, and may provide the basis for prospective investigations evaluating pathogenic mechanisms or designing novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Patrick Waindok
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Elisabeth Janecek-Erfurth
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Dimitri L. Lindenwald
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (E.W.); (K.S.)
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (E.W.); (K.S.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Centre, Memphis, TN 38163, USA
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Robert Geffers
- Research Group Genome Analytics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
- Correspondence: ; Tel.: +49-511-953-8711
| |
Collapse
|
6
|
Amini L, Namavari M, Khodakaram-Tafti A, Divar MR, Hosseini SMH. The evaluation of attenuated Neospora caninum by long-term passages on murine macrophage cell line in prevention of vertical transmission in mice. Vet Parasitol 2020; 283:109171. [PMID: 32623187 DOI: 10.1016/j.vetpar.2020.109171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022]
Abstract
To date, there is no effective vaccine to prevent abortion or vertical transmission associated with neosporosis in cattle. In the present study, the efficacy of a live experimental vaccine of Neospora caninum attenuated (NCa) by long-term serial passages on a murine macrophage cell line was evaluated in the prevention of vertical transmission and abortion in the mouse model. Forty non-pregnant mice were randomly divided into four equal groups including non-immunized/challenged (injected with PBS); positive control (inoculated with un-attenuated NC-1 tachyzoites); immunized/challenged (inoculated with NCa attenuated strain) and immunized/non-challenged or vaccinated (inoculated with NCa) groups. Following pregnancy synchronization, both the immunized and control mice were challenged with virulent live NC-1 tachyzoites (2.5 × 106) in the mid-pregnancy stage. The number of abortions and post-natal pup mortalities was recorded. Serological, molecular, and histopathologic examinations were employed to evaluate the efficacy of the vaccine and the vertical transmission rates. Results indicated that the live attenuated N. caninum strain (NCa) could significantly reduce the risk of abnormal parturitions and fetal mortality in the vaccinated group (20 %) compared to the non-immunized/challenged group (80 %). Also, the NCa strain reduced the lesion score in the brain of the offspring (0.3 vs 1.9) compared to the non-immunized/challenged group (P < 0.05). The molecular assay showed a decrease in the parasite DNA detection rates from 83 % and 77 % in the non-immunized/challenged group to 27 % and 0 % in the vaccine group in the brain and liver tissues, respectively. While in the immunized/non-challenged group no parasite DNA was detected in the brain tissue samples of the pups. Serological analyses showed that NCa strain was able to stimulate the humoral immunity and create effective protection against neosporosis with a moderate systemic IFN-γ response. In conclusion, the NCa strain could significantly (P < 0.05) reduce the risk of vertical transmission and proved to be a safe vaccine while conferring significant levels of protection in the laboratory mice.
Collapse
Affiliation(s)
- Laleh Amini
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Namavari
- Shiraz Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| | | | - Mohammad Reza Divar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Mohammad Hossein Hosseini
- Shiraz Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| |
Collapse
|
7
|
Al-Shaeli SJJ, Ethaeb AM, Gharban HAJ. Molecular and histopathological identification of ovine neosporosis ( Neospora caninum) in aborted ewes in Iraq. Vet World 2020; 13:597-603. [PMID: 32367970 PMCID: PMC7183467 DOI: 10.14202/vetworld.2020.597-603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/18/2020] [Indexed: 02/01/2023] Open
Abstract
Aim: The objective of the present study was to detect Neospora caninum DNA in the placenta of sheep and evaluate the association of risk factors to polymerase chain reaction (PCR) positive and histopathological analysis of the placenta and fetal tissue samples of aborted fetuses. Materials and Methods: Fresh placenta from 51 aborted ewes was collected for PCR assay. Placental and fetal tissues of aborted fetuses, including brain, heart, liver, lung, and thymus, were collected for histopathological analysis, besides the risk factor data were obtained during the time of sampling. Results: From 51 placentas examined by PCR, 13.73% appeared positive to N. caninum DNA. The relationship between PCR positive and the risk factors revealed a significant difference (p<0.05) in age of the dam, fetal age, feed source, water source, and the presence of other animals at farm, whereas the type of birth, stillbirth, and size of flock showed insignificant difference (p>0.05). Histopathological investigation of placental and fetal tissues of positive samples showed tissue cyst-like structure, necrotic foci, and infiltration of mononuclear cells. Other lesions were thickening in chorionic plate in placenta, severe vacuolization and death of neurons, microgliosis, demyelination, edema, and proliferation of astrocytes in brain. In addition, fibrous and fat deposition with stenosis in the heart, parenchymal necrosis, severe atrophy, vacuolization and hyalinization of hepatocytes, megakaryocyte, portal fibrosis in the liver, and interlobular septal thickening in lung without obvious lesions is seen in the thymus tissue samples. Conclusion: This is a unique study that confirmed N. caninum DNA in the placenta of aborted ewes in Iraq using PCR assay. Histopathological analysis of some aborted fetuses organs could provide a more confirmatory and reliable data for a significant role of neosporosis in increasing the rate of abortion in sheep, while the clinical data of risk factors could be used to control the transmission of N. caninum infection.
Collapse
Affiliation(s)
- Sattar J J Al-Shaeli
- Department of Anatomy and Histology, College of Veterinary Medicine, Wasit University, Wasit, Iraq
| | - Ali M Ethaeb
- Department of Anatomy and Histology, College of Veterinary Medicine, Wasit University, Wasit, Iraq
| | - Hasanain A J Gharban
- Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, Wasit University, Wasit, Iraq
| |
Collapse
|
8
|
Ihara F, Tanaka S, Fereig RM, Nishimura M, Nishikawa Y. Involvement of Toll-like receptor 2 in the cerebral immune response and behavioral changes caused by latent Toxoplasma infection in mice. PLoS One 2019; 14:e0220560. [PMID: 31404078 PMCID: PMC6690529 DOI: 10.1371/journal.pone.0220560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Subacute and chronic infections with the intracellular protozoan parasite Toxoplasma gondii are associated with an increased risk of psychiatric diseases like schizophrenia. However, little is known about the mechanisms involved in T. gondii-induced neuronal disorders. Recently, we reported that Toll-like receptor 2 (TLR2) was required to initiate the innate immune response in cultured mouse brain cells. However, how TLR2 contributes to latent infection with T. gondii remains unclear. Therefore, we examined the role of TLR2 in brain pathology and behavior using wild-type (TLR2+/+) and TLR2-deficient (TLR2-/-) mice. The behavioral analyses showed that TLR2 deficiency increased the anxiety state of the uninfected and infected animals alike, and TLR2 deficiency showed no relationship with the infection. In the contextual and cued fear-conditioning tests, T. gondii infection decreased the mouse freezing reaction while TLR2 deficiency increased it, but there was no interaction between the two factors. Our histopathological analysis showed that the TLR2+/+ and TLR2-/- mice had similar brain lesions at 30 days post infection (dpi) with T. gondii. Higher numbers of parasites were detected in the brains of the TLR2-/- mice than in those from the TLR2+/+ mice at 30 dpi, but not at 7 and 14 dpi. No significant differences were observed in the proinflammatory gene expression levels in the TLR2+/+ and TLR2-/- mice. Therefore, it appears that TLR2 signaling in the brain might contribute to the control of parasite growth, but not to brain pathology or the impaired fear memory response induced by infection with T. gondii.
Collapse
Affiliation(s)
- Fumiaki Ihara
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Sachi Tanaka
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena, Egypt
| | - Maki Nishimura
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
9
|
Gene expression changes elicited by a parasitic B chromosome in the grasshopper Eyprepocnemis plorans are consistent with its phenotypic effects. Chromosoma 2019; 128:53-67. [PMID: 30617552 DOI: 10.1007/s00412-018-00689-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/16/2023]
Abstract
Parasitism evokes adaptive physiological changes in the host, many of which take place through gene expression changes. This response can be more or less local, depending on the organ or tissue affected by the parasite, or else systemic when the parasite affects the entire host body. The most extreme of the latter cases is intragenomic parasitism, where the parasite is present in all host nuclei as any other genomic element. Here, we show the molecular crosstalk between a parasitic chromosome (also named B chromosome) and the host genome, manifested through gene expression changes. The transcriptome analysis of 0B and 1B females of the grasshopper Eyprepocnemis plorans, validated by a microarray experiment performed on four B-lacking and five B-carrying females, revealed changes in gene expression for 188 unigenes being consistent in both experiments. Once discarded B-derived transcripts, there were 46 differentially expressed genes (30 up- and 16 downregulated) related with the adaptation of the host genome to the presence of the parasitic chromosome. Interestingly, the functions of these genes could explain some of the most important effects of B chromosomes, such as nucleotypic effects derived from the additional DNA they represent, chemical defense and detoxification, protein modification and response to stress, ovary function, and regulation of gene expression. Collectively, these changes uncover an intimate host-parasite interaction between A and B chromosomes during crucial steps of gene expression and protein function.
Collapse
|
10
|
Neospora caninum Dense Granule Protein 7 Regulates the Pathogenesis of Neosporosis by Modulating Host Immune Response. Appl Environ Microbiol 2018; 84:AEM.01350-18. [PMID: 30006392 DOI: 10.1128/aem.01350-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Neospora caninum is a protozoan parasite closely related to Toxoplasma gondii Neosporosis caused by N. caninum is considered one of the main causes of abortion in cattle and nervous-system dysfunction in dogs, and identification of the virulence factors of this parasite is important for the development of control measures. Here, we used a luciferase reporter assay to screen the dense granule proteins genes of N. caninum, and we found that NcGRA6, NcGRA7, and NcGRA14 are involved in the activation of the NF-κB, calcium/calcineurin, and cAMP/PKA signals. To analyze the functions of these proteins and Neospora cyclophilin, we successfully knocked out their genes in the Nc1 strain using plasmids containing the CRISPR/Cas9 components. Among the deficient lines, the NcGRA7-deficient parasites showed reduced virulence in mice. An RNA sequencing analysis of infected macrophage cultures showed that NcGRA7 mainly regulates the host cytokine and chemokine production. The levels of gamma interferon in the ascites fluid, CXCL10 expression in the peritoneal cells, and CCL2 expression in the spleen were lower 5 days after infection with the NcGRA7-deficient parasite than after infection with the parental strain. The parasite burden and the degree of necrosis in the brains of mice infected with the NcGRA7-deficient parasite were also lower than in those of the parental strain. Collectively, our data suggest that both the NcGRA7-dependent activation of the inflammatory response and the parasite burden are important in Neospora virulence.IMPORTANCENeospora caninum invades and replicates in a broad range of host species and cells within those hosts. The effector proteins exported by Neospora induce its pathogenesis by modulating the host immunity. We show that most of the transcriptomic effects in N. caninum-infected cells depend upon the activity of NcGRA7. A deficiency in NcGRA7 reduced the virulence of the parasite in mice. This study demonstrates the importance of NcGRA7 in the pathogenesis of neosporosis.
Collapse
|
11
|
Nishikawa Y. Towards a preventive strategy for neosporosis: challenges and future perspectives for vaccine development against infection with Neospora caninum. J Vet Med Sci 2017; 79:1374-1380. [PMID: 28690279 PMCID: PMC5573824 DOI: 10.1292/jvms.17-0285] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neosporosis is caused by the intracellular protozoan parasite Neospora
caninum. This major disease-causing pathogen is responsible for inducing
abortion in cattle, and these adverse events occur sporadically all over the world,
including Japan. Currently, there are no vaccines on the market against infection with
N. caninum. Because live and attenuated vaccines against N.
caninum have had safety and effectiveness issues, development of a
next-generation vaccine is urgently required. To develop a vaccine against neosporosis, my
laboratory has been focused on the following: 1) understanding the host immune responses
against Neospora infection, 2) identifying vaccine antigens and 3)
developing an effective antigen-delivery system. The research strategy taken in my
laboratory will have strong potential to progress current understanding of the
pathogenesis of N. caninum infection and promote development of a novel
subunit vaccine based on the specific vaccine antigen with an antigen-delivery system for
controlling neosporosis.
Collapse
Affiliation(s)
- Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
12
|
Ybañez RHD, Leesombun A, Nishimura M, Matsubara R, Kojima M, Sakakibara H, Nagamune K, Nishikawa Y. In vitro and in vivo effects of the phytohormone inhibitor fluridone against Neospora caninum infection. Parasitol Int 2016; 65:319-22. [PMID: 27021922 DOI: 10.1016/j.parint.2016.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/17/2016] [Accepted: 03/20/2016] [Indexed: 11/26/2022]
Abstract
Neospora caninum causes abortion and stillbirth in cattle. Identification of effective drugs against this parasite remains a challenge. Previous studies have suggested that disruption of abscisic acid (ABA)-mediated signaling in apicomplexan parasites such as Toxoplasma gondii offers a new drug target. In this study, the ABA inhibitor, fluridone (FLU), was evaluated for its action against N. caninum. Production of endogenous ABA within N. caninum was confirmed by ultra-performance liquid chromatography-tandem quadruple mass spectrometry. Subsequently, FLU treatment efficacy was assessed using in vitro. Results revealed that FLU inhibited the growth of N. caninum and T. gondii in vitro (IC50 143.1±43.96μM and 330.6±52.38μM, respectively). However, FLU did not affect parasite replication at 24h post-infection, but inhibited egress of N. caninum thereafter. To evaluate the effect of FLU in vivo, N. caninum-infected mice were treated with FLU for 15days. FLU treatment appeared to ameliorate acute neosporosis induced by lethal parasite challenge. Together, our data shows that ABA might control egress in N. caninum. Therefore, FLU has potential as a candidate drug for the treatment of acute neosporosis.
Collapse
Affiliation(s)
- Rochelle Haidee D Ybañez
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Biology and Environmental Studies Program, University of the Philippines Cebu, Gorordo Avenue, Lahug, Cebu City 6000, Philippines
| | - Arpron Leesombun
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Maki Nishimura
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Ryuma Matsubara
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Studies, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
13
|
Teixeira L, Marques RM, Ferreirinha P, Bezerra F, Melo J, Moreira J, Pinto A, Correia A, Ferreira PG, Vilanova M. Enrichment of IFN-γ producing cells in different murine adipose tissue depots upon infection with an apicomplexan parasite. Sci Rep 2016; 6:23475. [PMID: 27001522 PMCID: PMC4802212 DOI: 10.1038/srep23475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/07/2016] [Indexed: 02/08/2023] Open
Abstract
Here we report that lean mice infected with the intracellular parasite Neospora
caninum show a fast but sustained increase in the frequency of
IFN-γ-producing cells noticeable in distinct adipose tissue depots.
Moreover, IFN-γ-mediated immune memory could be evoked in vitro
in parasite antigen-stimulated adipose tissue stromal vascular fraction cells
collected from mice infected one year before. Innate or innate-like cells such as
NK, NK T and TCRγδ+ cells, but also
CD4+ and CD8+ TCRβ+
lymphocytes contributed to the IFN-γ production observed since day one
of infection. This early cytokine production was largely abrogated in IL-12/IL23
p40-deficient mice. Moreover, production of IFN-γ by stromal vascular
fraction cells isolated from these mice was markedly lower than that of wild-type
counterparts upon stimulation with parasite antigen. In wild-type mice the increased
IFN-γ production was concomitant with up-regulated expression of genes
encoding interferon-inducible GTPases and nitric oxide synthase, which are important
effector molecules in controlling intracellular parasite growth. This increased gene
expression was markedly impaired in the p40-deficient mice. Overall, these results
show that NK cells but also diverse T cell populations mediate a prompt and
widespread production of IFN-γ in the adipose tissue of N.
caninum infected mice.
Collapse
Affiliation(s)
- Luzia Teixeira
- Departamento de Anatomia, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar and UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Raquel M Marques
- Departamento de Anatomia, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar and UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Pedro Ferreirinha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Laboratório de Imunologia Mário Arala Chaves, ICBAS, Universidade do Porto
| | - Filipa Bezerra
- Departamento de Anatomia, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar and UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Joana Melo
- Departamento de Anatomia, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar and UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - João Moreira
- Departamento de Anatomia, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar and UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Ana Pinto
- Departamento de Anatomia, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar and UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Alexandra Correia
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Paula G Ferreira
- Departamento de Anatomia, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar and UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Manuel Vilanova
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Laboratório de Imunologia Mário Arala Chaves, ICBAS, Universidade do Porto
| |
Collapse
|
14
|
Changes in neurotransmitter levels and expression of immediate early genes in brain of mice infected with Neospora caninum. Sci Rep 2016; 6:23052. [PMID: 26971577 PMCID: PMC4789785 DOI: 10.1038/srep23052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/25/2016] [Indexed: 01/21/2023] Open
Abstract
Neospora caninum is an obligate intracellular parasite that causes neurological disorders in dogs and cattle. The majority of host animals are asymptomatic at the chronic stage of infection. However, it remains unclear whether cerebral function is normal in asymptomatic animals. In this study, mice were infected with N. caninum (strain Nc-1) and their brains were examined to understand changes in cerebral function at the chronic stage of infection. Mice infected with N. caninum showed impaired locomotor activity, but no differences in clinical symptoms were observed. In the brains of infected mice, parasites were distributed throughout the brain and histological lesions were observed everywhere except for the cerebellum. Expression levels of proinflammatory cytokines, interferon-gamma and tumour necrosis factor-alpha, were highly upregulated in several brain regions of infected mice. Additionally, the level of neurotransmitters glutamate, glycine, gamma-aminobutyric acid, dopamine and 5-hydroxytryptamine, were altered in infected mice compared with those of uninfected mice. Interestingly, the expression levels of immediately early genes, c-Fos and Arc, in the brain of infected mice were lower than those of in uninfected mice. Our findings may provide insight into neurological disorders associated with N. caninum infection.
Collapse
|
15
|
Shrestha A, Abd-Elfattah A, Freudenschuss B, Hinney B, Palmieri N, Ruttkowski B, Joachim A. Cystoisospora suis - A Model of Mammalian Cystoisosporosis. Front Vet Sci 2015; 2:68. [PMID: 26664994 PMCID: PMC4672278 DOI: 10.3389/fvets.2015.00068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/17/2015] [Indexed: 11/13/2022] Open
Abstract
Cystoisospora suis is a coccidian species that typically affects suckling piglets. Infections occur by oral uptake of oocysts and are characterized by non-hemorrhagic transient diarrhea, resulting in poor weight gain. Apparently, primary immune responses to C. suis cannot readily be mounted by neonates, which contributes to the establishment and rapid development of the parasite, while in older pigs age-resistance prevents disease development. However, the presence of extraintestinal stages, although not unequivocally demonstrated, is suspected to enable parasite persistence together with the induction and maintenance of immune response in older pigs, which in turn may facilitate the transfer of C. suis-specific factors from sow to offspring. It is assumed that neonates are particularly prone to clinical disease because infections with C. suis interfere with the establishment of the gut microbiome. Clostridia have been especially inferred to profit from the altered intestinal environment during parasite infection. New tools, particularly in the area of genomics, might illustrate the interactions between C. suis and its host and pave the way for the development of new control methods not only for porcine cystoisosporosis but also for other mammalian Cystoisospora infections. The first reference genome for C. suis is under way and will be a fertile ground to discover new drugs and vaccines. At the same time, the establishment and refinement of an in vivo model and an in vitro culture system, supporting the complete life cycle of C. suis, will underpin the functional characterization of the parasite and shed light on its biology and control.
Collapse
Affiliation(s)
- Aruna Shrestha
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna , Vienna , Austria
| | - Ahmed Abd-Elfattah
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna , Vienna , Austria
| | - Barbara Freudenschuss
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna , Vienna , Austria
| | - Barbara Hinney
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna , Vienna , Austria
| | - Nicola Palmieri
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna , Vienna , Austria
| | - Bärbel Ruttkowski
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna , Vienna , Austria
| | - Anja Joachim
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna , Vienna , Austria
| |
Collapse
|
16
|
Correia A, Ferreirinha P, Botelho S, Belinha A, Leitão C, Caramalho Í, Teixeira L, González-Fernandéz Á, Appelberg R, Vilanova M. Predominant role of interferon-γ in the host protective effect of CD8(+) T cells against Neospora caninum infection. Sci Rep 2015; 5:14913. [PMID: 26449650 PMCID: PMC4598874 DOI: 10.1038/srep14913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/14/2015] [Indexed: 01/25/2023] Open
Abstract
It is well established that CD8+ T cells play an important role in
protective immunity against protozoan infections. However, their role in the course
of Neospora caninum infection has not been fully elucidated. Here we report
that CD8-deficient mice infected with N. caninum presented higher parasitic
loads in the brain and lungs and lower spleen and brain immunity-related GTPases
than their wild-type counterparts. Moreover, adoptive transfer of splenic
CD8+ T cells sorted from N. caninum-primed
immunosufficient C57BL/10 ScSn mice prolonged the survival of infected
IL-12-unresponsive C57BL/10 ScCr recipients. In both C57BL/6 and C57BL/10 ScSn mice
CD8+ T cells are activated and produce interferon-γ
(IFN-γ) upon challenged with N. caninum. The host protective role
of IFN-γ produced by CD8+ T cells was confirmed in N.
caninum-infected RAG2-deficient mice reconstituted with CD8+
T cells obtained from either IFN-γ-deficient or wild-type donors. Mice
receiving IFN-γ-expressing CD8+ T cells presented lower
parasitic burdens than counterparts having IFN-γ-deficient
CD8+ T cells. Moreover, we observed that N.
caninum-infected perforin-deficient mice presented parasitic burdens similar to
those of infected wild-type controls. Altogether these results demonstrate that
production of IFN-γ is a predominant protective mechanism conferred by
CD8+ T cells in the course of neosporosis.
Collapse
Affiliation(s)
- Alexandra Correia
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Pedro Ferreirinha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sofia Botelho
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Belinha
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Catarina Leitão
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Íris Caramalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Luzia Teixeira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.,UMIB-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto
| | - África González-Fernandéz
- Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Instituto de Investigación Biomédica, Universidade de Vigo, Campus Lagoas Marcosende, E-36200 Vigo, Spain
| | - Rui Appelberg
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Manuel Vilanova
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|