1
|
Yin D, Zhong Z, Zeng F, Xu Z, Li J, Ren W, Yang G, Wang H, Xu S. Evolution of canonical circadian clock genes underlies unique sleep strategies of marine mammals for secondary aquatic adaptation. PLoS Genet 2025; 21:e1011598. [PMID: 40101169 PMCID: PMC11919277 DOI: 10.1371/journal.pgen.1011598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
To satisfy the needs of sleeping underwater, marine mammals, including cetaceans, sirenians, and pinnipeds, have evolved an unusual form of sleep, known as unihemispheric slow-wave sleep (USWS), in which one brain hemisphere is asleep while the other is awake. All aquatic cetaceans have only evolved USWS without rapid eye movement (REM) sleep, whereas aquatic sirenians and amphibious pinnipeds display both bihemispheric slow-wave sleep (BSWS) and USWS, as well as REM sleep. However, the molecular genetic changes underlying USWS remain unknown. The present study investigated the evolution of eight canonical circadian genes and found that positive selection occurred mainly within cetacean lineages. Furthermore, convergent evolution was observed in lineages with USWS at three circadian clock genes. Remarkably, in vitro assays showed that cetacean-specific mutations increased the nuclear localization of zebrafish clocka, and enhanced the transcriptional activation activity of Clocka and Bmal1a. In vivo, transcriptome analysis showed that the overexpression of the cetacean-specific mutant clocka (clocka-mut) caused the upregulation of the wakefulness-promoting glutamatergic genes and the differential expression of multiple genes associated with sleep regulation. In contrast, the GABAergic and cholinergic pathways, which play important roles in promoting sleep, were downregulated in the bmal1a-mut-overexpressing zebrafish. Concordantly, sleep time of zebrafish overexpressing clocka-mut and bmal1a-mut were significantly less than the zebrafish overexpressing the wild-type genes, respectively. These findings support our hypothesis that canonical circadian clock genes may have evolved adaptively to enhance circadian regulation ability relating to sleep in cetaceans and, in turn, contribute to the formation of USWS.
Collapse
Affiliation(s)
- Daiqing Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, PR China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Fan Zeng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhikang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, PR China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Hyeon J, Byun J, Kim B, Hettiarachchi SA, Han J, Choi Y, Noh C, Takeuchi Y, Choi S, Park J, Hur S. Clock Gene Expression in Eel Retina and Hypothalamus: Response to Photoperiod and Moonlight. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:81-94. [PMID: 39375903 PMCID: PMC11617817 DOI: 10.1002/jez.2870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024]
Abstract
Assessment of the clock genes, Period (Per) 1, Per2, Per3, and Cryptochrome (Cry) 2, Cry3, and Cry4, can help better understand eel spawning ecology. In this study, the circadian rhythm and moonlight effects of these clock genes in the eel retina and hypothalamus were analyzed. We examined clock gene expression patterns under 12 h light:12 h darkness (12L12D), constant darkness (DD), and constant light (LL) conditions; under short photoperiod (SP; 9L15D) and long photoperiod (LP; 15L9D), and during the new moon (NM) and full moon in male eels. Per2 expression increased after sunrise, Cry2, and Cry4 expression increased around sunset, and Per1, Per3, and Cry3 expression increased before sunrise. Under SP conditions, oscillations of retinal Per3 and Cry4, which did not occur under LP conditions, were generated. In addition, retinal Cry4 oscillation was generated under NM conditions. These results suggest that the retina of the eel may play an important role in regulating circadian rhythm, and migration is initiated by the synchronization of clock genes by moonlight, suggesting that photic signals are closely related to the migratory activity of the eel.
Collapse
Affiliation(s)
- Ji‐Yeon Hyeon
- Marine Biotechnology & Bioresource Research DepartmentKorea Institute of Ocean Science & TechnologyBusanRepublic of Korea
| | - Jun‐Hwan Byun
- Department of Fisheries Biology, College of Fisheries SciencesPukyong National UniversityBusanRepublic of Korea
| | - Byeong‐Hoon Kim
- Education & Research Group for Future Strategy of Aquatic Life IndustryJeju National UniversityJejuRepublic of Korea
| | | | - Jeonghoon Han
- Marine Biotechnology & Bioresource Research DepartmentKorea Institute of Ocean Science & TechnologyBusanRepublic of Korea
| | - Young‐Ung Choi
- Marine Biotechnology & Bioresource Research DepartmentKorea Institute of Ocean Science & TechnologyBusanRepublic of Korea
- Department of Ocean ScienceUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Choong‐Hwan Noh
- Marine Biotechnology & Bioresource Research DepartmentKorea Institute of Ocean Science & TechnologyBusanRepublic of Korea
| | - Yuki Takeuchi
- Developmental Neurobiology UnitOkinawa Institute of Science and TechnologyKunigami‐gunOkinawaJapan
| | - Soo‐Youn Choi
- Department of BiologyJeju National UniversityJejuRepublic of Korea
| | - Jong‐Eun Park
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life SciencesJeju National UniversityJejuRepublic of Korea
| | - Sung‐Pyo Hur
- Department of Marine Life ScienceJeju National UniversityJejuRepublic of Korea
| |
Collapse
|
3
|
Wang Z, Wang S, Bi Y, Boiti A, Zhang S, Vallone D, Lan X, Foulkes NS, Zhao H. Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock. PLoS Genet 2025; 21:e1011545. [PMID: 39777894 PMCID: PMC11750094 DOI: 10.1371/journal.pgen.1011545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways. Our previous work has revealed that light-induced gene transcription is a key step in the entrainment of the circadian clock as well as enabling the more general adaptation of zebrafish cells to sunlight exposure. However, considerable evidence points to post-transcriptional regulatory mechanisms, notably microRNAs (miRNAs), playing an essential role in shaping dynamic changes in mRNA levels. Therefore, does light directly impact the function of miRNAs? Are there light-regulated miRNAs and if so, which classes of mRNA do they target? To address these questions, we performed a complete sequencing analysis of light-induced changes in the zebrafish transcriptome, encompassing small non-coding RNAs as well as mRNAs. Importantly, we identified sets of light-regulated miRNAs, with many regulatory targets representing light-inducible mRNAs including circadian clock genes and genes involved in redox homeostasis. We subsequently focused on the light-responsive miR-204-3-3p and miR-430a-3p which are predicted to regulate the expression of cryptochrome genes (cry1a and cry1b). Luciferase reporter assays validated the target binding of miR-204-3-3p and miR-430a-3p to the 3'UTRs of cry1a and cry1b, respectively. Furthermore, treatment with mimics and inhibitors of these two miRNAs significantly affected the dynamic expression of their target genes but also other core clock components (clock1a, bmal1b, per1b, per2, per3), as well as the rhythmic locomotor activity of zebrafish larvae. Thus, our identification of light-responsive miRNAs reveals new intricacy in the multi-level regulation of the circadian clockwork by light.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Yi Bi
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Alessandra Boiti
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Daniela Vallone
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Wu L, Zhao M, Chen X, Wang H. A miR-219-5p-bmal1b negative feedback loop contributes to circadian regulation in zebrafish. Commun Biol 2024; 7:1671. [PMID: 39702498 DOI: 10.1038/s42003-024-07309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
MicroRNAs post-transcriptionally regulate gene expression and contribute to numerous life processes, including circadian rhythms. However, whether miRNAs contribute to zebrafish circadian regulation has not yet been investigated. Here, we showed that mature miR-219-5p, and its three pre-miRNAs, mir-219-1, mir-219-2, and mir-219-3, are rhythmically expressed primarily in Tectum opticum (TeO), Corpus cerebelli (CCe), and Crista cerellaris (CC) of the zebrafish brain. While mir-219-1 and mir-219-2 are regulated by the circadian clock through the E-like box, mir-219-3 is regulated by light via the D-box. Deleting mir-219-1, mir-219-2, or mir-219-3 individually or knocking down miR-219-5p all results in a shortened period of locomotor rhythms and up-regulation of bmal1b. RIP assays with Ago2 and miRNA pull-down assays show that miR-219-5p binds to bmal1b in the RISC. Cell transfection and in Vivo assays show that miR219-5p inhibits bmal1b through binding to its 3'UTR. Further, transcriptome analysis of miR-219-5p knockdown zebrafish adult brain reveals possible roles of miR-219-5p in phototransduction and neuroactive ligand-receptor interaction. Together, our findings demonstrate that mir-219-1, mir-219-2, and mir-219-3 are controlled directly by the circadian clock; and in turn, miR-219-5p contributes to circadian regulation by targeting bmal1b, highlighting a miR-219-5p-bmal1b negative feedback loop in the zebrafish circadian circuit.
Collapse
Affiliation(s)
- Lianxin Wu
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Meng Zhao
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xifeng Chen
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China.
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Mat A, Vu HH, Wolf E, Tessmar-Raible K. All Light, Everywhere? Photoreceptors at Nonconventional Sites. Physiology (Bethesda) 2024; 39:0. [PMID: 37905983 PMCID: PMC11283901 DOI: 10.1152/physiol.00017.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023] Open
Abstract
One of the biggest environmental alterations we have made to our species is the change in the exposure to light. During the day, we typically sit behind glass windows illuminated by artificial light that is >400 times dimmer and has a very different spectrum than natural daylight. On the opposite end are the nights that are now lit up by several orders of magnitude. This review aims to provide food for thought as to why this matters for humans and other animals. Evidence from behavioral neuroscience, physiology, chronobiology, and molecular biology is increasingly converging on the conclusions that the biological nonvisual functions of light and photosensory molecules are highly complex. The initial work of von Frisch on extraocular photoreceptors in fish, the identification of rhodopsins as the molecular light receptors in animal eyes and eye-like structures and cryptochromes as light sensors in nonmammalian chronobiology, still allowed for the impression that light reception would be a relatively restricted, localized sense in most animals. However, light-sensitive processes and/or sensory proteins have now been localized to many different cell types and tissues. It might be necessary to consider nonlight-responding cells as the exception, rather than the rule.
Collapse
Affiliation(s)
- Audrey Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- VIPS2, Vienna BioCenter, Vienna, Austria
| | - Hong Ha Vu
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Eva Wolf
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
6
|
Crnko S, Printezi MI, Zwetsloot PPM, Leiteris L, Lumley AI, Zhang L, Ernens I, Jansen TPJ, Homsma L, Feyen D, van Faassen M, du Pré BC, Gaillard CAJM, Kemperman H, Oerlemans MIFJ, Doevendans PAFM, May AM, Zuithoff NPA, Sluijter JPG, Devaux Y, van Laake LW. The circadian clock remains intact, but with dampened hormonal output in heart failure. EBioMedicine 2023; 91:104556. [PMID: 37075492 PMCID: PMC10131037 DOI: 10.1016/j.ebiom.2023.104556] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Circadian (24-h) rhythms are important regulators in physiology and disease, but systemic disease may disrupt circadian rhythmicity. Heart failure (HF) is a systemic disease affecting hormonal regulation. We investigate whether HF affects the rhythmic expression of melatonin and cortisol, main endocrine products of the central clock, and cardiac-specific troponin in patients. We corroborate the functionality of the peripheral clock directly in the organs of translational models, inaccessible in human participants. METHODS We included 46 HF patients (71.7% male, median age of 60 years, NYHA class II (32.6%) or III (67.4%), ischemic cardiomyopathy (43.5%), comorbidities: diabetes 21.7%, atrial fibrillation 30.4%), and 24 matched controls. Blood was collected at seven time-points during a 24-h period (totalling 320 HF and 167 control samples) for melatonin, cortisol, and cardiac troponin T (cTnT) measurements after which circadian rhythms were assessed through cosinor analyses, both on the individual and the group level. Next, we analysed peripheral circadian clock functionality using cosinor analysis in male animal HF models: nocturnal mice and diurnal zebrafish, based on expression of core clock genes in heart, kidneys, and liver, every 4 h during a 24-h period in a light/darkness synchronised environment. FINDINGS Melatonin and cortisol concentrations followed a physiological 24-h pattern in both patients and controls. For melatonin, acrophase occurred during the night for both groups, with significantly decreased amplitude (median 5.2 vs 8.8, P = 0.0001) and circadian variation ([maximum]/[minimum]) in heart failure patients. For cortisol, mesor showed a significant increase for HF patients (mean 331.9 vs 275.1, P = 0.017) with a difference of 56.8 (95% CI 10.3-103.3) again resulting in a relatively lower variation: median 3.9 vs 6.3 (P = 0.0058). A nocturnal blood pressure dip was absent in 77.8% of HF patients. Clock gene expression profiles (Bmal, Clock, Per, Cry) were similar and with expected phase relations in animal HF models and controls, demonstrating preserved peripheral clock functionality in HF. Furthermore, oscillations in diurnal zebrafish were expectedly in opposite phases to those of nocturnal mice. Concordantly, cTnT concentrations in HF patients revealed significant circadian oscillations. INTERPRETATION Central clock output is dampened in HF patients while the molecular peripheral clock, as confirmed in animal models, remains intact. This emphasises the importance of taking timing into account in research and therapy for HF, setting the stage for another dimension of diagnostic, prognostic and therapeutic approaches. FUNDING Hartstichting.
Collapse
Affiliation(s)
- Sandra Crnko
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Regenerative Medicine Centre, Circulatory Health Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Markella I Printezi
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Peter-Paul M Zwetsloot
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Laurynas Leiteris
- Regenerative Medicine Centre, Circulatory Health Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Andrew I Lumley
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Lu Zhang
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Isabelle Ernens
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Tijn P J Jansen
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Lilian Homsma
- Department of Internal Medicine, Jeroen Bosch Hospital, 's-Hertogenbosch, the Netherlands
| | - Dries Feyen
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Bastiaan C du Pré
- Division of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Carlo A J M Gaillard
- Division of Internal Medicine and Dermatology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Hans Kemperman
- Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Marish I F J Oerlemans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Pieter A F M Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands; Central Military Hospital, Utrecht, the Netherlands
| | - Anne M May
- Department of Epidemiology, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nicolaas P A Zuithoff
- Department of Data Science and Biostatistics, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Regenerative Medicine Centre, Circulatory Health Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Linda W van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Regenerative Medicine Centre, Circulatory Health Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Li W, Wang Z, Cao J, Dong Y, Chen Y. Perfecting the Life Clock: The Journey from PTO to TTFL. Int J Mol Sci 2023; 24:ijms24032402. [PMID: 36768725 PMCID: PMC9916482 DOI: 10.3390/ijms24032402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquity of biological rhythms in life implies that it results from selection in the evolutionary process. The origin of the biological clock has two possible hypotheses: the selective pressure hypothesis of the oxidative stress cycle and the light evasion hypothesis. Moreover, the biological clock gives life higher adaptability. Two biological clock mechanisms have been discovered: the negative feedback loop of transcription-translation (TTFL) and the post-translational oscillation mechanism (PTO). The TTFL mechanism is the most classic and relatively conservative circadian clock oscillation mechanism, commonly found in eukaryotes. We have introduced the TTFL mechanism of the classical model organisms. However, the biological clock of prokaryotes is based on the PTO mechanism. The Peroxiredoxin (PRX or PRDX) protein-based PTO mechanism circadian clock widely existing in eukaryotic and prokaryotic life is considered a more conservative oscillation mechanism. The coexistence of the PTO and TTFL mechanisms in eukaryotes prompted us to explain the relationship between the two. Finally, we speculated that there might be a driving force for the evolution of the biological clock. The biological clock may have an evolutionary trend from the PTO mechanism to the TTFL mechanism, resulting from the evolution of organisms adapting to the environment.
Collapse
Affiliation(s)
- Weitian Li
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62733778
| |
Collapse
|
8
|
Immunity, Infection, and the Zebrafish Clock. Infect Immun 2022; 90:e0058821. [PMID: 35972269 PMCID: PMC9476956 DOI: 10.1128/iai.00588-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks are universally used to coordinate biological processes with the Earth's 24-h solar day and are critical for the health and environmental success of an organism. Circadian rhythms in eukaryotes are driven by a cell-intrinsic transcription-translation feedback loop that controls daily oscillations in gene expression which regulate diverse physiological functions. Substantial evidence now exists demonstrating that immune activation and inflammatory responses during infection are under circadian control, however, the cellular mechanisms responsible for this are not well understood. The zebrafish (Danio rerio) is a powerful model organism to study vertebrate circadian biology and immune function. Zebrafish contain homologs of mammalian circadian clock genes which, to our current knowledge, function similarly to impart timekeeping ability. Consistent with studies in mammalian models, several studies in fish have now demonstrated a bidirectional relationship between the circadian clock and inflammation: the circadian clock regulates immune activity, and inflammation can alter circadian rhythms. This review summarizes our current understanding of the molecular mechanisms of the zebrafish clock and the bi-directional relationship between the circadian clock and inflammation in fish.
Collapse
|
9
|
Deppisch P, Helfrich-Förster C, Senthilan PR. The Gain and Loss of Cryptochrome/Photolyase Family Members during Evolution. Genes (Basel) 2022; 13:1613. [PMID: 36140781 PMCID: PMC9498864 DOI: 10.3390/genes13091613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
The cryptochrome/photolyase (CRY/PL) family represents an ancient group of proteins fulfilling two fundamental functions. While photolyases repair UV-induced DNA damages, cryptochromes mainly influence the circadian clock. In this study, we took advantage of the large number of already sequenced and annotated genes available in databases and systematically searched for the protein sequences of CRY/PL family members in all taxonomic groups primarily focusing on metazoans and limiting the number of species per taxonomic order to five. Using BLASTP searches and subsequent phylogenetic tree and motif analyses, we identified five distinct photolyases (CPDI, CPDII, CPDIII, 6-4 photolyase, and the plant photolyase PPL) and six cryptochrome subfamilies (DASH-CRY, mammalian-type MCRY, Drosophila-type DCRY, cnidarian-specific ACRY, plant-specific PCRY, and the putative magnetoreceptor CRY4. Manually assigning the CRY/PL subfamilies to the species studied, we have noted that over evolutionary history, an initial increase of various CRY/PL subfamilies was followed by a decrease and specialization. Thus, in more primitive organisms (e.g., bacteria, archaea, simple eukaryotes, and in basal metazoans), we find relatively few CRY/PL members. As species become more evolved (e.g., cnidarians, mollusks, echinoderms, etc.), the CRY/PL repertoire also increases, whereas it appears to decrease again in more recent organisms (humans, fruit flies, etc.). Moreover, our study indicates that all cryptochromes, although largely active in the circadian clock, arose independently from different photolyases, explaining their different modes of action.
Collapse
Affiliation(s)
| | | | - Pingkalai R. Senthilan
- Neurobiology & Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074 Wurzburg, Germany
| |
Collapse
|
10
|
The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases. Int J Mol Sci 2022; 23:ijms23137438. [PMID: 35806441 PMCID: PMC9267299 DOI: 10.3390/ijms23137438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has become an excellent model for the study of human diseases because it offers many advantages over other vertebrate animal models. The pineal gland, as well as the biological clock and circadian rhythms, are highly conserved in zebrafish, and melatonin is produced in the pineal gland and in most organs and tissues of the body. Zebrafish have several copies of the clock genes and of aanat and asmt genes, the latter involved in melatonin synthesis. As in mammals, melatonin can act through its membrane receptors, as with zebrafish, and through mechanisms that are independent of receptors. Pineal melatonin regulates peripheral clocks and the circadian rhythms of the body, such as the sleep/wake rhythm, among others. Extrapineal melatonin functions include antioxidant activity, inducing the endogenous antioxidants enzymes, scavenging activity, removing free radicals, anti-inflammatory activity through the regulation of the NF-κB/NLRP3 inflammasome pathway, and a homeostatic role in mitochondria. In this review, we introduce the utility of zebrafish to analyze the mechanisms of action of melatonin. The data here presented showed that the zebrafish is a useful model to study human diseases and that melatonin exerts beneficial effects on many pathophysiological processes involved in these diseases.
Collapse
|
11
|
Nakagawa M, Okano K, Saratani Y, Shoji Y, Okano T. Midnight/midday-synchronized expression of cryptochrome genes in the eyes of three teleost species, zebrafish, goldfish, and medaka. ZOOLOGICAL LETTERS 2022; 8:8. [PMID: 35672786 PMCID: PMC9172026 DOI: 10.1186/s40851-022-00192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Photoperiodic responses are observed in many organisms living in the temperate zones. The circadian clock is involved in photoperiodic time measurement; however, the underlying molecular mechanism for detection of the day length remains unknown. We previously compared the expression profiles of the Cryptochrome(Cry) genes in the zebrafish eye and reported that Cry1ab has a double peak with variable expression duration depending on the photoperiod. In this study, to understand commonalities and differences in the photoperiodic responses of ocular Cry genes, we identified Cryptochrome genes in two other teleost species, goldfish and medaka, living in temperate zones, and measured ocular Cry mRNA levels in all of the three species, under different photoperiods (long-day [14 h light: 10 h dark] and short-day [10 h light: 14 h dark] and in constant darkness. Cry1ab mRNA levels did not show dual peaks in goldfish or medaka under the examined conditions; however, the mRNA expression profiles of many Crys were altered in all three species, depending on the day length and light condition. Based on their expression profiles, Cry mRNA peaks were classified into three groups that better synchronize to sunrise (light-on), midnight/midday (middle points of the dark/light periods), or sunset (light-off). These results suggest the presence of multiple oscillators that oscillate independently or a complex oscillator in which Cry expression cycles change in a photoperiod-dependent manner in the eye.
Collapse
Affiliation(s)
- Marika Nakagawa
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo, 162-8480 Japan
| | - Keiko Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo, 162-8480 Japan
| | - Yuya Saratani
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo, 162-8480 Japan
| | - Yosuke Shoji
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo, 162-8480 Japan
| | - Toshiyuki Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo, 162-8480 Japan
| |
Collapse
|
12
|
Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA. Magnetic Fluctuations Entrain the Circadian Rhythm of Locomotor Activity in Zebrafish: Can Cryptochrome Be Involved? BIOLOGY 2022; 11:biology11040591. [PMID: 35453790 PMCID: PMC9025847 DOI: 10.3390/biology11040591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Most physiological processes are subject to biological circadian rhythms maintained by a complex cascade of biochemical events. The circadian rhythmicity of behavior allows organisms to use energy and resources optimally under changing environmental conditions. To that end, endogenous circadian rhythms are synchronized with external pacemakers (zeitgebers), especially daily changes in illumination. In the 1960s, it was assumed that, in addition to this primary photic cue, animals can use diurnal geomagnetic variation as a secondary zeitgeber. Earlier research found that slow magnetic fluctuations can affect some behavioral endpoints of circadian rhythms by modulating an organism’s physiological state. However, no direct experiments to test such an entrainment of biological clocks by artificial magnetic fields were performed due to the technical difficulty of eliminating natural geomagnetic variation. For the first time, we carried out such tests in a fully controlled magnetic environment using zebrafish as a research model. The experimental treatments included various light/dark cycles and continuous illumination coupled with pre-recorded natural geomagnetic variations. The obtained results indicate that slow magnetic fluctuations can entrain endogenous rhythmical activity in vertebrates. Probably, cryptochromes play a key role in this process. This research provides promising opportunities for the magnetic control of circadian processes, e.g., correcting circadian dysfunctions. Abstract In the 1960s, it was hypothesized that slow magnetic fluctuations could be a secondary zeitgeber for biological circadian rhythms. However, no comprehensive experimental research has been carried out to test the entrainment of free-running circadian rhythms by this zeitgeber. We studied the circadian patterns of the locomotor activity of zebrafish (Danio rerio) under different combinations of light regimes and slow magnetic fluctuations, based on a record of natural geomagnetic variation. A rapid synchronization of activity rhythms to an unusual 24:12 light/dark cycle was found under magnetic fluctuations with a period of 36 h. Under constant illumination, significant locomotor activity rhythms with 26.17 h and 33.07 h periods were registered in zebrafish exposed to magnetic fluctuations of 26.8 h and 33.76 h, respectively. The results reveal the potential of magnetic fluctuations for entrainment of circadian rhythms in zebrafish and genuine prospects to manipulate circadian oscillators via magnetic fields. The putative mechanisms responsible for the entrainment are discussed, including the possible role of cryptochromes.
Collapse
Affiliation(s)
- Viacheslav V. Krylov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia
- Correspondence:
| | - Evgeny I. Izvekov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Vera V. Pavlova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Natalia A. Pankova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Elena A. Osipova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| |
Collapse
|
13
|
Henry D, Joselevitch C, Matthews GG, Wollmuth LP. Expression and distribution of synaptotagmin family members in the zebrafish retina. J Comp Neurol 2022; 530:705-728. [PMID: 34468021 PMCID: PMC8792163 DOI: 10.1002/cne.25238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022]
Abstract
Synaptotagmins belong to a large family of proteins. Although various synaptotagmins have been implicated as Ca2+ sensors for vesicle replenishment and release at conventional synapses, their roles at retinal ribbon synapses remain incompletely understood. Zebrafish is a widely used experimental model for retinal research. We therefore investigated the homology between human, rat, mouse, and zebrafish synaptotagmins 1-10 using a bioinformatics approach. We also characterized the expression and distribution of various synaptotagmin (syt) genes in the zebrafish retina using RT-PCR, qPCR, and in situhybridization, focusing on the family members whose products likely underlie Ca2+ -dependent exocytosis in the central nervous system (synaptotagmins 1, 2, 5, and 7). Most zebrafish synaptotagmins are well conserved and can be grouped in the same classes as mammalian synaptotagmins, based on crucial amino acid residues needed for coordinating Ca2+ binding and determining phospholipid binding affinity. The only exception is synaptotagmin 1b, which lacks 34 amino acid residues in the C2B domain and is therefore unlikely to bind Ca2+ there. Additionally, the products of zebrafish syt5a and syt5b genes share identity with mammalian class 1 and 5 synaptotagmins. Zebrafish syt1, syt2, syt5, and syt7 paralogues are found in the zebrafish brain, eye, and retina, excepting syt1b, which is only present in the brain. The complementary expression pattern of the remaining paralogues in the retina suggests that syt1a and syt5a may underlie synchronous release and syt7a and syt7b may mediate asynchronous release or other Ca2+ -dependent processes in different retinal neurons.
Collapse
Affiliation(s)
- Diane Henry
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Christina Joselevitch
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Gary G. Matthews
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Lonnie P. Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| |
Collapse
|
14
|
Endogenous functioning and light response of the retinal clock in vertebrates. PROGRESS IN BRAIN RESEARCH 2022; 273:49-69. [DOI: 10.1016/bs.pbr.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Brochu MP, Aubin-Horth N. Shedding light on the circadian clock of the threespine stickleback. J Exp Biol 2021; 224:jeb242970. [PMID: 34854903 PMCID: PMC8729910 DOI: 10.1242/jeb.242970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
Abstract
The circadian clock is an internal timekeeping system shared by most organisms, and knowledge about its functional importance and evolution in natural environments is still needed. Here, we investigated the circadian clock of wild-caught threespine sticklebacks (Gasterosteus aculeatus) at the behavioural and molecular levels. Although their behaviour, ecology and evolution are well studied, information on their circadian rhythms are scarce. We quantified the daily locomotor activity rhythm under a light:dark cycle (LD) and under constant darkness (DD). Under LD, all fish exhibited significant daily rhythmicity, while under DD, only 18% of individuals remained rhythmic. This interindividual variation suggests that the circadian clock controls activity only in certain individuals. Moreover, under LD, some fish were almost exclusively nocturnal, while others were active around the clock. Furthermore, the most nocturnal fish were also the least active. These results suggest that light masks activity (i.e. suppresses activity without entraining the internal clock) more strongly in some individuals than others. Finally, we quantified the expression of five clock genes in the brain of sticklebacks under DD using qPCR. We did not detect circadian rhythmicity, which could indicate either that the clock molecular oscillator is highly light-dependent, or that there was an oscillation but that we were unable to detect it. Overall, our study suggests that a strong circadian control on behavioural rhythms may not necessarily be advantageous in a natural population of sticklebacks and that the daily phase of activity varies greatly between individuals because of a differential masking effect of light.
Collapse
Affiliation(s)
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
16
|
Einwich A, Seth PK, Bartölke R, Bolte P, Feederle R, Dedek K, Mouritsen H. Localisation of cryptochrome 2 in the avian retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 208:69-81. [PMID: 34677638 PMCID: PMC8918457 DOI: 10.1007/s00359-021-01506-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Cryptochromes are photolyase-related blue-light receptors acting as core components of the mammalian circadian clock in the cell nuclei. One or more members of the cryptochrome protein family are also assumed to play a role in avian magnetoreception, but the primary sensory molecule in the retina of migratory birds that mediates light-dependent magnetic compass orientation has still not been identified. The mRNA of cryptochrome 2 (Cry2) has been reported to be located in the cell nuclei of the retina, but Cry2 localisation has not yet been demonstrated at the protein level. Here, we provide evidence that Cry2 protein is located in the photoreceptor inner segments, the outer nuclear layer, the inner nuclear layer and the ganglion cell layer in the retina of night-migratory European robins, homing pigeons and domestic chickens. At the subcellular level, we find Cry2 both in the cytoplasm and the nucleus of cells residing in these layers. This broad nucleic expression rather points to a role for avian Cry2 in the circadian clock and is consistent with a function as a transcription factor, analogous to mammalian Cry2, and speaks against an involvement in magnetoreception.
Collapse
Affiliation(s)
- Angelika Einwich
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Pranav Kumar Seth
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Rabea Bartölke
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Petra Bolte
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Regina Feederle
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Neuherberg, Germany
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany. .,Research Centre for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
17
|
Balay SD, Hochstoeger T, Vilceanu A, Malkemper EP, Snider W, Dürnberger G, Mechtler K, Schuechner S, Ogris E, Nordmann GC, Ushakova L, Nimpf S, Keays DA. The expression, localisation and interactome of pigeon CRY2. Sci Rep 2021; 11:20293. [PMID: 34645873 PMCID: PMC8514597 DOI: 10.1038/s41598-021-99207-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Cryptochromes (CRY) are highly conserved signalling molecules that regulate circadian rhythms and are candidate radical pair based magnetoreceptors. Birds have at least four cryptochromes (CRY1a, CRY1b, CRY2, and CRY4), but few studies have interrogated their function. Here we investigate the expression, localisation and interactome of clCRY2 in the pigeon retina. We report that clCRY2 has two distinct transcript variants, clCRY2a, and a previously unreported splice isoform, clCRY2b which is larger in size. We show that clCRY2a mRNA is expressed in all retinal layers and clCRY2b is enriched in the inner and outer nuclear layer. To define the localisation and interaction network of clCRY2 we generated and validated a monoclonal antibody that detects both clCRY2 isoforms. Immunohistochemical studies revealed that clCRY2a/b is present in all retinal layers and is enriched in the outer limiting membrane and outer plexiform layer. Proteomic analysis showed clCRY2a/b interacts with typical circadian molecules (PER2, CLOCK, ARTNL), cell junction proteins (CTNNA1, CTNNA2) and components associated with the microtubule motor dynein (DYNC1LI2, DCTN1, DCTN2, DCTN3) within the retina. Collectively these data show that clCRY2 is a component of the avian circadian clock and unexpectedly associates with the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Spencer D Balay
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | - Tobias Hochstoeger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - Alexandra Vilceanu
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - E Pascal Malkemper
- Max Planck Research Group Neurobiology of Magnetoreception, Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - William Snider
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Stefan Schuechner
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Egon Ogris
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Gregory C Nordmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | - Lyubov Ushakova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - Simon Nimpf
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - David A Keays
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria.
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia.
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
18
|
Iida M, Nakane Y, Yoshimura T, Hirota T. Effects of Cryptochrome-modulating compounds on circadian behavioral rhythms in zebrafish. J Biochem 2021; 171:501-507. [PMID: 34528676 DOI: 10.1093/jb/mvab096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/01/2021] [Indexed: 02/02/2023] Open
Abstract
The circadian clock controls daily rhythms of various physiological processes, and impairment of its function causes many diseases including sleep disorders. Chemical compounds that regulate clock function are expected to be applied for treatment of circadian clock-related diseases. We previously identified small-molecule compounds KL001, KL101, and TH301 that lengthen the period of cellular circadian clock by directly targeting clock proteins Cryptochromes (CRYs) in mammals. KL001 targets both CRY1 and CRY2 isoforms, while KL101 and TH301 are isoform-selective compounds and require CRY C-terminal region for their effects. For further application of these compounds, the effects on locomotor activity rhythms at the organismal level need to be investigated. Here we used zebrafish larvae as an in vivo model system and found that KL001 lengthened the period of locomotor activity rhythms in a dose-dependent manner. In contrast, KL101 and TH301 showed no effect on the period. The amino acid sequences of CRY C-terminal regions are diverged in zebrafish and mammals, supporting the importance of this region for the effects of KL101 and TH301. This study demonstrated efficacy of CRY modulation for controlling circadian behavioral rhythms in organisms and suggested species-dependent differences in the effects of isoform-selective CRY-modulating compounds.
Collapse
Affiliation(s)
- Mui Iida
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yusuke Nakane
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
19
|
Moreno JM, Jesus TF, Coelho MM, Sousa VC. Adaptation and convergence in circadian-related genes in Iberian freshwater fish. BMC Ecol Evol 2021; 21:38. [PMID: 33685402 PMCID: PMC7941933 DOI: 10.1186/s12862-021-01767-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The circadian clock is a biological timing system that improves the ability of organisms to deal with environmental fluctuations. At the molecular level it consists of a network of transcription-translation feedback loops, involving genes that activate (bmal and clock - positive loop) and repress expression (cryptochrome (cry) and period (per) - negative loop). This is regulated by daily alternations of light but can also be affected by temperature. Fish, as ectothermic, depend on the environmental temperature and thus are good models to study its integration within the circadian system. Here, we studied the molecular evolution of circadian genes in four Squalius freshwater fish species, distributed across Western Iberian rivers affected by two climatic types with different environmental conditions (e.g., light and temperature). S. carolitertii and S. pyrenaicus inhabit the colder northern region under Atlantic climate type, while S. torgalensis, S. aradensis and some populations of S. pyrenaicus inhabit the warmer southern region affected by summer droughts, under Mediterranean climate type. RESULTS We identified 16 circadian-core genes in the Squalius species using a comparative transcriptomics approach. We detected evidence of positive selection in 12 of these genes using methods based on dN/dS. Positive selection was mainly found in cry and per genes of the negative loop, with 55 putatively adaptive substitutions, 16 located on protein domains. Evidence for positive selection is predominant in southern populations affected by the Mediterranean climate type. By predicting protein features we found that changes at sites under positive selection can impact protein thermostability by changing their aliphatic index and isoelectric point. Additionally, in nine genes, the phylogenetic clustering of species that belong to different clades but inhabit southern basins with similar environmental conditions indicated evolutionary convergence. We found evidence for increased nonsynonymous substitution rate in convergent lineages, likely due to positive selection at 27 sites, mostly in cry genes. CONCLUSIONS Our results support that temperature may be a selective pressure driving the evolution of genes involved in the circadian system. By integrating sequence-based functional protein prediction with dN/dS-based methods to detect selection we uncovered adaptive convergence in the southern populations, probably related to their similar thermal conditions.
Collapse
Affiliation(s)
- João M Moreno
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Tiago F Jesus
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria M Coelho
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Vitor C Sousa
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
20
|
Bolte P, Einwich A, Seth PK, Chetverikova R, Heyers D, Wojahn I, Janssen-Bienhold U, Feederle R, Hore P, Dedek K, Mouritsen H. Cryptochrome 1a localisation in light- and dark-adapted retinae of several migratory and non-migratory bird species: no signs of light-dependent activation. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2020.1870571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Petra Bolte
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Angelika Einwich
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Pranav K. Seth
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Raisa Chetverikova
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Dominik Heyers
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Irina Wojahn
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Department of Neuroscience, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Peter Hore
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
21
|
Goode C, Voeun M, Ncube D, Eisen J, Washbourne P, Tallafuss A. Late onset of Synaptotagmin 2a expression at synapses relevant to social behavior. J Comp Neurol 2021; 529:2176-2188. [PMID: 33491202 DOI: 10.1002/cne.25084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
As they form, synapses go through various stages of maturation and refinement. These steps are linked to significant changes in synaptic function, potentially resulting in emergence and maturation of behavioral outputs. Synaptotagmins are calcium-sensing proteins of the synaptic vesicle exocytosis machinery, and changes in Synaptotagmin proteins at synapses have significant effects on vesicle release and synaptic function. Here, we examined the distribution of the synaptic vesicle protein Synaptotagmin 2a (Syt2a) during development of the zebrafish nervous system. Syt2a is widely distributed throughout the midbrain and hindbrain early during larval development but very weakly expressed in the forebrain. Later in development, Syt2a expression levels in the forebrain increase, particularly in regions associated with social behavior, and most intriguingly, around the time social behavior becomes apparent. We provide evidence that Syt2a localizes to synapses onto neurons implicated in social behavior in the ventral forebrain and show that Syt2a is colocalized with tyrosine hydroxylase, a biosynthetic enzyme in the dopamine pathway. Our results suggest a developmentally important role for Syt2a in maturing synapses in the forebrain, coinciding with the emergence of social behavior.
Collapse
Affiliation(s)
- Collette Goode
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | - Mae Voeun
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | - Denver Ncube
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | - Judith Eisen
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | | | | |
Collapse
|
22
|
Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA. Circadian rhythms in zebrafish (Danio rerio) behaviour and the sources of their variability. Biol Rev Camb Philos Soc 2020; 96:785-797. [PMID: 33331134 DOI: 10.1111/brv.12678] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Over recent decades, changes in zebrafish (Danio rerio) behaviour have become popular quantitative indicators in biomedical studies. The circadian rhythms of behavioural processes in zebrafish are known to enable effective utilization of energy and resources, therefore attracting interest in zebrafish as a research model. This review covers a variety of circadian behaviours in this species, including diurnal rhythms of spawning, feeding, locomotor activity, shoaling, light/dark preference, and vertical position preference. Changes in circadian activity during zebrafish ontogeny are reviewed, including ageing-related alterations and chemically induced variations in rhythmicity patterns. Both exogenous and endogenous sources of inter-individual variability in zebrafish circadian behaviour are detailed. Additionally, we focus on different environmental factors with the potential to entrain circadian processes in zebrafish. This review describes two principal ways whereby diurnal behavioural rhythms can be entrained: (i) modulation of organismal physiological state, which can have masking or enhancing effects on behavioural endpoints related to endogenous circadian rhythms, and (ii) modulation of period and amplitude of the endogenous circadian rhythm due to competitive relationships between the primary and secondary zeitgebers. In addition, different peripheral oscillators in zebrafish can be entrained by diverse zeitgebers. This complicated orchestra of divergent influences may cause variability in zebrafish circadian behaviours, which should be given attention when planning behavioural studies.
Collapse
Affiliation(s)
- Viacheslav V Krylov
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Evgeny I Izvekov
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Vera V Pavlova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Natalia A Pankova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Elena A Osipova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| |
Collapse
|
23
|
Lu Y, Boswell M, Boswell W, Salinas RY, Savage M, Reyes J, Walter S, Marks R, Gonzalez T, Medrano G, Warren WC, Schartl M, Walter RB. Global assessment of organ specific basal gene expression over a diurnal cycle with analyses of gene copies exhibiting cyclic expression patterns. BMC Genomics 2020; 21:787. [PMID: 33176680 PMCID: PMC7659085 DOI: 10.1186/s12864-020-07202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/28/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Studying functional divergences between paralogs that originated from genome duplication is a significant topic in investigating molecular evolution. Genes that exhibit basal level cyclic expression patterns including circadian and light responsive genes are important physiological regulators. Temporal shifts in basal gene expression patterns are important factors to be considered when studying genetic functions. However, adequate efforts have not been applied to studying basal gene expression variation on a global scale to establish transcriptional activity baselines for each organ. Furthermore, the investigation of cyclic expression pattern comparisons between genome duplication created paralogs, and potential functional divergence between them has been neglected. To address these questions, we utilized a teleost fish species, Xiphophorus maculatus, and profiled gene expression within 9 organs at 3-h intervals throughout a 24-h diurnal period. RESULTS Our results showed 1.3-21.9% of genes in different organs exhibited cyclic expression patterns, with eye showing the highest fraction of cycling genes while gonads yielded the lowest. A majority of the duplicated gene pairs exhibited divergences in their basal level expression patterns wherein only one paralog exhibited an oscillating expression pattern, or both paralogs exhibit oscillating expression patterns, but each gene duplicate showed a different peak expression time, and/or in different organs. CONCLUSIONS These observations suggest cyclic genes experienced significant sub-, neo-, or non-functionalization following the teleost genome duplication event. In addition, we developed a customized, web-accessible, gene expression browser to facilitate data mining and data visualization for the scientific community.
Collapse
Affiliation(s)
- Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA.
| | - Mikki Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Raquel Ybanez Salinas
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
- The University of Texas MD Anderson Cancer Center, Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Jose Reyes
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Sean Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Rebecca Marks
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Trevor Gonzalez
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Geraldo Medrano
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| | - Wesley C Warren
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
- Developmental Biochemistry, Theodor-Boveri-Institute, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Ronald B Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
24
|
Qu C, Wang L, Zhao Y, Liu C. Molecular Evolution of Maize Ascorbate Peroxidase Genes and Their Functional Divergence. Genes (Basel) 2020; 11:E1204. [PMID: 33076444 PMCID: PMC7602589 DOI: 10.3390/genes11101204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Ascorbate peroxidase (APX) is an important antioxidant enzyme. APXs in maize are encoded by multiple genes and exist as isoenzymes. The evolutionary history and functional divergence of the maize APX gene family were analyzed through comparative genomic and experimental data on the Internet in this paper. APX genes in higher plants were divided into classes A, B, and C. Each type of APX gene in angiosperms only had one ancestral gene that was duplicated along with the genome duplication or local (or tandem) duplication of the angiosperm. A total of eight genes were retained in maize and named APXa1, APXa2, APXa3, APXb1, APXb2, APXc1.1, APXc1.2, and APXc2. The APX genes of class A were located in the chloroplasts or mitochondria, and the class B and C genes were localized in the peroxisomes and cytoplasm, respectively. The expression patterns of eight APXs were different in vegetative and reproductive organs at different growth and development stages. APXa1 and APXb1 of maize may participate in the antioxidant metabolism of vegetative organs under normal conditions. APXa2, APXb2, APXc1.1, and APXc1.2 may be involved in the stress response, and APXb2 and APXc2 may participate in the senescence response. These results provide a basis for cultivating high-yield and resistant maize varieties.
Collapse
Affiliation(s)
- Chunxiang Qu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (C.Q.); (Y.Z.)
| | - Lin Wang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China;
| | - Yingwei Zhao
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (C.Q.); (Y.Z.)
| | - Chao Liu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (C.Q.); (Y.Z.)
| |
Collapse
|
25
|
West AC, Iversen M, Jørgensen EH, Sandve SR, Hazlerigg DG, Wood SH. Diversified regulation of circadian clock gene expression following whole genome duplication. PLoS Genet 2020; 16:e1009097. [PMID: 33031398 PMCID: PMC7575087 DOI: 10.1371/journal.pgen.1009097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/20/2020] [Accepted: 09/06/2020] [Indexed: 12/22/2022] Open
Abstract
Across taxa, circadian control of physiology and behavior arises from cell-autonomous oscillations in gene expression, governed by a networks of so-called ‘clock genes’, collectively forming transcription-translation feedback loops. In modern vertebrates, these networks contain multiple copies of clock gene family members, which arose through whole genome duplication (WGD) events during evolutionary history. It remains unclear to what extent multiple copies of clock gene family members are functionally redundant or have allowed for functional diversification. We addressed this problem through an analysis of clock gene expression in the Atlantic salmon, a representative of the salmonids, a group which has undergone at least 4 rounds of WGD since the base of the vertebrate lineage, giving an unusually large complement of clock genes. By comparing expression patterns across multiple tissues, and during development, we present evidence for gene- and tissue-specific divergence in expression patterns, consistent with functional diversification of clock gene duplicates. In contrast to mammals, we found no evidence for coupling between cortisol and circadian gene expression, but cortisol mediated non-circadian regulated expression of a subset of clock genes in the salmon gill was evident. This regulation is linked to changes in gill function necessary for the transition from fresh- to sea-water in anadromous fish. Overall, this analysis emphasises the potential for a richly diversified clock gene network to serve a mixture of circadian and non-circadian functions in vertebrate groups with complex genomes. The generation of daily (circadian) rhythms in behaviour and physiology depends on the activities of networks of so-called clock genes. In vertebrates, these have become highly complex due to a process known as whole genome duplication, which has occurred repeatedly during evolutionary history, giving rise to additional copies of key elements of the clock gene network. It remains unclear whether this results in functional redundancy, or whether it has permitted new roles for clock genes to emerge. Here, based on studies in the Atlantic salmon, a species with an unusually large complement of clock genes, we present evidence in favour of the latter scenario. We observe marked tissue-specific, and developmentally-dependent differences in the expression patterns of duplicated copies of key clock genes, and we identify a subset of clock genes whose expression is associated with the physiological preparation to migrate to sea, but is independent of circadian regulation. Associated with this, cortisol secretion is uncoupled from circadian organisation, contrasting with the situation in mammals. Our results indicate that whole genome duplication has permitted clock genes to diversify into non-circadian functions, and raise interesting questions about the ubiquity of mammal-like coupling between circadian and endocrine function.
Collapse
Affiliation(s)
- Alexander C. West
- Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Marianne Iversen
- Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Even H. Jørgensen
- Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Simen R. Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - David G. Hazlerigg
- Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Shona H. Wood
- Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
26
|
Einwich A, Dedek K, Seth PK, Laubinger S, Mouritsen H. A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird. Sci Rep 2020; 10:15794. [PMID: 32978454 PMCID: PMC7519125 DOI: 10.1038/s41598-020-72579-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/28/2020] [Indexed: 01/22/2023] Open
Abstract
The primary sensory molecule underlying light-dependent magnetic compass orientation in migratory birds has still not been identified. The cryptochromes are the only known class of vertebrate proteins which could mediate this mechanism in the avian retina. Cryptochrome 4 of the night-migratory songbird the European robin (Erithacus rubecula; erCry4) has several of the properties needed to be the primary magnetoreceptor in the avian eye. Here, we report on the identification of a novel isoform of erCry4, which we named erCry4b. Cry4b includes an additional exon of 29 amino acids compared to the previously described form of Cry4, now called Cry4a. When comparing the retinal circadian mRNA expression pattern of the already known isoform erCry4a and the novel erCry4b isoform, we find that erCry4a is stably expressed throughout day and night, whereas erCry4b shows a diurnal mRNA oscillation. The differential characteristics of the two erCry4 isoforms regarding their 24-h rhythmicity in mRNA expression leads us to suggest that they might have different functions. Based on the 24-h expression pattern, erCry4a remains the more likely cryptochrome to be involved in radical-pair-based magnetoreception, but at the present time, an involvement of erCry4b cannot be excluded.
Collapse
Affiliation(s)
- Angelika Einwich
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Pranav Kumar Seth
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Sascha Laubinger
- Institute for Biology and Environmental Sciences, Evolutionäre Genetik der Pflanzen, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany. .,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.
| |
Collapse
|
27
|
Tsai SM, Chu KC, Jiang YJ. Newly identified Gon4l/Udu-interacting proteins implicate novel functions. Sci Rep 2020; 10:14213. [PMID: 32848183 PMCID: PMC7449961 DOI: 10.1038/s41598-020-70855-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/28/2020] [Indexed: 12/04/2022] Open
Abstract
Mutations of the Gon4l/udu gene in different organisms give rise to diverse phenotypes. Although the effects of Gon4l/Udu in transcriptional regulation have been demonstrated, they cannot solely explain the observed characteristics among species. To further understand the function of Gon4l/Udu, we used yeast two-hybrid (Y2H) screening to identify interacting proteins in zebrafish and mouse systems, confirmed the interactions by co-immunoprecipitation assay, and found four novel Gon4l-interacting proteins: BRCA1 associated protein-1 (Bap1), DNA methyltransferase 1 (Dnmt1), Tho complex 1 (Thoc1, also known as Tho1 or HPR1), and Cryptochrome circadian regulator 3a (Cry3a). Furthermore, all known Gon4l/Udu-interacting proteins—as found in this study, in previous reports, and in online resources—were investigated by Phenotype Enrichment Analysis. The most enriched phenotypes identified include increased embryonic tissue cell apoptosis, embryonic lethality, increased T cell derived lymphoma incidence, decreased cell proliferation, chromosome instability, and abnormal dopamine level, characteristics that largely resemble those observed in reported Gon4l/udu mutant animals. Similar to the expression pattern of udu, those of bap1, dnmt1, thoc1, and cry3a are also found in the brain region and other tissues. Thus, these findings indicate novel mechanisms of Gon4l/Udu in regulating CpG methylation, histone expression/modification, DNA repair/genomic stability, and RNA binding/processing/export.
Collapse
Affiliation(s)
- Su-Mei Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Kuo-Chang Chu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan. .,Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Singapore, Singapore. .,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan. .,Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan. .,Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
28
|
A photoperiodic time measurement served by the biphasic expression of Cryptochrome1ab in the zebrafish eye. Sci Rep 2020; 10:5056. [PMID: 32193419 PMCID: PMC7081220 DOI: 10.1038/s41598-020-61877-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/28/2020] [Indexed: 11/08/2022] Open
Abstract
The zebrafish (Danio rerio) is a model species that is used to study the circadian clock. It possesses light-entrainable circadian clocks in both central and peripheral tissues, and its core circadian factor cryptochromes (CRYs) have diverged significantly during evolution. In order to elucidate the functional diversity and involvement of CRYs in photoperiodic mechanisms, we investigated the daily expression profiles of six Cry transcripts in central (brain and eye) and peripheral (fin, skin and muscle) tissues. The zCry genes exhibited gene-specific diurnal conserved variations, and were divided into morning and evening groups. Notably, zCry1ab exhibited biphasic expression profiles in the eye, with peaks in the morning and evening. Comparing ocular zCry1ab expression in different photoperiods (18L:6D, 14L:10D, 10L:14D and 6L:18D) revealed that zCry1ab expression duration changed depending on the photoperiod: it increased at midnight and peaked before lights off. zCry1ab expression in constant light or dark after entrainment under long- or short-day conditions suggested that the evening clock and photic input pathway are involved in photoperiod-dependent zCry1ab expression. Laser microdissection followed by qRT-PCR analysis showed that the evening peak of zCry1ab was likely ascribed to visual photoreceptors. These results suggest the presence of an eye-specific photoperiodic time measurement served by zCry1ab.
Collapse
|
29
|
Analysis of zebrafish cryptochrome 2 and 4 expression in UV cone photoreceptors. Gene Expr Patterns 2020; 35:119100. [DOI: 10.1016/j.gep.2020.119100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 12/30/2019] [Accepted: 02/12/2020] [Indexed: 01/11/2023]
|
30
|
Circadian regulation of phosphodiesterase 6 genes in zebrafish differs between cones and rods: Implications for photopic and scotopic vision. Vision Res 2019; 166:43-51. [PMID: 31855667 DOI: 10.1016/j.visres.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022]
Abstract
A correlation is known to exist between visual sensitivity and oscillations in red opsinand rhodopsin gene expression in zebrafish, both regulated by the clock gene. This indicates that an endogenous circadian clock regulates behavioural visual sensitivity, apart from the regulation exerted by the pineal organ. However, the specific mechanisms for cones (photopic vision) and rods (scotopic vision) are poorly understood. In this work, we performed gene expression, cosinor and immunohistochemical analyses to investigate other key genes involved in light perception, encoding the different subunits of phosphodiesterase pde6 and transducin GαT, in constant lighting conditions and compared to normal light-dark conditions. We found that cones display prominent circadian oscillations in mRNA levels for the inhibitory subunit gene pde6ha that could contribute to the regulation of photopic sensitivity by preventing overstimulation in photopic conditions. In rods, the mRNA levels of the inhibitory subunit gene pde6ga oscillate under normal conditions and dampen down in constant light but continue oscillating in constant darkness. There is an increase in total relative expression for pde6gb in constant conditions. These observations, together with previous data, suggest a complex regulation of the scotopic sensitivity involving endogenous and non-endogenous components, possibly present also in other teleost species. The GαT genes do not display mRNA oscillations and therefore may not be essential for the circadian regulation of photosensitivity. In summary, our results support different regulation for the zebrafish photopic and scotopic sensitivities and suggest circadian regulation of pde6ha as a key factor regulating photopic sensitivity, while the regulatory mechanisms in rods appear to be more complex.
Collapse
|
31
|
Sun Y, Liu C, Huang M, Huang J, Liu C, Zhang J, Postlethwait JH, Wang H. The Molecular Evolution of Circadian Clock Genes in Spotted Gar ( Lepisosteus oculatus). Genes (Basel) 2019; 10:622. [PMID: 31426485 PMCID: PMC6723592 DOI: 10.3390/genes10080622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms are biological rhythms with a period of approximately 24 h. While canonical circadian clock genes and their regulatory mechanisms appear highly conserved, the evolution of clock gene families is still unclear due to several rounds of whole genome duplication in vertebrates. The spotted gar (Lepisosteus oculatus), as a non-teleost ray-finned fish, represents a fish lineage that diverged before the teleost genome duplication (TGD), providing an outgroup for exploring the evolutionary mechanisms of circadian clocks after whole-genome duplication. In this study, we interrogated the spotted gar draft genome sequences and found that spotted gar contains 26 circadian clock genes from 11 families. Phylogenetic analysis showed that 9 of these 11 spotted gar circadian clock gene families have the same number of genes as humans, while the members of the nfil3 and cry families are different between spotted gar and humans. Using phylogenetic and syntenic analyses, we found that nfil3-1 is conserved in vertebrates, while nfil3-2 and nfil3-3 are maintained in spotted gar, teleost fish, amphibians, and reptiles, but not in mammals. Following the two-round vertebrate genome duplication (VGD), spotted gar retained cry1a, cry1b, and cry2, and cry3 is retained in spotted gar, teleost fish, turtles, and birds, but not in mammals. We hypothesize that duplication of core clock genes, such as (nfil3 and cry), likely facilitated diversification of circadian regulatory mechanisms in teleost fish. We also found that the transcription factor binding element (Ahr::Arnt) is retained only in one of the per1 or per2 duplicated paralogs derived from the TGD in the teleost fish, implicating possible subfuctionalization cases. Together, these findings help decipher the repertoires of the spotted gar's circadian system and shed light on how the vertebrate circadian clock systems have evolved.
Collapse
Affiliation(s)
- Yi Sun
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.
| | - Chao Liu
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
| | - Moli Huang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Jian Huang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Changhong Liu
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Jiguang Zhang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
| | | | - Han Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China.
| |
Collapse
|
32
|
Kim BM, Amores A, Kang S, Ahn DH, Kim JH, Kim IC, Lee JH, Lee SG, Lee H, Lee J, Kim HW, Desvignes T, Batzel P, Sydes J, Titus T, Wilson CA, Catchen JM, Warren WC, Schartl M, Detrich HW, Postlethwait JH, Park H. Antarctic blackfin icefish genome reveals adaptations to extreme environments. Nat Ecol Evol 2019; 3:469-478. [PMID: 30804520 PMCID: PMC7307600 DOI: 10.1038/s41559-019-0812-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/15/2019] [Indexed: 11/09/2022]
Abstract
Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea
| | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Seunghyun Kang
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea
| | - Do-Hwan Ahn
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea
| | - Jin-Hyoung Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea
| | - Il-Chan Kim
- Department of Polar Life Science, Korea Polar Research Institute, Incheon, Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea.,Polar Science, University of Science and Technology, Daejeon, Korea
| | - Sung Gu Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea.,Polar Science, University of Science and Technology, Daejeon, Korea
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea.,Polar Science, University of Science and Technology, Daejeon, Korea
| | - Jungeun Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea.,Polar Science, University of Science and Technology, Daejeon, Korea
| | - Han-Woo Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea.,Polar Science, University of Science and Technology, Daejeon, Korea
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Julian M Catchen
- Department of Animal Biology, University of Illinois, Champaign, IL, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Manfred Schartl
- Department of Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany. .,Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA. .,Department of Biology, Texas A&M University, College Station, TX, USA.
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, USA.
| | | | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea. .,Polar Science, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
33
|
Garcia de la serrana D, Wreggelsworth K, Johnston IA. Duplication of a Single myhz1.1 Gene Facilitated the Ability of Goldfish ( Carassius auratus) to Alter Fast Muscle Contractile Properties With Seasonal Temperature Change. Front Physiol 2018; 9:1724. [PMID: 30568597 PMCID: PMC6290348 DOI: 10.3389/fphys.2018.01724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022] Open
Abstract
Seasonal temperature changes markedly effect the swimming performance of some cyprinid fish acutely tested at different temperatures, involving a restructuring of skeletal muscle phenotype including changes in contractile properties and myosin heavy chain expression. We analyzed the transcriptome of fast myotomal muscle from goldfish (Carassius auratus L.) acclimated to either 8 or 25°C for 4 weeks (12 h light: 12 h dark) and identified 10 myosin heavy chains (myh) and 13 myosin light chain (myl) transcripts. Goldfish orthologs were classified based on zebrafish nomenclature as myhz1.1α, myhz1.1β, myhz1.1γ, myha, myhb, embryo_myh1, myh9b, smyh2, symh3, and myh11 (myosin heavy chains) and myl1a, myl1b, myl2, myl9a, myl9b, myl3, myl13, myl6, myl12.1a, myl12.1b, myl12.2a, myl12.2b, and myl10 (myosin light chains). The most abundantly expressed transcripts myhz1.1α, myhz1.1β, myhz1.1γ, myha, myl1a, myl1b, myl2, and myl3) were further investigated in fast skeletal muscle of goldfish acclimated to either 4, 8, 15, or 30°C for 12 weeks (12 h light:12 h dark). Total copy number for the myosin heavy chains showed a distinct optimum at 15°C (P < 0.01). Together myhz1.1α and myhz1.1β comprised 90 to 97% of myhc transcripts below 15°C, but only 62% at 30°C. Whereas myhz1.1α and myhz1.1β were equally abundant at 4 and 8°C, myhz1.1β transcripts were 17 and 12 times higher than myhz1.1α at 15 and 30°C, respectively, (P < 0.01). Myhz1.1γ expression was at least nine-fold higher at 30°C than at cooler temperatures (P < 0.01). In contrast, the expression of myha and myosin light chains showed no consistent pattern with acclimation temperature. A phylogenetic analysis indicated that the previously reported ability of goldfish and common carp to alter contractile properties and myofibrillar ATPase activity with temperature acclimation was related to the duplication of a single myhz1.1 fast muscle myosin heavy chain found in basal cyprinids such as the zebrafish (Danio rerio).
Collapse
Affiliation(s)
- Daniel Garcia de la serrana
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
- Serra Húnter Fellow, Cell Biology Physiology and Immunology Department, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Kristin Wreggelsworth
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
| | - Ian A. Johnston
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
| |
Collapse
|
34
|
Zhao H, Di Mauro G, Lungu-Mitea S, Negrini P, Guarino AM, Frigato E, Braunbeck T, Ma H, Lamparter T, Vallone D, Bertolucci C, Foulkes NS. Modulation of DNA Repair Systems in Blind Cavefish during Evolution in Constant Darkness. Curr Biol 2018; 28:3229-3243.e4. [PMID: 30318355 DOI: 10.1016/j.cub.2018.08.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/19/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022]
Abstract
How the environment shapes the function and evolution of DNA repair systems is poorly understood. In a comparative study using zebrafish and the Somalian blind cavefish, Phreatichthys andruzzii, we reveal that during evolution for millions of years in continuous darkness, photoreactivation DNA repair function has been lost in P. andruzzii. We demonstrate that this loss results in part from loss-of-function mutations in pivotal DNA-repair genes. Specifically, C-terminal truncations in P. andruzzii DASH and 6-4 photolyase render these proteins predominantly cytoplasmic, with consequent loss in their functionality. In addition, we reveal a general absence of light-, UV-, and ROS-induced expression of P. andruzzii DNA-repair genes. This results from a loss of function of the D-box enhancer element, which coordinates and enhances DNA repair in response to sunlight. Our results point to P. andruzzii being the only species described, apart from placental mammals, that lacks the highly evolutionary conserved photoreactivation function. We predict that in the DNA repair systems of P. andruzzii, we may be witnessing the first stages in a process that previously occurred in the ancestors of placental mammals during the Mesozoic era.
Collapse
Affiliation(s)
- Haiyu Zhao
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Giuseppe Di Mauro
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Sebastian Lungu-Mitea
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld, 69120 Heidelberg, Germany; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Pietro Negrini
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Andrea Maria Guarino
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Biology, University of Naples "Federico II," 80126 Naples, Italy
| | - Elena Frigato
- Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Hongju Ma
- Botanical Institute, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Daniela Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Nicholas S Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
35
|
Kumar V, Sharma A. Common features of circadian timekeeping in diverse organisms. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Ramasamy S, Sharma S, Iyengar BR, Vellarikkal SK, Sivasubbu S, Maiti S, Pillai B. Identification of novel circadian transcripts in the zebrafish retina. J Exp Biol 2018; 222:jeb.192195. [DOI: 10.1242/jeb.192195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
Abstract
High fecundity, transparent embryos for monitoring the rapid development of organs and the availability of a well-annotated genome has made zebrafish a model organism of choice for developmental biology and neurobiology. This vertebrate model, a favourite in chronobiology studies, shows striking circadian rhythmicity in behaviour. Here, we identify novel genes in the zebrafish genome, which are expressed in the zebrafish retina. We further resolve the expression pattern over time and tentatively assign specific novel transcripts to retinal bipolar cells of the inner nuclear layer. Using chemical ablation and free run experiments we segregate the transcripts that are rhythmic when entrained by light from those that show sustained oscillations in the absence of external cues. The transcripts reported here with rigorous annotation and specific functions in circadian biology provide the groundwork for functional characterisation of novel players in the zebrafish retinal clock.
Collapse
Affiliation(s)
- Soundhar Ramasamy
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Surbhi Sharma
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Bharat Ravi Iyengar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
| | - Shamsudheen Karuthedath Vellarikkal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Souvik Maiti
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
37
|
Gust KA, Stanley JK, Wilbanks MS, Mayo ML, Chappell P, Jordan SM, Moores LC, Kennedy AJ, Barker ND. The increased toxicity of UV-degraded nitroguanidine and IMX-101 to zebrafish larvae: Evidence implicating oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:228-245. [PMID: 28763742 DOI: 10.1016/j.aquatox.2017.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Insensitive munitions (IMs) improve soldier safety by decreasing sympathetic detonation during training and use in theatre. IMs are being increasingly deployed, although the environmental effects of IM constituents such as nitroguanidine (NQ) and IM mixture formulations such as IMX-101 remain largely unknown. In the present study, we investigated the acute (96h) toxicity of NQ and IMX-101 to zebrafish larvae (21d post-fertilization), both in the parent materials and after the materials had been irradiated with environmentally-relevant levels of ultraviolet (UV) light. The UV-treatment increased the toxicity of NQ by 17-fold (LC50 decreased from 1323mg/L to 77.2mg/L). Similarly, UV-treatment increased the toxicity of IMX-101 by nearly two fold (LC50 decreased from 131.3 to 67.6mg/L). To gain insight into the cause(s) of the observed UV-enhanced toxicity of the IMs, comparative molecular responses to parent and UV-treated IMs were assessed using microarray-based global transcript expression assays. Both gene set enrichment analysis (GSEA) and differential transcript expression analysis coupled with pathway and annotation cluster enrichment were conducted to provide functional interpretations of expression results and hypothetical modes of toxicity. The parent NQ exposure caused significant enrichment of functions related to immune responses and proteasome-mediated protein metabolism occurring primarily at low, sublethal exposure levels (5.5 and 45.6mg/L). Enriched functions in the IMX-101 exposure were indicative of increased xenobiotic metabolism, oxidative stress mitigation, protein degradation, and anti-inflammatory responses, each of which displayed predominantly positive concentration-response relationships. UV-treated NQ had a fundamentally different transcriptomic expression profile relative to parent NQ causing positive concentration-response relationships for genes involved in oxidative-stress mitigation pathways and inhibited expression of multiple cadherins that facilitate zebrafish neurological and retinal development. Transcriptomic profiles were similar between UV-treated versus parent IMX-101 exposures. However, more significant and diverse enrichment as well as greater magnitudes of differential expression for oxidative stress responses were observed in UV-treated IMX-101 exposures. Further, transcriptomics indicated potential for cytokine signaling suppression providing potential connections between oxidative stress and anti-inflammatory responses. Given the overall results, we hypothesize that the increased toxicity of UV-irradiated NQ and the IMX-101 mixture result from breakdown products with elevated potential to elicit oxidative stress.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA.
| | - Jacob K Stanley
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA; Stanley Environmental Consulting, Waynesboro, MS 39367, USA
| | - Mitchell S Wilbanks
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA
| | - Michael L Mayo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA
| | | | - Shinita M Jordan
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA
| | - Lee C Moores
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA
| | - Alan J Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA
| | | |
Collapse
|
38
|
Hanson D, Hu J, Hendry AP, Barrett RDH. Heritable gene expression differences between lake and stream stickleback include both parallel and antiparallel components. Heredity (Edinb) 2017; 119:339-348. [PMID: 28832577 PMCID: PMC5637370 DOI: 10.1038/hdy.2017.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
The repeated phenotypic patterns that characterize populations undergoing parallel evolution provide support for a deterministic role of adaptation by natural selection. Determining the level of parallelism also at the genetic level is thus central to our understanding of how natural selection works. Many studies have looked for repeated genomic patterns in natural populations, but work on gene expression is less common. The studies that have examined gene expression have found some support for parallelism, but those studies almost always used samples collected from the wild that potentially confounds the effects of plasticity with heritable differences. Here we use two independent pairs of lake and stream threespine stickleback (Gasterosteus aculeatus) raised in common garden conditions to assess both parallel and antiparallel (that is, similar versus different directions of lake–stream expression divergence in the two watersheds) heritable gene expression differences as measured by total RNA sequencing. We find that more genes than expected by chance show either parallel (22 genes, 0.18% of expressed genes) or antiparallel (24 genes, 0.20% of expressed genes) lake–stream expression differences. These results correspond well with previous genomic studies in stickleback ecotype pairs that found similar levels of parallelism. We suggest that parallelism might be similarly constrained at the genomic and transcriptomic levels.
Collapse
Affiliation(s)
- D Hanson
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - J Hu
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - A P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - R D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Niu P, Zhong Z, Wang M, Huang G, Xu S, Hou Y, Yan Y, Wang H. Zinc finger transcription factor Sp7/Osterix acts on bone formation and regulates col10a1a expression in zebrafish. Sci Bull (Beijing) 2017; 62:174-184. [PMID: 36659402 DOI: 10.1016/j.scib.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 01/21/2023]
Abstract
Sp7/Osterix as a zinc finger transcription factor is expressed specifically in osteoblasts. Embryonic lethality of Sp7 knockout mice, however, has prevented from examining the functions of Sp7 in osteoblast and bone formation in live animals. Here we used TALEN, a versatile genome-editing tool, to generate one zebrafish sp7 mutant line. Homozygous sp7-/- mutant zebrafish are able to survive to adulthood. Alizarin Red staining and Micro-CT analysis showed that sp7-/- larvae and adult fish fail to develop normal opercula, and display curved tail fins and severe craniofacial malformation, while Alcian Blue staining showed no obvious cartilage defects in sp7-/- fish. Quantitative RT-PCR showed that a number of osteoblast markers including spp1, phex, col1ala, and col1a1b are significantly down-regulated in sp7-/- fish. Furthermore, col10a1a, whose ortholog is the cartilage marker in mice, was shown to be a novel downstream gene of Sp7 as an osteoblast marker in zebrafish. Together, these results suggest that Sp7 is required for zebrafish bone development and zebrafish sp7 mutants provide animal models for investigating novel aspects of bone development.
Collapse
Affiliation(s)
- Pengfei Niu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Mingyong Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Guodong Huang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Shuhao Xu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yi Hou
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yilin Yan
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.
| |
Collapse
|
40
|
Identification of medaka magnetoreceptor and cryptochromes. SCIENCE CHINA-LIFE SCIENCES 2016; 60:271-278. [PMID: 27858334 DOI: 10.1007/s11427-016-0266-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/16/2016] [Indexed: 11/27/2022]
Abstract
Magnetoreception is a hallmark ability of animals for orientation and migration via sensing and utilizing geomagnetic fields. Magnetoreceptor (MagR) and cryptochromes (Cry) have recently been identified as the basis for magnetoreception in Drosophila. However, it has remained unknown whether MagR and Cry have conserved roles in diverse animals. Here we report the identification and expression of magr and cry genes in the fish medaka (Oryzias latipes). Cloning and sequencing identified a single magr gene, four cry genes and one cry-like gene in medaka. By sequence alignment, chromosomal synteny and gene structure analysis, medaka cry2 and magr were found to be the orthologs of human Cry2 and Magr, with cry1aa and cry1ab being coorthologs of human Cry1. Therefore, magr and cry2 have remained as single copy genes, whereas cry1 has undergone two rounds of gene duplication in medaka. Interestingly, magr and cry genes were detected in various stages throughout embryogenesis and displayed ubiquitous expression in adult organs rather than specific or preferential expression in neural organs such as brain and eye. Importantly, magr knockdown by morpholino did not produce visible abnormality in developing embryos, pointing to the possibility of producing viable magr knockouts in medaka as a vertebrate model for magnet biology.
Collapse
|
41
|
Identification of zebrafish magnetoreceptor and cryptochrome homologs. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1324-1331. [DOI: 10.1007/s11427-016-0195-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/03/2016] [Indexed: 01/27/2023]
|
42
|
Mei Q, Sadovy Y, Dvornyk V. Molecular evolution of cryptochromes in fishes. Gene 2015; 574:112-20. [PMID: 26238701 DOI: 10.1016/j.gene.2015.07.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/03/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022]
Abstract
Circadian rhythmicity is an endogenous biological cycle of about 24h, which exists in cyanobacteria and fungi, plants and animals. Circadian rhythms improve the adaptability of organisms in both constant and changing environments. The cryptochrome (CRY) is a key element of the circadian system in various animal groups including fishes. We studied evolution of cryptochromes in the phylogenetically and ecologically diverse fish taxa. The phylogenetic tree of fish Cry features two major clades: Cry1 and Cry2. Teleosts possess extra copies of Cry1 due to the genome duplication, which resulted in 3 main paralogous subfamilies (1A, 1B and 1C). Cry1 experienced further diversification through additional duplications in some taxa. 1A of Cry1 is more conserved than the other paralogs (dN=0.010 ± 0.003, π=0.119 ± 0.058). The analysis of selection indicated that, while the Cry homologs in fish evolved under the different levels of selection pressure, strong purifying selection (average ω=0.017) dominated in their evolution.
Collapse
Affiliation(s)
- Qiming Mei
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Yvonne Sadovy
- School of Biological Sciences, University of Hong Kong, Pokfulam Rd., Hong Kong, SAR, People's Republic of China
| | - Volodymyr Dvornyk
- School of Biological Sciences, University of Hong Kong, Pokfulam Rd., Hong Kong, SAR, People's Republic of China; Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
43
|
Mei Q, Dvornyk V. Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes. PLoS One 2015; 10:e0135940. [PMID: 26352435 PMCID: PMC4564169 DOI: 10.1371/journal.pone.0135940] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Photolyases and cryptochromes are evolutionarily related flavoproteins, which however perform distinct physiological functions. Photolyases (PHR) are evolutionarily ancient enzymes. They are activated by light and repair DNA damage caused by UV radiation. Although cryptochromes share structural similarity with DNA photolyases, they lack DNA repair activity. Cryptochrome (CRY) is one of the key elements of the circadian system in animals. In plants, CRY acts as a blue light receptor to entrain circadian rhythms, and mediates a variety of light responses, such as the regulation of flowering and seedling growth. RESULTS We performed a comprehensive evolutionary analysis of the CRY/PHR superfamily. The superfamily consists of 7 major subfamilies: CPD class I and CPD class II photolyases, (6-4) photolyases, CRY-DASH, plant PHR2, plant CRY and animal CRY. Although the whole superfamily evolved primarily under strong purifying selection (average ω = 0.0168), some subfamilies did experience strong episodic positive selection during their evolution. Photolyases were lost in higher animals that suggests natural selection apparently became weaker in the late stage of evolutionary history. The evolutionary time estimates suggested that plant and animal CRYs evolved in the Neoproterozoic Era (~1000-541 Mya), which might be a result of adaptation to the major climate and global light regime changes occurred in that period of the Earth's geological history.
Collapse
Affiliation(s)
- Qiming Mei
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Volodymyr Dvornyk
- School of Biological Sciences, the University of Hong Kong, Pokfulam Rd., Hong Kong SAR, People’s Republic of China
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- * E-mail:
| |
Collapse
|
44
|
Wang M, Zhong Z, Zhong Y, Zhang W, Wang H. The zebrafish period2 protein positively regulates the circadian clock through mediation of retinoic acid receptor (RAR)-related orphan receptor α (Rorα). J Biol Chem 2014; 290:4367-82. [PMID: 25544291 DOI: 10.1074/jbc.m114.605022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the characterization of a null mutant for zebrafish circadian clock gene period2 (per2) generated by transcription activator-like effector nuclease and a positive role of PER2 in vertebrate circadian regulation. Locomotor experiments showed that per2 mutant zebrafish display reduced activities under light-dark and 2-h phase delay under constant darkness, and quantitative real time PCR analyses showed up-regulation of cry1aa, cry1ba, cry1bb, and aanat2 but down-regulation of per1b, per3, and bmal1b in per2 mutant zebrafish, suggesting that Per2 is essential for the zebrafish circadian clock. Luciferase reporter assays demonstrated that Per2 represses aanat2 expression through E-box and enhances bmal1b expression through the Ror/Rev-erb response element, implicating that Per2 plays dual roles in the zebrafish circadian clock. Cell transfection and co-immunoprecipitation assays revealed that Per2 enhances bmal1b expression through binding to orphan nuclear receptor Rorα. The enhancing effect of mouse PER2 on Bmal1 transcription is also mediated by RORα even though it binds to REV-ERBα. Moreover, zebrafish Per2 also appears to have tissue-specific regulatory roles in numerous peripheral organs. These findings help define the essential functions of Per2 in the zebrafish circadian clock and in particular provide strong evidence for a positive role of PER2 in the vertebrate circadian system.
Collapse
Affiliation(s)
- Mingyong Wang
- From the Center for Circadian Clocks and School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhaomin Zhong
- From the Center for Circadian Clocks and School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yingbin Zhong
- From the Center for Circadian Clocks and School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Wei Zhang
- From the Center for Circadian Clocks and School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Han Wang
- From the Center for Circadian Clocks and School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|