1
|
Shinde R, Hackula A, Marycz M, Bose A, O'Shea R, Barth S, Murphy JD, Wall DM. Dynamic anaerobic digestion-based biorefineries for on-demand renewable energy and bioproducts in a circular bioeconomy. Trends Biotechnol 2025; 43:1140-1165. [PMID: 39955232 DOI: 10.1016/j.tibtech.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Anaerobic digestion (AD) is an important biotechnology for treating biodegradable residues and producing bioenergy, yet its full potential remains untapped. We investigate a two-phase AD system for biorefinery applications, producing valuable bioproducts, such as volatile fatty acids (VFAs) and biogas, from grass feedstock. We introduce a demand-driven operational approach to match market conditions, while minimising water use by reusing the process effluent. The proposed biorefinery model yields ~23 kg of VFAs and 75 kWh of biogas, with a potential gross revenue of €84 per tonne of grass. However, a preliminary economic analysis indicates that this biorefinery model is currently unprofitable. A sensitivity analysis suggests that reducing operating costs through technology advancements and policy support are vital to ensure economic viability. Such biorefineries offer opportunities for the diversification of farmers' incomes and the transition away from fossil resources. Our work exemplifies the role of AD as a key biotechnology in the circular bioeconomy.
Collapse
Affiliation(s)
- Rajas Shinde
- SFI MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Crops, Environment and Land Use Programme, Crop Science Department, Teagasc, Oak Park, Ireland
| | - Anga Hackula
- SFI MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| | - Milena Marycz
- SFI MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Faculty of Electronics, Telecommunications and Informatics, and Advanced Materials Centre, Gdansk University of Technology, Gdańsk, Poland
| | - Archishman Bose
- SFI MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland; Process and Chemical Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| | - Richard O'Shea
- SFI MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| | - Susanne Barth
- Crops, Environment and Land Use Programme, Crop Science Department, Teagasc, Oak Park, Ireland
| | - Jerry D Murphy
- SFI MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| | - David M Wall
- SFI MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Atasoy M, Scott WT, Regueira A, Mauricio-Iglesias M, Schaap PJ, Smidt H. Biobased short chain fatty acid production - Exploring microbial community dynamics and metabolic networks through kinetic and microbial modeling approaches. Biotechnol Adv 2024; 73:108363. [PMID: 38657743 DOI: 10.1016/j.biotechadv.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
In recent years, there has been growing interest in harnessing anaerobic digestion technology for resource recovery from waste streams. This approach has evolved beyond its traditional role in energy generation to encompass the production of valuable carboxylic acids, especially volatile fatty acids (VFAs) like acetic acid, propionic acid, and butyric acid. VFAs hold great potential for various industries and biobased applications due to their versatile properties. Despite increasing global demand, over 90% of VFAs are currently produced synthetically from petrochemicals. Realizing the potential of large-scale biobased VFA production from waste streams offers significant eco-friendly opportunities but comes with several key challenges. These include low VFA production yields, unstable acid compositions, complex and expensive purification methods, and post-processing needs. Among these, production yield and acid composition stand out as the most critical obstacles impacting economic viability and competitiveness. This paper seeks to offer a comprehensive view of combining complementary modeling approaches, including kinetic and microbial modeling, to understand the workings of microbial communities and metabolic pathways in VFA production, enhance production efficiency, and regulate acid profiles through the integration of omics and bioreactor data.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Department of Environmental Technology, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| | - William T Scott
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Alberte Regueira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, Belgium.
| | - Miguel Mauricio-Iglesias
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Peter J Schaap
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Hauke Smidt
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Kim D, Cha J, Lee C. Enhanced methane production with co-feeding spent coffee grounds using spare capacity of existing anaerobic food waste digesters. Sci Rep 2024; 14:4472. [PMID: 38396086 PMCID: PMC10891051 DOI: 10.1038/s41598-024-54610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
With increasing coffee consumption worldwide, the efficient and sustainable management of spent coffee grounds (SCG) has become increasingly challenging. This study investigated the anaerobic co-digestion of small amounts of SCG with food waste (FW) at increasing co-feeding ratios of 1:100-1:10 (volatile solids basis) to assess the possibility of SCG treatment using the spare capacity of existing anaerobic digesters. Co-feeding SCG increased methane production compared to FW mono-digestion in the tested range of co-feeding ratios without compromising process stability. Methane yield did not further increase when the SCG/FW ratio increased above 4%, and process failure occurred at a 1:10 co-feeding ratio without trace element supplementation. The enhanced methanogenic performance was attributed to increased protein removal efficiency, which was potentially related to the promotion of peptide hydrolysis. The overall results suggest that co-feeding appropriate small amounts of SCG to FW digesters can be a realistic sustainable option for SCG management.
Collapse
Affiliation(s)
- Danbee Kim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 25, Samso-Ro 270Beon-Gil, Buk-Gu, Gwangju, 61003, Republic of Korea
| | - Junho Cha
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea
| | - Changsoo Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
4
|
Jiang M, Khunjar W, Li A, Chandran K. Divergent microbial structure still results in convergent microbial function during arrested anaerobic digestion of food waste at different hydraulic retention times. BIORESOURCE TECHNOLOGY 2024; 393:130069. [PMID: 38000643 DOI: 10.1016/j.biortech.2023.130069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
In this study, two arrested anaerobic digestion bioreactors, fed with food waste, operated under different hydraulic retention times (HRTs) exhibited similar total volatile fatty acid (VFA) yields (p = 0.09). 16S rRNA gene sequencing revealed distinct microbial structure (p = 0.02) at the two HRTs. However, between the two HRTs, there were no differences in potential (DNA) and extant (mRNA) functionality for the production of acetic (AA)-, propionic (PA)-, butyric (BA)- and valeric-acid (VA), as indicated by the metagenome and metatranscriptome data, respectively. The highest potential and extant functionality for PA production in the reactor microbiomes mirrored the highest abundance of PA in the reactor effluents. Meta-omics analysis of BA production indicated possible metabolite exchange across different community members. Notably, the basis for similar VFA production performance observed under the HRTs tested lies in the community-level redundancy in convergent acidification functions and pathways, rather than trends in community-level structure alone.
Collapse
Affiliation(s)
- Minxi Jiang
- Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | | | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kartik Chandran
- Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
5
|
Liu F, Cheng W, Xu J, Wang M, Wan T, Ren J, Li D, Xie Q. Promoting short-chain fatty acids production from sewage sludge via acidogenic fermentation: Optimized operation factors and iron-based persulfate activation system. CHEMOSPHERE 2023; 342:140148. [PMID: 37714473 DOI: 10.1016/j.chemosphere.2023.140148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Promoting short-chain fatty acids (SCFAs) production and ensuring the stability of SCFAs-producing process are becoming the two major issues for popularizing the acidogenic fermentation (AF). The key controlling operating and influencing factors during anaerobic fermentation process were thoroughly reviewed to facilitate better process performance prediction and to optimize the process control of SCFAs promotion. The wide utilization of iron salt flocculants during wastewater treatment could result in iron accumulating in sewage sludge which influenced AF performance. Additionally, appropriate ferric chloride (FC) could promote the SCFAs accumulation, while poly ferric sulfate (PFS) inhibited the bioprocess. Iron/persulfate (PS) system was proved to effectively enhance the SCFAs production while mechanism analysis revealed that the strong oxidizing radicals remarkably enhanced the solubilization and hydrolysis. Moreover, the changes of oxidation-reduction potential (ORP) and pH caused by iron/PS system exhibited more negative effects on the methanogens, comparing to the acidogenic bacteria. Furthermore, performance and mechanisms of different iron species-activating PS, organic chelating agents and iron-rich biochar derived from sewage sludge were also elucidated to extend and strengthen understanding of the iron/PS system for enhancing SCFAs production. Considering the large amount of generated Fe-sludge and the multiple benefits of iron activating PS system, carbon neutral wastewater treatment plants (WWTPs) were proposed with Fe-sludge as a promising recycling composite to improve AF performance. It is expected that this review can deepen the knowledge of optimizing AF process and improving the iron/PS system for enhancing SCFAs production and provide useful insights to researchers in this field.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China.
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Dong Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Qiqi Xie
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
6
|
Al-Mamun A, Ahmed W, Jafary T, Nayak JK, Al-Nuaimi A, Sana A. Recent advances in microbial electrosynthesis system: Metabolic investigation and process optimization. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
7
|
Wang C, Yang Y, Wang Y, Wang D, Xu X, Wang Y, Li L, Yang C, Zhang T. Absolute quantification and genome-centric analyses elucidate the dynamics of microbial populations in anaerobic digesters. WATER RESEARCH 2022; 224:119049. [PMID: 36108398 DOI: 10.1016/j.watres.2022.119049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) relies on myriads of functions performed by complex microbial communities in customized settings, thus, a comprehensive investigation on the AD microbiome is central to the fine-tuned control. Most current AD microbiome studies are based on relative abundance, which hinders the interpretation of microbes' dynamics and inter-sample comparisons. Here, we developed an absolute quantification (AQ) approach that integrated cellular spike-ins with metagenomic sequencing to elucidate microbial community variations and population dynamics in four anaerobic digesters. Using this method, 253 microbes were defined as decaying populations with decay rates ranging from -0.05 to -5.85 d-1, wherein, a population from Flavobacteriaceae family decayed at the highest rates of -3.87 to -5.85 d-1 in four digesters. Meanwhile, 25 microbes demonstrated the growing trend in the AD processes with growth rates ranging from 0.11 to 1.77 d-1, and genome-centric analysis assigned some of the populations to the functional niches of hydrolysis, short-chain fatty acids metabolism, and methane generation. Additionally, we observed that the specific activity of methanogens was lower in the prolonged digestion stage, and redundancy analysis revealed that the feedstock composition and the digestion duration were the two key parameters in governing the AD microbial compositions.
Collapse
Affiliation(s)
- Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Yubo Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Comparative Metagenomics of Anaerobic Digester Communities Reveals Sulfidogenic and Methanogenic Microbial Subgroups in Conventional and Plug Flow Residential Septic Tank Systems. Processes (Basel) 2022. [DOI: 10.3390/pr10030436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
On-site wastewater treatment systems (OWTS) are primarily monitored using physiochemical factors, including chemical oxygen demand (COD) and residual total suspended solids (TSS), which are indirect measures of the microbial action during the anaerobic digestion process. Changes in anaerobic digester microbial communities can alter the digester performance, but this information cannot be directly obtained from traditional physicochemical indicators. The potential of metagenomic DNA sequencing as a tool for taxonomic and functional profiling of microbial communities was examined in both common conventional and plug flow-type anaerobic digesters (single-pass and recirculating). Compared to conventional digesters, plug flow-type digesters had higher relative levels of sulfate-reducing bacteria (Desulfovibrio spp.) and hydrogenotrophic methanogens (Methanospirillum spp.). In contrast, recirculating anaerobic digesters were enriched with denitrifier bacteria and hydrogenotrophic methanogens, and both were significantly correlated with physicochemical factors such as COD and TSS. Stratification of microbial communities was observed along the digester treatment process according to hydrolytic, acidogenic, acetogenic, and methanogenic subgroups. These results indicate that the high-throughput DNA sequencing may be useful as a monitoring tool to characterize the changes in bacterial communities and the functional profile due to differences in digester design in on-site systems.
Collapse
|
9
|
Guo Q, Yin Q, Du J, Zuo J, Wu G. New insights into the r/K selection theory achieved in methanogenic systems through continuous-flow and sequencing batch operational modes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150732. [PMID: 34606861 DOI: 10.1016/j.scitotenv.2021.150732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion is achieved through cooperation among various types of microorganisms, and the regulation of microbial communities is key to achieving stable system operation. In this study, the r/K selection theory was adopted to examine the system performance and microbial characteristics in anaerobic reactors with different operating modes (continuous-flow reactors, CFRs; sequencing batch reactors, SBRs) and sludge retention times (25 and 10 days). Four lab-scale reactors (CFR25d, CFR10d, SBR25d, and SBR10d) were operated. In the cycle reaction, CFR25d achieved the highest methane yield (678.0 mL/L) and methane production rate (140.8 mL/(L·h)); while those in CFR10d were the lowest, which could have been due to an accumulation of volatile fatty acids. CFR could wash out r-strategists efficiently, such as Methanosarcina. CFR25d and CFR10d significantly enriched the K-strategist Geobacter, with the relative abundances of 34.0% and 72.6%, respectively. In addition, the hydrogenotrophic methanogens of Methanolinea and Methanospirillum (K-strategists) dominated in CFR25d and CFR10d. Methanobacterium adapted to the diverse operational conditions, but the slow grower Methanosaeta only accounted for 0.9% in CFR10d. Failure to enrich propionate oxidizers resulted in a functional absence of propionate degradation in the CFRs.
Collapse
Affiliation(s)
- Qiannan Guo
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Jin Du
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Jiane Zuo
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
10
|
Li MT, Rao L, Wang L, Gou M, Sun ZY, Xia ZY, Song WF, Tang YQ. Bioaugmentation with syntrophic volatile fatty acids-oxidizing consortia to alleviate the ammonia inhibition in continuously anaerobic digestion of municipal sludge. CHEMOSPHERE 2022; 288:132389. [PMID: 34606893 DOI: 10.1016/j.chemosphere.2021.132389] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 05/23/2023]
Abstract
Ammonia inhibition easily affects the performance of anaerobic digestion (AD) for municipal sludge and the oxidization of volatile fatty acids (VFAs) is the rate-limiting step of this process. Bioaugmentation is considered to be an effective method to alleviate ammonia inhibition of AD, but most study used the hydrogenotrophic methanogens as the bioaugmentation culture. In this study, bioaugmentation of mesophilic AD (MAD) and thermophilic AD (TAD) under ammonia inhibition with syntrophic acetate and propionate oxidizing consortia was investigated. The results showed that the bioaugmented reactors recovered earlier than control reactors with 20 (MAD) and 8 (TAD) days, respectively. The high-throughput 16S rRNA gene sequencing indicated that the relative abundance of carbohydrates fermenter (Lentimicrobium), syntrophic VFAs-oxidizing bacteria (Rikenellaceae_DMER64, Smithella and Syntrophobacter) and acetoclastic and hydrogenotrophic methanogens (Methanosaeta, Methanolinea and Methanospirillum) increased in MAD after bioaugmentation. However, part of the bioaugmentation culture could not adapt to the high free ammonia (FAN) concentration in MAD and the effect was weakened. In TAD, proteolytic bacteria (Keratinibaculum and Tepidimicrobium), syntrophic VFAs-oxidizing bacteria (Syntrophomonas) and hydrogenotrophic methanogen (Methanosarcina) were strengthened. The effect of bioaugmentation in TAD was durable even at higher organic loading rate (OLR), due to its positive influence on microbial community. These results suggested that the different bioaugmentation mechanism occurred in MAD and TAD, which are derived from the synergetic effects of ammonia tolerance and microbial interactions. Our study revealed the VFAs-oxidizing consortia as bioaugmented culture could be the potential strategy to alleviate the ammonia stress of AD.
Collapse
Affiliation(s)
- Mao-Ting Li
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Ling Rao
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Lu Wang
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing, 100083, PR China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China.
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Wen-Feng Song
- Research Institute of Petroleum Exploration and Development, CNPC, Beijing, 100083, PR China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| |
Collapse
|
11
|
Xu RZ, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. BIORESOURCE TECHNOLOGY 2021; 341:125823. [PMID: 34454239 DOI: 10.1016/j.biortech.2021.125823] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) processes are promising to effectively recover resources from organic wastes or wastewater. As a microbial-driven process, the functional anaerobic species played critical roles in AD. However, the lack of effective understanding of the correlations of varying microbial communities with different operational factors hinders the microbial regulation to improve the AD performance. In this paper, the main anaerobic functional microorganisms involved in different stages of AD processes were first demonstrated. Then, the response of anaerobic microbial community to different operating parameters, exogenous interfering substances and digestion substrates, as well as the digestion efficiency, were discussed. Finally, the research gaps and future directions on the understanding of functional microorganisms in AD were proposed. This review provides insightful knowledge of distribution patterns of functional microbial community in anaerobic digesters, and gives critical guidance to regulate and enrich specific functional microorganisms to accumulate certain AD products.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
12
|
Volpi MPC, Junior ADNF, Franco TT, Moraes BS. Operational and biochemical aspects of co-digestion (co-AD) from sugarcane vinasse, filter cake, and deacetylation liquor. Appl Microbiol Biotechnol 2021; 105:8969-8987. [PMID: 34698899 DOI: 10.1007/s00253-021-11635-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 01/21/2023]
Abstract
This work performed co-AD from the vinasse and filter cake (from 1G ethanol production) and deacetylation liquor (from the pretreatment of sugarcane straw for 2G ethanol production) in a semi-Continuous Stirred Tank Reactor (s-CSTR) aiming to provide optimum operational parameters for continuous CH4 production. Using filter cake as co-substrate may allow the reactor to operate throughout the year, as it is available in the sugarcane off-season, unlike vinasse. A comparison was made from the microbial community of the seed sludge and the reactor sludge when CH4 production stabilized. Lactate, butyrate, and propionate fermentation routes were denoted at the start-up of the s-CSTR, characterizing the acidogenic phase: the oxidation-reduction potential (ORP) values ranged from -800 to -100 mV. Once the methanogenesis was initiated, alkalizing addition was no longer needed as its demand by the microorganisms was supplied by the alkali characteristics of the deacetylation liquor. The gradual increase of the applied organic load rates (OLR) allowed stabilization of the methanogenesis from 3.20 gVS L-1 day-1: the highest CH4 yield (230 mLNCH4 g-1VS) and average organic matter removal efficiency (83% ± 13) was achieved at ORL of 4.16 gVS L-1 day-1. The microbial community changed along with the reactor operation, presenting different metabolic routes mainly due to the used lignocellulosic substrates. Bacteria from the syntrophic acetate oxidation (SAO) process coupled to hydrogenotrophic methanogenesis were predominant (~ 90% Methanoculleus) during the CH4 production stability. The overall results are useful as preliminary drivers in terms of visualizing the co-AD process in a sugarcane biorefinery integrated to scale. KEY POINTS: • Integration of 1G2G sugarcane ethanol biorefinery from co-digestion of its residues. • Biogas production from vinasse, filter cake, and deacetylation liquor in a semi-CSTR. • Lignocellulosic substrates affected the biochemical routes and microbial community. • Biomol confirmed the establishment of the thermophilic community from mesophilic sludge.
Collapse
Affiliation(s)
- Maria Paula C Volpi
- Interdisciplinary Center of Energy Planning, University of Campinas (NIPE/UNICAMP), R. Cora Coralina, 330 - Cidade Universitária, Campinas, SP, 13083-896, Brazil. .,Interdisciplinary Research Group On Biotechnology Applied To the Agriculture and the Environment (GBMA), School of Agricultural Engineering (FEAGRI), University of Campinas, Av. Candido Rondon, 501 - Cidade Universitária, Campinas, SP, 13083‑875, Brazil.
| | | | - Telma T Franco
- Chemical Engineering School, University of Campinas (FEQ/UNICAMP), Av.Albert Einstein 500, Campinas, SP, 13083-852, Brazil
| | - Bruna S Moraes
- Interdisciplinary Center of Energy Planning, University of Campinas (NIPE/UNICAMP), R. Cora Coralina, 330 - Cidade Universitária, Campinas, SP, 13083-896, Brazil
| |
Collapse
|
13
|
Atasoy M, Cetecioglu Z. Bioaugmentation as a strategy for tailor-made volatile fatty acid production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113093. [PMID: 34167052 DOI: 10.1016/j.jenvman.2021.113093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to develop a novel strategy for tailor-made volatile fatty acid (VFA) composition. For this purpose, the mixed microbial culture was bioaugmented by Propionibacterium acidipropionici. Anaerobic sequencing batch reactors were operated with cheese wastewater under alkali pH. While the maximum propionic acid production almost four times increased (3779 ± 201 mgCODeq propionic acid/L in the bioaugmented reactor and 942 ± 172 mgCODeq propionic acid/L in the control reactor), there was no significant difference in VFA composition. The gene copy number of P.acidipropionici increased 20 times after the bioaugmentation. Furthermore, the gene copy number of P.acidipropionici was positively correlated with total VFA and isovaleric acid concentration. The relative abundance of family Flavobacteriaceae increased in the bioaugmented reactor, which might be caused by the syntrophic relation between Flavobacteriaceae and P. acidipropionici. The cycle analysis results showed that the shorter cycle (6h) could ensure the same efficiency.
Collapse
Affiliation(s)
- Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE, 100 44, Sweden.
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE, 100 44, Sweden
| |
Collapse
|
14
|
Atasoy M, Cetecioglu Z. Bioaugmented Mixed Culture by Clostridium aceticum to Manipulate Volatile Fatty Acids Composition From the Fermentation of Cheese Production Wastewater. Front Microbiol 2021; 12:658494. [PMID: 34539589 PMCID: PMC8446653 DOI: 10.3389/fmicb.2021.658494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Production of targeted volatile fatty acid (VFA) composition by fermentation is a promising approach for upstream and post-stream VFA applications. In the current study, the bioaugmented mixed microbial culture by Clostridium aceticum was used to produce an acetic acid dominant VFA mixture. For this purpose, anaerobic sequencing batch reactors (bioaugmented and control) were operated under pH 10 and fed by cheese processing wastewater. The efficiency and stability of the bioaugmentation strategy were monitored using the production and composition of VFA, the quantity of C. aceticum (by qPCR), and bacterial community profile (16S rRNA Illumina Sequencing). The bioaugmented mixed culture significantly increased acetic acid concentration in the VFA mixture (from 1170 ± 18 to 122 ± 9 mgCOD/L) compared to the control reactor. Furthermore, the total VFA production (from 1254 ± 11 to 5493 ± 36 mgCOD/L) was also enhanced. Nevertheless, the bioaugmentation could not shift the propionic acid dominancy in the VFA mixture. The most significant effect of bioaugmentation on the bacterial community profile was seen in the relative abundance of the Thermoanaerobacterales Family III. Incertae sedis, its relative abundance increased simultaneously with the gene copy number of C. aceticum during bioaugmentation. These results suggest that there might be a syntropy between species of Thermoanaerobacterales Family III. Incertae sedis and C. aceticum. The cycle analysis showed that 6 h (instead of 24 h) was adequate retention time to achieve the same acetic acid and total VFA production efficiency. Biobased acetic acid production is widely applicable and economically competitive with petroleum-based production, and this study has the potential to enable a new approach as produced acetic acid dominant VFA can replace external carbon sources for different processes (such as denitrification) in WWTPs. In this way, the higher treatment efficiency for WWTPs can be obtained by recovered substrate from the waste streams that promote a circular economy approach.
Collapse
Affiliation(s)
- Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
15
|
Wang M, Chen H, Chang S. Linkage among the combined temperature-retention time condition, microbial interaction, community structure, and process performance in the hydrolysis of waste activated sludge. BIORESOURCE TECHNOLOGY 2021; 331:125029. [PMID: 33831728 DOI: 10.1016/j.biortech.2021.125029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Numerous studies have revealed the effect of temperature and hydraulic retention time (HRT) on microbiota in sludge biological hydrolysis (BH). However, few scholars have explored the combined effect of these two critical BH parameters. This study explored the BH performance and community structures over 12 combined temperatures-HRT conditions for temperatures from 35 °C to 55 °C and HRTs from 1.5 days to 6.0 days. Results showed that the 12 combined conditions formed only six distinct community structures with each of them relating to a distinctive range of volatile suspended solid reduction rates. The nonmetric multidimensional scaling and species-species association analysis on the DNA sequencing data revealed that the community structure was greatly driven by the microbial interactions (e.g., heterogeneous commensalism and competition) under the effect of temperature and HRT. This study established the linkages among the combined BH temperature-HRT conditions, microbial interaction, microbial community, and BH performance.
Collapse
Affiliation(s)
- Meiying Wang
- School of Engineering, University of Guelph, Ontario N1G 2W1, Canada.
| | - Huibin Chen
- School of Engineering, University of Guelph, Ontario N1G 2W1, Canada; College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Sheng Chang
- School of Engineering, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
16
|
Karki R, Chuenchart W, Surendra KC, Shrestha S, Raskin L, Sung S, Hashimoto A, Kumar Khanal S. Anaerobic co-digestion: Current status and perspectives. BIORESOURCE TECHNOLOGY 2021; 330:125001. [PMID: 33773269 DOI: 10.1016/j.biortech.2021.125001] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 05/18/2023]
Abstract
Anaerobic digestion is a long-established technology for the valorization of diverse organic wastes with concomitant generation of valuable resources. However, mono-digestion (i.e., anaerobic digestion using one feedstock) suffers from challenges associated with feedstock characteristics. Co-digestion using multiple feedstocks provides the potential to overcome these limitations. Significant research and development efforts have highlighted several inherent merits of co-digestion, including enhanced digestibility due to synergistic effects of co-substrates, better process stability, and higher nutrient value of the produced co-digestate. However, studies focused on the underlying effects of diverse co-feedstocks on digester performance and stability have not been synthesized so far. This review fills this gap by highlighting the limitations of mono-digestion and critically examining the benefits of co-digestion. Furthermore, this review discusses synergistic effect of co-substrates, characterization of microbial communities, the prediction of biogas production via different kinetic models, and highlights future research directions for the development of a sustainable biorefinery.
Collapse
Affiliation(s)
- Renisha Karki
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Wachiranon Chuenchart
- Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, 2540 Dole Street, Honolulu, HI 96822, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal
| | - Shilva Shrestha
- Joint Bioenergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor, MI 48109-2125, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor, MI 48109-2125, USA
| | - Shihwu Sung
- College of Agriculture, Forestry and Natural Resource Management (CAFNRM), University of Hawai'i at Hilo, 200 W. Kawili Street, Hilo, HI 96720, USA
| | - Andrew Hashimoto
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, 2540 Dole Street, Honolulu, HI 96822, USA.
| |
Collapse
|
17
|
De Groof V, Coma M, Arnot T, Leak DJ, Lanham AB. Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 127:80-89. [PMID: 33932853 DOI: 10.1016/j.wasman.2021.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Acidogenic fermentation is attractive for food waste valorisation. A better understanding is required on how operation affects product selectivity. This study demonstrated that the hydraulic retention time (HRT) and organic loading rate (OLR) selected fermentation pathways in a single-stage, semi-continuous stirred tank reactor. Three combinations of HRT and OLR were tested to distinguish the effect of each parameter. Three fermentation profiles with distinct microbial communities were obtained. Predominantly n-butyric acid (13 ± 2 gCOD L-1, 55 ± 14% of carboxylates) was produced at an HRT of 8.5 days and OLR around 12 gCOD L-1d-1. Operating at an HRT two days longer, yet with similar OLR, stimulated chain elongation (up to 13.6 gCOD L-1 of n-caproic acid). This was reflected by a microbial community twice as diverse at longer HRT as indicated by first and second order Hill number (1D = 24 ± 4, 2D = 12 ± 3) and by a higher relative abundance of genera related to secondary fermentation, such as the VFA-elongating Caproiciproducens spp., and secondary lactic acid fermenter Secundilactobacillus spp.. Operating at a higher OLR (20 gCOD L-1d-1) but HRT of 8.5 days, resulted in typical lactic acid fermentation (34 ± 5 gCOD L-1) harbouring a less diverse community (1D = 8.0 ± 0.7, 2D = 5.7 ± 0.9) rich in acid-resistant homofermentative Lactobacillus spp. These findings demonstrate that a flexible product portfolio can be achieved by small adjustments in two key operating conditions. This improves the economic potential of acidogenic fermentation for food waste valorisation.
Collapse
Affiliation(s)
- Vicky De Groof
- EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Marta Coma
- Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tom Arnot
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - David J Leak
- Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Ana B Lanham
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
18
|
Jiang C, Peces M, Andersen MH, Kucheryavskiy S, Nierychlo M, Yashiro E, Andersen KS, Kirkegaard RH, Hao L, Høgh J, Hansen AA, Dueholm MS, Nielsen PH. Characterizing the growing microorganisms at species level in 46 anaerobic digesters at Danish wastewater treatment plants: A six-year survey on microbial community structure and key drivers. WATER RESEARCH 2021; 193:116871. [PMID: 33578056 DOI: 10.1016/j.watres.2021.116871] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a key technology at many wastewater treatment plants (WWTPs) for converting primary and surplus activated sludge to methane-rich biogas. However, the limited number of surveys and the lack of comprehensive datasets have hindered a deeper understanding of the characteristics and associations between key variables and the microbial community composition. Here, we present a six-year survey of 46 anaerobic digesters, located at 22 WWTPs in Denmark, which is the first and largest known study of the microbial ecology of AD at WWTPs at a regional scale. For three types of AD (mesophilic, mesophilic with thermal hydrolysis pretreatment, and thermophilic), we present the typical value range of 12 key parameters including operational variables and performance parameters. High-resolution bacterial and archaeal community analyses were carried out at species level using amplicon sequencing of >1,000 samples and the new ecosystem-specific MiDAS 3 reference database. We detected 42 phyla, 1,600 genera, and 3,584 species in the bacterial community, where 70% of the genera and 93% of the species represented environmental taxa that were only classified based on MiDAS 3 de novo placeholder taxonomy. More than 40% of the bacterial species were found not to grow in the mesophilic and thermophilic digesters and were only present due to immigration with the feed sludge. Ammonium concentration was the main driver shaping the bacterial community while temperature and pH were main drivers for the archaea in the three types of ADs. Sub-setting for the growing microbes improved significantly the correlation analyses and revealed the main drivers for the presence of specific species. Within mesophilic digesters, feed sludge composition and other key parameters (organic loading rate, biogas yield, and ammonium concentration) correlated with specific growing species. This survey provides a comprehensive insight into community structure at species level, providing a foundation for future studies of the ecological significance/characteristics and function of the many novel or poorly described taxa.
Collapse
Affiliation(s)
- Chenjing Jiang
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark; Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, SOA, Hangzhou, China
| | - Miriam Peces
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Martin Hjorth Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Sergey Kucheryavskiy
- Section of Chemical Engineering, Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Erika Yashiro
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Kasper Skytte Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Rasmus Hansen Kirkegaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Liping Hao
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | | | - Morten Simonsen Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
19
|
Ao T, Xie Z, Zhou P, Liu X, Wan L, Li D. Comparison of microbial community structures between mesophilic and thermophilic anaerobic digestion of vegetable waste. Bioprocess Biosyst Eng 2021; 44:1201-1214. [PMID: 33591430 DOI: 10.1007/s00449-021-02519-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
The anaerobic digestion performance correlates with the functional microbial community. Mesophilic and thermophilic digestions of vegetable waste were conducted, and dynamics of the microbial community were investigated. The mesophilic and thermophilic collapsed stages occurred at organic loading rates of 1.5 and 2.0 g VS/(L d) due to the accumulation of volatile fatty acids with final concentrations of 2276 and 6476 mg/L, respectively. A high concentration of volatile fatty acids caused the severe inhibition of methanogens, which finally led to the imbalance between acetogenesis and methanogenesis. The mesophilic digestion exhibited a higher microbial diversity and richness than the thermophilic digestion. Syntrophic acetate-oxidizing coupled with hydrogenotrophic methanogenesis was the dominant pathway in the thermophilic stable system, and acetoclastic methanogenesis in the mesophilic stable system. The dominant acidogens, syntrophus, and methanogens were unclassified_f__Anaerolineaceae (8.68%), Candidatus_Cloacamonas (19.70%), Methanosaeta (6.10%), and Methanosarcina (4.08%) in the mesophilic stable stage, and Anaerobaculum (12.59%), Syntrophaceticus (4.84%), Methanosarcina (30.58%), and Methanothermobacter (3.17%) in thermophilic stable stage. Spirochaetae and Thermotogae phyla were the characteristic microorganisms in the mesophilic and thermophilic collapsed stages, respectively. These findings provided valuable information for the deep understanding of the difference of the microbial community and methane-producing mechanism between mesophilic and thermophilic digestion of vegetable waste.
Collapse
Affiliation(s)
- Tianjie Ao
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijie Xie
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Zhou
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaofeng Liu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Liping Wan
- Jiangxi Zhenghe Ecological Agriculture Co., Ltd, Xinyu, 338008, China.
| | - Dong Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Jiangxi Zhenghe Ecological Agriculture Co., Ltd, Xinyu, 338008, China.
| |
Collapse
|
20
|
Mahmudul HM, Rasul MG, Akbar D, Narayanan R, Mofijur M. A comprehensive review of the recent development and challenges of a solar-assisted biodigester system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141920. [PMID: 32889316 DOI: 10.1016/j.scitotenv.2020.141920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The extensive use of fossil fuels and the environmental effect of their combustion products have attracted researchers to look into renewable energy sources. In addition, global mass production of waste has motivated communities to recycle and reuse the waste in a sustainable way to lower landfill waste and associated problems. The development of waste to energy (WtE) technology including the production of bioenergy, e.g. biogas produced from various waste through Anaerobic Digestion (AD), is considered one of the potential measures to achieve the sustainable development goals of the United Nations (UN). Therefore, this study reviews the most recent studies from relevant academic literature on WtE technology (particularly AD technology) for biogas production and the application of a solar-assisted biodigester (SAB) system aimed at improving performance. In addition, socio-economic factors, challenges, and perspectives have been reported. From the analysis of different technologies, further work on effective low-cost technologies is recommended, especially using SAB system upgrading and leveraging the opportunities of this system. The study found that the performance of the AD system is affected by a variety of factors and that different approaches can be applied to improve performance. It has also been found that solar energy systems efficiently raise the biogas digester temperature and through this, they maximize the biogas yield under optimum conditions. The study revealed that the solar-assisted AD system produces less pollution and improves performance compared to the conventional AD system.
Collapse
Affiliation(s)
- H M Mahmudul
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia.
| | - M G Rasul
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia
| | - D Akbar
- School of Business and Law, Central Queensland University, QLD 4701, Australia
| | - R Narayanan
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia
| | - M Mofijur
- School of Information, Systems and Modelling, University of Technology Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| |
Collapse
|
21
|
Kim J, Mei R, Wilson FP, Yuan H, Bocher BTW, Liu WT. Ecogenomics-Based Mass Balance Model Reveals the Effects of Fermentation Conditions on Microbial Activity. Front Microbiol 2020; 11:595036. [PMID: 33343535 PMCID: PMC7738435 DOI: 10.3389/fmicb.2020.595036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023] Open
Abstract
Fermentation of waste activated sludge (WAS) is an alternative approach to reduce solid wastes while providing valuable soluble products, such as volatile fatty acids and alcohols. This study systematically identified optimal fermentation conditions and key microbial populations by conducting two sets of experiments under different combinations of biochemical and physical parameters. Based on fermentation product concentrations, methane production, and solid removal, fermentation performance was enhanced under the combined treatments of inoculum heat shock (>60°C), pH 5, 55°C, and short solid retention time (<10 days). An ecogenomics-based mass balance (EGMB) approach was used to determine the net growth rates of individual microbial populations, and classified them into four microbial groups: known syntrophs, known methanogens, fermenters, and WAS-associated populations. Their growth rates were observed to be affected by the treatment conditions. The growth rates of syntrophs and fermenters, such as Syntrophomonas and Parabacteroides increased with a decrease in SRT. In contrast, treatment conditions, such as inoculum heat shock and high incubation temperature inhibited the growth of WAS-associated populations, such as Terrimonas and Bryobacter. There were also populations insensitive to the treatment conditions, such as those related to Microbacter and Rikenellaceae. Overall, the EGMB approach clearly revealed the ecological roles of important microbial guilds in the WAS fermentation system, and guided the selection of optimal conditions for WAS fermentation in future pilot-scale operation.
Collapse
Affiliation(s)
- Jinha Kim
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Fernanda P Wilson
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Benjamin T W Bocher
- British Petroleum America, Petrochemicals Technology, Naperville, IL, United States
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
22
|
Fernandez-Gonzalez N, Braz GHR, Regueiro L, Lema JM, Carballa M. Microbial invasions in sludge anaerobic digesters. Appl Microbiol Biotechnol 2020; 105:21-33. [PMID: 33205286 DOI: 10.1007/s00253-020-11009-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
Among processes that control microbial community assembly, microbial invasion has received little attention until recently, especially in the field of anaerobic digestion. However, knowledge of the principles regulating the taxonomic and functional stability of microbial communities is key to truly develop better predictive models and effective management strategies for the anaerobic digestion process. To date, available studies focus on microbial invasions in digesters feed with activated sludge from municipal wastewater treatment plants. Herein, this review summarizes the importance of invasions for anaerobic digestion management, the ecological theories about microbial invasions, the traits of activated sludge microorganisms entering the digesters, and the resident communities of anaerobic reactors that are relevant for invasions and the current knowledge about the success and impacts of invasions, and discusses the research needs on this topic. The initial data indicate that the impact of invasions is low and only a small percentage of the mostly aerobic microorganisms present in the activated sludge feed are able to become stablished in the anaerobic digesters. However, there are still numerous unknowns about microbial invasions in anaerobic digestion including the influence of anaerobic feedstocks or process perturbances that new approaches on microbial ecology could unveil. KEY POINTS: • Microbial invasions are key processes to develop better strategies for digesters management. • Knowledge on pathogen invasions can improve anaerobic digestion microbial safety. • To date, the number of successful invasions on anaerobic digesters from activated sludge organisms is low. • Feed organisms detected in digesters are mostly inactive residual populations. • Need to expand the range of invaders and operational scenarios studied.
Collapse
Affiliation(s)
- Nuria Fernandez-Gonzalez
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain. .,Institute of Sustainable Processes, University of Valladolid, Valladolid, Spain.
| | - G H R Braz
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,, Ribeirão Preto, Brazil
| | | | - J M Lema
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M Carballa
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
23
|
Adjusting Organic Load as a Strategy to Direct Single-Stage Food Waste Fermentation from Anaerobic Digestion to Chain Elongation. Processes (Basel) 2020. [DOI: 10.3390/pr8111487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Production of medium chain carboxylic acids (MCCA) as renewable feedstock bio-chemicals, from food waste (FW), requires complicated reactor configurations and supplementation of chemicals to achieve product selectivity. This study evaluated the manipulation of organic loading rate in an un-supplemented, single stage stirred tank reactor to steer an anaerobic digestion (AD) microbiome towards acidogenic fermentation (AF), and thence to chain elongation. Increasing substrate availability by switching to a FW feedstock with a higher COD stimulated chain elongation. The MCCA species n-caproic (10.1 ± 1.7 g L−1) and n-caprylic (2.9 ± 0.8 g L−1) acid were produced at concentrations comparable to more complex reactor set-ups. As a result, of the adjusted operating strategy, a more specialised microbiome developed containing several MCCA-producing bacteria, lactic acid-producing Olsenella spp. and hydrogenotrophic methanogens. By contrast, in an AD reactor that was operated in parallel to produce biogas, the retention times had to be doubled when fed with the high-COD FW to maintain biogas production. The AD microbiome comprised a diverse mixture of hydrolytic and acidogenic bacteria, and acetoclastic methanogens. The results suggest that manipulation of organic loading rate and food-to-microorganism ratio may be used as an operating strategy to direct an AD microbiome towards AF, and to stimulate chain elongation in FW fermentation, using a simple, un-supplemented stirred tank set-up. This outcome provides the opportunity to repurpose existing AD assets operating on food waste for biogas production, to produce potentially higher value MCCA products, via simple manipulation of the feeding strategy.
Collapse
|
24
|
Peces M, Astals S, Jensen PD, Clarke WP. Transition of microbial communities and degradation pathways in anaerobic digestion at decreasing retention time. N Biotechnol 2020; 60:52-61. [PMID: 32858258 DOI: 10.1016/j.nbt.2020.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 01/04/2023]
Abstract
Tuning of operational variables is a common practice to control the anaerobic digestion process and, in advanced applications, to promote the accumulation of fermentation products. However, process variables are interrelated. In this study, the hydraulic retention time (HRT) was decoupled from the organic loading rate (OLR) in order to isolate the effect of HRT as a selective pressure on: process performance, metabolic rates (hydrolytic, acetogenic, and methanogenic) and the microbial community. Four mesophilic anaerobic digesters were subjected to a sequential decrease in HRT from 15 to 8, 4 and 2 days while keeping the OLR constant at chemical oxygen demand of 1 gCOD L r-1 d-1. The results showed that HRT alone was insufficient to washout methanogens from the digesters, which in turn prevented the accumulation of volatile fatty acids (VFA). Methanosaeta was the dominant genus in the four digesters at all HRTs. Metabolic rates showed that process performance was controlled by hydrolysis, with a clear shift in acetogenic rates, from butyrate and propionate degradation to ethanol degradation at 4 and 2d HRT. The change in acetogenic pathways was attributed to a shift in the fermentation pathways co-current with changes in fermentative bacteria. At 2d HRT, biofilm was formed on the walls and paddles of the digesters, probably as a survival strategy. Most of the taxa in the biofilm were also present in the digester media. Overall, it is the combination of HRT with other operational parameters which promotes the washout of methanogens and the accumulation of VFA.
Collapse
Affiliation(s)
- Miriam Peces
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia, 4072, QLD, Australia; Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, 9220 Aalborg, Denmark.
| | - Sergi Astals
- Advanced Water Management Centre, The University of Queensland, St Lucia, 4072, QLD, Australia; Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Paul D Jensen
- Advanced Water Management Centre, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - William P Clarke
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia, 4072, QLD, Australia
| |
Collapse
|
25
|
Wang C, Wang Y, Wang Y, Cheung KK, Ju F, Xia Y, Zhang T. Genome-centric microbiome analysis reveals solid retention time (SRT)-shaped species interactions and niche differentiation in food waste and sludge co-digesters. WATER RESEARCH 2020; 181:115858. [PMID: 32505886 DOI: 10.1016/j.watres.2020.115858] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Co-digestion of food waste with sewage sludge is widely applied for waste stabilization and energy recovery around the world. However, the effect of solid retention time (SRT) on the microbial population dynamics, metabolism and interspecies interaction have not been fully elucidated. Here, the influence of SRTs (5-25 days) on the performance of the co-digestion system was investigated and state-of-the-art genome-centric metagenomic analysis was employed to uncover the dynamics and metabolic network of the key players underlying the well-functioned and poorly-functioned co-digestion microbial communities. The results of the microbial analyses indicated that SRT largely shaped microbial community structure by enriching the syntrophic specialist Syntrophomonas and CO2/H2 ( formate)-using methanogen Methanocorpusculum in the well-functioned co-digester operated at SRT of 25 days, while selecting acid-tolerant populations Lactobacillus at SRT of 5 days. The metagenome assembled genomes (MAGs) of key players, such as Syntrophomonadaceae, Methanocorpusculum, and Mesotoga, were retrieved, additionally, the syntrophic acetate oxidation plus hydrogenotrophic methanogenesis (SAO-HM) were proposed as the dominant pathway for methane production. The metabolic interaction in the co-digestion microbial consortia was profiled by assigning MAGs into functional guilds. Functional redundancy was found in the bacterial groups in hydrolysis step, and the members in these groups reduced the direct competition by niche differentiation.
Collapse
Affiliation(s)
- Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yubo Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | - Feng Ju
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Yu Xia
- State Environmental Protection Key Laboratory of Integrated Surface Water- Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
26
|
Praeg N, Schwinghammer L, Illmer P. Larix decidua and additional light affect the methane balance of forest soil and the abundance of methanogenic and methanotrophic microorganisms. FEMS Microbiol Lett 2020; 366:5695738. [PMID: 31899513 DOI: 10.1093/femsle/fnz259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/31/2019] [Indexed: 11/13/2022] Open
Abstract
Due to the activity of methane-oxidizing bacteria, forest soils are usually net sinks for the greenhouse gas methane (CH4). Despite several hints that CH4 balances might be influenced by vegetation, there are only few investigations dealing with this connection. Therefore, we studied this soil-plant-microbe interaction by using mesocosm experiments with forest soil and Larix decidua, a common coniferous tree species within the Alps. Gas measurements showed that the presence of L. decidua significantly reduced CH4 oxidation of the forest soil by ∼10% (-0.95 µmol m-2 h-1 for soil vs -0.85 µmol m-2 h-1 for soil plus L. decidua) leading to an increased net CH4 balance. Increased light intensity was used to intensify the influence of the plant on the soil's CH4 balance. The increase in light intensity strengthened the effect of the plant and led to a greater reduction of CH4 oxidation. Besides, we examined the impact of L. decidua and light on the abundance of methanogens and methanotrophs in the rhizosphere as compared with bulk soil. The abundance of both methane-oxidizing bacteria and methanogenic archaea was significantly increased in the rhizosphere compared with bulk soil but no significant response of methanogens and methanotrophs upon light exposure was established.
Collapse
Affiliation(s)
- Nadine Praeg
- Universität Innsbruck, Department of Microbiology, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Larissa Schwinghammer
- Universität Innsbruck, Department of Microbiology, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Paul Illmer
- Universität Innsbruck, Department of Microbiology, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
27
|
Fernandez‐Gonzalez N, Pedizzi C, Lema JM, Carballa M. Air-side ammonia stripping coupled to anaerobic digestion indirectly impacts anaerobic microbiome. Microb Biotechnol 2019; 12:1403-1416. [PMID: 31532080 PMCID: PMC6801131 DOI: 10.1111/1751-7915.13482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/26/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022] Open
Abstract
Air-side stripping without a prior solid-liquid phase separation step is a feasible and promising process to control ammonia concentration in thermophilic digesters. During the process, part of the anaerobic biomass is exposed to high temperature, high pH and aerobic conditions. However, there are no studies assessing the effects of those harsh conditions on the microbial communities of thermophilic digesters. To fill this knowledge gap, the microbiomes of two thermophilic digesters (55°C), fed with a mixture of pig manure and nitrogen-rich co-substrates, were investigated under different organic loading rates (OLR: 1.1-5.2 g COD l-1 day-1 ), ammonia concentrations (0.2-1.5 g free ammonia nitrogen l-1 ) and stripping frequencies (3-5 times per week). The bacterial communities were dominated by Firmicutes and Bacteroidetes phyla, while the predominant methanogens were Methanosarcina sp archaea. Increasing co-substrate fraction, OLR and free ammonia nitrogen (FAN) favoured the presence of genera Ruminiclostridium, Clostridium and Tepidimicrobium and of hydrogenotrophic methanogens, mainly Methanoculleus archaea. The data indicated that the use of air-side stripping did not adversely affect thermophilic microbial communities, but indirectly modulated them by controlling FAN concentrations in the digester. These results demonstrate the viability at microbial community level of air side-stream stripping process as an adequate technology for the ammonia control during anaerobic co-digestion of nitrogen-rich substrates.
Collapse
Affiliation(s)
- Nuria Fernandez‐Gonzalez
- Department of Chemical EngineeringUniversidade de Santiago de CompostelaRúa Lope Gómez de Marzoa, s/n.15782Santiago de CompostelaSpain
- Present address:
Present address:Department of Chemical Engineering and Environmental TechnologyValladolid UniversityDr. Mergelina, s/n47011ValladolidSpain
| | - Chiara Pedizzi
- Department of Chemical EngineeringUniversidade de Santiago de CompostelaRúa Lope Gómez de Marzoa, s/n.15782Santiago de CompostelaSpain
| | - Juan M. Lema
- Department of Chemical EngineeringUniversidade de Santiago de CompostelaRúa Lope Gómez de Marzoa, s/n.15782Santiago de CompostelaSpain
| | - Marta Carballa
- Department of Chemical EngineeringUniversidade de Santiago de CompostelaRúa Lope Gómez de Marzoa, s/n.15782Santiago de CompostelaSpain
| |
Collapse
|
28
|
Zhang F, Guo X, Qian DK, Sun T, Zhang W, Dai K, Zeng RJ. Decolorization of Acid Orange 7 by extreme-thermophilic mixed culture. BIORESOURCE TECHNOLOGY 2019; 291:121875. [PMID: 31362846 DOI: 10.1016/j.biortech.2019.121875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Although a large amount of textile wastewater is discharged at high temperatures, azo dye reduction under extreme-thermophilic conditions by mixed cultures has gained little attention. In this study, Acid Orange 7 (AO7) was used as the model azo dye to demonstrate the decolorization ability of an extreme-thermophilic mixed culture. The results showed that a decolorization efficiency of over 90% was achieved for AO7. The neutral red (NR, 0.1 mM) could promote AO7 decolorization, in which the group of Cell + NR offered the highest decolorization rate of 1.568 1/h and t1/2 was only 0.44 h, whereas after CuCl2 addition, the decolorization rate (0.141 1/h) was lower and t1/2 (4.92 h) was much longer. Thus, CuCl2 notably inhibited this process. Caldanaerobacter (64.0%) and Pseudomonas (25.4%) were the main enriched bacteria, which were not reported to have the ability for dye decolorization. Therefore, this study extends the application of extreme-thermophilic biotechnology.
Collapse
Affiliation(s)
- Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuan Guo
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ting Sun
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wei Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond J Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
29
|
García‐Ruíz MJ, Castellano‐Hinojosa A, Armato C, González‐Martínez A, González‐López J, Osorio F. Biogas production and microbial community structure in a stable‐stage of a two‐stage anaerobic digester. AIChE J 2019. [DOI: 10.1002/aic.16807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- María J. García‐Ruíz
- Department of Civil Engineering, Campus of Fuentenueva University of Granada Granada Spain
| | | | - Caterina Armato
- Department of Public Health and Pediatrics University of Torino Torino Italy
- Centre for Sustainable Future Technologies (CSFT@PoliTo) Istituto Italiano di Tecnologia Torino Italy
| | | | | | - Francisco Osorio
- Department of Civil Engineering, Campus of Fuentenueva University of Granada Granada Spain
| |
Collapse
|
30
|
Anaerobic digestion of mixed urban biowaste: The microbial community shift towards stability. N Biotechnol 2019; 55:108-117. [PMID: 31634577 DOI: 10.1016/j.nbt.2019.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 01/26/2023]
Abstract
Anaerobic digestion is applied worldwide to treat food waste (FW) with the aim of obtaining renewable bioenergy by exploiting the methane gas produced. However, there are several problems in practical applications, primarily due to system instability. Although exhaustive knowledge regarding anaerobic microbial community composition has been established, few studies have investigated long-term correlations between microbial consortia, operative conditions and feedstock characteristics. Here, microbial community shifts as a response to feedstock variations were investigated in long-term semi-continuous systems, which were evaluated by an in situ cell detection method and 16S rRNA gene amplicon sequencing. FW digestion showed progressive system instability caused by the inhibition of methanogens, which resulted in volatile fatty acid accumulation and process failure at the low organic loading rate (OLR). Conversely, by co-digesting FW with waste-activated sludge (WAS), a stable process with methane yields of up to 0.27 Nm3 kg-1VSfed for OLR = 1.7 gVS L-1d-1 was achieved. This stabilizing effect was not related to the buffering capacity of WAS, but to its capacity to avoid volatile fatty acid accumulation and falls in pH by overcoming methanogenic activity inhibition. WAS addition promoted the establishment of a stable and active archaeal population in anaerobic co-digestion (AcoD) reactors. The continuous supply of trace elements together with the seeding of microbial functional groups were the main drivers that positively affected process stability.
Collapse
|
31
|
Zhang F, Zhang W, Qian DK, Dai K, van Loosdrecht MCM, Zeng RJ. Synergetic alginate conversion by a microbial consortium of hydrolytic bacteria and methanogens. WATER RESEARCH 2019; 163:114892. [PMID: 31351355 DOI: 10.1016/j.watres.2019.114892] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/30/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Sludge, of which alginate-like biomaterial is a major organic component, is an increasing environmental problem. Thus, efficient anaerobic degradation of alginate provides a new method for sludge utilization. In this study, anaerobic alginate hydrolytic bacteria (AHB) were proposed to enrich with methanogens synergetically to reduce the inhibition of intermediate metabolites. The COD of produced methane reached 80.7 ± 1.9% (n = 4) of initial alginate COD. After considering the microbial growth (8%-18% of COD), a good COD balance indicated that alginate was fully consumed and the main final metabolites were methane and CO2. Methanogenesis could promote alginate conversion by AHB. The enriched bacteria for alginate degradation in this study were different from that of former known AHB. The metabolic pathway of alginate degradation was revealed by metagenomics, in which oligo-alginate lyase was detected in twelve bacteria, and typical carbon metabolic pathways to convert alginate to methane were identified. More studies of bacterial isolation and biofuel production are still needed in the future.
Collapse
Affiliation(s)
- Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wei Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC, Delft, the Netherlands
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
32
|
Shin J, Jang HM, Shin SG, Kim YM. Thermophilic anaerobic digestion: Effect of start-up strategies on performance and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:87-95. [PMID: 31203011 DOI: 10.1016/j.scitotenv.2019.05.428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Effects of two different start-up methods were compared during conversion from mesophilic to thermophilic anaerobic digestion of sewage sludge. During the batch operation, a transient increase in both total bacterial concentration and relative abundance of thermophilic bacteria in R1 (a one-step increase method) resulted in 34% higher volatile solids (VS) removal efficiency by R1 compared to R2 (a step-wise increase method). Meanwhile, higher total archaeal concentration and increased relative abundance of thermophilic archaea in R2 were attributed to 65% higher methane production by R2 compared to R1. The same trends for VS removal and methane production were observed during the subsequent continuous mode, although the microbial composition of the two reactors became similar. These findings may prove helpful for determining the preferred start-up method for thermophilic anaerobic digestion: a one-step method can be proposed for higher VS removal efficiency, or a step-wise method can be selected for enhanced methane production.
Collapse
Affiliation(s)
- Jingyeong Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Hyun Min Jang
- Department of Agricultural and Biological Engineering, Texas A&M AgriLife Research Center at Stephenville, Texas A&M University, USA
| | - Seung Gu Shin
- Department of Energy Engineering, Gyeongnam National University of Science and Technology, Jinju, Gyeongnam, Republic of Korea.
| | - Young Mo Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
33
|
Duan X, Chen Y, Yan Y, Feng L, Chen Y, Zhou Q. New method for algae comprehensive utilization: Algae-derived biochar enhances algae anaerobic fermentation for short-chain fatty acids production. BIORESOURCE TECHNOLOGY 2019; 289:121637. [PMID: 31207411 DOI: 10.1016/j.biortech.2019.121637] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Interest in the resource utilization of algae has gradually increased due to the frequent occurrence of harmful algal blooms. Here, biochar derived from algae was applied to algae anaerobic fermentation for short-chain fatty acids (SCFAs) production. In the presence of algae-derived biochar, the concentration of SCFAs within 4 d (4334 mg COD/L) was approximately doubled compared to the control (2016 mg COD/L), and the fermentation time for maximal SCFAs yield was shortened. Biochar improved the disruption of algae to release more intracellular macromolecular organics. Altering algae hydrolysis, the activity of hydrolase and the contents of functional gene were advantageous to SCFAs accumulation by providing more micromolecular organics in the presence of biochar. Additionally, the relative abundance and survival of acid-forming bacteria were enhanced significantly. Furthermore, biochar accelerated the electron transport and energy synthesis in the biological system, driving the biological reactions that allow microorganisms to function and life to flourish.
Collapse
Affiliation(s)
- Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yunzhi Chen
- Maanshan Municipal Ecological Environment Bureau, 360 Yingcui Road, Maanshan, Anhui Province 243000, China
| | - Yuanyuan Yan
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
34
|
Garcia-Aguirre J, Esteban-Gutiérrez M, Irizar I, González-Mtnez de Goñi J, Aymerich E. Continuous acidogenic fermentation: Narrowing the gap between laboratory testing and industrial application. BIORESOURCE TECHNOLOGY 2019; 282:407-416. [PMID: 30884461 DOI: 10.1016/j.biortech.2019.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 05/28/2023]
Abstract
This study explored the potential of acidogenic fermentation of sewage sludge (SS) in an 80 L automatized pilot scale platform. A high-rate VFA production was obtained at HRT 5 d and pH 9, with a volatile fatty acid (VFA) yield of 336 mg VFA g-1 VS and a VFA productivity of 2.15 kg VFA m-3 d-1. During co-fermentation of SS with OFMSW, a reversible pH shift from pH 9 to pH 6, evidenced a higher acidogenic activity which promoted the butyrate metabolic pathway, with 13.97 g COD L-1 of butyric acid and a VFA peak 23.2 g COD L-1. The results show the degree of flexibility of mixed culture fermentation systems, where other pH control methods other than steady control could be used to enhance the fermentation process. Ultrafiltration was a feasible technology to obtain a VFA rich permeate where 12.3-26.6 g COD L-1 could be recovered.
Collapse
Affiliation(s)
- Jon Garcia-Aguirre
- Ceit, Manuel Lardizabal 15, 20018 Donostia/San Sebastian, Spain; University of Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia/San Sebastián, Spain.
| | - Myriam Esteban-Gutiérrez
- Ceit, Manuel Lardizabal 15, 20018 Donostia/San Sebastian, Spain; University of Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia/San Sebastián, Spain.
| | - Ion Irizar
- Ceit, Manuel Lardizabal 15, 20018 Donostia/San Sebastian, Spain; University of Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia/San Sebastián, Spain.
| | - Jaime González-Mtnez de Goñi
- Ceit, Manuel Lardizabal 15, 20018 Donostia/San Sebastian, Spain; University of Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia/San Sebastián, Spain.
| | - Enrique Aymerich
- Ceit, Manuel Lardizabal 15, 20018 Donostia/San Sebastian, Spain; University of Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia/San Sebastián, Spain.
| |
Collapse
|
35
|
pH shaped kinetic characteristics and microbial community of food waste hydrolysis and acidification. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9091915] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many operating parameters, individually or together, may influence the performance of anaerobic digestion towards biogas or digestate yield and quality maximization. The most preferred method of optimizing an anaerobic digestion plant often relies on how carefully the crucial parameters, such as pH, temperature, organic loading rate, hydraulic retention time, and pressure, are chosen. There is a large amount of literature available on optimization of anaerobic digestion; however, given the continued development and implementation of innovative technologies, together with the introduction of increasingly complex systems, it is necessary to update present knowledge on process parameters and their role on operational ranges and flexibilities in real-life anaerobic digestion system. Accordingly, the present review discusses the importance of the selection of operational parameters in existing technologies and their impact on biogas yield. Notably, the four broad areas of feedstock utilization (substrate, inoculum, codigestion and pretreatment), process condition (pH, temperature, pressure, and reactor design), reactor control (HRT and OLR) and inhibition (Ammonia and VFAs) are covered in this review. In addition, particular emphasis is placed on the most recent innovations that have been or may be implemented in current or future biogas plants.
Collapse
|
37
|
Braz GHR, Fernandez-Gonzalez N, Lema JM, Carballa M. Organic overloading affects the microbial interactions during anaerobic digestion in sewage sludge reactors. CHEMOSPHERE 2019; 222:323-332. [PMID: 30708166 DOI: 10.1016/j.chemosphere.2019.01.124] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/21/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
There is still a lack of information about microbial interactions of anaerobic digestion microbiome during process disturbance which limits our ability to predict the mechanisms that drive community dynamics on these events. This paper aims to determine how an organic overloading affects these interactions and to characterize in detail the microbiome structure and diversity in sewage sludge anaerobic reactors during an acidosis event. Two identical sewage sludge anaerobic reactors were subjected to an organic loading shock by adding glycerol waste. As consequence, volatile fatty acids accumulated after only 24 h (up to 2.5 g/L) while Bacteroidales and Methanomicrobiales became displaced by Firmicutes and Methanosaeta sp, showing that reactor acidosis can occur without an immediate decline of this methanogen. Network analysis revealed 9 clusters of co-occurring microorganisms with different behaviors during overloading. At first, Veillonellaceae family, the main glycerol degrading, associated with Candidatus Cloacimonetes, volatile fatty acids fermenters, increased their relative abundance in detriment of the syntrophic bacteria; although as conditions become more acidic, these groups were displaced by other fermenters like Porphyromonadaceae and Chitinophagaceae. Eventually, the methanogenesis failed 72 h after organic overloading, when pH reached values lower than 6. Overall, our results showed a succession of functionally redundant microorganisms, most likely because of niche specialization during organic overloading. The detailed temporal analysis elucidated the processes governing the dynamics anaerobic digestion microbiome, a knowledge required to develop anaerobic digestion management strategies based on its microbiome during process disturbances.
Collapse
Affiliation(s)
- Guilherme H R Braz
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782 Santiago de Compostela, Galicia, Spain.
| | - Nuria Fernandez-Gonzalez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineerings, Venue Dr. Mergelina, C/ Dr. Mergelina, s/n, Valladolid 47011, Spain; Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782 Santiago de Compostela, Galicia, Spain.
| | - Juan M Lema
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782 Santiago de Compostela, Galicia, Spain.
| | - Marta Carballa
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782 Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
38
|
Liu H, Qin H, Wang H. Characteristics of hydrogen-producing enrichment cultures from marine sediment using macroalgae Laminaria japonica as a feedstock. J Biosci Bioeng 2018; 126:710-714. [PMID: 29910187 DOI: 10.1016/j.jbiosc.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/09/2018] [Accepted: 05/17/2018] [Indexed: 10/28/2022]
Abstract
This study aimed to investigate the characteristics of hydrogen production by mixed cultures using Laminaria japonica hydrolysates. The hydrolysates of L. japonica were prepared by pretreatment methods, including heat (100°C or 121°C) and acid (HCl or H2SO4) pretreatments. The mixed cultures could produce hydrogen using L. japonica as a substrate, with the highest cumulative hydrogen production of 825 ± 14 mL/L from HCl-pretreated L. japonica. High-throughput sequencing of the 16S rRNA gene revealed that the microbial community in the hydrolysate of HCl-pretreated L. japonica was the most diverse among all the samples, with a Shannon diversity index of 5.253. The mixed culture from HCl-pretreated L. japonica and those from heat-pretreated (100°C and 121°C) L. japonica occupied different regions in a principal component analysis (PCA) plot. The dominant population in the hydrolysate of HCl-pretreated L. japonica was represented by hydrogen-producing bacteria, Clostridium spp. and Bacillus spp. The results suggested that L. japonica was an optimal feedstock for hydrogen production. The acid (HCl) pretreatment method could effectively enhance the hydrogen production from L. japonica.
Collapse
Affiliation(s)
- Hongyan Liu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Haihua Qin
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Hongyu Wang
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
39
|
Ferguson RMW, Coulon F, Villa R. Understanding microbial ecology can help improve biogas production in AD. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:754-763. [PMID: 29920462 DOI: 10.1016/j.scitotenv.2018.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
454-Pyrosequencing and lipid fingerprinting were used to link anaerobic digestion (AD) process parameters (pH, alkalinity, volatile fatty acids (VFAs), biogas production and methane content) with the reactor microbial community structure and composition. AD microbial communities underwent stress conditions after changes in organic loading rate and digestion substrates. 454-Pyrosequencing analysis showed that, irrespectively of the substrate digested, methane content and pH were always significantly, and positively, correlated with community evenness. In AD, microbial communities with more even distributions of diversity are able to use parallel metabolic pathways and have greater functional stability; hence, they are capable of adapting and responding to disturbances. In all reactors, a decrease in methane content to <30% was always correlated with a 50% increase of Firmicutes sequences (particularly in operational taxonomic units (OTUs) related to Ruminococcaceae and Veillonellaceae). Whereas digesters producing higher methane content (above 60%), contained a high number of sequences related to Synergistetes and unidentified bacterial OTUs. Finally, lipid fingerprinting demonstrated that, under stress, the decrease in archaeal biomass was higher than the bacterial one, and that archaeal Phospholipid etherlipids (PLEL) levels were correlated to reactor performances. These results demonstrate that, across a number of parameters such as lipids, alpha and beta diversity, and OTUs, knowledge of the microbial community structure can be used to predict, monitor, or optimise AD performance.
Collapse
Affiliation(s)
- Robert M W Ferguson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Frédéric Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Raffaella Villa
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
40
|
Liu Z, Cichocki N, Hübschmann T, Süring C, Ofiţeru ID, Sloan WT, Grimm V, Müller S. Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis. Environ Microbiol 2018; 21:164-181. [PMID: 30289191 PMCID: PMC7379589 DOI: 10.1111/1462-2920.14437] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/03/2018] [Accepted: 09/30/2018] [Indexed: 12/22/2022]
Abstract
In completely insular microbial communities, evolution of community structure cannot be shaped by the immigration of new members. In addition, when those communities are run in steady state, the influence of environmental factors on their assembly is reduced. Therefore, one would expect similar community structures under steady‐state conditions. Yet, in parallel setups, variability does occur. To reveal ecological mechanisms behind this phenomenon, five parallel reactors were studied at the single‐cell level for about 100 generations and community structure variations were quantified by ecological measures. Whether community variability can be controlled was tested by implementing soft temperature stressors as potential synchronizers. The low slope of the lognormal rank‐order abundance curves indicated a predominance of neutral mechanisms, i.e., where species identity plays no role. Variations in abundance ranks of subcommunities and increase in inter‐community pairwise β‐diversity over time support this. Niche differentiation was also observed, as indicated by steeper geometric‐like rank‐order abundance curves and increased numbers of correlations between abiotic and biotic parameters during initial adaptation and after disturbances. Still, neutral forces dominated community assembly. Our findings suggest that complex microbial communities in insular steady‐state environments can be difficult to synchronize and maintained in their original or desired structure, as they are non‐equilibrium systems.
Collapse
Affiliation(s)
- Zishu Liu
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Nicolas Cichocki
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Thomas Hübschmann
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Christine Süring
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Irina Dana Ofiţeru
- School of Engineering, Environmental Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - William T Sloan
- Department of Civil Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Volker Grimm
- Helmholtz Centre for Environmental Research-UFZ, Department of Ecological Modeling, Permoserstraße 15, 04318, Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
41
|
Liang X, Whitham JM, Holwerda EK, Shao X, Tian L, Wu YW, Lombard V, Henrissat B, Klingeman DM, Yang ZK, Podar M, Richard TL, Elkins JG, Brown SD, Lynd LR. Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:243. [PMID: 30202438 PMCID: PMC6126044 DOI: 10.1186/s13068-018-1238-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Anaerobic fermentation of lignocellulose occurs in both natural and managed environments, and is an essential part of the carbon cycle as well as a promising route to sustainable production of fuels and chemicals. Lignocellulose solubilization by mixed microbiomes is important in these contexts. RESULTS Here, we report the development of stable switchgrass-fermenting enrichment cultures maintained at various residence times and moderately high (55 °C) temperatures. Anaerobic microbiomes derived from a digester inoculum were incubated at 55 °C and fed semi-continuously with medium containing 30 g/L mid-season harvested switchgrass to achieve residence times (RT) of 20, 10, 5, and 3.3 days. Stable, time-invariant cellulolytic methanogenic cultures with minimal accumulation of organic acids were achieved for all RTs. Fractional carbohydrate solubilization was 0.711, 0.654, 0.581 and 0.538 at RT = 20, 10, 5 and 3.3 days, respectively, and glucan solubilization was proportional to xylan solubilization at all RTs. The rate of solubilization was described well by the equation r = k(C - C0fr), where C represents the concentration of unutilized carbohydrate, C0 is the concentration of carbohydrate (cellulose and hemicellulose) entering the bioreactor and fr is the extrapolated fraction of entering carbohydrate that is recalcitrant at infinite residence time. The 3.3 day RT is among the shortest RT reported for stable thermophilic, methanogenic digestion of a lignocellulosic feedstock. 16S rDNA phylotyping and metagenomic analyses were conducted to characterize the effect of RT on community dynamics and to infer functional roles in the switchgrass to biogas conversion to the various microbial taxa. Firmicutes were the dominant phylum, increasing in relative abundance from 54 to 96% as RT decreased. A Clostridium clariflavum strain with genetic markers for xylose metabolism was the most abundant lignocellulose-solubilizing bacterium. A Thermotogae (Defluviitoga tunisiensis) was the most abundant bacterium in switchgrass digesters at RT = 20 days but decreased in abundance at lower RTs as did multiple Chloroflexi. Synergistetes and Euryarchaeota were present at roughly constant levels over the range of RTs examined. CONCLUSIONS A system was developed in which stable methanogenic steady-states were readily obtained with a particulate biomass feedstock, mid-season switchgrass, at laboratory (1 L) scale. Characterization of the extent and rate of carbohydrate solubilization in combination with 16S rDNA and metagenomic sequencing provides a multi-dimensional view of performance, species composition, glycoside hydrolases, and metabolic function with varying residence time. These results provide a point of reference and guidance for future studies and organism development efforts involving defined cultures.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Jason M. Whitham
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Evert K. Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Xiongjun Shao
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Liang Tian
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 106 Taiwan
| | - Vincent Lombard
- CNRS, UMR 7257, Aix-Marseille University, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Aix-Marseille University, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dawn M. Klingeman
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Zamin K. Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Tom L. Richard
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, State College, PA 16802 USA
| | - James G. Elkins
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Steven D. Brown
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Present Address: LanzaTech, Inc., Skokie, IL 60077 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| |
Collapse
|
42
|
Greses S, Zamorano-López N, Borrás L, Ferrer J, Seco A, Aguado D. Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:425-434. [PMID: 29709811 DOI: 10.1016/j.jenvman.2018.04.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic digestion of indigenous Scenedesmus spp. microalgae was studied in continuous lab-scale anaerobic reactors at different temperatures (35 °C and 55 °C), and sludge retention time - SRT (50 and 70 days). Mesophilic digestion was performed in a continuous stirred-tank reactor (CSTR) and in an anaerobic membrane bioreactor (AnMBR). Mesophilic CSTR operated at 50 days SRT only achieved 11.9% of anaerobic biodegradability whereas in the AnMBR at 70 days SRT and 50 days HRT reached 39.5%, which is even higher than the biodegradability achieved in the thermophilic CSTR at 50 days SRT (30.4%). Microbial analysis revealed a high abundance of cellulose-degraders in both reactors, AnMBR (mainly composed of 9.4% Bacteroidetes, 10.1% Chloroflexi, 8.0% Firmicutes and 13.2% Thermotogae) and thermophilic CSTR (dominated by 23.8% Chloroflexi and 12.9% Firmicutes). However, higher microbial diversity was found in the AnMBR compared to the thermophilic CSTR which is related to the SRT. since high SRT promoted low growth-rate microorganisms, increasing the hydrolytic potential of the system. These results present the membrane technology as a promising approach to revalue microalgal biomass, suggesting that microalgae biodegradability and consequently the methane production could be improved operating at higher SRT.
Collapse
Affiliation(s)
- S Greses
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Av. de la Universitat s/n, 46100, Burjassot, Valencia, Spain.
| | - N Zamorano-López
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Av. de la Universitat s/n, 46100, Burjassot, Valencia, Spain.
| | - L Borrás
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Av. de la Universitat s/n, 46100, Burjassot, Valencia, Spain.
| | - J Ferrer
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022, Valencia, Spain.
| | - A Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Av. de la Universitat s/n, 46100, Burjassot, Valencia, Spain.
| | - D Aguado
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
43
|
Yousuf A, Bastidas-Oyanedel JR, Schmidt JE. Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 77:516-521. [PMID: 29716759 DOI: 10.1016/j.wasman.2018.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Food waste landfilling causes environmental degradation, and this work assesses a sustainable food valorization technique. In this study, food waste is converted into lactic acid in a batch assembly by dark fermentation without pH control and without the addition of external inoculum at 37 °C. The effect of total solid (TS), enzymatic and aeration pretreatment was investigated on liquid products concentration and product yield. The maximum possible TS content was 34% of enzymatic pretreated waste, and showed the highest lactic acid concentration of 52 g/L, with a lactic acid selectivity of 0.6 glactic/gtotalacids. The results indicated that aeration pretreatment does not significantly improve product concentration or yield. Non-pretreated waste in a 29% TS system showed a lactic acid concentration of 31 g/L. The results showed that enzymatic pretreated waste at TS of 34% results in the highest production of lactic acid.
Collapse
Affiliation(s)
- Ahasa Yousuf
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Juan-Rodrigo Bastidas-Oyanedel
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Jens Ejbye Schmidt
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
44
|
Zamorano-López N, Moñino P, Borrás L, Aguado D, Barat R, Ferrer J, Seco A. Influence of food waste addition over microbial communities in an Anaerobic Membrane Bioreactor plant treating urban wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:788-796. [PMID: 29660704 DOI: 10.1016/j.jenvman.2018.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Notorious changes in microbial communities were observed during and after the joint treatment of wastewater with Food Waste (FW) in an Anaerobic Membrane Bioreactor (AnMBR) plant. The microbial population was analysed by high-throughput sequencing of the 16S rRNA gene and dominance of Chloroflexi, Firmicutes, Synergistetes and Proteobacteria phyla was found. The relative abundance of these potential hydrolytic phyla increased as a higher fraction of FW was jointly treated. Moreover, whereas Specific Methanogenic Activity (SMA) rose from 10 to 51 mL CH4 g-1 VS, Methanosarcinales order increased from 34.0% over 80.0% of total Archaea, being Methanosaeta the dominant genus. The effect of FW over AnMBR biomass was observed during the whole experience, as methane production rose from 49.2 to 144.5 L CH4 · kg-1 influent COD. Furthermore, biomethanization potential was increased over 82% after the experience. AnMBR technology allows the established microbial community to remain in the bioreactor even after the addition of FW, improving the anaerobic digestion of urban wastewater.
Collapse
Affiliation(s)
- N Zamorano-López
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain.
| | - P Moñino
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, Valencia, 46022, Spain
| | - L Borrás
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain
| | - D Aguado
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, Valencia, 46022, Spain
| | - R Barat
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, Valencia, 46022, Spain
| | - J Ferrer
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, Valencia, 46022, Spain
| | - A Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain
| |
Collapse
|
45
|
Zhang D, Strawn M, Novak JT, Wang ZW. Kinetic modeling of the effect of solids retention time on methanethiol dynamics in anaerobic digestion. WATER RESEARCH 2018; 138:301-311. [PMID: 29614458 DOI: 10.1016/j.watres.2018.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The highly volatile methanethiol (MT) with an extremely low odor threshold and distinctive putrid smell is often identified as a major odorous compound generated under anaerobic conditions. As an intermediate compound in the course of anaerobic digestion, the extent of MT emission is closely related to the time of anaerobic reaction. In this study, lab-scale anaerobic digesters were operated at solids retention time (SRTs) of 15, 20, 25, 30, 40 and 50 days to investigate the effect of SRT on MT emission. The experimental results demonstrated a bell-shaped curve of MT emission versus SRT with a peak around 20 days SRT. In order to understand this SRT effect, a kinetic model was developed to describe MT production and utilization dynamics in the course of anaerobic digestion and calibrated with the experimental results collected from this study. The model outcome revealed that the high protein content in the feed sludge together with the large maintenance coefficient of MT fermenters are responsible for the peak MT emission emergence in the range of typical SRT used for anaerobic digestion. A further analysis of the kinetic model shows that it can be extensively simplified with reasonable approximation to a form that anaerobic digestion practitioners could easily use to predict the MT and SRT relationship.
Collapse
Affiliation(s)
- Dian Zhang
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA 20110, USA
| | - Mary Strawn
- Arlington County Water Pollution Control Bureau, 3402 S Glebe Rd, Arlington, VA 22202, USA
| | - John T Novak
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA 20110, USA
| | - Zhi-Wu Wang
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA 20110, USA.
| |
Collapse
|
46
|
Greses S, Gaby JC, Aguado D, Ferrer J, Seco A, Horn SJ. Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Dai K, Wen JL, Zhang F, Ma XW, Cui XY, Zhang Q, Zhao TJ, Zeng RJ. Electricity production and microbial characterization of thermophilic microbial fuel cells. BIORESOURCE TECHNOLOGY 2017; 243:512-519. [PMID: 28697453 DOI: 10.1016/j.biortech.2017.06.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Thermophilic microbial fuel cell (TMFC) offers many benefits, but the investigations on the diversity of exoelectrogenic bacteria are scarce. In this study, a two-chamber TMFC was constructed using ethanol as an electron donor, and the microbial dynamics were analyzed by high-throughput sequencing and 16S rRNA clone-library sequencing. The open-circuit potential of TMFC was approximately 650mV, while the maximum voltage was around 550mV. The maximum power density was 437mW/m2, and the columbic efficiency in this work was 20.5±6.0%. The Firmicutes bacteria, related to the uncultured bacterium clone A55_D21_H_B_C01 with a similarity of 99%, accounted for 90.9% of all bacteria in the TMFC biofilm. This unknown bacterium has the potential to become a new thermophilic exoelectrogenic bacterium that is yet to be cultured. The development of TMFC-involved biotechnologies will be beneficial for the production of valuable chemicals and generation of energy in the future.
Collapse
Affiliation(s)
- Kun Dai
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Jun-Li Wen
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Fang Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China.
| | - Xi-Wen Ma
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Xiang-Yu Cui
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Qi Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Ting-Jia Zhao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Raymond J Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
48
|
Ju F, Lau F, Zhang T. Linking Microbial Community, Environmental Variables, and Methanogenesis in Anaerobic Biogas Digesters of Chemically Enhanced Primary Treatment Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3982-3992. [PMID: 28240534 DOI: 10.1021/acs.est.6b06344] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Understanding the influences of biotic and abiotic factors on microbial community structure and methanogenesis are important for its engineering and ecological significance. In this study, four biogas digesters were supplied with the same inoculum and feeding sludge but operated at different sludge retention time (7 to 16 days) and organic loading rates for 90 days to determine the relative influence of biotic and environmental factors on the microbial community assembly and methanogenic performance. Despite different operational parameters, all digester communities were dominated by Bacteroidales, Clostridiales, and Thermotogales and followed the same trend of population dynamics over time. Network and multivariate analyses suggest that deterministic factors, including microbial competition (involving Bacteroidales spp.), niche differentiation (e.g., within Clostridiales spp.), and periodic microbial immigration (from feed sludge), are the key drivers of microbial community assembly and dynamics. A yet-to-be-cultured phylotype of Bacteroidales (GenBank ID: GU389558.1 ) is implicated as a strong competitor for carbohydrates. Moreover, biogas-producing rate and methane content were significantly related with the abundances of functional populations rather than any operational or physicochemical parameter, revealing microbiological mediation of methanogenesis. Combined, this study enriches our understandings of biological and environmental drivers of microbial community assembly and performance in anaerobic digesters.
Collapse
Affiliation(s)
- Feng Ju
- Environmental Biotechnology Lab, The University of Hong Kong , Hong Kong SAR, China
| | - Frankie Lau
- Drainage Services Department, The Government of the Hong Kong Special Administrative Region , Hong Kong SAR, China
| | - Tong Zhang
- Environmental Biotechnology Lab, The University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
49
|
Azman S, Khadem AF, Plugge CM, Stams AJM, Bec S, Zeeman G. Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors: inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities. Appl Microbiol Biotechnol 2017; 101:889-901. [PMID: 27900444 PMCID: PMC5219019 DOI: 10.1007/s00253-016-8010-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 01/20/2023]
Abstract
Inhibition effect of humic acid (HA) on anaerobic digestion of cellulose and xylan and the mitigation potential of the inhibition were evaluated in controlled fed batch reactors at 30 °C and a hydraulic retention time (HRT) of 20 days. Reactor performances were evaluated by biogas production and metabolite measurements for 220 days. Microbial population dynamics of the reactors were monitored with next-generation 16S rRNA gene sequencing at nine different sampling times. Our results showed that increasing levels of HA inhibited the hydrolysis efficiency of the digestion by 40% and concomitantly reduced the methane yield. Addition of hydrolytic enzymes helped to reverse the negative effects of HA, whereas calcium addition did not reverse HA inhibition. Microbiological analyses showed that the relative abundance of hydrolytic/fermentative bacterial groups such as Clostridiales, Bacteroidales and Anaerolineales was significantly lowered by the presence of HA. HA also affected the archaeal populations. Mostly hydrogenotrophic methanogens were negatively affected by HA. The relative abundance of Methanobacteriaceae, Methanomicrobiales-WCHA208 and Unassigned Thermoplasmata WCHA1-57 were negatively affected by the presence of HA, whereas Methanosaetacea was not affected.
Collapse
Affiliation(s)
- Samet Azman
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
- Sub-department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands.
| | - Ahmad F Khadem
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Section Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628, CN, Delft, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Sabina Bec
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Grietje Zeeman
- Sub-department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| |
Collapse
|
50
|
Purohit HJ, Kapley A, Khardenavis A, Qureshi A, Dafale NA. Insights in Waste Management Bioprocesses Using Genomic Tools. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:121-170. [PMID: 27926430 DOI: 10.1016/bs.aambs.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial capacities drive waste stabilization and resource recovery in environmental friendly processes. Depending on the composition of waste, a stress-mediated selection process ensures a scenario that generates a specific enrichment of microbial community. These communities dynamically change over a period of time while keeping the performance through the required utilization capacities. Depending on the environmental conditions, these communities select the appropriate partners so as to maintain the desired functional capacities. However, the complexities of these organizations are difficult to study. Individual member ratios and sharing of genetic intelligence collectively decide the enrichment and survival of these communities. The next-generation sequencing options with the depth of structure and function analysis have emerged as a tool that could provide the finer details of the underlying bioprocesses associated and shared in environmental niches. These tools can help in identification of the key biochemical events and monitoring of expression of associated phenotypes that will support the operation and maintenance of waste management systems. In this chapter, we link genomic tools with process optimization and/or management, which could be applied for decision making and/or upscaling. This review describes both, the aerobic and anaerobic, options of waste utilization process with the microbial community functioning as flocs, granules, or biofilms. There are a number of challenges involved in harnessing the microbial community intelligence with associated functional plasticity for efficient extension of microbial capacities for resource recycling and waste management. Mismanaged wastes could lead to undesired genotypes such as antibiotic/multidrug-resistant microbes.
Collapse
Affiliation(s)
- H J Purohit
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Kapley
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Khardenavis
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Qureshi
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - N A Dafale
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| |
Collapse
|