1
|
Peng J, Zou J, Zhao J, Chen A. Genome-wide identification and expression analysis of the SIRT gene family in Nile tilapia (Oreochromis niloticus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101425. [PMID: 39889587 DOI: 10.1016/j.cbd.2025.101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
The sirtuin (SIRT) family is a nicotine adenine dinucleotide (NAD+)-dependent class III histone deacetylase, which is widely involved in numerous physiological processes of organisms, such as metabolism, reproduction, and immunity. Here, based on the genomics database, comprehensive analysis of the SIRT gene in Nile tilapia (Oreochromis niloticus) was analyzed using bioinformatics methods and quantitative real-time PCR. The nine SIRT genes of O. niloticus (OnSIRT) were distributed on eight chromosomes. The OnSIRTs contain distinct sequences from 3 exons in OnSIRT4 to 16 exons in OnSIRT2, however, they share conserved domains and protein motifs. Phylogenetic analysis shows that the OnSIRTs belong to four subfamilies and are highly conserved in teleosts, and evolution is characterized primarily by purification selection. The OnSIRT genes showed diversified expression patterns in fourteen tissues of O. niloticus. OnSIRT2, OnSIRT3, OnSIRT3.2, OnSIRT6, and OnSIRT7 are mainly expressed in the gonads, especially in the ovary. OnSIRT1 and OnSIRT4 are mainly expressed in the kidney. OnSIRT5a is mainly expressed in the stomach, however, OnSIRT5b is mainly expressed in the liver and spleen. The results of this study provide a basis information for further exploration of the function and molecular mechanism of the SIRT gene family in teleosts.
Collapse
Affiliation(s)
- Jiabao Peng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaqi Zou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jinliang Zhao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| | - Aqin Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Bernhard SP, Ruiz FX, Remiszewski S, Todd MJ, Shenk T, Kulp JL, Chiang LW. Structural basis for sirtuin 2 activity and modulation: current state and opportunities. J Biol Chem 2025:110274. [PMID: 40412521 DOI: 10.1016/j.jbc.2025.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 05/12/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
Sirtuin 2 (SIRT2) is a ubiquitously expressed cellular enzyme that deacylates protein lysine residues using NAD+ as a cofactor. SIRT2-mediated post-translational modifications on a plethora of protein targets position the enzyme to exert a wide-ranging regulatory role in many physiological and pathological processes. More than 39 SIRT2 crystal structures in complex with substrates, products, mimetics of substrates and products, and modulators, have been reported. The Rossmann fold of the catalytic core presents inducible acyl and cofactor binding cavities that accommodate acyl chains of diverse lengths. These structures have provided information for the design of mechanism- and substrate-based inhibitors. Indeed, a specific SIRT2 selectivity pocket has been described and can be targeted by different chemotypes. Despite the determination of many crystal structures, numerous open questions remain, especially relating to the development of small molecule modulators, full or partial activation or inhibition, and relating these effects to different therapeutic applications. Additional questions include understanding the role of the disordered termini, and the role of potential quaternary states (monomer, dimer, and trimer). Deeper insight into these issues may facilitate the development of SIRT2 selective modulators that can be tailored to different pathological scenarios, such as viral infections and cancers, in which either activation or inhibition of SIRT2 may be of therapeutic benefit. This review covers the following topics: (1) primary to quaternary and catalytic structural biology; (2) structural insights into molecular modulation of SIRT2 (inhibition and selectivity by mechanism-based inhibitors, substrate-mimicking inhibitors, C pocket-binding inhibitors, and selectivity pocket binding inhibitors, including insights to activation; and (3) the impact of structural variations (mutations, post-translational modifications, polymorphs, protein interactions). Despite considerable progress, key knowledge gaps remain regarding the design of optimized SIRT2 modulators. Addressing these uncertainties, particularly within the realms of full/partial activation/inhibition, off-target effects, and tailoring modulators to specific pathologies, will require further investigation into the roles of the SIRT2 disordered termini, quaternary states, and post-translational modifications. Ultimately, unraveling these intricacies holds the key to unlocking the therapeutic potential of SIRT2 modulation.
Collapse
Affiliation(s)
- Samuel P Bernhard
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Francesc X Ruiz
- Chemistry and Chemical Biology, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854 USA
| | - Stacy Remiszewski
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Matthew J Todd
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Thomas Shenk
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - John L Kulp
- Conifer Point Pharmaceuticals, 3805 Old Easton Road, Doylestown, PA, 18902, USA; Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA.
| | - Lillian W Chiang
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA.
| |
Collapse
|
3
|
Friedrich F, Schiedel M, Swyter S, Zhang L, Sippl W, Schutkowski M, Einsle O, Jung M. Efficient Crystallization of Apo Sirt2 for Small-Molecule Soaking and Structural Analysis of Ligand Interactions. J Med Chem 2025. [PMID: 40390200 DOI: 10.1021/acs.jmedchem.4c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The selectivity pocket is a key binding site for inhibitors of the NAD+-dependent lysine deacylase Sirtuin 2 (Sirt2), a promising drug target in diseases like cancer. While small-molecule soaking can advance inhibitor development, the selectivity pocket is absent in available Sirt2 apo structures, and existing soaking systems like Sirt2-ADPribose (ADPR) suffer from unfavorable crystal packing that hinders ligand binding. We developed a method to rapidly generate high-quality Sirt2 apo crystals with an open selectivity pocket, suitable for high-throughput soaking. The induced-fit pocket forms upon seeding with a Sirtuin Rearranging ligand (SirReal) and is retained in the ligand-free apo structure. Screening the Maybridge Ro3-fragment library using a fluorescence polarization assay yielded three novel Sirt2-fragment-inhibitor structures. Additionally, our Sirt2 apo crystals can accommodate ligands at the acyl-lysine channel entrance and the cofactor binding site, as confirmed by binding of the peptide inhibitor KT9 and NAD+, facilitating SAR studies and inhibitor optimization.
Collapse
Affiliation(s)
- Florian Friedrich
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| | - Matthias Schiedel
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Sören Swyter
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| | - Lin Zhang
- Institute of Biochemistry, University of Freiburg, Freiburg 79104, Germany
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle 06120, Germany
| | - Oliver Einsle
- Institute of Biochemistry, University of Freiburg, Freiburg 79104, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
4
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2025; 45:484-560. [PMID: 39215785 PMCID: PMC11796339 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Antonello Mai
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
- Pasteur Institute, Cenci‐Bolognetti FoundationSapienza University of RomeRomeItaly
| | - Dante Rotili
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| |
Collapse
|
5
|
Tharayil JS, Kandettu A, Chakrabarty S. The curious case of mitochondrial sirtuin in rewiring breast cancer metabolism: Mr Hyde or Dr Jekyll? Biochim Biophys Acta Mol Basis Dis 2025; 1871:167691. [PMID: 39864670 DOI: 10.1016/j.bbadis.2025.167691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Mammalian sirtuins are class III histone deacetylases involved in the regulation of multiple biological processes including senescence, DNA repair, apoptosis, proliferation, caloric restriction, and metabolism. Among the mammalian sirtuins, SIRT3, SIRT4, and SIRT5 are localized in the mitochondria and collectively termed the mitochondrial sirtuins. Mitochondrial sirtuins are NAD+-dependent deacetylases that play a central role in cellular metabolism and function as epigenetic regulators by performing post-translational modification of cellular proteins. Several studies have identified the role of mitochondrial sirtuins in age-related pathologies and the rewiring of cancer metabolism. Mitochondrial sirtuins regulate cellular functions by contributing to post-translational modifications, including deacetylation, ADP-ribosylation, demalonylation, and desuccinylation of diverse cellular proteins to maintain cellular homeostasis. Here, we review and discuss the structure and function of the mitochondrial sirtuins and their role as metabolic regulators in breast cancer. Altered breast cancer metabolism may promote tumor progression and has been an essential target for therapy. Further, we discuss the potential role of targeting mitochondrial sirtuin and its impact on breast cancer progression using sirtuin inhibitors and activators as anticancer agents.
Collapse
Affiliation(s)
- Jesline Shaji Tharayil
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
6
|
Alhasaniah AH, Alissa M, Elsaid FG, Alsugoor MH, AlQahtani MS, Alessa A, Jambi K, Albakri GS, Albaqami FMK, Bennett E. The enigmatic role of SIRT2 in the cardiovascular system: Deciphering its protective and detrimental actions to unlock new avenues for therapeutic intervention. Curr Probl Cardiol 2025; 50:102929. [PMID: 39566866 DOI: 10.1016/j.cpcardiol.2024.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Cardiovascular diseases (CVDs) are leading causes of mortality throughout the world, and hence, there is a critical need to elucidate their molecular mechanisms. The Sirtuin (SIRT) family of NAD+-dependent enzymes has recently been shown to play a critical role in cardiovascular health and disease, and several SIRT isoforms, especially SIRT1 and SIRT3, have been amply investigated. However, the precise function of SIRT2 is only partially explored. Here, we review the current understanding of the involvement of SIRT2 in various cardiovascular pathologies, such as cardiac hypertrophy, ischemia-reperfusion injury, diabetic cardiomyopathy, and vascular dysfunction, with emphasis placed on the context-dependent protective or deleterious actions of SIRT2, including its wide array of catalytic activities which span beyond deacetylation. Furthermore, the review uncovers several unresolved research gaps for SIRT2 mechanisms by which SIRT2 modulates cardiac and vascular function during development and aging, thereby paving the way for the discovery of novel therapeutic targets as well as SIRT2-targeted interventions in the prevention and treatment of various cardiovascular diseases.
Collapse
Affiliation(s)
- Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Fahmy Gad Elsaid
- Department of Biology, College of Science, King Khalid University, PO Box 960, Asir, Abha, 61421, Saudi Arabia
| | - Mahdi H Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Mohammed S AlQahtani
- Department of Medical Laboratory, Prince Sultan Air Base Hospital, Al-kharj, Saudi Arabia
| | - Anwer Alessa
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al-kharj, Saudi Arabia
| | - Khalid Jambi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ghadah Shukri Albakri
- Department of Teching and Learning, College of Education and Human development, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Faisal Miqad K Albaqami
- Department of Biology, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Elizabeth Bennett
- Queen Elizabeth Hospital Birmingham (QEHB), Nuffield House, 3rd Floor Room 17/E, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB, Dudley Road, Birmingham, West Midlands, B18 7QH
| |
Collapse
|
7
|
Yang Y, Luo N, Gong Z, Zhou W, Ku Y, Chen Y. Lactate and lysine lactylation of histone regulate transcription in cancer. Heliyon 2024; 10:e38426. [PMID: 39559217 PMCID: PMC11570253 DOI: 10.1016/j.heliyon.2024.e38426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
Histone lysine modifications were well-established epigenetic markers, with many types identified and extensively studied. The discovery of histone lysine lactylation had revealed a new form of epigenetic modification. The intensification of this modification was associated with glycolysis and elevated intracellular lactate levels, both of which were closely linked to cellular metabolism. Histone lactylation plays a crucial role in multiple cellular homeostasis, including immune regulation and cancer progression, thereby significantly influencing cell fate. Lactylation can modify both histone and non-histone proteins. This paper provided a comprehensive review of the typical epigenetic effects and lactylation on classical transcription-related lysine sites and summarized the known enzymes involved in histone lactylation and delactylation. Additionally, some discoveries of histone lactylation in tumor biology were also discussed, and some prospects for this field were put forward.
Collapse
Affiliation(s)
- Yunhao Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Nanzhi Luo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Zhipeng Gong
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Wenjing Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Yin Ku
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Yaohui Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| |
Collapse
|
8
|
Graf LG, Moreno-Yruela C, Qin C, Schulze S, Palm GJ, Schmöker O, Wang N, Hocking DM, Jebeli L, Girbardt B, Berndt L, Dörre B, Weis DM, Janetzky M, Albrecht D, Zühlke D, Sievers S, Strugnell RA, Olsen CA, Hofmann K, Lammers M. Distribution and diversity of classical deacylases in bacteria. Nat Commun 2024; 15:9496. [PMID: 39489725 PMCID: PMC11532494 DOI: 10.1038/s41467-024-53903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-D-/L-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), EPFL, Lausanne, Switzerland
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Gottfried J Palm
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nancy Wang
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dianna M Hocking
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Leila Jebeli
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Britta Girbardt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leona Berndt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Babett Dörre
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel M Weis
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Markus Janetzky
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Richard A Strugnell
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
9
|
Shen H, Qi X, Hu Y, Wang Y, Zhang J, Liu Z, Qin Z. Targeting sirtuins for cancer therapy: epigenetics modifications and beyond. Theranostics 2024; 14:6726-6767. [PMID: 39479446 PMCID: PMC11519805 DOI: 10.7150/thno.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
Sirtuins (SIRTs) are well-known as nicotinic adenine dinucleotide+(NAD+)-dependent histone deacetylases, which are important epigenetic enzymes consisting of seven family members (SIRT1-7). Of note, SIRT1 and SIRT2 are distributed in the nucleus and cytoplasm, while SIRT3, SIRT4 and SIRT5 are localized in the mitochondria. SIRT6 and SIRT7 are distributed in the nucleus. SIRTs catalyze the deacetylation of various substrate proteins, thereby modulating numerous biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Notably, accumulating evidence has recently underscored the multi-faceted roles of SIRTs in both the suppression and progression of various types of human cancers. Crucially, SIRTs have been emerging as promising therapeutic targets for cancer therapy. Thus, in this review, we not only present an overview of the molecular structure and function of SIRTs, but elucidate their intricate associations with oncogenesis. Additionally, we discuss the current landscape of small-molecule activators and inhibitors targeting SIRTs in the contexts of cancer and further elaborate their combination therapies, especially highlighting their prospective utility for future cancer drug development.
Collapse
Affiliation(s)
- Hui Shen
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xinyi Qi
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhongyu Liu
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Zheng Qin
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
10
|
Shenk T, Kulp III JL, Chiang LW. Drugs Targeting Sirtuin 2 Exhibit Broad-Spectrum Anti-Infective Activity. Pharmaceuticals (Basel) 2024; 17:1298. [PMID: 39458938 PMCID: PMC11510315 DOI: 10.3390/ph17101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/28/2024] Open
Abstract
Direct-acting anti-infective drugs target pathogen-coded gene products and are a highly successful therapeutic paradigm. However, they generally target a single pathogen or family of pathogens, and the targeted organisms can readily evolve resistance. Host-targeted agents can overcome these limitations. One family of host-targeted, anti-infective agents modulate human sirtuin 2 (SIRT2) enzyme activity. SIRT2 is one of seven human sirtuins, a family of NAD+-dependent protein deacylases. It is the only sirtuin that is found predominantly in the cytoplasm. Multiple, structurally distinct SIRT2-targeted, small molecules have been shown to inhibit the replication of both RNA and DNA viruses, as well as intracellular bacterial pathogens, in cell culture and in animal models of disease. Biochemical and X-ray structural studies indicate that most, and probably all, of these compounds act as allosteric modulators. These compounds appear to impact the replication cycles of intracellular pathogens at multiple levels to antagonize their replication and spread. Here, we review SIRT2 modulators reported to exhibit anti-infective activity, exploring their pharmacological action as anti-infectives and identifying questions in need of additional study as this family of anti-infective agents advances to the clinic.
Collapse
Affiliation(s)
- Thomas Shenk
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - John L. Kulp III
- Conifer Point Pharmaceuticals, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| | - Lillian W. Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| |
Collapse
|
11
|
Shao Y, Hu J, Li H, Lu K. Regulation of autophagy by protein lipidation. ADVANCED BIOTECHNOLOGY 2024; 2:33. [PMID: 39883197 PMCID: PMC11709147 DOI: 10.1007/s44307-024-00040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 01/31/2025]
Abstract
Autophagy is a conserved catabolic recycling pathway that can eliminate cytosolic materials to maintain homeostasis and organelle functions. Many studies over the past few decades have demonstrated that abnormal autophagy is associated with a variety of diseases. Protein lipidation plays an important role in the regulation of autophagy by affecting protein trafficking, localization, stability, interactions and signal transduction. Here, we review recent advances in the understanding of the role of lipidation in autophagy, including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor modification and cholesterylation. We comprehensively review the enzymes and catalytic mechanisms of lipidation and discuss the relationship between lipidation and autophagy, aiming to deepen the understanding of lipidation and promote the discovery of drug targets for the treatment of autophagy-related diseases.
Collapse
Affiliation(s)
- Yuqian Shao
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junchao Hu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Colcerasa A, Friedrich F, Melesina J, Moser P, Vogelmann A, Tzortzoglou P, Neuwirt E, Sum M, Robaa D, Zhang L, Ramos-Morales E, Romier C, Einsle O, Metzger E, Schüle R, Groß O, Sippl W, Jung M. Structure-Activity Studies of 1,2,4-Oxadiazoles for the Inhibition of the NAD +-Dependent Lysine Deacylase Sirtuin 2. J Med Chem 2024; 67:10076-10095. [PMID: 38847803 DOI: 10.1021/acs.jmedchem.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The NAD+-dependent lysine deacylase sirtuin 2 (Sirt2) is involved in multiple pathological conditions such as cancer. Targeting Sirt2 has thus received an increased interest for therapeutic purposes. Furthermore, the orthologue from Schistosoma mansoni (SmSirt2) has been considered for the potential treatment of the neglected tropical disease schistosomiasis. We previously identified a 1,2,4-oxadiazole-based scaffold from the screening of the "Kinetobox" library as a dual inhibitor of human Sirt2 (hSirt2) and SmSirt2. Herein, we describe the structure-activity studies on 1,2,4-oxadiazole-based analogues, which are potent inhibitors of human Sirt2 deacetylation. As proposed by docking studies, a substrate-competitive and cofactor-noncompetitive binding mode of inhibition could be determined in vitro via binding assays and kinetic analysis and further confirmed by a crystal structure of an oxadiazole inhibitor in complex with hSirt2. Optimized analogues reduced cell viability and inhibited prostate cancer cell migration, in correlation with Sirt2 deacetylase inhibition both in vitro and in cells.
Collapse
Affiliation(s)
- Arianna Colcerasa
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, Freiburg 79104, Germany
| | - Florian Friedrich
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, Freiburg 79104, Germany
| | - Jelena Melesina
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle/Saale 06120, Germany
| | - Patrick Moser
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, Freiburg 79104, Germany
| | - Anja Vogelmann
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, Freiburg 79104, Germany
- CIBSS─Centre for Integrative Biological Signalling Studies, Freiburg 79104, Germany
| | - Pavlos Tzortzoglou
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, Freiburg 79104, Germany
| | - Emilia Neuwirt
- Institute of Neuropathology, University of Freiburg Medical Center, Breisacher Straße 113, Freiburg 79106, Germany
| | - Manuela Sum
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center, Breisacher Straße 66, Freiburg 79106, Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle/Saale 06120, Germany
| | - Lin Zhang
- Institute of Biochemistry, University of Freiburg, Albertstraße 21, Freiburg 79104, Germany
| | - Elizabeth Ramos-Morales
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm UMR-S 1258, 1 Rue Laurent Fries, Illkirch F-67400, France
| | - Christophe Romier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm UMR-S 1258, 1 Rue Laurent Fries, Illkirch F-67400, France
| | - Oliver Einsle
- Institute of Biochemistry, University of Freiburg, Albertstraße 21, Freiburg 79104, Germany
| | - Eric Metzger
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center, Breisacher Straße 66, Freiburg 79106, Germany
| | - Roland Schüle
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center, Breisacher Straße 66, Freiburg 79106, Germany
- CIBSS─Centre for Integrative Biological Signalling Studies, Freiburg 79104, Germany
| | - Olaf Groß
- Institute of Neuropathology, University of Freiburg Medical Center, Breisacher Straße 113, Freiburg 79106, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle/Saale 06120, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, Freiburg 79104, Germany
- CIBSS─Centre for Integrative Biological Signalling Studies, Freiburg 79104, Germany
| |
Collapse
|
13
|
Yang J, Cassel J, Boyle BC, Oppong D, Ahn YH, Weiser BP. A homogeneous time-resolved fluorescence screen to identify SIRT2 deacetylase and defatty-acylase inhibitors. PLoS One 2024; 19:e0305000. [PMID: 38913635 PMCID: PMC11195995 DOI: 10.1371/journal.pone.0305000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Human sirtuin-2 (SIRT2) has emerged as an attractive drug target for a variety of diseases. The enzyme is a deacylase that can remove chemically different acyl modifications from protein lysine residues. Here, we developed a high-throughput screen based on a homogeneous time-resolved fluorescence (HTRF) binding assay to identify inhibitors of SIRT2's demyristoylase activity, which is uncommon among many ligands that only affect its deacetylase activity. From a test screen of 9600 compounds, we identified a small molecule that inhibited SIRT2's deacetylase activity (IC50 = 7 μM) as well as its demyristoylase activity (IC50 = 37 μM). The inhibitor was composed of two small fragments that independently inhibited SIRT2: a halogenated phenol fragment inhibited its deacetylase activity, and a tricyclic thiazolobenzimidazole fragment inhibited its demyristoylase activity. The high-throughput screen also detected multiple deacetylase-specific SIRT2 inhibitors.
Collapse
Affiliation(s)
- Jie Yang
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, New Jersey, United States of America
- Department of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, United States of America
| | - Joel Cassel
- Molecular Screening & Protein Expression Facility, Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Brian C. Boyle
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, New Jersey, United States of America
- Department of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, United States of America
- Department of Biomedical Engineering, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Daniel Oppong
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Young-Hoon Ahn
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Brian P. Weiser
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, New Jersey, United States of America
- Department of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, United States of America
| |
Collapse
|
14
|
Scarano N, Brullo C, Musumeci F, Millo E, Bruzzone S, Schenone S, Cichero E. Recent Advances in the Discovery of SIRT1/2 Inhibitors via Computational Methods: A Perspective. Pharmaceuticals (Basel) 2024; 17:601. [PMID: 38794171 PMCID: PMC11123952 DOI: 10.3390/ph17050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Sirtuins (SIRTs) are classified as class III histone deacetylases (HDACs), a family of enzymes that catalyze the removal of acetyl groups from the ε-N-acetyl lysine residues of histone proteins, thus counteracting the activity performed by histone acetyltransferares (HATs). Based on their involvement in different biological pathways, ranging from transcription to metabolism and genome stability, SIRT dysregulation was investigated in many diseases, such as cancer, neurodegenerative disorders, diabetes, and cardiovascular and autoimmune diseases. The elucidation of a consistent number of SIRT-ligand complexes helped to steer the identification of novel and more selective modulators. Due to the high diversity and quantity of the structural data thus far available, we reviewed some of the different ligands and structure-based methods that have recently been used to identify new promising SIRT1/2 modulators. The present review is structured into two sections: the first includes a comprehensive perspective of the successful computational approaches related to the discovery of SIRT1/2 inhibitors (SIRTIs); the second section deals with the most interesting SIRTIs that have recently appeared in the literature (from 2017). The data reported here are collected from different databases (SciFinder, Web of Science, Scopus, Google Scholar, and PubMed) using "SIRT", "sirtuin", and "sirtuin inhibitors" as keywords.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| |
Collapse
|
15
|
Ren YL, Lei JT, Zhang TR, Lu P, Cui DD, Yang B, Zhao GY, Peng F, Cao ZX, Peng C, Li YZ. Isobavachalcone, a natural sirtuin 2 inhibitor, exhibits anti-triple-negative breast cancer efficacy in vitro and in vivo. Phytother Res 2024; 38:1815-1829. [PMID: 38349045 DOI: 10.1002/ptr.8143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 04/10/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 μM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/β-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.
Collapse
Affiliation(s)
- Ya-Li Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie-Ting Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting-Rui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan-Dan Cui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Yang
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pharmacy, The Seventh People's Hospital of Chengdu, Chengdu, China
- Department of Pharmacy, Panzhihua Central Hospital, Dali University, Panzhihua, China
| | - Gui-Ying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhi-Xing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Dashti P, Lewallen EA, Gordon JAR, Montecino MA, Davie JR, Stein GS, van Leeuwen JPTM, van der Eerden BCJ, van Wijnen AJ. Epigenetic regulators controlling osteogenic lineage commitment and bone formation. Bone 2024; 181:117043. [PMID: 38341164 DOI: 10.1016/j.bone.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | | | - Martin A Montecino
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile; Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada.
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | | | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
17
|
Nakano H, Nakano A. The role of metabolism in cardiac development. Curr Top Dev Biol 2024; 156:201-243. [PMID: 38556424 DOI: 10.1016/bs.ctdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States; Cardiology Division, Department of Medicine, UCLA, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States; Molecular Biology Institute, UCLA, Los Angeles, CA, United States; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
18
|
Zheng W. The (patho)physiological roles of the individual deacylase activities of a sirtuin. Chem Biol Drug Des 2024; 103:e14460. [PMID: 39556442 DOI: 10.1111/cbdd.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 11/19/2024]
Abstract
Since the discovery of the sirtuin family founding member (i.e., the yeast silent information regulator 2 (sir2) protein) in 2000, more and more sirtuin proteins have been identified and are currently known to be present in organisms from all the three kingdoms of life (i.e., bacteria, archaea, and eukarya). Seven sirtuin proteins have been identified in mammals including humans, that is, SIRT1/2/3/4/5/6/7. Sirtuin proteins are a class of enzymes with primary catalytic activity being the β-nicotinamide adenine dinucleotide (β-NAD+ or NAD+)-dependent deacylation from the Nε-acyl-lysine residues on cellular proteins. Many sirtuins (e.g., human SIRT1/2/3/4/5/6/7) have been found to each possess multiple individual deacylase activities acting on Nε-acyl-lysine substrates with different acyl groups ranging from the simple formyl and acetyl to the more complex groups like succinyl and myristoyl; however, our current knowledge on the (patho)physiological roles of these individual deacylase activities is still limited, which could be due to the currently still thin research toolbox for investigation (i.e., the deacylase-selective sirtuin mutant and inhibitor/activator). In this article, an updated account on the subject matter will be presented with biochemical and medicinal chemistry perspectives.
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
19
|
Kaya SG, Eren G. Selective inhibition of SIRT2: A disputable therapeutic approach in cancer therapy. Bioorg Chem 2024; 143:107038. [PMID: 38113655 DOI: 10.1016/j.bioorg.2023.107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Sirtuin 2 (SIRT2) is involved in a wide range of processes, from transcription to metabolism to genome stability. Dysregulation of SIRT2 has been associated with the pathogenesis and progression of different diseases, such as cancer and neurodegenerative disorders. In this context, targeting SIRT2 activity by small molecule inhibitors is a promising therapeutic strategy for treating related conditions, particularly cancer. This review summarizes the regulatory roles and molecular mechanisms of SIRT2 in cancer and the attempts to evaluate potential antitumor activities of SIRT2-selective inhibitors by in vitro and in vivo testing, which are expected to deepen our understanding of the role of SIRT2 in tumorigenesis and progression and may offer important clues or inspiration ideas for developing SIRT2 inhibitors with excellent affinity and selectivity.
Collapse
Affiliation(s)
- Selen Gozde Kaya
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
20
|
Betsinger CN, Justice JL, Tyl MD, Edgar JE, Budayeva HG, Abu YF, Cristea IM. Sirtuin 2 promotes human cytomegalovirus replication by regulating cell cycle progression. mSystems 2023; 8:e0051023. [PMID: 37916830 PMCID: PMC10734535 DOI: 10.1128/msystems.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.
Collapse
Affiliation(s)
- Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Joshua L. Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Julia E. Edgar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Hanna G. Budayeva
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Yaa F. Abu
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| |
Collapse
|
21
|
Yang J, Nicely NI, Weiser BP. Effects of Dimerization on the Deacylase Activities of Human SIRT2. Biochemistry 2023; 62:3383-3395. [PMID: 37966275 PMCID: PMC10702427 DOI: 10.1021/acs.biochem.3c00381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Human sirtuin isoform 2 (SIRT2) is an NAD+-dependent enzyme that functions as a lysine deacetylase and defatty-acylase. Here, we report that SIRT2 readily dimerizes in solution and in cells and that dimerization affects its ability to remove different acyl modifications from substrates. Dimerization of recombinant SIRT2 was revealed with analytical size exclusion chromatography and chemical cross-linking. Dimerized SIRT2 dissociates into monomers upon binding long fatty acylated substrates (decanoyl-, dodecanoyl-, and myristoyl-lysine). However, we did not observe dissociation of dimeric SIRT2 in the presence of acetyl-lysine. Analysis of X-ray crystal structures led us to discover a SIRT2 double mutant (Q142A/E340A) that is impaired in its ability to dimerize, which was confirmed with chemical cross-linking and in cells with a split-GFP approach. In enzyme assays, the SIRT2(Q142A/E340A) mutant had normal defatty-acylase activity and impaired deacetylase activity compared with the wild-type protein. These results indicate that dimerization is essential for optimal SIRT2 function as a deacetylase. Moreover, we show that SIRT2 dimers can be dissociated by a deacetylase and defatty-acylase inhibitor, ascorbyl palmitate. Our finding that its oligomeric state can affect the acyl substrate selectivity of SIRT2 is a novel mode of activity regulation by the enzyme that can be altered genetically or pharmacologically.
Collapse
Affiliation(s)
- Jie Yang
- Department
of Molecular Biology, Rowan University School
of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Nathan I. Nicely
- Department
of Pharmacology, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Brian P. Weiser
- Department
of Molecular Biology, Rowan University School
of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| |
Collapse
|
22
|
Petchampai N, Isoe J, Balaraman P, Oscherwitz M, Carter BH, Sánchez CG, Scaraffia PY. Pyruvate kinase is post-translationally regulated by sirtuin 2 in Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104015. [PMID: 37797713 PMCID: PMC10698509 DOI: 10.1016/j.ibmb.2023.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
We previously demonstrated that Aedes aegypti pyruvate kinase (AaPK) plays a key role in the regulation of both carbon and nitrogen metabolism in mosquitoes. To further elucidate whether AaPK can be post-translationally regulated by Ae. aegypti sirtuin 2 (AaSirt2), an NAD+-dependent deacetylase that catalyzes the removal of acetyl groups from acetylated lysine residues, we conducted a series of analysis in non-starved and starved female mosquitoes. Transcriptional and protein profiles of AaSirt2, analyzed by qPCR and western blots, indicated that the AaSirt2 is differentially modulated in response to sugar or blood feeding in mosquito tissues dissected at different times during the first gonotrophic cycle. We also found that AaSirt2 is localized in both cytosolic and mitochondrial cellular compartments of fat body and thorax. Multiple lysine-acetylated proteins were detected by western blotting in both cellular compartments. Furthermore, western blotting of immunoprecipitated proteins provided evidence that AaPK is lysine-acetylated and bound with AaSirt2 in the cytosolic fractions of fat body and thorax from non-starved and starved females. In correlation with these results, we also discovered that RNAi-mediated knockdown of AaSirt2 in the fat body of starved females significantly decreased AaPK protein abundance. Notably, survivorship of AaSirt2-deficient females maintained under four different nutritional regimens was not significantly affected. Taken together, our data reveal that AaPK is post-translationally regulated by AaSirt2.
Collapse
Affiliation(s)
- Natthida Petchampai
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jun Isoe
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Prashanth Balaraman
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Max Oscherwitz
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Brendan H Carter
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Cecilia G Sánchez
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Patricia Y Scaraffia
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
23
|
Roche KL, Remiszewski S, Todd MJ, Kulp JL, Tang L, Welsh AV, Barry AP, De C, Reiley WW, Wahl A, Garcia JV, Luftig MA, Shenk T, Tonra JR, Murphy EA, Chiang LW. An allosteric inhibitor of sirtuin 2 deacetylase activity exhibits broad-spectrum antiviral activity. J Clin Invest 2023; 133:e158978. [PMID: 37317966 PMCID: PMC10266789 DOI: 10.1172/jci158978] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Most drugs used to treat viral disease target a virus-coded product. They inhibit a single virus or virus family, and the pathogen can readily evolve resistance. Host-targeted antivirals can overcome these limitations. The broad-spectrum activity achieved by host targeting can be especially useful in combating emerging viruses and for treatment of diseases caused by multiple viral pathogens, such as opportunistic agents in immunosuppressed patients. We have developed a family of compounds that modulate sirtuin 2, an NAD+-dependent deacylase, and now report the properties of a member of that family, FLS-359. Biochemical and x-ray structural studies show that the drug binds to sirtuin 2 and allosterically inhibits its deacetylase activity. FLS-359 inhibits the growth of RNA and DNA viruses, including members of the coronavirus, orthomyxovirus, flavivirus, hepadnavirus, and herpesvirus families. FLS-359 acts at multiple levels to antagonize cytomegalovirus replication in fibroblasts, causing modest reductions in viral RNAs and DNA, together with a much greater reduction in infectious progeny, and it exhibits antiviral activity in humanized mouse models of infection. Our results highlight the potential of sirtuin 2 inhibitors as broad-spectrum antivirals and set the stage for further understanding of how host epigenetic mechanisms impact the growth and spread of viral pathogens.
Collapse
Affiliation(s)
- Kathryn L. Roche
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Stacy Remiszewski
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Matthew J. Todd
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - John L. Kulp
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Liudi Tang
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Alison V. Welsh
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Ashley P. Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chandrav De
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Angela Wahl
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | - J. Victor Garcia
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas Shenk
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - James R. Tonra
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Eain A. Murphy
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
- Microbiology and Immunology Department, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Lillian W. Chiang
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| |
Collapse
|
24
|
Sharma C, Donu D, Curry AM, Barton E, Cen Y. Multifunctional activity-based chemical probes for sirtuins. RSC Adv 2023; 13:11771-11781. [PMID: 37063743 PMCID: PMC10103746 DOI: 10.1039/d3ra02133e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
The sirtuin family of NAD+-dependent protein deacylases has gained significant attention during the last two decades, owing to their unique enzymatic activities as well as their critical roles in a broad array of cellular events. Innovative chemical probes are heavily pursued for the functional annotation and pharmacological perturbation of this group of "eraser" enzymes. We have developed several series of activity-based chemical probes (ABPs) to interrogate the functional state of active sirtuins in complex biological samples. They feature a simple Ala-Ala-Lys tripeptide backbone with a thioacyl "warhead", a photoaffinity group (benzophenone or diazirine), and a bioorthogonal group (terminal alkyne or azido) for conjugation to reporters. When applied in a comparative fashion, these probes reveal the changes of active sirtuin contents under different physiological conditions. Additionally, they can also be utilized in a competitive manner for inhibitor discovery. The Nobel-winning "click" conjugation to a fluorophore allows the visualization of the active enzymes, while the covalent adduct to a biotin leads to the affinity capture of the protein of interest. Furthermore, the "clickable" tag enables the easy access to proteolysis targeting chimeras (PROTACs) that effectively degrade human SIRT2 in HEK293 cells, albeit at micromolar concentrations. These small molecule probes offer unprecedented opportunities to investigate the biological functions and physiological relevance of the sirtuin family.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Elizabeth Barton
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
25
|
Ho TT, Peng C, Seto E, Lin H. Trapoxin A Analogue as a Selective Nanomolar Inhibitor of HDAC11. ACS Chem Biol 2023; 18:803-809. [PMID: 36977486 PMCID: PMC10127203 DOI: 10.1021/acschembio.2c00840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Histone deacetylases (HDACs) are enzymes that regulate many important biological pathways. There is a need for the development of isoform-selective HDAC inhibitors for further biological applications. Here, we report the development of trapoxin A analogues as potent and selective inhibitors of HDAC11, an enzyme that can efficiently remove long-chain fatty acyl groups from proteins. In particular, we show that one of the trapoxin A analogues, TD034, has nanomolar potency in enzymatic assays. We show that in cells, TD034 is active at low micromolar concentrations and inhibits the defatty acylation of SHMT2, a known HDAC11 substrate. The high potency and selectivity of TD034 would permit further development of HDAC11 inhibitors for biological and therapeutic applications.
Collapse
Affiliation(s)
- Thanh Tu Ho
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Changmin Peng
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, George Washington Cancer Center, George Washington University, Washington, District of Columbia 20037, United States
| | - Edward Seto
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, George Washington Cancer Center, George Washington University, Washington, District of Columbia 20037, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Somavarapu AK, Kleijwegt G, Nagaraj M, Alam P, Nielsen J, Otzen DE. Drug repurposing screens identify compounds that inhibit α-synuclein oligomers' membrane disruption and block antibody interactions. Chem Sci 2023; 14:3030-3047. [PMID: 36937574 PMCID: PMC10016340 DOI: 10.1039/d2sc05534a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Small soluble oligomers of the protein α-synuclein (αSO) have been linked to disruptions in neuronal homeostasis, contributing to the development of Parkinson's Disease (PD). While this makes αSO an obvious drug target, the development of effective therapeutics against αSO is challenged by its low abundance and structural and morphological complexity. Here, we employ two different approaches to neutralize toxic interactions made by αSOs with different cellular components. First, we use available data to identify four neuronal proteins as likely candidates for αSO interactions, namely Cfl1, Uchl1, Sirt2 and SerRS. However, despite promising results when immobilized, all 4 proteins only bind weakly to αSO in solution in microfluidic assays, making them inappropriate for screening. In contrast, the formation of stable contacts formed between αSO and vesicles consisting of anionic lipids not only mimics a likely biological role of αSO but also provided a platform to screen two small molecule libraries for disruptors of these contacts. Of the 7 best leads obtained in this way, 2 significantly impaired αSO contacts with other proteins in a sandwich ELISA assay using αSO-binding monoclonal antibodies and nanobodies. In addition, 5 of these leads suppressed α-synuclein amyloid formation. Thus, a repurposing screening that directly targets a key culprit in PD pathogenesis shows therapeutic potential.
Collapse
Affiliation(s)
- Arun Kumar Somavarapu
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Giulia Kleijwegt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Madhu Nagaraj
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Parvez Alam
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, 8000 Aarhus C Denmark
| |
Collapse
|
27
|
Lin H. Substrate-selective small-molecule modulators of enzymes: Mechanisms and opportunities. Curr Opin Chem Biol 2023; 72:102231. [PMID: 36455490 PMCID: PMC9870951 DOI: 10.1016/j.cbpa.2022.102231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/29/2022]
Abstract
Small-molecule inhibitors of enzymes are widely used tools in reverse chemical genetics to probe biology and explore therapeutic opportunities. They are often compared with genetic knockdown or knockout and are expected to produce phenotypes similar to the genetic perturbations. This review aims to highlight that small molecule inhibitors of enzymes and genetic perturbations may not necessarily produce the same phenotype due to the possibility of substrate-selective or substrate-dependent effects of the inhibitors. Examples of substrate-selective inhibitors and the mechanisms for the substrate-selective effects are discussed. Substrate-selective modulators of enzymes have distinct advantages and cannot be easily replaced with biologics. Thus, they present an exciting opportunity for chemical biologists and medicinal chemists.
Collapse
Affiliation(s)
- Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
Abstract
The silent information regulator (sirtuin) is a family of enzymes involved in epigenetic processes with lysine deacetylase activity, having as substrates histones and other proteins. They participate in a wide range of cellular and pathologic processes, such as gene expression, cell division and motility, oxidative-induced stress management, metabolic control and carcinogenesis, among others, thus presenting as interesting therapeutic targets. In this article, the authors describe the inhibitory mechanisms and binding modes of the human sirtuin 2 (hSIRT2) inhibitors, which had their complexes with the enzyme structurally characterized. The results help pave the way for the rational designing of new hSIRT2 inhibitors and the development of novel therapeutic agents targeting this epigenetic enzyme.
Collapse
|
29
|
Kawaguchi M, Nakajima Y, Nakagawa H. Development of Sirtuin Fluorescence Probes and Medicinal Chemistry Research Targeting SIRT Family. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
31
|
Kalbas D, Meleshin M, Liebscher S, Zessin M, Melesina J, Schiene-Fischer C, Bülbül EF, Bordusa F, Sippl W, Schutkowski M. Small Changes Make the Difference for SIRT2: Two Different Binding Modes for 3-Arylmercapto-Acylated Lysine Derivatives. Biochemistry 2022; 61:1705-1722. [PMID: 35972884 DOI: 10.1021/acs.biochem.2c00211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sirtuins are protein deacylases regulating metabolism and stress responses and implicated in aging-related diseases. Modulators of the human sirtuins 1-7 are sought as chemical tools and potential therapeutics, for example, for treatment of cancer. We were able to show that 3-aryl-mercapto-succinylated- and 3-benzyl-mercapto-succinylated peptide derivatives yield selective Sirt5 inhibitors with low nM Ki values. Here, we synthesized and characterized 3-aryl-mercapto-butyrylated peptide derivatives as effective and selective sirtuin 2 inhibitors with KD values in the low nanomolar range. According to kinetic measurements and microscale thermophoresis/surface plasmon resonance experiments, the respective inhibitors bind with the 3-aryl-mercapto moiety in the selectivity pocket of Sirtuin 2, inducing a rearrangement of the active site. In contrast, 3-aryl-mercapto-nonalyl or palmitoyl derivatives are characterized by a switch in the binding mode blocking both the hydrophobic channel by the fatty acyl chain and the nicotinamide pocket by the 3-aryl-mercapto moiety.
Collapse
Affiliation(s)
- Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Matthes Zessin
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Jelena Melesina
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Emre Fatih Bülbül
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Wolfgang Sippl
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| |
Collapse
|
32
|
Wang M, Zhang Y, Komaniecki GP, Lu X, Cao J, Zhang M, Yu T, Hou D, Spiegelman NA, Yang M, Price IR, Lin H. Golgi stress induces SIRT2 to counteract Shigella infection via defatty-acylation. Nat Commun 2022; 13:4494. [PMID: 35918380 PMCID: PMC9345896 DOI: 10.1038/s41467-022-32227-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 07/21/2022] [Indexed: 01/08/2023] Open
Abstract
Enzymes from pathogens often modulate host protein post-translational modifications (PTMs), facilitating survival and proliferation of pathogens. Shigella virulence factors IpaJ and IcsB induce proteolytic cleavage and lysine fatty acylation on host proteins, which cause Golgi stress and suppress innate immunity, respectively. However, it is unknown whether host enzymes could reverse such modifications introduced by pathogens' virulence factors to suppress pathogenesis. Herein, we report that SIRT2, a potent lysine defatty-acylase, is upregulated by the transcription factor CREB3 under Golgi stress induced by Shigella infection. SIRT2 in turn removes the lysine fatty acylation introduced by Shigella virulence factor IcsB to enhance host innate immunity. SIRT2 knockout mice are more susceptible to Shigella infection than wildtype mice, demonstrating the importance of SIRT2 to counteract Shigella infection.
Collapse
Affiliation(s)
- Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Yugang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Garrison P Komaniecki
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xuan Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ji Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Mingming Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Tao Yu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Dan Hou
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Nicole A Spiegelman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ming Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ian R Price
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
33
|
Rajabi N, Hansen TN, Nielsen AL, Nguyen HT, Baek M, Bolding JE, Bahlke OØ, Petersen SEG, Bartling CRO, Strømgaard K, Olsen CA. Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme. Angew Chem Int Ed Engl 2022; 61:e202115805. [PMID: 35299278 PMCID: PMC9315039 DOI: 10.1002/anie.202115805] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 01/01/2023]
Abstract
Sirtuin 5 (SIRT5) is a protein lysine deacylase enzyme that regulates diverse biology by hydrolyzing ϵ-N-carboxyacyllysine posttranslational modifications in the cell. Inhibition of SIRT5 has been linked to potential treatment of several cancers but potent compounds with activity in cells have been lacking. Here we developed mechanism-based inhibitors that incorporate isosteres of a carboxylic acid residue that is important for high-affinity binding to the enzyme active site. By masking of the tetrazole moiety of the most potent candidate from our initial SAR study, we achieved potent and cytoselective growth inhibition for the treatment of SIRT5-dependent leukemic cancer cell lines in culture. Thus, we provide an efficient, cellularly active small molecule that targets SIRT5, which can help elucidate its function and potential as a future drug target. This work shows that masked isosteres of carboxylic acids are viable chemical motifs for the development of inhibitors that target mitochondrial enzymes, which may have applications beyond the sirtuin field.
Collapse
Affiliation(s)
- Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.,Present address: Red Glead Discovery, 22363, Lund, Sweden
| | - Tobias N Hansen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Alexander L Nielsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.,Present address: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Huy T Nguyen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.,Present address: School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Baek
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Julie E Bolding
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Oskar Ø Bahlke
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Sylvester E G Petersen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Christian R O Bartling
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| |
Collapse
|
34
|
Djokovic N, Ruzic D, Rahnasto-Rilla M, Srdic-Rajic T, Lahtela-Kakkonen M, Nikolic K. Expanding the Accessible Chemical Space of SIRT2 Inhibitors through Exploration of Binding Pocket Dynamics. J Chem Inf Model 2022; 62:2571-2585. [PMID: 35467856 DOI: 10.1021/acs.jcim.2c00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Considerations of binding pocket dynamics are one of the crucial aspects of the rational design of binders. Identification of alternative conformational states or cryptic subpockets could lead to the discovery of completely novel groups of the ligands. However, experimental characterization of pocket dynamics, besides being expensive, may not be able to elucidate all of the conformational states relevant for drug discovery projects. In this study, we propose the protocol for computational simulations of sirtuin 2 (SIRT2) binding pocket dynamics and its integration into the structure-based virtual screening (SBVS) pipeline. Initially, unbiased molecular dynamics simulations of SIRT2:inhibitor complexes were performed using optimized force field parameters of SIRT2 inhibitors. Time-lagged independent component analysis (tICA) was used to design pocket-related collective variables (CVs) for enhanced sampling of SIRT2 pocket dynamics. Metadynamics simulations in the tICA eigenvector space revealed alternative conformational states of the SIRT2 binding pocket and the existence of a cryptic subpocket. Newly identified SIRT2 conformational states outperformed experimentally resolved states in retrospective SBVS validation. After performing prospective SBVS, compounds from the under-represented portions of the SIRT2 inhibitor chemical space were selected for in vitro evaluation. Two compounds, NDJ18 and NDJ85, were identified as potent and selective SIRT2 inhibitors, which validated the in silico protocol and opened up the possibility for generalization and broadening of its application. The anticancer effects of the most potent compound NDJ18 were examined on the triple-negative breast cancer cell line. Results indicated that NDJ18 represents a promising structure suitable for further evaluation.
Collapse
Affiliation(s)
- Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Minna Rahnasto-Rilla
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70210 Kuopio, Finland
| | - Tatjana Srdic-Rajic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | | | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
35
|
Murugasamy K, Munjal A, Sundaresan NR. Emerging Roles of SIRT3 in Cardiac Metabolism. Front Cardiovasc Med 2022; 9:850340. [PMID: 35369299 PMCID: PMC8971545 DOI: 10.3389/fcvm.2022.850340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 12/17/2022] Open
Abstract
The heart is a highly metabolically active organ that predominantly utilizes fatty acids as an energy substrate. The heart also derives some part of its energy by oxidation of other substrates, including glucose, lactose, amino acids and ketones. The critical feature of cardiac pathology is metabolic remodeling and loss of metabolic flexibility. Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins (SIRT1 to SIRT7), with NAD+ dependent deacetylase activity. SIRT3 is expressed in high levels in healthy hearts but downregulated in the aged or diseased hearts. Experimental evidence shows that increasing SIRT3 levels or activity can ameliorate several cardiac pathologies. The primary deacetylation targets of SIRT3 are mitochondrial proteins, most of which are involved in energy metabolism. Thus, SIRT3 improves cardiac health by modulating cardiac energetics. In this review, we discuss the essential role of SIRT3 in regulating cardiac metabolism in the context of physiology and pathology. Specifically, we summarize the recent advancements that emphasize the critical role of SIRT3 as a master regulator of cardiac metabolism. We also present a comprehensive view of all known activators of SIRT3, and elaborate on their therapeutic potential to ameliorate energetic abnormalities in various cardiac pathologies.
Collapse
|
36
|
Rajabi N, Hansen TN, Nielsen AL, Nguyen HT, Bæk M, Bolding JE, Bahlke OØ, Petersen SEG, Bartling CR, Strømgaard K, Olsen CA. Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nima Rajabi
- Københavns Universitet: Kobenhavns Universitet Department of Drug Design and Pharmacology DENMARK
| | - Tobias N. Hansen
- Københavns Universitet: Kobenhavns Universitet Department of Drug Design and Pharmacology DENMARK
| | - Alexander L. Nielsen
- Københavns Universitet: Kobenhavns Universitet Department of Drug Design and Pharmacology DENMARK
| | - Huy T. Nguyen
- Københavns Universitet: Kobenhavns Universitet Department of Drug Design and Pharmacology DENMARK
| | - Michael Bæk
- Københavns Universitet: Kobenhavns Universitet Department of Drug Design and Pharmacology DENMARK
| | - Julie. E. Bolding
- Københavns Universitet: Kobenhavns Universitet Department of Drug Design and Pharmacology DENMARK
| | - Oskar Ø. Bahlke
- Københavns Universitet: Kobenhavns Universitet Department of Drug Design and Pharmacology DENMARK
| | - Sylvester E. G. Petersen
- Københavns Universitet: Kobenhavns Universitet Department of Drug Design and Pharmacology DENMARK
| | - Christian R.O. Bartling
- Københavns Universitet: Kobenhavns Universitet Department of Drug Design and Pharmacology DENMARK
| | - Kristian Strømgaard
- Københavns Universitet: Kobenhavns Universitet Department of Drug Design and Pharmacology DENMARK
| | - Christian Adam Olsen
- University of Copenhagen Center for Biopharmaceuticals Universitetsparken 2 DK-2100 Copenhagen DENMARK
| |
Collapse
|
37
|
Protein Lipidation Types: Current Strategies for Enrichment and Characterization. Int J Mol Sci 2022; 23:ijms23042365. [PMID: 35216483 PMCID: PMC8880637 DOI: 10.3390/ijms23042365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications regulate diverse activities of a colossal number of proteins. For example, various types of lipids can be covalently linked to proteins enzymatically or non-enzymatically. Protein lipidation is perhaps not as extensively studied as protein phosphorylation, ubiquitination, or glycosylation although it is no less significant than these modifications. Evidence suggests that proteins can be attached by at least seven types of lipids, including fatty acids, lipoic acids, isoprenoids, sterols, phospholipids, glycosylphosphatidylinositol anchors, and lipid-derived electrophiles. In this review, we summarize types of protein lipidation and methods used for their detection, with an emphasis on the conjugation of proteins with polyunsaturated fatty acids (PUFAs). We discuss possible reasons for the scarcity of reports on PUFA-modified proteins, limitations in current methodology, and potential approaches in detecting PUFA modifications.
Collapse
|
38
|
Moreno-Yruela C, Zhang D, Wei W, Bæk M, Liu W, Gao J, Danková D, Nielsen AL, Bolding JE, Yang L, Jameson ST, Wong J, Olsen CA, Zhao Y. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. SCIENCE ADVANCES 2022; 8:eabi6696. [PMID: 35044827 PMCID: PMC8769552 DOI: 10.1126/sciadv.abi6696] [Citation(s) in RCA: 294] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/25/2021] [Indexed: 05/22/2023]
Abstract
Lysine L-lactylation [K(L-la)] is a newly discovered histone mark stimulated under conditions of high glycolysis, such as the Warburg effect. K(L-la) is associated with functions that are different from the widely studied histone acetylation. While K(L-la) can be introduced by the acetyltransferase p300, histone delactylases enzymes remained unknown. Here, we report the systematic evaluation of zinc- and nicotinamide adenine dinucleotide–dependent histone deacetylases (HDACs) for their ability to cleave ε-N-L-lactyllysine marks. Our screens identified HDAC1–3 and SIRT1–3 as delactylases in vitro. HDAC1–3 show robust activity toward not only K(L-la) but also K(D-la) and diverse short-chain acyl modifications. We further confirmed the de-L-lactylase activity of HDACs 1 and 3 in cells. Together, these data suggest that histone lactylation is installed and removed by regulatory enzymes as opposed to spontaneous chemical reactivity. Our results therefore represent an important step toward full characterization of this pathway’s regulatory elements.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Di Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Wei Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Michael Bæk
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Wenchao Liu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jinjun Gao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Daniela Danková
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Alexander L. Nielsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Julie E. Bolding
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lu Yang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Samuel T. Jameson
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Christian A. Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
- Corresponding author. (Y.Z.); (C.A.O.)
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
- Corresponding author. (Y.Z.); (C.A.O.)
| |
Collapse
|
39
|
Vogelmann A, Schiedel M, Wössner N, Merz A, Herp D, Hammelmann S, Colcerasa A, Komaniecki G, Hong JY, Sum M, Metzger E, Neuwirt E, Zhang L, Einsle O, Groß O, Schüle R, Lin H, Sippl W, Jung M. Development of a NanoBRET assay to validate dual inhibitors of Sirt2-mediated lysine deacetylation and defatty-acylation that block prostate cancer cell migration. RSC Chem Biol 2022; 3:468-485. [PMID: 35441145 PMCID: PMC8985159 DOI: 10.1039/d1cb00244a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Sirtuin2 (Sirt2) with its NAD+-dependent deacetylase and defatty-acylase activities plays a central role in the regulation of specific cellular functions. Dysregulation of Sirt2 activity has been associated with the pathogenesis of many diseases, thus making Sirt2 a promising target for pharmaceutical intervention. Herein, we present new high affinity Sirt2 selective Sirtuin-Rearranging Ligands (SirReals) that inhibit both Sirt2-dependent deacetylation and defatty-acylation in vitro and in cells. We show that simultaneous inhibition of both Sirt2 activities results in strongly reduced levels of the oncoprotein c-Myc and an inhibition of cancer cell migration. Furthermore, we describe the development of a NanoBRET-based assay for Sirt2, thereby providing a method to study cellular target engagement for Sirt2 in a straightforward and accurately quantifiable manner. Applying this assay, we could confirm cellular Sirt2 binding of our new Sirt2 inhibitors and correlate their anticancer effects with their cellular target engagement. Sirt2 inhibitors that show simultaneous inhibition of Sirt2 deacetylase and defatty-acylase activity block prostate cancer cell migration and their target engagement is shown by a newly developed NanoBRET assay.![]()
Collapse
Affiliation(s)
- A Vogelmann
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - M Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| | - N Wössner
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - A Merz
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - D Herp
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - S Hammelmann
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - A Colcerasa
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
| | - G Komaniecki
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
| | - J Y Hong
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
| | - M Sum
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center Breisacher Strasse 66 79106 Freiburg Germany
| | - E Metzger
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center Breisacher Strasse 66 79106 Freiburg Germany
| | - E Neuwirt
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg 79106 Freiburg Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Germany
- Faculty of Biology, University of Freiburg 79104 Freiburg Germany
| | - L Zhang
- Institute of Biochemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - O Einsle
- Institute of Biochemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - O Groß
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg 79106 Freiburg Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg 79106 Freiburg Germany
| | - R Schüle
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center Breisacher Strasse 66 79106 Freiburg Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Germany
| | - H Lin
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
| | - W Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, University of Halle-Wittenberg Kurt-Mothes-Str. 3 06120 Halle Germany
| | - M Jung
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstraße 25 79104 Freiburg Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Germany
| |
Collapse
|
40
|
Kalous KS, Wynia-Smith SL, Smith BC. Sirtuin Oxidative Post-translational Modifications. Front Physiol 2021; 12:763417. [PMID: 34899389 PMCID: PMC8652059 DOI: 10.3389/fphys.2021.763417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Increased sirtuin deacylase activity is correlated with increased lifespan and healthspan in eukaryotes. Conversely, decreased sirtuin deacylase activity is correlated with increased susceptibility to aging-related diseases. However, the mechanisms leading to decreased sirtuin activity during aging are poorly understood. Recent work has shown that oxidative post-translational modification by reactive oxygen (ROS) or nitrogen (RNS) species results in inhibition of sirtuin deacylase activity through cysteine nitrosation, glutathionylation, sulfenylation, and sulfhydration as well as tyrosine nitration. The prevalence of ROS/RNS (e.g., nitric oxide, S-nitrosoglutathione, hydrogen peroxide, oxidized glutathione, and peroxynitrite) is increased during inflammation and as a result of electron transport chain dysfunction. With age, cellular production of ROS/RNS increases; thus, cellular oxidants may serve as a causal link between loss of sirtuin activity and aging-related disease development. Therefore, the prevention of inhibitory oxidative modification may represent a novel means to increase sirtuin activity during aging. In this review, we explore the role of cellular oxidants in inhibiting individual sirtuin human isoform deacylase activity and clarify the relevance of ROS/RNS as regulatory molecules of sirtuin deacylase activity in the context of health and disease.
Collapse
Affiliation(s)
- Kelsey S Kalous
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
41
|
Yoo H, Polsinelli GA. Kinetic Characterization of Human Histone Deacetylase 8 With Medium-Chain Fatty Acyl Lysine. Epigenet Insights 2021; 14:25168657211065685. [PMID: 34917889 PMCID: PMC8669121 DOI: 10.1177/25168657211065685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 12/05/2022] Open
Abstract
Histone deacetylases (HDACs) catalyze the removal of Ɛ-acetyl-lysine residues of histones via hydrolysis. Removal of acetyl groups results in condensation of chromatin structure and alteration of gene expression by repression. HDACs are considered targets for the treatment of cancer due to their role in regulating transcription. HDAC8 inhibition may be an important anti-proliferative factor for histone deacetylase inhibitors on cancer cells and may give rise to the progression of apoptosis. HDAC8 activity was analyzed with various peptides where the target lysine is modified with medium-chain fatty acyl group. Kinetic data were determined for each p53 peptide substrate. The results suggest that there was HDAC8 deacetylase activity on peptide substrate as well as deacylase activity with acylated peptide substrate variants. HDAC8 inhibition by hexanoic and decanoic acid was also examined. The Ki for hexanoic and decanoic acid were determined to be 2.35 ± 0.341 and 4.48 ± 0.221 mM, respectively.
Collapse
Affiliation(s)
- Harrison Yoo
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, Charleston, WV, USA
| | - Gregory A Polsinelli
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, Charleston, WV, USA
| |
Collapse
|
42
|
Zessin M, Meleshin M, Simic Z, Kalbas D, Arbach M, Gebhardt P, Melesina J, Liebscher S, Bordusa F, Sippl W, Barinka C, Schutkowski M. Continuous Sirtuin/HDAC (histone deacetylase) activity assay using thioamides as PET (Photoinduced Electron Transfer)-based fluorescence quencher. Bioorg Chem 2021; 117:105425. [PMID: 34695733 DOI: 10.1016/j.bioorg.2021.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Histone deacylase 11 and human sirtuins are able to remove fatty acid-derived acyl moieties from the ε-amino group of lysine residues. Specific substrates are needed for investigating the biological functions of these enzymes. Additionally, appropriate screening systems are required for identification of modulators of enzymatic activities of HDAC11 and sirtuins. We designed and synthesized a set of activity probes by incorporation of a thioamide quencher unit into the fatty acid-derived acyl chain and a fluorophore in the peptide sequence. Systematic variation of both fluorophore and quencher position resulted "super-substrates" with catalytic constants of up to 15,000,000 M-1s-1 for human sirtuin 2 (Sirt2) enabling measurements using enzyme concentrations down to 100 pM in microtiter plate-based screening formats. It could be demonstrated that the stalled intermediate formed by the reaction of Sirt2-bound thiomyristoylated peptide and NAD+ has IC50 values below 200 pM.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Zeljko Simic
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Miriam Arbach
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Philip Gebhardt
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Jelena Melesina
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany.
| |
Collapse
|
43
|
Hong JY, Lin H. Sirtuin Modulators in Cellular and Animal Models of Human Diseases. Front Pharmacol 2021; 12:735044. [PMID: 34650436 PMCID: PMC8505532 DOI: 10.3389/fphar.2021.735044] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022] Open
Abstract
Sirtuins use NAD+ to remove various acyl groups from protein lysine residues. Through working on different substrate proteins, they display many biological functions, including regulation of cell proliferation, genome stability, metabolism, and cell migration. There are seven sirtuins in humans, SIRT1-7, each with unique enzymatic activities, regulatory mechanisms, subcellular localizations, and substrate scopes. They have been indicated in many human diseases, including cancer, neurodegeneration, microbial infection, metabolic and autoimmune diseases. Consequently, interests in development of sirtuin modulators have increased in the past decade. In this brief review, we specifically summarize genetic and pharmacological modulations of sirtuins in cancer, neurological, and cardiovascular diseases. We further anticipate this review will be helpful for scrutinizing the significance of sirtuins in the studied diseases.
Collapse
Affiliation(s)
- Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
44
|
Taneja A, Ravi V, Hong JY, Lin H, Sundaresan NR. Emerging roles of Sirtuin 2 in cardiovascular diseases. FASEB J 2021; 35:e21841. [PMID: 34582046 DOI: 10.1096/fj.202100490r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Sirtuins are a family of NAD+ -dependent deacetylases implicated in a wide variety of age-associated pathologies, including cardiovascular disorders. Among the seven mammalian sirtuins, SIRT2 modulates various cellular processes through the deacetylation or deacylation of their target proteins. Notably, the levels of SIRT2 in the heart decline with age and other pathological conditions, leading to cardiovascular dysfunction. In the present review, we discuss the emerging roles of SIRT2 in cardiovascular dysfunction and heart failure associated with factors like age, hypertension, oxidative stress, and diabetes. We also discuss the potential of using inhibitors to study the unexplored role of SIRT2 in the heart. While SIRT2 undoubtedly plays a crucial role in the cardiovascular system, its functions are only beginning to be understood, making it an attractive candidate for further research in the field.
Collapse
Affiliation(s)
- Arushi Taneja
- Department of Microbiology and Cell Biology, Cardiovascular and Muscle Research Laboratory, Indian Institute of Science, Bengaluru, India
| | - Venkatraman Ravi
- Department of Microbiology and Cell Biology, Cardiovascular and Muscle Research Laboratory, Indian Institute of Science, Bengaluru, India
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Nagalingam Ravi Sundaresan
- Department of Microbiology and Cell Biology, Cardiovascular and Muscle Research Laboratory, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
45
|
Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M. Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 2021; 403:151-194. [PMID: 34433238 DOI: 10.1515/hsz-2021-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.
Collapse
Affiliation(s)
- Anna-Theresa Blasl
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Robert Vogt
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| |
Collapse
|
46
|
Komaniecki G, Lin H. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Front Cell Dev Biol 2021; 9:717503. [PMID: 34368168 PMCID: PMC8339906 DOI: 10.3389/fcell.2021.717503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Post-translational acylation of lysine side chains is a common mechanism of protein regulation. Modification by long-chain fatty acyl groups is an understudied form of lysine acylation that has gained increasing attention recently due to the characterization of enzymes that catalyze the addition and removal this modification. In this review we summarize what has been learned about lysine fatty acylation in the approximately 30 years since its initial discovery. We report on what is known about the enzymes that regulate lysine fatty acylation and their physiological functions, including tumorigenesis and bacterial pathogenesis. We also cover the effect of lysine fatty acylation on reported substrates. Generally, lysine fatty acylation increases the affinity of proteins for specific cellular membranes, but the physiological outcome depends greatly on the molecular context. Finally, we will go over the experimental tools that have been used to study lysine fatty acylation. While much has been learned about lysine fatty acylation since its initial discovery, the full scope of its biological function has yet to be realized.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
47
|
Weng H, Ma Y, Chen L, Cai G, Chen Z, Zhang S, Ye Q. A New Vision of Mitochondrial Unfolded Protein Response to the Sirtuin Family. Curr Neuropharmacol 2021; 18:613-623. [PMID: 31976838 PMCID: PMC7457425 DOI: 10.2174/1570159x18666200123165002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/01/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial damage is involved in many pathophysiological processes, such as tumor development, metabolism, and neurodegenerative diseases. The mitochondrial unfolded protein response (mtUPR) is the first stress-protective response initiated by mitochondrial damage, and it repairs or clears misfolded proteins to alleviate this damage. Studies have confirmed that the sirtuin family is essential for the mitochondrial stress response; in particular, SIRT1, SIRT3, and SIRT7 participate in the mtUPR in different axes. This article summarizes the associations of sirtuins with the mtUPR as well as specific molecular targets related to the mtUPR in different disease models, which will provide new inspiration for studies on mitochondrial stress, mitochondrial function protection, and mitochondria-related diseases, such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Huidan Weng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350001, China,The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences Kumamoto University, Kumamoto, Japan
| | - Lina Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350001, China
| | - Guoen Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Zhiting Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| |
Collapse
|
48
|
Leite JA, Ghirotto B, Targhetta VP, de Lima J, Câmara NOS. Sirtuins as pharmacological targets in neurodegenerative and neuropsychiatric disorders. Br J Pharmacol 2021; 179:1496-1511. [PMID: 34029375 DOI: 10.1111/bph.15570] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate several processes, such as transcription, cell proliferation, differentiation and development. HDACs are classified as either Zn2+ -dependent or NAD+ -dependent enzymes. Over the years, experimental and clinical evidence has demonstrated that HDAC modulation is a critical process in neurodegenerative and psychiatric disorders. Nevertheless, most of the studies have focused on the role of Zn2+ -dependent HDACs in the development of these diseases, although there is growing evidence showing that the NAD+ -dependent HDACs, known as sirtuins, are also very promising targets. This possibility has been strengthened by reports of decreased levels of NAD+ in CNS disorders, which can lead to alterations in sirtuin activation and therefore result in increased pathology. In this review, we discuss the role of sirtuins in neurodegenerative and neuropsychiatric disorders as well the possible rationale for them to be considered as pharmacological targets in future therapeutic interventions.
Collapse
Affiliation(s)
- Jefferson A Leite
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor P Targhetta
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jean de Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Wang M, Lin H. Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annu Rev Biochem 2021; 90:245-285. [PMID: 33848425 DOI: 10.1146/annurev-biochem-082520-125411] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.
Collapse
Affiliation(s)
- Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA;
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA; .,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
50
|
Nielsen AL, Rajabi N, Kudo N, Lundø K, Moreno-Yruela C, Bæk M, Fontenas M, Lucidi A, Madsen AS, Yoshida M, Olsen CA. Mechanism-based inhibitors of SIRT2: structure-activity relationship, X-ray structures, target engagement, regulation of α-tubulin acetylation and inhibition of breast cancer cell migration. RSC Chem Biol 2021; 2:612-626. [PMID: 34458803 PMCID: PMC8341974 DOI: 10.1039/d0cb00036a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a protein deacylase enzyme that removes acetyl groups and longer chain acyl groups from post-translationally modified lysine residues. It affects diverse biological functions in the cell and has been considered a drug target in relation to both neurodegenerative diseases and cancer. Therefore, access to well-characterized and robust tool compounds is essential for the continued investigation of the complex functions of this enzyme. Here, we report a collection of chemical probes that are potent, selective, stable in serum, water-soluble, and inhibit SIRT2-mediated deacetylation and demyristoylation in cells. Compared to the current landscape of SIRT2 inhibitors, this is a unique ensemble of features built into a single compound. We expect the developed chemotypes to find broad application in the interrogation of SIRT2 functions in both healthy and diseased cells, and to provide a foundation for the development of future therapeutics. Sirtuin 2 (SIRT2) is a protein deacylase enzyme that removes acetyl groups and longer chain acyl groups from post-translationally modified lysine residues. Here, we developed small peptide-based inhibitors of its activity in living cells in culture.![]()
Collapse
Affiliation(s)
- Alexander L Nielsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Norio Kudo
- RIKEN Center for Sustainable Resource Science (S13) Hirosawa 2-1 Wako Saitama 351-0198 Japan
| | - Kathrine Lundø
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen Blegdamsvej 3B DK-2200 Copenhagen Denmark
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Michael Bæk
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Martin Fontenas
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Alessia Lucidi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science (S13) Hirosawa 2-1 Wako Saitama 351-0198 Japan
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| |
Collapse
|