1
|
He SX, Liu YW, Zhou QY, Liu CJ, Li W, Ma LQ. Selenium increases antimony uptake in As-hyperaccumulators Pteris vittata and Pteris cretica by promoting antimonate reduction: GSH-GSSG cycle and arsenate reductases HAC1/ACR2. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135875. [PMID: 39303610 DOI: 10.1016/j.jhazmat.2024.135875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Selenium-enhanced arsenic uptake by As-hyperaccumulators Pteris vittata and Pteris cretica is known, but how it impacts antimony (Sb) uptake and associated mechanisms are unclear. Here, we investigated the effects of 2.5 μM selenate (Se2.5) on Sb uptake by two plants after growing for 10 days under hydroponics containing 10 or 50 μM antimonate (SbV) (Sb10 or Sb50). Both plants were efficient in taking up SbV, which was reduced to SbIII (17-40 %) and mainly accumulated in the roots (86-97 %). The addition of Se increased the Sb contents by 78-97 and 29-33 % to 242-1358 and 132-697 mg kg-1 in P. vittata and P. cretica roots. Compared with the Sb10 and Sb50 treatments, addition of Se increased the SbV reduction, with more increase in P. vittata than P. cretica roots (181-273 % vs. 17-29 %). Enhanced GSH-GSSG cycle mediated by glutathione peroxidase (GPX) and glutathione reductase (GR) may play an important role in SbV reduction in the roots. Compared with the Sb treatments, addition of Se increased the GPX and GR activity by 71-97 and 2-50 % in P. vittata roots, and 59-153 and 22-63 % in P. cretica roots. Besides, Se upregulated the expression of arsenate reductases PvHAC1 and PvACR2 in P. vittata roots by 1.7-3.4 folds but not in P. cretica. Se-enhanced SbV reduction in P. vittata explains why it was more effective in Sb accumulation than P. cretica. Taken together, Se is effective in increasing the Sb uptake in both plants probably by promoting SbV reduction via GSH-GSSG cycle and/or PvHAC1/PvACR2, suggesting that Se may be used to enhance phytostabilization of Sb-contaminated soils.
Collapse
Affiliation(s)
- Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yi-Wen Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qian-Yu Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Tullume-Vergara PO, Caicedo KYO, Tantalean JFC, Serrano MG, Buck GA, Teixeira MMG, Shaw JJ, Alves JMP. Genomes of Endotrypanum monterogeii from Panama and Zelonia costaricensis from Brazil: Expansion of Multigene Families in Leishmaniinae Parasites That Are Close Relatives of Leishmania spp. Pathogens 2023; 12:1409. [PMID: 38133293 PMCID: PMC10747355 DOI: 10.3390/pathogens12121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The Leishmaniinae subfamily of the Trypanosomatidae contains both genus Zelonia (monoxenous) and Endotrypanum (dixenous). They are amongst the nearest known relatives of Leishmania, which comprises many human pathogens widespread in the developing world. These closely related lineages are models for the genomic biology of monoxenous and dixenous parasites. Herein, we used comparative genomics to identify the orthologous groups (OGs) shared among 26 Leishmaniinae species to investigate gene family expansion/contraction and applied two phylogenomic approaches to confirm relationships within the subfamily. The Endotrypanum monterogeii and Zelonia costaricensis genomes were assembled, with sizes of 29.9 Mb and 38.0 Mb and 9.711 and 12.201 predicted protein-coding genes, respectively. The genome of E. monterogeii displayed a higher number of multicopy cell surface protein families, including glycoprotein 63 and glycoprotein 46, compared to Leishmania spp. The genome of Z. costaricensis presents expansions of BT1 and amino acid transporters and proteins containing leucine-rich repeat domains, as well as a loss of ABC-type transporters. In total, 415 and 85 lineage-specific OGs were identified in Z. costaricensis and E. monterogeii. The evolutionary relationships within the subfamily were confirmed using the supermatrix (3384 protein-coding genes) and supertree methods. Overall, this study showed new expansions of multigene families in monoxenous and dixenous parasites of the subfamily Leishmaniinae.
Collapse
Affiliation(s)
- Percy O. Tullume-Vergara
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Kelly Y. O. Caicedo
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jose F. C. Tantalean
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Myrna G. Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Gregory A. Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Marta M. G. Teixeira
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jeffrey J. Shaw
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Joao M. P. Alves
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| |
Collapse
|
3
|
Anuntasomboon P, Siripattanapipong S, Unajak S, Choowongkomon K, Burchmore R, Leelayoova S, Mungthin M, E-Kobon T. Identification of a unique conserved region from a kinetoplastid genome of Leishmania orientalis (formerly named Leishmania siamensis) strain PCM2 in Thailand. Sci Rep 2023; 13:19644. [PMID: 37950023 PMCID: PMC10638283 DOI: 10.1038/s41598-023-46638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Mitochondrial DNAs (mtDNAs) appear in almost all eukaryotic species and are useful molecular markers for phylogenetic studies and species identification. Kinetoplast DNAs (kDNAs) are structurally complex circular mtDNA networks in kinetoplastids, divided into maxicircles and minicircles. Despite several kDNAs of many Leishmania species being examined, the kDNAs of the new species, Leishmania orientalis (formerly named Leishmania siamensis) strain PCM2, have not been explored. This study aimed to investigate the maxicircle and minicircle DNAs of L. orientalis strain PCM2 using hybrid genome sequencing technologies and bioinformatic analyses. The kDNA sequences were isolated and assembled using the SPAdes hybrid assembler from the Illumina short-read and PacBio long-read data. Circular contigs of the maxicircle and minicircle DNAs were reconstructed and confirmed by BLASTn and rKOMICs programs. The kDNA genome was annotated by BLASTn before the genome comparison and phylogenetic analysis by progressiveMauve, MAFFT, and MEGA programs. The maxicircle of L. orientalis strain PCM2 (18,215 bp) showed 99.92% similarity and gene arrangement to Leishmania enriettii strain LEM3045 maxicircle with variation in the 12s rRNA gene and divergent region. Phylogenetics of the whole sequence, coding regions, divergent regions, and 12s rRNA gene also confirmed this relationship and subgenera separation. The identified 105 classes of minicircles (402-1177 bp) were clustered monophyletically and related to the Leishmania donovani minicircles. The kinetoplast maxicircle and minicircle DNAs of L. orientalis strain PCM2 contained a unique conserved region potentially useful for specific diagnosis of L. orientalis and further exploration of this parasite population genetics in Thailand and related regions.
Collapse
Affiliation(s)
- Pornchai Anuntasomboon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | | | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| |
Collapse
|
4
|
Espinosa-Saez R, Robledo SM, Pineda T, Murillo J, Zúñiga C, Yañez O, Cantero-López P, Saez-Vega A, Guzmán-Teran C. Screening of the antileishmanial and antiplasmodial potential of synthetic 2-arylquinoline analogs. Sci Rep 2023; 13:17523. [PMID: 37845281 PMCID: PMC10579228 DOI: 10.1038/s41598-023-43805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
In this study, six analogs of 2-arylquinoline were synthesized and evaluated for their in vitro and in vivo antiplasmodial and leishmanicidal activity. At a later stage, hemolytic activity and druggability were tested in vitro and in silico, respectively, observing as a result: firstly, compounds showed half-maximal effective concentration (EC50) values between 3.6 and 19.3 µM. Likewise, a treatment using the compounds 4a-f caused improvement in most of the treated hamsters and cured some of them. Regarding the antiplasmodial activity, the compounds showed moderate to high activity, although they did not show hemolytic activity. Furthermore, 4e and 4f compounds were not able to control P. berghei infection when administered to animal models. Molecular dynamic simulations, molecular docking and ligand binding affinity indicate good characteristics of the studied compounds, which are expected to be active. And lastly, the compounds are absorbable at the hematoencephalic barrier but not in the gastrointestinal tract. In summary, ADMET properties suggest that these molecules may be used as a safe treatment against Leishmania.
Collapse
Affiliation(s)
- Roger Espinosa-Saez
- Grupo de Investigación, Evaluación y Desarrollo de Fármacos y Afines-IDEFARMA, Departamento de Regencia y Farmacia, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Sara M Robledo
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Tatiana Pineda
- Corporación de Innovación Para el Desarrollo de Productos, Medellín, Antioquia, Colombia
| | - Javier Murillo
- Corporación de Innovación Para el Desarrollo de Productos, Medellín, Antioquia, Colombia
| | - César Zúñiga
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Providencia, Santiago, Chile
- Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile
| | - Osvaldo Yañez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile
| | - Plinio Cantero-López
- Departamento de Ciencias, Facultad de Ciencias Exactas, Químicas, Universidad Andres Bello, Viña del Mar, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
- Relativistic Molecular Physics Group (ReMoPh), PhD Program in Molecular Physical Chemistry, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Alex Saez-Vega
- Escuela de Ciencias Aplicadas e Ingenierías, Universidad EAFIT, Medellín, Colombia
| | - Camilo Guzmán-Teran
- Grupo de Investigación, Evaluación y Desarrollo de Fármacos y Afines-IDEFARMA, Departamento de Regencia y Farmacia, Universidad de Córdoba, Montería, Córdoba, Colombia.
| |
Collapse
|
5
|
Jesus-Oliveira P, Silva-Couto L, Pinho N, Da Silva-Ferreira AT, Saboia-Vahia L, Cuervo P, Da-Cruz AM, Gomes-Silva A, Pinto EF. Identification of Immunodominant Proteins of the Leishmania (Viannia) naiffi SubProteome as Pan-Specific Vaccine Targets against Leishmaniasis. Vaccines (Basel) 2023; 11:1129. [PMID: 37514945 PMCID: PMC10386316 DOI: 10.3390/vaccines11071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 07/30/2023] Open
Abstract
Leishmaniasis is a wide-spectrum disease caused by parasites from Leishmania genus. A well-modulated immune response that is established after the long-lasting clinical cure of leishmaniasis can represent a standard requirement for a vaccine. Previous studies demonstrated that Leishmania (Viannia) naiffi causes benign disease and its antigens induce well-modulated immune responses in vitro. In this work we aimed to identify the immunodominant proteins present in the soluble extract of L. naiffi (sLnAg) as candidates for composing a pan-specific anti-leishmaniasis vaccine. After immunoblotting using cured patients of cutaneous leishmaniasis sera and proteomics approaches, we identified a group of antigenic proteins from the sLnAg. In silico analyses allowed us to select mildly similar proteins to the host; in addition, we evaluated the binding potential and degree of promiscuity of the protein epitopes to HLA molecules and to B-cell receptors. We selected 24 immunodominant proteins from a sub-proteome with 328 proteins. Homology analysis allowed the identification of 13 proteins with the most orthologues among seven Leishmania species. This work demonstrated the potential of these proteins as promising vaccine targets capable of inducing humoral and cellular pan-specific immune responses in humans, which may in the future contribute to the control of leishmaniasis.
Collapse
Affiliation(s)
- Prisciliana Jesus-Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Luzinei Silva-Couto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Nathalia Pinho
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas de Neuroinflamação do Rio de Janeiro, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | | | - Leonardo Saboia-Vahia
- Laboratório de Vírus Respiratórios e Sarampo, Laboratório de Referência para COVID-19 (World Health Organization), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas de Neuroinflamação do Rio de Janeiro, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Alda Maria Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas em Saúde, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Rio de Janeiro 20020-000, Brazil
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade Estadual do Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
| | - Adriano Gomes-Silva
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Pesquisa Clínica em Micobacterioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Eduardo Fonseca Pinto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas em Saúde, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Rio de Janeiro 20020-000, Brazil
| |
Collapse
|
6
|
He SX, Peng YJ, Chen JY, Liu CJ, Cao Y, Li W, Ma LQ. Antimony uptake and speciation, and associated mechanisms in two As-hyperaccumulators Pteris vittata and Pteris cretica. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131607. [PMID: 37182466 DOI: 10.1016/j.jhazmat.2023.131607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The behaviors of antimony (Sb) and arsenic (As) in plants are different, though they are chemical analogs. Here, we examined the Sb uptake and speciation in two As-hyperaccumulators P. vittata and P. cretica, which were exposed to 0.5 or 5 mg L-1 antimonate (SbV) or antimonite (SbIII) under hydroponics for 7 d. Both plants grew better under Sb exposure, especially for P. cretica. The biomass of P. cretica roots increased by 29-46% after exposing to SbV, possibly due to increased S. Further, the Sb content in P. vittata was 17-93% greater than P. cretica, with 2-3 times more SbIII than SbV in both plants and > 92% Sb being concentrated in the roots, showing limited translocation. Under SbV exposure, SbV was dominant in P. vittata roots at 86-94%, while SbIII was predominant in P. cretica roots at 36-95%. P. cretica's stronger reducing ability than P. vittata may be due to arsenate reductases HAC1 and ACR2, which were upregulated in both plants. In short, while effective in Sb accumulation, it is mostly concentrated in the roots for both plants. The differences in their accumulation and speciation may help to better understand Sb behaviors in other plants.
Collapse
Affiliation(s)
- Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - You-Jing Peng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jia-Yi Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Llanes A, Cruz G, Morán M, Vega C, Pineda VJ, Ríos M, Penagos H, Suárez JA, Saldaña A, Lleonart R, Restrepo CM. Genomic diversity and genetic variation of Leishmania panamensis within its endemic range. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105342. [PMID: 35878820 DOI: 10.1016/j.meegid.2022.105342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Species belonging to the Leishmania (Viannia) subgenus are important causative agents of cutaneous and mucocutaneous leishmaniasis in Central and South America. These parasites possess several distinctive biological features that are influenced by their genetics, population structure, and genome instability. To date, several studies have revealed varying degrees of genetic diversity within Leishmania species. Particularly, in species of the L. (Viannia) subgenus, a generalized high intraspecific genetic diversity has been reported, although, conflicting conclusions have been drawn using different molecular techniques. Despite being the most common Leishmania species circulating in Panama and Colombia, few studies have analyzed clinical samples of Leishmania panamensis using whole-genome sequencing, and their restricted number of samples has limited the information they can provide to understand the population structure of L. panamensis. Here, we used next generation sequencing (NGS) to explore the genetic diversity of L. panamensis within its endemic range, analyzing data from 43 isolates of Colombian and Panamanian origin. Our results show the occurrence of three well-defined geographically correlated groups, and suggests the possible occurrence of additional phylogeographic groups. Furthermore, these results support the existence of a mixed mode of reproduction in L. panamensis, with varying frequencies of events of genetic recombination occurring primarily within subpopulations of closely related strains. This study offers important insights into the population genetics and reproduction mode of L. panamensis, paving the way to better understand their population structure and the emergence and maintenance of key eco-epidemiological traits.
Collapse
Affiliation(s)
- Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama
| | - Génesis Cruz
- Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama City, Panama, Panama
| | - Mitchelle Morán
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama
| | - Carlos Vega
- Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama City, Panama, Panama
| | - Vanessa J Pineda
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama
| | - Margarita Ríos
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama
| | - Homero Penagos
- Hospital Regional Dr. Rafael Hernández, Caja de Seguro Social, David, Chiriquí, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - José A Suárez
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama.
| | - Carlos M Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama.
| |
Collapse
|
8
|
Solana JC, Chicharro C, García E, Aguado B, Moreno J, Requena JM. Assembly of a Large Collection of Maxicircle Sequences and Their Usefulness for Leishmania Taxonomy and Strain Typing. Genes (Basel) 2022; 13:genes13061070. [PMID: 35741832 PMCID: PMC9222942 DOI: 10.3390/genes13061070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Parasites of medical importance, such as Leishmania and Trypanosoma, are characterized by the presence of thousands of circular DNA molecules forming a structure known as kinetoplast, within the mitochondria. The maxicircles, which are equivalent to the mitochondrial genome in other eukaryotes, have been proposed as a promising phylogenetic marker. Using whole-DNA sequencing data, it is also possible to assemble maxicircle sequences as shown here and in previous works. In this study, based on data available in public databases and using a bioinformatics workflow previously reported by our group, we assembled the complete coding region of the maxicircles for 26 prototypical strains of trypanosomatid species. Phylogenetic analysis based on this dataset resulted in a robust tree showing an accurate taxonomy of kinetoplastids, which was also able to discern between closely related Leishmania species that are usually difficult to discriminate by classical methodologies. In addition, we provide a dataset of the maxicircle sequences of 60 Leishmania infantum field isolates from America, Western Europe, North Africa, and Eastern Europe. In agreement with previous studies, our data indicate that L. infantum parasites from Brazil are highly homogeneous and closely related to European strains, which were transferred there during the discovery of America. However, this study showed the existence of different L. infantum populations/clades within the Mediterranean region. A maxicircle signature for each clade has been established. Interestingly, two L. infantum clades were found coexisting in the same region of Spain, one similar to the American strains, represented by the Spanish JPCM5 reference strain, and the other, named “non-JPC like”, may be related to an important leishmaniasis outbreak that occurred in Madrid a few years ago. In conclusion, the maxicircle sequence emerges as a robust molecular marker for phylogenetic analysis and species typing within the kinetoplastids, which also has the potential to discriminate intraspecific variability.
Collapse
Affiliation(s)
- Jose Carlos Solana
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (C.C.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Chicharro
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (C.C.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Emilia García
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (C.C.); (E.G.)
| | - Begoña Aguado
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Genomic and NGS Facility (GENGS), 28049 Madrid, Spain;
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (C.C.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.M.); (J.M.R.)
| | - Jose M. Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.M.); (J.M.R.)
| |
Collapse
|
9
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
10
|
Zakharova A, Albanaz ATS, Opperdoes FR, Škodová-Sveráková I, Zagirova D, Saura A, Chmelová L, Gerasimov ES, Leštinová T, Bečvář T, Sádlová J, Volf P, Lukeš J, Horváth A, Butenko A, Yurchenko V. Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content. PLoS Negl Trop Dis 2022; 16:e0010510. [PMID: 35749562 PMCID: PMC9232130 DOI: 10.1371/journal.pntd.0010510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
Collapse
Affiliation(s)
- Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Amanda T. S. Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R. Opperdoes
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Diana Zagirova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Lˇubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Evgeny S. Gerasimov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
11
|
Glans H, Lind Karlberg M, Advani R, Bradley M, Alm E, Andersson B, Downing T. High genome plasticity and frequent genetic exchange in Leishmania tropica isolates from Afghanistan, Iran and Syria. PLoS Negl Trop Dis 2021; 15:e0010110. [PMID: 34968388 PMCID: PMC8754299 DOI: 10.1371/journal.pntd.0010110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/12/2022] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background The kinetoplastid protozoan Leishmania tropica mainly causes cutaneous leishmaniasis in humans in the Middle East, and relapse or treatment failure after treatment are common in this area. L. tropica’s digenic life cycle includes distinct stages in the vector sandfly and the mammalian host. Sexual reproduction and genetic exchange appear to occur more frequently than in other Leishmania species. Understanding these processes is complicated by chromosome instability during cell division that yields aneuploidy, recombination and heterozygosity. This combination of rare recombination and aneuploid permits may reveal signs of hypothetical parasexual mating, where diploid cells fuse to form a transient tetraploid that undergoes chromosomal recombination and gradual chromosomal loss. Methodology/principal findings The genome-wide SNP diversity from 22 L. tropica isolates showed chromosome-specific runs of patchy heterozygosity and extensive chromosome copy number variation. All these isolates were collected during 2007–2017 in Sweden from patients infected in the Middle East and included isolates from a patient possessing two genetically distinct leishmaniasis infections three years apart with no evidence of re-infection. We found differing ancestries on the same chromosome (chr36) across multiple samples: matching the reference genome with few derived alleles, followed by blocks of heterozygous SNPs, and then by clusters of homozygous SNPs with specific recombination breakpoints at an inferred origin of replication. Other chromosomes had similar marked changes in heterozygosity at strand-switch regions separating polycistronic transcriptional units. Conclusion/significance These large-scale intra- and inter-chromosomal changes in diversity driven by recombination and aneuploidy suggest multiple mechanisms of cell reproduction and diversification in L. tropica, including mitotic, meiotic and parasexual processes. It underpins the need for more genomic surveillance of Leishmania, to detect emerging hybrids that could spread more widely and to better understand the association between genetic variation and treatment outcome. Furthering our understanding of Leishmania genome evolution and ancestry will aid better diagnostics and treatment for cutaneous leishmaniasis caused by L.tropica in the Middle East. Cutaneous leishmaniasis is mainly caused by Leishmania tropica in the Middle East, where it is known for treatment failure and a need for prolonged and/or multiple treatments. Several factors affect the clinical presentation and treatment outcome, such as host genetic variability and specific immune response, as well as environmental factors and the vector species. Little is known about the parasite genome and its influence on treatment response. By analysing the genome of 22 isolates of L. tropica, we have revealed extensive genomic variation and a complex population structure with evidence of genetic exchange within and among the isolates, indicating a possible presence of sexual or parasexual mechanisms. Understanding the Leishmania genome better may improve future treatment and better understanding of treatment failure and relapse.
Collapse
Affiliation(s)
- Hedvig Glans
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Dermatology & Venerology, Dept of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Maria Lind Karlberg
- Department of Microbiology, The Public Health Agency of Sweden, Stockholm, Sweden
| | - Reza Advani
- Department of Microbiology, The Public Health Agency of Sweden, Stockholm, Sweden
| | - Maria Bradley
- Division of Dermatology & Venerology, Dept of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venerology, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Alm
- The European Center for Disease Prevention and Control, Stockholm, Sweden
| | - Björn Andersson
- Department of Cell & Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
12
|
Antonia AL, Barnes AB, Martin AT, Wang L, Ko DC. Variation in Leishmania chemokine suppression driven by diversification of the GP63 virulence factor. PLoS Negl Trop Dis 2021; 15:e0009224. [PMID: 34710089 PMCID: PMC8577781 DOI: 10.1371/journal.pntd.0009224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/09/2021] [Accepted: 10/17/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease with diverse outcomes ranging from self-healing lesions, to progressive non-healing lesions, to metastatic spread and destruction of mucous membranes. Although resolution of cutaneous leishmaniasis is a classic example of type-1 immunity leading to self-healing lesions, an excess of type-1 related inflammation can contribute to immunopathology and metastatic spread. Leishmania genetic diversity can contribute to variation in polarization and robustness of the immune response through differences in both pathogen sensing by the host and immune evasion by the parasite. In this study, we observed a difference in parasite chemokine suppression between the Leishmania (L.) subgenus and the Viannia (V.) subgenus, which is associated with severe immune-mediated pathology such as mucocutaneous leishmaniasis. While Leishmania (L.) subgenus parasites utilize the virulence factor and metalloprotease glycoprotein-63 (gp63) to suppress the type-1 associated host chemokine CXCL10, L. (V.) panamensis did not suppress CXCL10. To understand the molecular basis for the inter-species variation in chemokine suppression, we used in silico modeling to identify a putative CXCL10-binding site on GP63. The putative CXCL10 binding site is in a region of gp63 under significant positive selection, and it varies from the L. major wild-type sequence in all gp63 alleles identified in the L. (V.) panamensis reference genome. Mutating wild-type L. (L.) major gp63 to the L. (V.) panamensis sequence at the putative binding site impaired cleavage of CXCL10 but not a non-specific protease substrate. Notably, Viannia clinical isolates confirmed that L. (V.) panamensis primarily encodes non-CXCL10-cleaving gp63 alleles. In contrast, L. (V.) braziliensis has an intermediate level of activity, consistent with this species having more equal proportions of both alleles. Our results demonstrate how parasite genetic diversity can contribute to variation in immune responses to Leishmania spp. infection that may play critical roles in the outcome of infection. Leishmaniasis is a neglected tropical disease caused by Leishmania parasites and spread by the bites of infected sand flies. Most cases of leishmaniasis present as self-healing sores that are resolved by a balanced immune response. Other cases of leishmaniasis involve spread to sites distant from the original bite, including damage of the inner surfaces of the mouth and nose. These cases of leishmaniasis involve an excessive immune response. Leishmania parasites produce virulence factor proteins, such as GP63, to trick the immune system into mounting a weaker response. GP63 specifically degrades signaling proteins that attract and activate certain immune cells. Here, we demonstrate that Leishmania parasite species have evolved to differ in their ability to degrade signaling proteins. In Leishmania species known to cause more immune-mediated tissue damage, the GP63 virulence factor has evolved to not degrade specific immune signaling proteins, thus attracting, and activating more immune cells. Our results demonstrate how diversity among Leishmania parasite species can contribute to variation in immune responses that may play critical roles in the outcome of infection.
Collapse
Affiliation(s)
- Alejandro L. Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Alyson B. Barnes
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Amelia T. Martin
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, United States of America
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
14
|
Camacho E, González-de la Fuente S, Solana JC, Rastrojo A, Carrasco-Ramiro F, Requena JM, Aguado B. Gene Annotation and Transcriptome Delineation on a De Novo Genome Assembly for the Reference Leishmania major Friedlin Strain. Genes (Basel) 2021; 12:genes12091359. [PMID: 34573340 PMCID: PMC8468144 DOI: 10.3390/genes12091359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023] Open
Abstract
Leishmania major is the main causative agent of cutaneous leishmaniasis in humans. The Friedlin strain of this species (LmjF) was chosen when a multi-laboratory consortium undertook the objective of deciphering the first genome sequence for a parasite of the genus Leishmania. The objective was successfully attained in 2005, and this represented a milestone for Leishmania molecular biology studies around the world. Although the LmjF genome sequence was done following a shotgun strategy and using classical Sanger sequencing, the results were excellent, and this genome assembly served as the reference for subsequent genome assemblies in other Leishmania species. Here, we present a new assembly for the genome of this strain (named LMJFC for clarity), generated by the combination of two high throughput sequencing platforms, Illumina short-read sequencing and PacBio Single Molecular Real-Time (SMRT) sequencing, which provides long-read sequences. Apart from resolving uncertain nucleotide positions, several genomic regions were reorganized and a more precise composition of tandemly repeated gene loci was attained. Additionally, the genome annotation was improved by adding 542 genes and more accurate coding-sequences defined for around two hundred genes, based on the transcriptome delimitation also carried out in this work. As a result, we are providing gene models (including untranslated regions and introns) for 11,238 genes. Genomic information ultimately determines the biology of every organism; therefore, our understanding of molecular mechanisms will depend on the availability of precise genome sequences and accurate gene annotations. In this regard, this work is providing an improved genome sequence and updated transcriptome annotations for the reference L. major Friedlin strain.
Collapse
|
15
|
Medina J, Cruz-Saavedra L, Patiño LH, Muñoz M, Ramírez JD. Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony. Parasit Vectors 2021; 14:419. [PMID: 34419127 PMCID: PMC8380399 DOI: 10.1186/s13071-021-04915-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease caused by several species of Leishmania. The resistance phenotype of these parasites depends on the characteristics of each species, which contributes to increased therapeutic failures. Understanding the mechanism used by the parasite to survive under treatment pressure in order to identify potential common and specific therapeutic targets is essential for the control of leishmaniasis. The aim of this study was to investigate the expression profiles and potential shared and specific resistance markers of the main Leishmania species of medical importance [subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; subgenus L. (Viannia): L. panamensis and L. braziliensis)] resistant and sensitive to trivalent stibogluconate (SbIII). METHODS We conducted comparative analysis of the transcriptomic profiles (only coding sequences) of lines with experimentally induced resistance to SbIII from biological replicates of five Leishmania species available in the databases of four articles based on ortholog attribution. Simultaneously, we carried out functional analysis of ontology and reconstruction of metabolic pathways of the resulting differentially expressed genes (DEGs). RESULTS Resistant lines for each species had differential responses in metabolic processes, compound binding, and membrane components concerning their sensitive counterpart. One hundred and thirty-nine metabolic pathways were found, with the three main pathways comprising cysteine and methionine metabolism, glycolysis, and the ribosome. Differentially expressed orthologous genes assigned to species-specific responses predominated, with 899 self-genes. No differentially expressed genes were found in common among the five species. Two common upregulated orthologous genes were found among four species (L. donovani, L. braziliensis, L. amazonensis, and L. panamensis) related to an RNA-binding protein and the NAD(P)H cytochrome-B5-oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, critical mechanisms in resistance to antimonials. CONCLUSION Herein, we identified potential species-specific genes related to resistance to SbIII. Therefore, we suggest that future studies consider a treatment scheme that is species-specific. Despite the limitations of our study, this is the first approach toward unraveling the pan-genus genetic mechanisms of resistance in leishmaniasis.
Collapse
Affiliation(s)
- Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
16
|
Restrepo CM, Llanes A, Herrera L, Ellis E, Lleonart R, Fernández PL. Gene expression patterns associated with Leishmania panamensis infection in macrophages from BALB/c and C57BL/6 mice. PLoS Negl Trop Dis 2021; 15:e0009225. [PMID: 33617537 PMCID: PMC7932533 DOI: 10.1371/journal.pntd.0009225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/04/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Leishmania parasites can trigger different host immune responses that result in varying levels of disease severity. The C57BL/6 and BALB/c mouse strains are among the host models commonly used for characterizing the immunopathogenesis of Leishmania species and the possible antileishmanial effect of novel drug candidates. C57BL/6 mice tend to be resistant to Leishmania infections, whereas BALB/c mice display a susceptible phenotype. Studying species-specific interactions between Leishmania parasites and different host systems is a key step to characterize and validate these models for in vivo studies. Here, we use RNA-Seq and differential expression analysis to characterize the transcriptomic profiles of C57BL/6 and BALB/c peritoneal-derived macrophages in response to Leishmania panamensis infection. We observed differences between BALB/c and C57BL/6 macrophages regarding pathways associated with lysosomal degradation, arginine metabolism and the regulation of cell cycle. We also observed differences in the expression of chemokine and cytokine genes associated with regulation of immune responses. In conclusion, infection with L. panamensis induced an inflammatory gene expression pattern in C57BL/6 macrophages that is more consistently associated with a classic macrophage M1 activation, whereas in BALB/c macrophages a gene expression pattern consistent with an intermediate inflammatory response was observed.
Collapse
Affiliation(s)
- Carlos M. Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Republic of Panama
| | - Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Republic of Panama
| | - Lizzi Herrera
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Republic of Panama
| | - Esteban Ellis
- Departamento de Biotecnología, Facultad de Ciencias de la Salud, Universidad Latina de Panamá, Panama City, Panama, Republic of Panama
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Republic of Panama
| | - Patricia L. Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Republic of Panama
| |
Collapse
|
17
|
Analysis of the IGS rRNA Region and Applicability for Leishmania ( V.) braziliensis Characterization. J Parasitol Res 2020; 2020:8885070. [PMID: 33083046 PMCID: PMC7559751 DOI: 10.1155/2020/8885070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 12/03/2022] Open
Abstract
The causative species is an important factor influencing the evolution of American cutaneous leishmaniasis (ACL). Due to its wide distribution in endemic areas, Leishmania (V.) braziliensis is considered one of the most important species in circulation in Brazil. Molecular targets derived from ribosomal RNA (rRNA) were used in studies to identify Leishmania spp.; however, the Intergenic Spacer (IGS) region has not yet been explored in parasite species differentiation. Besides, there is a shortage of sequences deposited in public repositories for this region. Thus, it was proposed to analyze and provide sequences of the IGS rRNA region from different Leishmania spp. and to evaluate their potential as biomarkers to characterize L. braziliensis. A set of primers was designed for complete amplification of the IGS rRNA region of Leishmania spp. PCR products were submitted to Sanger sequencing. The sequences obtained were aligned and analyzed for size and similarity, as well as deposited in GenBank. Characteristics of the repetitive elements (IGSRE) present in the IGS rRNA were also verified. In addition, a set of primers for L. braziliensis identification for qPCR was developed and optimized. Sensitivity (S), specificity (σ), and efficiency (ε) tests were applied. It was found that the mean size for the IGS rRNA region is 3 kb, and the similarity analysis of the sequences obtained demonstrated high conservation among the species. It was observed that the size for the IGSRE repetitive region varies between 61 and 71 bp, and there is a high identity between some species. Fifteen sequences generated for the IGS rRNA partial region of nine different species were deposited in GenBank so far. The specific primer system for L. braziliensis showed S = 10 fg, ε = 98.08%, and logσ = 103 for Leishmania naiffi; logσ = 104 for Leishmania guyanensis; and logσ = 105 for Leishmania shawi. This protocol system can be used for diagnosis, identification, and quantification of a patient's parasite load, aiding in the direction of a more appropriate therapeutic management to the cases of infection by this etiological agent. Besides that, the unpublished sequences deposited in databases can be used for multiple analyses in different contexts.
Collapse
|
18
|
Sanchiz Á, Morato E, Rastrojo A, Camacho E, González-de la Fuente S, Marina A, Aguado B, Requena JM. The Experimental Proteome of Leishmania infantum Promastigote and Its Usefulness for Improving Gene Annotations. Genes (Basel) 2020; 11:E1036. [PMID: 32887454 PMCID: PMC7563732 DOI: 10.3390/genes11091036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/02/2022] Open
Abstract
Leishmania infantum causes visceral leishmaniasis (kala-azar), the most severe form of leishmaniasis, which is lethal if untreated. A few years ago, the re-sequencing and de novo assembling of the L. infantum (JPCM5 strain) genome was accomplished, and now we aimed to describe and characterize the experimental proteome of this species. In this work, we performed a proteomic analysis from axenic cultured promastigotes and carried out a detailed comparison with other Leishmania experimental proteomes published to date. We identified 2352 proteins based on a search of mass spectrometry data against a database built from the six-frame translated genome sequence of L. infantum. We detected many proteins belonging to organelles such as glycosomes, mitochondria, or flagellum, as well as many metabolic enzymes and many putative RNA binding proteins and molecular chaperones. Moreover, we listed some proteins presenting post-translational modifications, such as phosphorylations, acetylations, and methylations. On the other hand, the identification of peptides mapping to genomic regions previously annotated as non-coding allowed for the correction of annotations, leading to the N-terminal extension of protein sequences and the uncovering of eight novel protein-coding genes. The alliance of proteomics, genomics, and transcriptomics has resulted in a powerful combination for improving the annotation of the L. infantum reference genome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jose M. Requena
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM) Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (Á.S.); (E.M.); (A.R.); (E.C.); (S.G.-d.l.F.); (A.M.); (B.A.)
| |
Collapse
|
19
|
Pinho N, Wiśniewski JR, Dias-Lopes G, Saboia-Vahia L, Bombaça ACS, Mesquita-Rodrigues C, Menna-Barreto R, Cupolillo E, de Jesus JB, Padrón G, Cuervo P. In-depth quantitative proteomics uncovers specie-specific metabolic programs in Leishmania (Viannia) species. PLoS Negl Trop Dis 2020; 14:e0008509. [PMID: 32804927 PMCID: PMC7451982 DOI: 10.1371/journal.pntd.0008509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/27/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Leishmania species are responsible for a broad spectrum of diseases, denominated Leishmaniasis, affecting over 12 million people worldwide. During the last decade, there have been impressive efforts for sequencing the genome of most of the pathogenic Leishmania spp. as well as hundreds of strains, but large-scale proteomics analyses did not follow these achievements and the Leishmania proteome remained mostly uncharacterized. Here, we report a comprehensive comparative study of the proteomes of strains representing L. braziliensis, L. panamensis and L. guyanensis species. Proteins extracted by SDS-mediated lysis were processed following the multi-enzyme digestion-filter aided sample preparation (FASP) procedure and analysed by high accuracy mass spectrometry. "Total Protein Approach" and "Proteomic Ruler" were applied for absolute quantification of proteins. Principal component analysis demonstrated very high reproducibility among biological replicates and a very clear differentiation of the three species. Our dataset comprises near 7000 proteins, representing the most complete Leishmania proteome yet known, and provides a comprehensive quantitative picture of the proteomes of the three species in terms of protein concentration and copy numbers. Analysis of the abundance of proteins from the major energy metabolic processes allow us to highlight remarkably differences among the species and suggest that these parasites depend on distinct energy substrates to obtain ATP. Whereas L. braziliensis relies the more on glycolysis, L. panamensis and L. guyanensis seem to depend mainly on mitochondrial respiration. These results were confirmed by biochemical assays showing opposite profiles for glucose uptake and O2 consumption in these species. In addition, we provide quantitative data about different membrane proteins, transporters, and lipids, all of which contribute for significant species-specific differences and provide rich substrate for explore new molecules for diagnosing purposes. Data are available via ProteomeXchange with identifier PXD017696.
Collapse
Affiliation(s)
- Nathalia Pinho
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Leonardo Saboia-Vahia
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jose Batista de Jesus
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- Departamento de Medicina–Universidade Federal de São João Del Rei, Campus Dom Bosco, São João del Rei, MG, Brazil
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
20
|
Herrera L, Llanes A, Álvarez J, Degracia K, Restrepo CM, Rivera R, Stephens DE, Dang HT, Larionov OV, Lleonart R, Fernández PL. Antileishmanial activity of a new chloroquine analog in an animal model of Leishmania panamensis infection. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:56-61. [PMID: 32950020 PMCID: PMC7502791 DOI: 10.1016/j.ijpddr.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 08/07/2020] [Indexed: 01/29/2023]
Abstract
Leishmania panamensis is a relevant causative agent of tegumentary leishmaniasis in several Latin American countries. Available antileishmanial drugs have several limitations including relatively high toxicity, difficult administration, high production costs and the emergence of resistance in circulating strains. Therefore, the identification of new molecules as potential therapeutics for leishmaniasis is of great relevance. Here, we developed a murine model of L. panamensis infection and evaluated the effect of a new compound in vivo. After treatment of animals with the compound, we observed a significant reduction of inflammation and parasite load at the inoculation site, in a dose-dependent manner. We observed a reduction in IL-10 production by popliteal lymph nodes cells of infected mice. These results pave the way for future evaluation of this compound as a potential antileishmanial drug or as a suitable scaffold for lead optimization strategies.
Collapse
Affiliation(s)
- Lizzi Herrera
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama; Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama; Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Jennifer Álvarez
- Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá. Panama, 0801, Panama
| | - Kissy Degracia
- Escuela de Biotecnología, Facultad de Ciencias de la Salud Dr. William C. Gorgas, Universidad Latina de Panama, 0801, Panama
| | - Carlos M Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama
| | - Rene Rivera
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama
| | - David E Stephens
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
| | - Hang T Dang
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama.
| |
Collapse
|
21
|
Alcântara LM, Ferreira TCS, Fontana V, Chatelain E, Moraes CB, Freitas-Junior LH. A Multi-Species Phenotypic Screening Assay for Leishmaniasis Drug Discovery Shows That Active Compounds Display a High Degree of Species-Specificity. Molecules 2020; 25:E2551. [PMID: 32486239 PMCID: PMC7321149 DOI: 10.3390/molecules25112551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 12/05/2022] Open
Abstract
High genetic and phenotypic variability between Leishmania species and strains within species make the development of broad-spectrum antileishmanial drugs challenging. Thus, screening panels consisting of several diverse Leishmania species can be useful in enabling compound prioritization based on their spectrum of activity. In this study, a robust and reproducible high content assay was developed, and 1280 small molecules were simultaneously screened against clinically relevant cutaneous and visceral species: L. amazonensis, L. braziliensis, and L. donovani. The assay is based on THP-1 macrophages infected with stationary phase promastigotes and posterior evaluation of both compound antileishmanial activity and host cell toxicity. The profile of compound activity was species-specific, and out of 51 active compounds, only 14 presented broad-spectrum activity against the three species, with activities ranging from 52% to 100%. Notably, the compounds CB1954, Clomipramine, Maprotiline, Protriptyline, and ML-9 presented pan-leishmanial activity, with efficacy greater than 70%. The results highlight the reduced number of compound classes with pan-leishmanial activity that might be available from diversity libraries, emphasizing the need to screen active compounds against a panel of species and strains. The assay reported here can be adapted to virtually any Leishmania species without the need for genetic modification of parasites, providing the basis for the discovery of broad spectrum anti-leishmanial agents.
Collapse
Affiliation(s)
- Laura M. Alcântara
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Thalita C. S. Ferreira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Instituto Butantan, São Paulo, SP 05503-900, Brazil
| | - Vanessa Fontana
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, 1211 Geneva, Switzerland;
| | - Carolina B. Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Lucio H. Freitas-Junior
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
- Instituto Butantan, São Paulo, SP 05503-900, Brazil
| |
Collapse
|
22
|
Kaufer A, Stark D, Ellis J. A review of the systematics, species identification and diagnostics of the Trypanosomatidae using the maxicircle kinetoplast DNA: from past to present. Int J Parasitol 2020; 50:449-460. [PMID: 32333942 DOI: 10.1016/j.ijpara.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
Abstract
The Trypanosomatid family are a diverse and widespread group of protozoan parasites that belong to the higher order class Kinetoplastida. Containing predominantly monoxenous species (i.e. those having only a single host) that are confined to invertebrate hosts, this class is primarily known for its pathogenic dixenous species (i.e. those that have two hosts), serving as the aetiological agents of the important neglected tropical diseases including leishmaniasis, American trypanosomiasis (Chagas disease) and human African trypanosomiasis. Over the past few decades, a multitude of studies have investigated the diversity, classification and evolutionary history of the trypanosomatid family using different approaches and molecular targets. The mitochondrial-like DNA of the trypanosomatid parasites, also known as the kinetoplast, has emerged as a unique taxonomic and diagnostic target for exploring the evolution of this diverse group of parasitic eukaryotes. This review discusses recent advancements and important developments that have made a significant impact in the field of trypanosomatid systematics and diagnostics in recent years.
Collapse
Affiliation(s)
- Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Damien Stark
- Department of Microbiology, St Vincent's Hospital Sydney, Darlinghurst, NSW 2010, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
23
|
Patino LH, Muskus C, Muñoz M, Ramírez JD. Genomic analyses reveal moderate levels of ploidy, high heterozygosity and structural variations in a Colombian isolate of Leishmania (Leishmania) amazonensis. Acta Trop 2020; 203:105296. [PMID: 31836281 DOI: 10.1016/j.actatropica.2019.105296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022]
Abstract
Leishmania amazonensis is one of the causative agents of the different forms of cutaneous leishmaniasis present in Latin America. This species has been isolated from humans and animals (canine/feline) in some endemic regions of Colombia. Therefore, L. amazonensis is of great relevance at the clinical and epidemiological levels in medicine and veterinary science. Until now, very few genomes from this species are available. Here, we report the complete genome sequence of a laboratory-adapted L. amazonensis strain isolated from a human patient with clinical manifestation of cutaneous leishmaniasis in Colombia. The genome sequence not only allowed inter and intra-species comparative analyses to be performed with the sequenced genomes of L. amazonensis strains from different geographical regions, but also increased our knowledge about the genomic behavior of this L. amazonensis Colombian strain. This isolate was also characterized in terms of single nucleotide polymorphisms, chromosome and gene copy number variations (CNVs). The results revealed moderate aneuploidy, CNVs in genes involved in the virulence, growth, and survival of the parasite, and in the distributions of the multicopy genes on some chromosomes, as well as a high level of heterozygosity. The data confirmed previous reports that identified unique variations in L. amazonensis, suggesting aneuploidy may not have a high fitness cost and may allow the rapid generation of diversity in Leishmania parasites growing normally.
Collapse
Affiliation(s)
- Luz H Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Control y Estudio de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia..
| |
Collapse
|
24
|
Seroprevalence, Clinical, and Pathological Characteristics of Canine Leishmaniasis in a Central Region of Colombia. J Vet Res 2020; 64:85-94. [PMID: 32258804 PMCID: PMC7105987 DOI: 10.2478/jvetres-2020-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 02/03/2020] [Indexed: 01/21/2023] Open
Abstract
Introduction Leishmaniasis is a zoonotic disease which is caused by protozoan parasites of the genus Leishmania. Canids are the most important reservoir of the parasites; however, limited data are available on the species of Leishmania prevalent in these animals and their impact on human health. The objective of this study was to estimate the seroprevalence of leishmaniasis in dogs from an inter-Andean region of Colombia during July 2016–July 2017, and to describe the clinical and histopathological features of the disease. Material and Methods A total of 155 dogs were subjected to clinical examination and a serological test for detection of antibodies against Leishmania. Necropsy was carried out on positive animals and tissue samples were processed by routine histopathology. Results Altogether 19 dogs were positive in the serological test, establishing a 12% seroprevalence of Leishmania. Clinical examination and necropsy revealed exfoliative and ulcerative dermatitis with haemorrhagic borders on the ears, head, nose, and legs. Histopathology revealed severe multifocal dermatitis with abundant Leishmania amastigotes within the cytoplasm of phagocytic cells, depletion of lymphocytes in lymphoid tissues, interstitial pneumonia, and interstitial nephritis. Tissue samples were positive for Leishmania by PCR. Conclusion The macro- and microscopic changes correlated with the presence of Leishmania as established by serological test and PCR.
Collapse
|
25
|
Meade JC. P-type transport ATPases in Leishmania and Trypanosoma. ACTA ACUST UNITED AC 2019; 26:69. [PMID: 31782726 PMCID: PMC6884021 DOI: 10.1051/parasite/2019069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023]
Abstract
P-type ATPases are critical to the maintenance and regulation of cellular ion homeostasis and membrane lipid asymmetry due to their ability to move ions and phospholipids against a concentration gradient by utilizing the energy of ATP hydrolysis. P-type ATPases are particularly relevant in human pathogenic trypanosomatids which are exposed to abrupt and dramatic changes in their external environment during their life cycles. This review describes the complete inventory of ion-motive, P-type ATPase genes in the human pathogenic Trypanosomatidae; eight Leishmania species (L. aethiopica, L. braziliensis, L. donovani, L. infantum, L. major, L. mexicana, L. panamensis, L. tropica), Trypanosoma cruzi and three Trypanosoma brucei subspecies (Trypanosoma brucei brucei TREU927, Trypanosoma brucei Lister strain 427, Trypanosoma brucei gambiense DAL972). The P-type ATPase complement in these trypanosomatids includes the P1B (metal pumps), P2A (SERCA, sarcoplasmic-endoplasmic reticulum calcium ATPases), P2B (PMCA, plasma membrane calcium ATPases), P2D (Na+ pumps), P3A (H+ pumps), P4 (aminophospholipid translocators), and P5B (no assigned specificity) subfamilies. These subfamilies represent the P-type ATPase transport functions necessary for survival in the Trypanosomatidae as P-type ATPases for each of these seven subfamilies are found in all Leishmania and Trypanosoma species included in this analysis. These P-type ATPase subfamilies are correlated with current molecular and biochemical knowledge of their function in trypanosomatid growth, adaptation, infectivity, and survival.
Collapse
Affiliation(s)
- John C Meade
- Department of Microbiology and Immunology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
26
|
LmxM.22.0250-Encoded Dual Specificity Protein/Lipid Phosphatase Impairs Leishmania mexicana Virulence In Vitro. Pathogens 2019; 8:pathogens8040241. [PMID: 31744234 PMCID: PMC6969907 DOI: 10.3390/pathogens8040241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation/dephosphorylation is an important regulatory mechanism that controls many key physiological processes. Numerous pathogens successfully use kinases and phosphatases to internalize, replicate, and survive, modifying the host′s phosphorylation profile or signal transduction pathways. Multiple phosphatases and kinases from diverse bacterial pathogens have been implicated in human infections before. In this work, we have identified and characterized the dual specificity protein/lipid phosphatase LmDUSP1 as a novel virulence factor governing Leishmania mexicana infection. The LmDUSP1-encoding gene (LmxM.22.0250 in L. mexicana) has been acquired from bacteria via horizontal gene transfer. Importantly, its orthologues have been associated with virulence in several bacterial species, such as Mycobacterium tuberculosis and Listeria monocytogenes. Leishmania mexicana with ablated LmxM.22.0250 demonstrated severely attenuated virulence in the experimental infection of primary mouse macrophages, suggesting that this gene facilitates Leishmania pathogenicity in vertebrates. Despite significant upregulation of LmxM.22.0250 expression in metacyclic promastigotes, its ablation did not affect the ability of mutant cells to differentiate into virulent stages in insects. It remains to be further investigated which specific biochemical pathways involve LmDUSP1 and how this facilitates the parasite′s survival in the host. One of the interesting possibilities is that LmDUSP1 may target host′s substrate(s), thereby affecting its signal transduction pathways.
Collapse
|
27
|
Environmental Conditions May Shape the Patterns of Genomic Variations in Leishmania panamensis. Genes (Basel) 2019; 10:genes10110838. [PMID: 31652919 PMCID: PMC6896075 DOI: 10.3390/genes10110838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022] Open
Abstract
Due to the absence of transcriptional regulation of gene expression in Leishmania parasites, it is now well accepted that several forms of genomic variations modulate the levels of critical proteins through changes in gene dosage. We previously observed many of these variations in our reference laboratory strain of L. panamensis (PSC-1 strain), including chromosomes with an increased somy and the presence of a putative linear minichromosome derived from chromosome 34. Here, we compared the previously described genomic variations with those occurring after exposure of this strain to increasing concentrations of trivalent antimony (SbIII), as well as those present in two geographically unrelated clinical isolates of L. panamensis. We observed changes in the somy of several chromosomes, amplifications of several chromosomal regions, and copy number variations in gene arrays after exposure to SbIII. Occurrence of amplifications potentially beneficial for the Sb-resistant phenotype appears to be associated with the loss of other forms of amplification, such as the linear minichromosome. In contrast, we found no evidence of changes in somy or amplification of relatively large chromosomal regions in the clinical isolates. In these isolates, the predominant amplifications appear to be those that generate genes arrays; however, in many cases, the amplified arrays have a notably higher number of copies than those from the untreated and Sb-treated laboratory samples.
Collapse
|
28
|
Butenko A, Kostygov AY, Sádlová J, Kleschenko Y, Bečvář T, Podešvová L, Macedo DH, Žihala D, Lukeš J, Bates PA, Volf P, Opperdoes FR, Yurchenko V. Comparative genomics of Leishmania (Mundinia). BMC Genomics 2019; 20:726. [PMID: 31601168 PMCID: PMC6787982 DOI: 10.1186/s12864-019-6126-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Background Trypanosomatids of the genus Leishmania are parasites of mammals or reptiles transmitted by bloodsucking dipterans. Many species of these flagellates cause important human diseases with clinical symptoms ranging from skin sores to life-threatening damage of visceral organs. The genus Leishmania contains four subgenera: Leishmania, Sauroleishmania, Viannia, and Mundinia. The last subgenus has been established recently and remains understudied, although Mundinia contains human-infecting species. In addition, it is interesting from the evolutionary viewpoint, representing the earliest branch within the genus and possibly with a different type of vector. Here we analyzed the genomes of L. (M.) martiniquensis, L. (M.) enriettii and L. (M.) macropodum to better understand the biology and evolution of these parasites. Results All three genomes analyzed were approximately of the same size (~ 30 Mb) and similar to that of L. (Sauroleishmania) tarentolae, but smaller than those of the members of subgenera Leishmania and Viannia, or the genus Endotrypanum (~ 32 Mb). This difference was explained by domination of gene losses over gains and contractions over expansions at the Mundinia node, although only a few of these genes could be identified. The analysis predicts significant changes in the Mundinia cell surface architecture, with the most important ones relating to losses of LPG-modifying side chain galactosyltransferases and arabinosyltransferases, as well as β-amastins. Among other important changes were gene family contractions for the oxygen-sensing adenylate cyclases and FYVE zinc finger-containing proteins. Conclusions We suggest that adaptation of Mundinia to different vectors and hosts has led to alternative host-parasite relationships and, thereby, made some proteins redundant. Thus, the evolution of genomes in the genus Leishmania and, in particular, in the subgenus Mundinia was mainly shaped by host (or vector) switches.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Yuliya Kleschenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Podešvová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - David Žihala
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budejovice (Budweis), Czech Republic
| | - Paul A Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
29
|
Camacho E, Rastrojo A, Sanchiz Á, González-de la Fuente S, Aguado B, Requena JM. Leishmania Mitochondrial Genomes: Maxicircle Structure and Heterogeneity of Minicircles. Genes (Basel) 2019; 10:genes10100758. [PMID: 31561572 PMCID: PMC6826401 DOI: 10.3390/genes10100758] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 01/27/2023] Open
Abstract
The mitochondrial DNA (mtDNA), which is present in almost all eukaryotic organisms, is a useful marker for phylogenetic studies due to its relative high conservation and its inheritance manner. In Leishmania and other trypanosomatids, the mtDNA (also referred to as kinetoplast DNA or kDNA) is composed of thousands of minicircles and a few maxicircles, catenated together into a complex network. Maxicircles are functionally similar to other eukaryotic mtDNAs, whereas minicircles are involved in RNA editing of some maxicircle-encoded transcripts. Next-generation sequencing (NGS) is increasingly used for assembling nuclear genomes and, currently, a large number of genomic sequences are available. However, most of the time, the mitochondrial genome is ignored in the genome assembly processes. The aim of this study was to develop a pipeline to assemble Leishmania minicircles and maxicircle DNA molecules, exploiting the raw data generated in the NGS projects. As a result, the maxicircle molecules and the plethora of minicircle classes for Leishmania major, Leishmania infantum and Leishmania braziliensis have been characterized. We have observed that whereas the heterogeneity of minicircle sequences existing in a single cell hampers their use for Leishmania typing and classification, maxicircles emerge as an extremely robust genetic marker for taxonomic studies within the clade of kinetoplastids.
Collapse
Affiliation(s)
- Esther Camacho
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Alberto Rastrojo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - África Sanchiz
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Sandra González-de la Fuente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Begoña Aguado
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jose M Requena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
30
|
Ribeiro YC, Robe LJ, Veluza DS, Dos Santos CMB, Lopes ALK, Krieger MA, Ludwig A. Study of VIPER and TATE in kinetoplastids and the evolution of tyrosine recombinase retrotransposons. Mob DNA 2019; 10:34. [PMID: 31391870 PMCID: PMC6681497 DOI: 10.1186/s13100-019-0175-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
Background Kinetoplastids are a flagellated group of protists, including some parasites, such as Trypanosoma and Leishmania species, that can cause diseases in humans and other animals. The genomes of these species enclose a fraction of retrotransposons including VIPER and TATE, two poorly studied transposable elements that encode a tyrosine recombinase (YR) and were previously classified as DIRS elements. This study investigated the distribution and evolution of VIPER and TATE in kinetoplastids to understand the relationships of these elements with other retrotransposons. Results We observed that VIPER and TATE have a discontinuous distribution among Trypanosomatidae, with several events of loss and degeneration occurring during a vertical transfer evolution. We were able to identify the terminal repeats of these elements for the first time, and we showed that these elements are potentially active in some species, including T. cruzi copies of VIPER. We found that VIPER and TATE are strictly related elements, which were named in this study as VIPER-like. The reverse transcriptase (RT) tree presented a low resolution, and the origin and relationships among YR groups remain uncertain. Conversely, for RH, VIPER-like grouped with Hepadnavirus, whereas for YR, VIPER-like sequences constituted two different clades that are closely allied to Crypton. Distinct topologies among RT, RH and YR trees suggest ancient rearrangements/exchanges in domains and a modular pattern of evolution with putative independent origins for each ORF. Conclusions Due to the presence of both elements in Bodo saltans, a nontrypanosomatid species, we suggested that VIPER and TATE have survived and remained active for more than 400 million years or were reactivated during the evolution of the host species. We did not find clear evidence of independent origins of VIPER-like from the other YR retroelements, supporting the maintenance of the DIRS group of retrotransposons. Nevertheless, according to phylogenetic findings and sequence structure obtained by this study and other works, we proposed separating DIRS elements into four subgroups: DIRS-like, PAT-like, Ngaro-like, and VIPER-like. Electronic supplementary material The online version of this article (10.1186/s13100-019-0175-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasmin Carla Ribeiro
- 1Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR Brazil
| | - Lizandra Jaqueline Robe
- 2Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | | | | | - Ana Luisa Kalb Lopes
- 1Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR Brazil
| | | | - Adriana Ludwig
- 4Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR Brazil
| |
Collapse
|
31
|
Klatt S, Simpson L, Maslov DA, Konthur Z. Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl Trop Dis 2019; 13:e0007424. [PMID: 31344033 PMCID: PMC6657821 DOI: 10.1371/journal.pntd.0007424] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this review, we summarize the current knowledge concerning the eukaryotic protozoan parasite Leishmania tarentolae, with a main focus on its potential for biotechnological applications. We will also discuss the genus, subgenus, and species-level classification of this parasite, its life cycle and geographical distribution, and similarities and differences to human-pathogenic species, as these aspects are relevant for the evaluation of biosafety aspects of L. tarentolae as host for recombinant DNA/protein applications. Studies indicate that strain LEM-125 but not strain TARII/UC of L. tarentolae might also be capable of infecting mammals, at least transiently. This could raise the question of whether the current biosafety level of this strain should be reevaluated. In addition, we will summarize the current state of biotechnological research involving L. tarentolae and explain why this eukaryotic parasite is an advantageous and promising human recombinant protein expression host. This summary includes overall biotechnological applications, insights into its protein expression machinery (especially on glycoprotein and antibody fragment expression), available expression vectors, cell culture conditions, and its potential as an immunotherapy agent for human leishmaniasis treatment. Furthermore, we will highlight useful online tools and, finally, discuss possible future applications such as the humanization of the glycosylation profile of L. tarentolae or the expression of mammalian recombinant proteins in amastigote-like cells of this species or in amastigotes of avirulent human-pathogenic Leishmania species.
Collapse
Affiliation(s)
- Stephan Klatt
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, Geffen School of Medicine at UCLA, University of California, Los Angeles, California, United States of America
| | - Dmitri A. Maslov
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, United States of America
| | - Zoltán Konthur
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| |
Collapse
|
32
|
Urrea DA, Triana-Chavez O, Alzate JF. Mitochondrial genomics of human pathogenic parasite Leishmania ( Viannia) panamensis. PeerJ 2019; 7:e7235. [PMID: 31304069 PMCID: PMC6611448 DOI: 10.7717/peerj.7235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background The human parasite Leishmania (V.) panamensis is one of the pathogenic species responsible for cutaneous leishmaniasis in Central and South America. Despite its importance in molecular parasitology, its mitochondrial genome, divided into minicircles and maxicircles, haven’t been described so far. Methods Using NGS-based sequencing (454 and ILLUMINA), and combining de novo genome assembly and mapping strategies, we report the maxicircle kDNA annotated genome of L. (V.) panamensis, the first reference of this molecule for the subgenus Viannia. A comparative genomics approach is performed against other Leishmania and Trypanosoma species. Results The results show synteny of mitochondrial genes of L. (V.) panamensis with other kinetoplastids. It was also possible to identify nucleotide variants within the coding regions of the maxicircle, shared among some of them and others specific to each strain. Furthermore, we compared the minicircles kDNA sequences of two strains and the results show that the conserved and divergent regions of the minicircles exhibit strain-specific associations.
Collapse
Affiliation(s)
- Daniel Alfonso Urrea
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Ibague, Tolima, Colombia.,Grupo Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Omar Triana-Chavez
- Grupo Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica -CNSG, Sede de Investigación Universitaria -SIU. Grupo de Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| |
Collapse
|
33
|
S. L. Figueiredo de Sá B, Rezende AM, de Melo Neto OP, de Brito MEF, Brandão Filho SP. Identification of divergent Leishmania (Viannia) braziliensis ecotypes derived from a geographically restricted area through whole genome analysis. PLoS Negl Trop Dis 2019; 13:e0007382. [PMID: 31170148 PMCID: PMC6581274 DOI: 10.1371/journal.pntd.0007382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 06/18/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Leishmania braziliensis, the main etiological agent of cutaneous leishmaniasis (CL) in Latin America, is characterized by major differences in basic biology in comparison with better-known Leishmania species. It is also associated with a high phenotypic and possibly genetic diversity that need to be more adequately defined. Here we used whole genome sequences to evaluate the genetic diversity of ten L. braziliensis isolates from a CL endemic area from Northeastern Brazil, previously classified by Multi Locus Enzyme Electrophoresis (MLEE) into ten distinct zymodemes. These sequences were first mapped using the L. braziliensis M2904 reference genome followed by identification of Single Nucleotide Polymorphisms (SNPs). A substantial level of diversity was observed when compared with the reference genome, with SNP counts ranging from ~95,000 to ~131,000 for the different isolates. When the genome data was used to infer relationship between isolates, those belonging to zymodemes Z72/Z75, recovered from forested environments, were found to cluster separately from the others, generally associated with more urban environments. Among the remaining isolates, those from zymodemes Z74/Z106 were also found to form a separate group. Phylogenetic analyses were also performed using Multi-Locus Sequence Analysis from genes coding for four metabolic enzymes used for MLEE as well as the gene sequence coding for the Hsp70 heat shock protein. All 10 isolates were firmly identified as L. braziliensis, including the zymodeme Z26 isolate previously classified as Leishmania shawi, with the clustering into three groups confirmed. Aneuploidy was also investigated but found in general restricted to chromosome 31, with a single isolate, from zymodeme Z27, characterized by extra copies for other chromosomes. Noteworthy, both Z72 and Z75 isolates are characterized by a much reduced heterozygosity. Our data is consistent with the existence of distinct evolutionary groups in the restricted area sampled and a substantial genetic diversity within L. braziliensis.
Collapse
Affiliation(s)
| | - Antonio M. Rezende
- Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
34
|
Pita S, Díaz-Viraqué F, Iraola G, Robello C. The Tritryps Comparative Repeatome: Insights on Repetitive Element Evolution in Trypanosomatid Pathogens. Genome Biol Evol 2019; 11:546-551. [PMID: 30715360 PMCID: PMC6390901 DOI: 10.1093/gbe/evz017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 01/01/2023] Open
Abstract
The major human pathogens Trypanosoma cruzi, Trypanosoma brucei, and Leishmania major are collectively known as the Tritryps. The initial comparative analysis of their genomes has uncovered that Tritryps share a great number of genes, but repetitive DNA seems to be extremely variable between them. However, the in-depth characterization of repetitive DNA in these pathogens has been in part neglected, mainly due to the well-known technical challenges of studying repetitive sequences from de novo assemblies using short reads. Here, we compared the repetitive DNA repertories between the Tritryps genomes using genome-wide, low-coverage Illumina sequencing coupled to RepeatExplorer analysis. Our work demonstrates that this extensively implemented approach for studying higher eukaryote repeatomes is also useful for protozoan parasites like trypanosomatids, as we recovered previously observed differences in the presence and amount of repetitive DNA families. Additionally, our estimations of repetitive DNA abundance were comparable to those obtained from enhanced-quality assemblies using longer reads. Importantly, our methodology allowed us to describe a previously undescribed transposable element in Leishmania major (TATE element), highlighting its potential to accurately recover distinctive features from poorly characterized repeatomes. Together, our results support the application of this low-cost, low-coverage sequencing approach for the extensive characterization of repetitive DNA evolutionary dynamics in trypanosomatid and other protozoan genomes.
Collapse
Affiliation(s)
- Sebastián Pita
- Laboratory of Host Pathogen Interactions, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Florencia Díaz-Viraqué
- Laboratory of Host Pathogen Interactions, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay.,Centro de Biología Integrativa, Universidad Mayor, Santiago de Chile, Chile
| | - Carlos Robello
- Laboratory of Host Pathogen Interactions, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
35
|
Ruy PDC, Monteiro-Teles NM, Miserani Magalhães RD, Freitas-Castro F, Dias L, Aquino Defina TP, Rosas De Vasconcelos EJ, Myler PJ, Kaysel Cruz A. Comparative transcriptomics in Leishmania braziliensis: disclosing differential gene expression of coding and putative noncoding RNAs across developmental stages. RNA Biol 2019; 16:639-660. [PMID: 30689499 DOI: 10.1080/15476286.2019.1574161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Leishmaniasis is a worldwide public health problem caused by protozoan parasites of the genus Leishmania. Leishmania braziliensis is the most important species responsible for tegumentary leishmaniases in Brazil. An understanding of the molecular mechanisms underlying the success of this parasite is urgently needed. An in-depth study on the modulation of gene expression across the life cycle stages of L. braziliensis covering coding and noncoding RNAs (ncRNAs) was missing and is presented herein. Analyses of differentially expressed (DE) genes revealed that most prominent differences were observed between the transcriptomes of insect and mammalian proliferative forms (6,576 genes). Gene ontology (GO) analysis indicated stage-specific enriched biological processes. A computational pipeline and 5 ncRNA predictors allowed the identification of 11,372 putative ncRNAs. Most of the DE ncRNAs were found between the transcriptomes of insect and mammalian proliferative stages (38%). Of the DE ncRNAs, 295 were DE in all three stages and displayed a wide range of lengths, chromosomal distributions and locations; many of them had a distinct expression profile compared to that of their protein-coding neighbors. Thirty-five putative ncRNAs were submitted to northern blotting analysis, and one or more hybridization-positive signals were observed in 22 of these ncRNAs. This work presents an overview of the L. braziliensis transcriptome and its adjustments throughout development. In addition to determining the general features of the transcriptome at each life stage and the profile of protein-coding transcripts, we identified and characterized a variety of noncoding transcripts. The novel putative ncRNAs uncovered in L. braziliensis might be regulatory elements to be further investigated.
Collapse
Affiliation(s)
- Patrícia De Cássia Ruy
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | - Natália Melquie Monteiro-Teles
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | - Rubens Daniel Miserani Magalhães
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | - Felipe Freitas-Castro
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | - Leandro Dias
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | - Tania Paula Aquino Defina
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | | | - Peter J Myler
- b Center for Infectious Disease Research , Seattle, Washington , USA
| | - Angela Kaysel Cruz
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| |
Collapse
|
36
|
Castro Neto AL, Brito ANALM, Rezende AM, Magalhães FB, de Melo Neto OP. In silico characterization of multiple genes encoding the GP63 virulence protein from Leishmania braziliensis: identification of sources of variation and putative roles in immune evasion. BMC Genomics 2019; 20:118. [PMID: 30732584 PMCID: PMC6367770 DOI: 10.1186/s12864-019-5465-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023] Open
Abstract
Background The leishmaniasis are parasitic diseases caused by protozoans of the genus Leishmania, highly divergent eukaryotes, characterized by unique biological features. To survive in both the mammalian hosts and insect vectors, these pathogens make use of a number of mechanisms, many of which are associated with parasite specific proteases. The metalloprotease GP63, the major Leishmania surface antigen, has been found to have multiple functions required for the parasite’s survival. GP63 is encoded by multiple genes and their copy numbers vary considerably between different species and are increased in those from the subgenus Viannia, including L. braziliensis. Results By comparing multiple sequences from Leishmania and related organisms this study sought to characterize paralogs in silico, evaluating their differences and similarities and the implications for the GP63 function. The Leishmania GP63 genes are encoded on chromosomes 10, 28 and 31, with the genes from the latter two chromosomes more related to genes found in insect or plant parasites. Those from chromosome 10 have experienced independent expansions in numbers in Leishmania, especially in L. braziliensis. These could be clustered in three groups associated with different mRNA 3′ untranslated regions as well as distinct C-terminal ends for the encoded proteins, with presumably distinct expression patterns and subcellular localizations. Sequence variations between the chromosome 10 genes were linked to intragenic recombination events, mapped to the external surface of the proteins and predicted to be immunogenic, implying a role against the host immune response. Conclusions Our results suggest a greater role for the sequence variation found among the chromosome 10 GP63 genes, possibly related to the pathogenesis of L. braziliensis and closely related species within the mammalian host. They also indicate different functions associated to genes mapped to different chromosomes. For the chromosome 10 genes, variable subcellular localizations were found to be most likely associated with multiple functions and target substrates for this versatile protease. Electronic supplementary material The online version of this article (10.1186/s12864-019-5465-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Artur L Castro Neto
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.,Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil
| | - Adriana N A L M Brito
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil
| | - Antonio M Rezende
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil
| | - Franklin B Magalhães
- Centro Universitário Tabosa de Almeida - ASCES/UNITA, Caruaru, Pernambuco, Brazil
| | - Osvaldo P de Melo Neto
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Recife, Pernambuco, Brazil.
| |
Collapse
|
37
|
Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat Microbiol 2019; 4:714-723. [PMID: 30692670 DOI: 10.1038/s41564-018-0352-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/15/2018] [Indexed: 01/01/2023]
Abstract
Leishmania are ancient eukaryotes that have retained the exosome pathway through evolution. Leishmania RNA virus 1 (LRV1)-infected Leishmania species are associated with a particularly aggressive mucocutaneous disease triggered in response to the double-stranded RNA (dsRNA) virus. However, it is unclear how LRV1 is exposed to the mammalian host cells. In higher eukaryotes, some viruses are known to utilize the host exosome pathway for their formation and cell-to-cell spread. As a result, exosomes derived from infected cells contain viral material or particles. Herein, we investigated whether LRV1 exploits the Leishmania exosome pathway to reach the extracellular environment. Biochemical and electron microscopy analyses of exosomes derived from LRV1-infected Leishmania revealed that most dsRNA LRV1 co-fractionated with exosomes, and that a portion of viral particles was surrounded by these vesicles. Transfer assays of LRV1-containing exosome preparations showed that a significant amount of parasites were rapidly and transiently infected by LRV1. Remarkably, these freshly infected parasites generated more severe lesions in mice than non-infected ones. Moreover, mice co-infected with parasites and LRV1-containing exosomes also developed a more severe disease. Overall, this work provides evidence that Leishmania exosomes function as viral envelopes, thereby facilitating LRV1 transmission and increasing infectivity in the mammalian host.
Collapse
|
38
|
Subramanian A, Sarkar RR. Perspectives on Leishmania Species and Stage-specific Adaptive Mechanisms. Trends Parasitol 2018; 34:1068-1081. [DOI: 10.1016/j.pt.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022]
|
39
|
Genomic Analysis of Colombian Leishmania panamensis strains with different level of virulence. Sci Rep 2018; 8:17336. [PMID: 30478412 PMCID: PMC6255768 DOI: 10.1038/s41598-018-35778-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
The establishment of Leishmania infection in mammalian hosts and the subsequent manifestation of clinical symptoms require internalization into macrophages, immune evasion and parasite survival and replication. Although many of the genes involved in these processes have been described, the genetic and genomic variability associated to differences in virulence is largely unknown. Here we present the genomic variation of four Leishmania (Viannia) panamensis strains exhibiting different levels of virulence in BALB/c mice and its application to predict novel genes related to virulence. De novo DNA sequencing and assembly of the most virulent strain allowed comparative genomics analysis with sequenced L. (Viannia) panamensis and L. (Viannia) braziliensis strains, and showed important variations at intra and interspecific levels. Moreover, the mutation detection and a CNV search revealed both base and structural genomic variation within the species. Interestingly, we found differences in the copy number and protein diversity of some genes previously related to virulence. Several machine-learning approaches were applied to combine previous knowledge with features derived from genomic variation and predict a curated set of 66 novel genes related to virulence. These genes can be prioritized for validation experiments and could potentially become promising drug and immune targets for the development of novel prophylactic and therapeutic interventions.
Collapse
|
40
|
Galluzzi L, Ceccarelli M, Diotallevi A, Menotta M, Magnani M. Real-time PCR applications for diagnosis of leishmaniasis. Parasit Vectors 2018; 11:273. [PMID: 29716641 PMCID: PMC5930967 DOI: 10.1186/s13071-018-2859-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 11/10/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by many Leishmania species, which can infect both humans and other mammals. Leishmaniasis is a complex disease, with heterogeneous clinical manifestations ranging from asymptomatic infections to lesions at cutaneous sites (cutaneous leishmaniasis), mucosal sites (mucocutaneous leishmaniasis) or in visceral organs (visceral leishmaniasis), depending on the species and host characteristics. Often, symptoms are inconclusive and leishmaniasis can be confused with other co-endemic diseases. Moreover, co-infections (mainly with HIV in humans) can produce atypical clinical presentations. A correct diagnosis is crucial to apply the appropriate treatment and the use of molecular techniques in diagnosis of leishmaniasis has become increasingly relevant due to their remarkable sensitivity, specificity and possible application to a variety of clinical samples. Among them, real-time PCR (qPCR)-based approaches have become increasingly popular in the last years not only for detection and quantification of Leishmania species but also for species identification. However, despite qPCR-based methods having proven to be very effective in the diagnosis of leishmaniasis, a standardized method does not exist. This review summarizes the qPCR-based methods in the diagnosis of leishmaniasis focusing on the recent developments and applications in this field.
Collapse
Affiliation(s)
- Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via Saffi 2, 61029 Urbino, PU Italy
| | - Marcello Ceccarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via Saffi 2, 61029 Urbino, PU Italy
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via Saffi 2, 61029 Urbino, PU Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via Saffi 2, 61029 Urbino, PU Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via Saffi 2, 61029 Urbino, PU Italy
| |
Collapse
|
41
|
Coughlan S, Taylor AS, Feane E, Sanders M, Schonian G, Cotton JA, Downing T. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172212. [PMID: 29765675 PMCID: PMC5936940 DOI: 10.1098/rsos.172212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The unicellular protozoan parasite Leishmania causes the neglected tropical disease leishmaniasis, affecting 12 million people in 98 countries. In South America, where the Viannia subgenus predominates, so far only L. (Viannia) braziliensis and L. (V.) panamensis have been sequenced, assembled and annotated as reference genomes. Addressing this deficit in molecular information can inform species typing, epidemiological monitoring and clinical treatment. Here, L. (V.) naiffi and L. (V.) guyanensis genomic DNA was sequenced to assemble these two genomes as draft references from short sequence reads. The methods used were tested using short sequence reads for L. braziliensis M2904 against its published reference as a comparison. This assembly and annotation pipeline identified 70 additional genes not annotated on the original M2904 reference. Phylogenetic and evolutionary comparisons of L. guyanensis and L. naiffi with 10 other Viannia genomes revealed four traits common to all Viannia: aneuploidy, 22 orthologous groups of genes absent in other Leishmania subgenera, elevated TATE transposon copies and a high NADH-dependent fumarate reductase gene copy number. Within the Viannia, there were limited structural changes in genome architecture specific to individual species: a 45 Kb amplification on chromosome 34 was present in all bar L. lainsoni, L. naiffi had a higher copy number of the virulence factor leishmanolysin, and laboratory isolate L. shawi M8408 had a possible minichromosome derived from the 3' end of chromosome 34. This combination of genome assembly, phylogenetics and comparative analysis across an extended panel of diverse Viannia has uncovered new insights into the origin and evolution of this subgenus and can help improve diagnostics for leishmaniasis surveillance.
Collapse
Affiliation(s)
- Simone Coughlan
- School of Mathematics, Applied Mathematics and Statistics, National University of Ireland, Galway, Republic of Ireland
| | - Ali Shirley Taylor
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - Eoghan Feane
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | | | | | | | - Tim Downing
- School of Mathematics, Applied Mathematics and Statistics, National University of Ireland, Galway, Republic of Ireland
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| |
Collapse
|
42
|
Using proteomics as a powerful tool to develop a vaccine against Mediterranean visceral leishmaniasis. J Parasit Dis 2018; 42:162-170. [PMID: 29844618 DOI: 10.1007/s12639-018-0986-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022] Open
Abstract
Visceral leishmaniasis (VL) is a tropical infectious disease, which is called Mediterranean visceral leishmaniasis (MVL) in the Mediterranean area. In spite of many attempts, no effective commercial vaccine exists for MVL. To find new targets for developing antileishmanial vaccines, knowing parasite antigens that provoke the immune system are on demand. Nowadays, proteomics methods are defined as approaches for analysis of protein profiling of different cells. Within this framework, detection of new antigens is becoming more facilitated. In this review, we aimed to introduce possible targets using proteomics so; they could be used as candidates for developing vaccines against MVL. It can shed new light in the near future on the development of promising vaccines for MVL.
Collapse
|
43
|
Llanes A, Restrepo CM, Lleonart R. VianniaTopes: a database of predicted immunogenic peptides for Leishmania (Viannia) species. Database (Oxford) 2018; 2018:5144431. [PMID: 30358842 PMCID: PMC6201054 DOI: 10.1093/database/bay111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 11/30/2022]
Abstract
Leishmania is a protozoan parasite causing several disease presentations collectively known as leishmaniasis. Pathogenic species of Leishmania are divided into two subgenera, L. (Leishmania) and L. (Viannia). Species belonging to the Viannia subgenus have only been reported in Central and South America. These species predominantly cause cutaneous leishmaniasis, but in some cases, parasites can migrate to the nasopharyngeal area and cause a highly disfiguring mucocutaneous presentation. Despite intensive efforts, no effective antileishmanial vaccine is available for use in humans, although a few candidates mainly designed for L. (Leishmania) species are now in clinical trials. After sequencing the genome of Leishmania panamensis, we noticed a high degree of sequence divergence among several orthologous proteins from both subgenera. Consequently, some of the previously published candidates may not work properly for species of the Viannia subgenus. To help in vaccine design, we predicted CD4+ and CD8+ T cell epitopes in the theoretical proteomes of four strains belonging to the Viannia subgenus. Prediction was performed with at least two independent bioinformatics tools, using the most frequent human major histocompatibility complex (MHC) class I and class II alleles in the affected geographic area. Although predictions resulted in millions of peptides, relatively few of them were predicted to bind to several MHC alleles and can therefore be considered promiscuous epitopes. Comparison of our results to previous applications to species of the Leishmania subgenus confirmed that approximately half of the reported candidates are not present in Viannia proteins with a threshold of 80% sequence similarity and coverage. However, our prediction methodology was able to predict 70-100% of the candidates that could be found in Viannia. All the prediction data generated in this study are publicly available in an interactive database called VianniaTopes.
Collapse
Affiliation(s)
- Alejandro Llanes
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Carlos Mario Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panama City, Panama
| | - Ricardo Lleonart
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panama City, Panama
| |
Collapse
|
44
|
Zackay A, Cotton JA, Sanders M, Hailu A, Nasereddin A, Warburg A, Jaffe CL. Genome wide comparison of Ethiopian Leishmania donovani strains reveals differences potentially related to parasite survival. PLoS Genet 2018; 14:e1007133. [PMID: 29315303 PMCID: PMC5777657 DOI: 10.1371/journal.pgen.1007133] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/22/2018] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Leishmania donovani is the main cause of visceral leishmaniasis (VL) in East Africa. Differences between northern Ethiopia/Sudan (NE) and southern Ethiopia (SE) in ecology, vectors, and patient sensitivity to drug treatment have been described, however the relationship between differences in parasite genotype between these two foci and phenotype is unknown. Whole genomic sequencing (WGS) was carried out for 41 L. donovani strains and clones from VL and VL/HIV co-infected patients in NE (n = 28) and SE (n = 13). Chromosome aneuploidy was observed in all parasites examined with each isolate exhibiting a unique karyotype. Differences in chromosome ploidy or karyotype were not correlated with the geographic origin of the parasites. However, correlation between single nucleotide polymorphism (SNP) and geographic origin was seen for 38/41 isolates, separating the NE and SE parasites into two large groups. SNP restricted to NE and SE groups were associated with genes involved in viability and parasite resistance to drugs. Unique copy number variation (CNV) were also associated with NE and SE parasites, respectively. One striking example is the folate transporter (FT) family genes (LdBPK_100390, LdBPK_100400 and LdBPK_100410) on chromosome 10 that are single copy in all 13 SE isolates, but either double copy or higher in 39/41 NE isolates (copy number 2-4). High copy number (= 4) was also found for one Sudanese strain examined. This was confirmed by quantitative polymerase chain reaction for LdBPK_100400, the L. donovani FT1 transporter homolog. Good correlation (p = 0.005) between FT copy number and resistance to methotrexate (0.5 mg/ml MTX) was also observed with the haploid SE strains examined showing higher viability than the NE strains at this concentration. Our results emphasize the advantages of whole genome analysis to shed light on vital parasite processes in Leishmania.
Collapse
Affiliation(s)
- Arie Zackay
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - James A. Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Asrat Hailu
- Dept Microbiology, Immunology & Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abedelmajeed Nasereddin
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Alon Warburg
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Charles L. Jaffe
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
45
|
Resequencing of the Leishmania infantum (strain JPCM5) genome and de novo assembly into 36 contigs. Sci Rep 2017; 7:18050. [PMID: 29273719 PMCID: PMC5741766 DOI: 10.1038/s41598-017-18374-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023] Open
Abstract
Leishmania parasites are the causative of leishmaniasis, a group of potentially fatal human diseases. Control strategies for leishmaniasis can be enhanced by genome based investigations. The publication in 2005 of the Leishmania major genome sequence, and two years later the genomes for the species Leishmania braziliensis and Leishmania infantum were major milestones. Since then, the L. infantum genome, although highly fragmented and incomplete, has been used widely as the reference genome to address whole transcriptomics and proteomics studies. Here, we report the sequencing of the L. infantum genome by two NGS methodologies and, as a result, the complete genome assembly on 36 contigs (chromosomes). Regarding the present L. infantum genome-draft, 495 new genes have been annotated, a hundred have been corrected and 75 previous annotated genes have been discontinued. These changes are not only the result of an increase in the genome size, but a significant contribution derives from the existence of a large number of incorrectly assembled regions in current chromosomal scaffolds. Furthermore, an improved assembly of tandemly repeated genes has been obtained. All these analyses support that the de novo assembled L. infantum genome represents a robust assembly and should replace the currently available in the databases.
Collapse
|
46
|
Roca C, Sebastián-Pérez V, Campillo NE. In silico Tools for Target Identification and Drug Molecular Docking in Leishmania. DRUG DISCOVERY FOR LEISHMANIASIS 2017. [DOI: 10.1039/9781788010177-00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neglected tropical diseases represent a significant health burden in large parts of the world. Drug discovery is currently a key bottleneck in the pipeline of these diseases. In this chapter, the in silico approaches used for the processes involved in drug discovery, identification and validation of druggable Leishmania targets, and design and optimisation of new anti-leishmanial drugs are discussed. We also provide a general view of the different computational tools that can be employed in pursuit of this aim, along with the most interesting cases found in the literature.
Collapse
Affiliation(s)
- Carlos Roca
- Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| | | | - Nuria E. Campillo
- Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| |
Collapse
|
47
|
Varela-M RE, Ochoa R, Muskus CE, Muro A, Mollinedo F. Identification of a RAC/AKT-like gene in Leishmania parasites as a putative therapeutic target in leishmaniasis. Parasit Vectors 2017; 10:458. [PMID: 29017516 PMCID: PMC5633885 DOI: 10.1186/s13071-017-2379-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Background Leishmaniasis is one of the world’s most neglected diseases caused by at least 20 different species of the protozoan parasite Leishmania. Although new drugs have become recently available, current therapy for leishmaniasis is still unsatisfactory. A subgroup of serine/threonine protein kinases named as related to A and C protein kinases (RAC), or protein kinase B (PKB)/AKT, has been identified in several organisms including Trypanosoma cruzi parasites. PKB/AKT plays a critical role in mammalian cell signaling promoting cell survival and is a major drug target in cancer therapy. However, the role of protozoan parasitic PKB/AKT remains to be elucidated. Results We have found that anti-human AKT antibodies recognized a protein of about 57 kDa in Leishmania spp. parasites. Anti-human phospho-AKT(Thr308) antibodies identified a protein in extracts from Leishmania spp. that was upregulated following parasite exposure to stressful conditions, such as nutrient deprivation or heat shock. Incubation of AKT inhibitor X with Leishmania spp. promastigotes under stressful conditions or with Leishmania-infected macrophages led to parasite cell death. We have identified and cloned a novel gene from Leishmania donovani named Ld-RAC/AKT-like gene, encoding a 510-amino acid protein of approximately 57.6 kDa that shows a 26.5% identity with mammalian AKT1. Ld-RAC/AKT-like protein contains major mammalian PKB/AKT hallmarks, including the typical pleckstrin, protein kinase and AGC kinase domains. Unlike mammalian AKT that contains key phosphorylation sites at Thr308 and Ser473 in the activation loop and hydrophobic motif, respectively, Ld-RAC/AKT-like protein has a Thr residue in both motifs. By domain sequence comparison, we classified AKT proteins from different origins in four major subcategories that included different parasites. Conclusions Our data suggest that Ld-RAC/AKT-like protein represents a Leishmania orthologue of mammalian AKT involved in parasite stress response and survival, and therefore could become a novel therapeutic and druggable target in leishmaniasis therapy. In addition, following comparative sequence analyses, we found the RAC/AKT-like proteins from Leishmania constitute a subgroup by themselves within a general AKT-like protein family. Electronic supplementary material The online version of this article (10.1186/s13071-017-2379-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rubén E Varela-M
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Ciencias Básicas, Universidad Santiago de Cali, Campus Pampalinda, Santiago de Cali, Colombia
| | - Rodrigo Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia
| | - Carlos E Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia
| | - Antonio Muro
- Laboratorio de Inmunología Parasitaria y Molecular, IBSAL-CIETUS, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain. .,Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain.
| |
Collapse
|
48
|
Coughlan S, Mulhair P, Sanders M, Schonian G, Cotton JA, Downing T. The genome of Leishmania adleri from a mammalian host highlights chromosome fission in Sauroleishmania. Sci Rep 2017; 7:43747. [PMID: 28256610 PMCID: PMC5335649 DOI: 10.1038/srep43747] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/26/2017] [Indexed: 12/30/2022] Open
Abstract
Control of pathogens arising from humans, livestock and wild animals can be enhanced by genome-based investigation. Phylogenetically classifying and optimal construction of these genomes using short sequence reads are key to this process. We examined the mammal-infecting unicellular parasite Leishmania adleri belonging to the lizard-infecting Sauroleishmania subgenus. L. adleri has been associated with cutaneous disease in humans, but can be asymptomatic in wild animals. We sequenced, assembled and investigated the L. adleri genome isolated from an asymptomatic Ethiopian rodent (MARV/ET/75/HO174) and verified it as L. adleri by comparison with other Sauroleishmania species. Chromosome-level scaffolding was achieved by combining reference-guided with de novo assembly followed by extensive improvement steps to produce a final draft genome with contiguity comparable with other references. L. tarentolae and L. major genome annotation was transferred and these gene models were manually verified and improved. This first high-quality draft Leishmania adleri reference genome is also the first Sauroleishmania genome from a non-reptilian host. Comparison of the L. adleri HO174 genome with those of L. tarentolae Parrot-TarII and lizard-infecting L. adleri RLAT/KE/1957/SKINK-7 showed extensive gene amplifications, pervasive aneuploidy, and fission of chromosomes 30 and 36. There was little genetic differentiation between L. adleri extracted from mammals and reptiles, highlighting challenges for leishmaniasis surveillance.
Collapse
Affiliation(s)
- Simone Coughlan
- School of Mathematics, Applied Mathematics and Statistics, National University of Ireland, Galway, Ireland
| | - Peter Mulhair
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | | | | | - Tim Downing
- School of Mathematics, Applied Mathematics and Statistics, National University of Ireland, Galway, Ireland
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
49
|
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, Ravel C, Marty P, Delaunay P, Kasbari M, Granouillac B, Gradoni L, Sereno D. Leishmania infections: Molecular targets and diagnosis. Mol Aspects Med 2017; 57:1-29. [PMID: 28159546 DOI: 10.1016/j.mam.2016.11.012] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France.
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada
| | - Arnaud Cannet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Christophe Ravel
- French National Reference Centre on Leishmaniasis, Montpellier University, Montpellier, France
| | - Pierre Marty
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Mohamed Kasbari
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, ANSES, Laboratoire de Santé Animale, Maisons-Alfort, Cedex, France
| | - Bruno Granouillac
- IRD/UMI 233, INSERM U1175, Montpellier University, Montpellier, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Denis Sereno
- MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France; Intertryp UMR IRD177, Centre IRD de Montpellier, Montpellier, France
| |
Collapse
|
50
|
Fotouhi-Ardakani R, Dabiri S, Ajdari S, Alimohammadian MH, AlaeeNovin E, Taleshi N, Parvizi P. Assessment of nuclear and mitochondrial genes in precise identification and analysis of genetic polymorphisms for the evaluation of Leishmania parasites. INFECTION GENETICS AND EVOLUTION 2016; 46:33-41. [DOI: 10.1016/j.meegid.2016.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
|