1
|
Ishida E, Corrigan DT, Chen T, Liu Y, Kim RS, Song L, Rutledge TM, Magee DM, LaBaer J, Lowary TL, Lin PL, Achkar JM. Mucosal and systemic antigen-specific antibody responses correlate with protection against active tuberculosis in nonhuman primates. EBioMedicine 2024; 99:104897. [PMID: 38096687 PMCID: PMC10758715 DOI: 10.1016/j.ebiom.2023.104897] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Increasing evidence supports that antibodies can protect against active tuberculosis (TB) but knowledge of potentially protective antigens, especially in the airways, is limited. The main objective of this study was to identify antigen-specific airway and systemic immunoglobulin isotype responses associated with the outcome of controlled latent Mycobacterium tuberculosis (Mtb) infection (LTBI) versus uncontrolled infection (TB) in nonhuman primates. METHODS In a case-control design, using non-parametric group comparisons with false discovery rate adjustments, we assessed antibodies in 57 cynomolgus macaques which, following low-dose airway Mtb infection, developed either LTBI or TB. We investigated airway and systemic IgG, IgA, and IgM responses in paired bronchoalveolar lavage and plasma samples prior to, two-, and 5-6-months post Mtb infection using an antigen-unbiased approach with Mtb glycan and proteome-wide microarrays. FINDINGS Macaques that developed LTBI (n = 36) had significantly increased airway and plasma IgA reactivities to specific arabinomannan (AM) motifs prior to Mtb infection compared to those that developed TB (n = 21; p < 0.01, q < 0.05). Furthermore, LTBI macaques had higher plasma IgG reactivity to protein MTB32A (Rv0125) early post Mtb infection (p < 0.05) and increasing airway IgG responses to some proteins over time. INTERPRETATION Our results support a protective role of pre-existing mucosal (lung) and systemic IgA to specific Mtb glycan motifs, suggesting that prior exposure to nontuberculous mycobacteria could be protective against TB. They further suggest that IgG to Mtb proteins early post infection could provide an additional protective mechanism. These findings could inform TB vaccine development strategies. FUNDING NIH/NIAID AI117927, AI146329, and AI127173 to JMA.
Collapse
Affiliation(s)
- Elise Ishida
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Devin T Corrigan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yanyan Liu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryung S Kim
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Tara M Rutledge
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D Mitchell Magee
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada; Institute of Biological Chemistry, Academia Sinica, Nangang Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Philana Ling Lin
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Maki T, Takeda S, Muranaka Y, Mae K. Silver Nanoparticle Synthesis Using an Inkjet Mixing System. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.742322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Individual nanoscale silver particles were produced using an inkjet mixing system. First, the behaviors of colliding droplets were investigated to prepare to conduct the synthesis without splitting merged droplets. When small droplets collided, they merged to form droplets that stayed in a state of coalescence at a higher discharging velocity. In addition, by changing the orientation at the collision point, the droplet velocity could be increased. Then, silver nanoparticle synthesis was conducted under conditions that avoided droplet splitting. Smaller particles were produced by higher-velocity collisions for all the examined droplet sizes. When droplets were 50–100 μm, an average particle diameter of 2.5 nm was produced. In addition, when droplets of different sizes collided, they formed a continuous supply of precursor, which subsequently resulted in production of particles with uniform size.
Collapse
|
3
|
Kameyama N, Yoshida H, Fukagawa H, Yamada K, Fukuda M. Thin-Film Processing of Polypropylene and Polystyrene Sheets by a Continuous Wave CO 2 Laser with the Cu Cooling Base. Polymers (Basel) 2021; 13:polym13091448. [PMID: 33946138 PMCID: PMC8124593 DOI: 10.3390/polym13091448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
Carbon dioxide (CO2) laser is widely used in commercial and industrial fields to process various materials including polymers, most of which have high absorptivity in infrared spectrum. Thin-film processing by the continuous wave (CW) laser is difficult since polymers are deformed and damaged by the residual heat. We developed the new method to make polypropylene (PP) and polystyrene (PS) sheets thin. The sheets are pressed to a Cu base by extracting air between the sheets and the base during laser processing. It realizes to cut the sheets to around 50 µm thick with less heat effects on the backside which are inevitable for thermal processing using the CW laser. It is considered that the boundary between the sheets and the base is in thermal equilibrium and the base prevents the sheets from deforming to support the backside. The method is applicable to practical use since it does not need any complex controls and is easy to install to an existing equipment with a minor change of the stage.
Collapse
Affiliation(s)
- Nobukazu Kameyama
- Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagito, Gifu City 501-1193, Japan;
- Correspondence:
| | - Hiroki Yoshida
- Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagito, Gifu City 501-1193, Japan;
| | - Hitoshi Fukagawa
- Institute for Advanced Technology, Heiwadori, Seki City 501-3874, Japan;
| | - Kotaro Yamada
- ATHEN KOGYO CO.LTD, Shimouchi, Seki City 501-3217, Japan; (K.Y.); (M.F.)
| | - Mitsutaka Fukuda
- ATHEN KOGYO CO.LTD, Shimouchi, Seki City 501-3217, Japan; (K.Y.); (M.F.)
| |
Collapse
|
4
|
Identification of Antibody Biomarker Using High-Density Nucleic Acid Programmable Protein Array. Methods Mol Biol 2021; 2344:47-64. [PMID: 34115351 DOI: 10.1007/978-1-0716-1562-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel protein microarray technology, called high-density nucleic acid programmable protein array (HD-NAPPA), enables the serological screening of thousands of proteins at one time. HD-NAPPA extends the capabilities of NAPPA, which produces protein microarrays on a conventional glass microscope slide. By comparison, HD-NAPPA displays proteins in over 10,000 nanowells etched in a silicon slide. Proteins on HD-NAPPA are expressed in the individual isolated nanowells, via in vitro transcription and translation (IVTT), without any diffusion during incubation. Here we describe the method for antibody biomarker identification using HD-NAPPA, including four main steps: (1) HD-NAPPA array protein expression, (2) primary antibodies (serum/plasma) probing, (3) secondary antibody visualization, and (4) image scanning and data processing.
Collapse
|
5
|
Mallires KR, Wang D, Wiktor P, Tao N. A Microdroplet-Based Colorimetric Sensing Platform on a CMOS Imager Chip. Anal Chem 2020; 92:9362-9369. [PMID: 32501669 DOI: 10.1021/acs.analchem.0c01751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interest in mobile chemical sensors is on the rise, but significant challenges have restricted widespread adoption into commercial devices. To be useful these sensors need to have a predictable response, easy calibration, and be integrable with existing technology, preferably fitting on a single chip. With respect to integration, the CMOS imager makes an attractive template for an optoelectronic sensing platform. Demand for smartphones with cameras has driven down the price and size of CMOS imagers over the past decade. The low cost and accessibility of these powerful tools motivated us to print chemical sensing elements directly on the surface of the photodiode array. These printed colorimetric microdroplets are composed of a nonvolatile solvent so they remain in a uniform and homogeneous solution phase, an ideal medium for chemical interactions and optical measurements. By imaging microdroplets on the CMOS imager surface we eliminated the need for lenses, dramatically scaling down the size of the sensing platform to a single chip. We believe the technique is generalizable to many colorimetric formulations, and as an example we detected gaseous ammonia with Cu(II). Limits of detection as low as 27 ppb and sensor-to-sensor variation of less than 10% across multiple printed arrays demonstrated the high sensitivity and repeatability of this approach. Sensors generated this way could share a single calibration, greatly reducing the complexity of incorporating chemical sensors into mobile devices. Additional testing showed the sensor can be reused and has good selectivity; sensitivity and dynamic range can be tuned by controlling droplet size.
Collapse
Affiliation(s)
- Kyle R Mallires
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States.,Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Di Wang
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Peter Wiktor
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States.,Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
6
|
Pflughoeft KJ, Mash M, Hasenkampf NR, Jacobs MB, Tardo AC, Magee DM, Song L, LaBaer J, Philipp MT, Embers ME, AuCoin DP. Multi-platform Approach for Microbial Biomarker Identification Using Borrelia burgdorferi as a Model. Front Cell Infect Microbiol 2019; 9:179. [PMID: 31245298 PMCID: PMC6579940 DOI: 10.3389/fcimb.2019.00179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 01/04/2023] Open
Abstract
The identification of microbial biomarkers is critical for the diagnosis of a disease early during infection. However, the identification of reliable biomarkers is often hampered by a low concentration of microbes or biomarkers within host fluids or tissues. We have outlined a multi-platform strategy to assess microbial biomarkers that can be consistently detected in host samples, using Borrelia burgdorferi, the causative agent of Lyme disease, as an example. Key aspects of the strategy include the selection of a macaque model of human disease, in vivo Microbial Antigen Discovery (InMAD), and proteomic methods that include microbial biomarker enrichment within samples to identify secreted proteins circulating during infection. Using the described strategy, we have identified 6 biomarkers from multiple samples. In addition, the temporal antibody response to select bacterial antigens was mapped. By integrating biomarkers identified from early infection with temporal patterns of expression, the described platform allows for the data driven selection of diagnostic targets.
Collapse
Affiliation(s)
- Kathryn J. Pflughoeft
- DxDiscovery, Inc., Reno, NV, United States
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Michael Mash
- DxDiscovery, Inc., Reno, NV, United States
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Nicole R. Hasenkampf
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Mary B. Jacobs
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Amanda C. Tardo
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - D. Mitchell Magee
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Lusheng Song
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Joshua LaBaer
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Mario T. Philipp
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Monica E. Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - David P. AuCoin
- DxDiscovery, Inc., Reno, NV, United States
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
7
|
Kilb N, Herz T, Burger J, Woehrle J, Meyer PA, Roth G. Protein Microarray Copying: Easy on-Demand Protein Microarray Generation Compatible with Fluorescence and Label-Free Real-Time Analysis. Chembiochem 2019; 20:1554-1562. [PMID: 30730095 DOI: 10.1002/cbic.201800699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/07/2019] [Indexed: 01/19/2023]
Abstract
Protein microarrays are essential to understand complex protein interaction networks. Their production, however, is a challenge and renders this technology unattractive for many laboratories. Recent developments in cell-free protein microarray generation offer new opportunities, but are still expensive and cumbersome in practice. Herein, we describe a cost-effective and user-friendly method for the cell-free production of protein microarrays. From a polydimethylsiloxane (PDMS) flow cell containing an expressible DNA microarray, proteins of interest are synthesised by cell-free expression and then immobilised on a capture surface. The resulting protein microarray can be regarded as a "copy" of the DNA microarray. 2 His6 - and Halo-tagged fluorescent reference proteins were used to demonstrate the functionality of nickel nitrilotriacetic acid (Ni-NTA) and Halo-bind surfaces in this copy system. The described process can be repeated several times on the same DNA microarray. The identity and functionality of the proteins were proven during the copy process by their fluorescence and on the surface through a fluorescent immune assay. Also, single-colour reflectometry (SCORE) was applied to show that, on such copied arrays, real-time binding kinetic measurements were possible.
Collapse
Affiliation(s)
- Normann Kilb
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,Faculty of Biology, Biology 3, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Tobias Herz
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,Faculty of Biology, Biology 3, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Jürgen Burger
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79104, Freiburg, Germany
| | - Johannes Woehrle
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79104, Freiburg, Germany
| | - Philipp A Meyer
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79104, Freiburg, Germany
| | - Günter Roth
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,Faculty of Biology, Biology 3, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.,BIOSS-Centre for Biological Signal Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| |
Collapse
|
8
|
Balakrishnan D, Lamblin G, Thomann JS, van den Berg A, Olthuis W, Pascual-García C. Electrochemical Control of pH in Nanoliter Volumes. NANO LETTERS 2018; 18:2807-2815. [PMID: 29617568 DOI: 10.1021/acs.nanolett.7b05054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The electrochemical management of the proton concentration in miniaturized dimensions opens the way to control and parallelize multistep chemical reactions, but still it faces many challenges linked to the efficient proton generation and control of their diffusion. Here we present a device operated electrochemically that demonstrates the control of the pH in a cell of ∼140 nL. The device comprises a microfluidic reactor integrated with a pneumatic mechanism that allows the exchange of reagents and the isolation of protons to decrease the effect of their diffusion. We monitored the pH with a fluorescence marker and calculated the final value from the redox currents. We demonstrate a large pH amplitude control from neutral pH values beyond the fluorescence marker range at pH 5. On the basis of the calculations from the Faradaic currents, the minimum pH reached should undergo pH ∼ 0.9. The pH contrast between neutral and acid pH cells can be maintained during periods longer than 15 min with an appropriate design of a diffusion barrier.
Collapse
Affiliation(s)
- Divya Balakrishnan
- Luxembourg Institute of Science and Technology (LIST) , 41 Rue du Brill , L-4422 Belvaux , Luxembourg
- MESA+ Institute , University of Twente , Drienerlolaan 5 , 7522 NB Enschede , Netherlands
| | - Guillaume Lamblin
- Luxembourg Institute of Science and Technology (LIST) , 41 Rue du Brill , L-4422 Belvaux , Luxembourg
| | - Jean Sebastien Thomann
- Luxembourg Institute of Science and Technology (LIST) , 41 Rue du Brill , L-4422 Belvaux , Luxembourg
| | - Albert van den Berg
- MESA+ Institute , University of Twente , Drienerlolaan 5 , 7522 NB Enschede , Netherlands
| | - Wouter Olthuis
- MESA+ Institute , University of Twente , Drienerlolaan 5 , 7522 NB Enschede , Netherlands
| | - César Pascual-García
- Luxembourg Institute of Science and Technology (LIST) , 41 Rue du Brill , L-4422 Belvaux , Luxembourg
| |
Collapse
|
9
|
Quan PL, Sauzade M, Brouzes E. dPCR: A Technology Review. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1271. [PMID: 29677144 PMCID: PMC5948698 DOI: 10.3390/s18041271] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 12/17/2022]
Abstract
Digital Polymerase Chain Reaction (dPCR) is a novel method for the absolute quantification of target nucleic acids. Quantification by dPCR hinges on the fact that the random distribution of molecules in many partitions follows a Poisson distribution. Each partition acts as an individual PCR microreactor and partitions containing amplified target sequences are detected by fluorescence. The proportion of PCR-positive partitions suffices to determine the concentration of the target sequence without a need for calibration. Advances in microfluidics enabled the current revolution of digital quantification by providing efficient partitioning methods. In this review, we compare the fundamental concepts behind the quantification of nucleic acids by dPCR and quantitative real-time PCR (qPCR). We detail the underlying statistics of dPCR and explain how it defines its precision and performance metrics. We review the different microfluidic digital PCR formats, present their underlying physical principles, and analyze the technological evolution of dPCR platforms. We present the novel multiplexing strategies enabled by dPCR and examine how isothermal amplification could be an alternative to PCR in digital assays. Finally, we determine whether the theoretical advantages of dPCR over qPCR hold true by perusing studies that directly compare assays implemented with both methods.
Collapse
Affiliation(s)
- Phenix-Lan Quan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Martin Sauzade
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
10
|
Directional Photo-manipulation of Self-assembly Patterned Microstructures. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2087-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Flow Bioreactors as Complementary Tools for Biocatalytic Process Intensification. Trends Biotechnol 2017; 36:73-88. [PMID: 29054312 DOI: 10.1016/j.tibtech.2017.09.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
Biocatalysis has widened its scope and relevance since new molecular tools, including improved expression systems for proteins, protein and metabolic engineering, and rational techniques for immobilization, have become available. However, applications are still sometimes hampered by low productivity and difficulties in scaling up. A practical and reasonable step to improve the performances of biocatalysts (including both enzymes and whole-cell systems) is to use them in flow reactors. This review describes the state of the art on the design and use of biocatalysis in flow reactors. The encouraging successes of this enabling technology are critically discussed, highlighting new opportunities, problems to be solved and technological advances.
Collapse
|
12
|
Song L, Wallstrom G, Yu X, Hopper M, Van Duine J, Steel J, Park J, Wiktor P, Kahn P, Brunner A, Wilson D, Jenny-Avital ER, Qiu J, Labaer J, Magee DM, Achkar JM. Identification of Antibody Targets for Tuberculosis Serology using High-Density Nucleic Acid Programmable Protein Arrays. Mol Cell Proteomics 2017; 16:S277-S289. [PMID: 28223349 DOI: 10.1074/mcp.m116.065953] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Indexed: 12/11/2022] Open
Abstract
Better and more diverse biomarkers for the development of simple point-of-care tests for active tuberculosis (TB), a clinically heterogeneous disease, are urgently needed. We generated a proteomic Mycobacterium tuberculosis (Mtb) High-Density Nucleic Acid Programmable Protein Array (HD-NAPPA) that used a novel multiplexed strategy for expedited high-throughput screening for antibody responses to the Mtb proteome. We screened sera from HIV uninfected and coinfected TB patients and controls (n = 120) from the US and South Africa (SA) using the multiplex HD-NAPPA for discovery, followed by deconvolution and validation through single protein HD-NAPPA with biologically independent samples (n = 124). We verified the top proteins with enzyme-linked immunosorbent assays (ELISA) using the original screening and validation samples (n = 244) and heretofore untested samples (n = 41). We identified 8 proteins with TB biomarker value; four (Rv0054, Rv0831c, Rv2031c and Rv0222) of these were previously identified in serology studies, and four (Rv0948c, Rv2853, Rv3405c, Rv3544c) were not known to elicit antibody responses. Using ELISA data, we created classifiers that could discriminate patients' TB status according to geography (US or SA) and HIV (HIV- or HIV+) status. With ROC curve analysis under cross validation, the classifiers performed with an AUC for US/HIV- at 0.807; US/HIV+ at 0.782; SA/HIV- at 0.868; and SA/HIV+ at 0.723. With this study we demonstrate a new platform for biomarker/antibody screening and delineate its utility to identify previously unknown immunoreactive proteins.
Collapse
Affiliation(s)
- Lusheng Song
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Garrick Wallstrom
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Xiaobo Yu
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Marika Hopper
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Jennifer Van Duine
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Jason Steel
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Jin Park
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Peter Wiktor
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287.,¶Engineering Arts LLC, Tempe, Arizona 85287
| | - Peter Kahn
- ¶Engineering Arts LLC, Tempe, Arizona 85287
| | - Al Brunner
- ¶Engineering Arts LLC, Tempe, Arizona 85287
| | - Douglas Wilson
- ‖Department of Internal Medicine, Edendale Hospital, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | | | - Ji Qiu
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Joshua Labaer
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - D Mitchell Magee
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287;
| | - Jacqueline M Achkar
- **Departments of Medicine and .,‡‡Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
13
|
Wang W, Yao Y, Luo T, Chen L, Lin J, Li L, Lin S. Deterministic Reshaping of Breath Figure Arrays by Directional Photomanipulation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4223-4230. [PMID: 28071893 DOI: 10.1021/acsami.6b14024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The fabrication of desired structures is one of the most urgent topics in current research on porous polymer films. Herein, directional photomanipulation in conjunction with breath figure processing has been demonstrated for the preparation of porous polymeric films with finely tunable pore shape and size. Because of the photoinduced directional mass migration of azobenzene units upon vertical incident linearly polarized light (LPL) irradiation, round pores on honeycomb films can be reshaped into multifarious shapes including rectangle, rhombus, dumbbell, line, and so forth. In addition, slantwise LPL irradiation produces unique asymmetrical structure inside the pores oriented along the polarized direction. On the other hand, circularly polarized light (CPL) irradiation affords manipulation of the wall thickness without changing the pore shape. This versatile directional photomanipulation method can be implemented to large-area and high-throughput reshaping processes, which paves the way to a number of promising applications such as a flexible etching mask for patterning.
Collapse
Affiliation(s)
- Wei Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Tianchan Luo
- College of Materials, Xiamen University , Xiamen 621005, China
| | - Lingzhi Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Lei Li
- College of Materials, Xiamen University , Xiamen 621005, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
14
|
Bian X, Wiktor P, Kahn P, Brunner A, Khela A, Karthikeyan K, Barker K, Yu X, Magee M, Wasserfall CH, Gibson D, Rooney ME, Qiu J, LaBaer J. Antiviral antibody profiling by high-density protein arrays. Proteomics 2015; 15:2136-45. [PMID: 25758251 PMCID: PMC4545592 DOI: 10.1002/pmic.201400612] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/12/2015] [Accepted: 03/07/2015] [Indexed: 12/14/2022]
Abstract
Viral infections elicit antiviral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection, and understanding of the mechanisms of virus-associated diseases. In this work, we assayed antiviral antibodies using a novel high-density nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter-array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal-to-background ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis and type 1 diabetes. Common and unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development.
Collapse
Affiliation(s)
- Xiaofang Bian
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Peter Wiktor
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Peter Kahn
- Engineering Arts LLC, Tempe, AZ, 85281, USA
| | - Al Brunner
- Engineering Arts LLC, Tempe, AZ, 85281, USA
| | - Amritpal Khela
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Kailash Karthikeyan
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Kristi Barker
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Xiaobo Yu
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Mitch Magee
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Clive H. Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - David Gibson
- Northern Ireland Centre for Stratified Medicine, Ulster University, C-TRIC, Glenshane Road, Londonderry, BT47 6SB, UK
| | - Madeleine E Rooney
- Arthritis Research Group, Centre for Infection and Immunity, Health Science Building, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ji Qiu
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Joshua LaBaer
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|